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Head and neck squamous cell carcinoma (HNSCC) is a major healthcare problem worldwide affecting
more than half a million patients each year. Despite considerable advances in the treatment of HNSCC,
a high rate of recurrences aggravates the clinical situation and disease outcomes have only modestly
improved. Recent insights show that cancer is not only a disease of the transformed epithelium but is also
influenced and dependent on its stromal environment. In this review we suggest that resident and bone
marrow (BM)-derived mesenchymal stem cells (MSCs) are precursors of the stroma associated with
HNSCC and contribute to blood and lymphangiogenesis, modulate the immune system and produce
tumor-associated myofibroblasts. In addition, the impact of radiation therapy on the stromal reaction
in HNSCC is discussed. Understanding the mechanisms of how MSCs promote invasive growth and
metastasis in HNSCC and respond to cancer management strategies is of profound medical importance
and will help us to design improved therapeutic protocols.

� 2010 Published by Elsevier Ltd.
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Head and neck squamous cell carcinoma (HNSCC) primarily af-
fects the mucosa of the upper aerodigestive tract, comprising the
nasal and paranasal sinuses, nasopharynx, oropharynx, oral cavity,
hypopharynx and larynx. The American Cancer Society estimates
that approximately 35,720 new cases of HNSCC will have been
diagnosed in the United States in 2009.1 Worldwide, HNSCC is
the sixth most common malignancy with an incidence of 644,000
new cases a year.2 Despite considerable advances in the treatment
of HNSCC, a high rate of recurrences and distant metastasis aggra-
vates the clinical situation.3 Recent insights show that cancer is not
only a disease of the transformed epithelium but is also fundamen-
tally influenced by its stromal environment.4 Pre-cancerous condi-
tions of HNSCC, such as oral submucous fibrosis, are characterized
by accumulation of type I collagen within the subepithelial tissue.5

In agreement, molecular classification of HNSCC using patterns of
gene expression reveals distinct subtypes and includes a normal
epithelium-like subtype and a subtype with high levels of antioxi-
dant enzymes both with better recurrence-free survival data com-
pared to subtypes with an epidermal growth factor receptor
(EGFR)-pathway signature or a mesenchymal-enriched subtype.6
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High levels of EGFR expression in squamous cell carcinoma (SCC)
correlate with worse clinical outcome,7 and decreased response
to radiotherapy, as evidenced by increased locoregional recur-
rence.8 Cetuximab is an IgG1 monoclonal antibody that exclusively
targets EGFR with high affinity, and inhibits endogenous ligand
binding, thereby blocking receptor dimerisation, tyrosine kinase
phosphorylation, and signal transduction.9 A recent randomized
trial showed that cetuximab plus radiotherapy (versus radiother-
apy alone) significantly improves locoregional control and 5-years
survival without worsening radiotherapy-related toxicity.10 The
mechanisms by which cancer cells manipulate their local stroma
in the mesenchymal-enriched subtype is more a matter of debate
compared to the EGFR-pathway subtype. In this review we discuss
that resident and bone marrow (BM)-derived mesenchymal stem
cells (MSCs) are precursors of the stroma associated with HNSCC.
Here, MSCs contribute to blood and lymph angiogenesis, modulate
the immune system and produce tumor-associated myofibroblasts.
Radiation therapy is a mainstay of curative therapy for HNSCC.
Recent advances have focused primarily on fractionation schedules
and the use of intensity modulated radiation therapy (IMRT), a
form of high-precision radiotherapy that delivers radiation more
precisely to the tumor while sparing the surrounding normal tis-
sues. IMRT has greatly improved locoregional tumor control for
paranasal sinuses and pharyngolaryngeal carcinoma but had little
effect on distant metastasis.11 Reports indicate that radiation
erived mesenchymal stem cells in head and neck squamous cell carcinoma.

http://dx.doi.org/10.1016/j.oraloncology.2010.01.016
mailto:olivier.dewever@ugent.be
http://www.sciencedirect.com/science/journal/13688375
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increases local and distant recruitment of MSCs into irradiated tis-
sues.12,13 The consequent production of factors derived from MSCs
or from differentiated myofibroblasts, known to possess pro-inva-
sive activities,14 may contribute to distant metastasis and so neu-
tralize the benefit of locoregional control. Several reports of
HNSCC suggest that there are indeed certain circumstances, not
yet fully understood, under which radiotherapy favours relapse
and metastasis (reviewed in15). Understanding the molecular biol-
ogy of cancer progression and management in this regard moti-
vated this detailed analysis of HNSCC-associated MSCs.
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Definition and characterization of MSCs

The concept of MSCs can be traced to the late nineteenth cen-
tury work of E. Goujon (a.d. 1869), confirmed by A. Baikow (a.d.
1870), who described the osteogenic potential of heterotopic trans-
plants of rabbit BM.16 This osteogenic potential of BM was a feature
of a specific subgroup of cells, termed the ‘‘Colony Forming Unit-
fibroblasts” (CFU-f), which made up a very small percentage of
the total BM cell population.17 Subsequent studies demonstrated
that these cells could differentiate into various other mesenchymal
cell lineages, and they were therefore called MSCs.18 The definition
and designation of MSCs remains a point of discussion, especially
since our knowledge is solely based on the characterization of cul-
tured cells. In this review, the designation ‘‘MSCs” refers to tissue
culture-adherent stromal cells isolated from a variety of tissues
and capable of differentiating into cell lineages of mesenchymal
tissues such as adipocytes, osteocytes, chondrocytes and connec-
tive tissue cells.

MSCs express a variety of antigens that are also expressed by
many other cell types and to date no unique MSC immunopheno-
typing marker(s) has(ve) been identified.19 MSCs express CD73
(ecto-50-nucleotidase), CD90 (Thy-1) and CD105 (endoglin), but
not CD11b, CD14, CD19, CD34, CD45, CD79a and HLA class II.

Classically, MSCs are plated on tissue-culture substrates in low-
glucose (1 g L�1) Dulbecco’s Modified Eagle’s Medium (DMEM),
supplemented with 10% of selected batches of fetal bovine serum
(FBS). After several passages, MSCs enter senescence, with changes
in morphology and a reduced proliferation and differentiation po-
tential. The pace of senescence is affected by the culture condi-
tions. A culture system which allows dynamic expansion of a
high-extension silicone rubber (HESR) substrate with a much low-
er stiffness (10–20 � 103 Pa) as compared to tissue-culture sub-
strates (2.78 � 109 Pa),20 reduces contact inhibition and results
in longer preservation of the cell phenotype. Moreover, the growth
on expandable HESR matrices suppresses expression of a-smooth
muscle actin (SMA), a functional marker for fibrogenic myofibro-
blasts, expressed by MSCs on tissue-culture substrates.
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MSCs in noncancerous normal and pathological situations

Embryogenesis of MSCs

MSCs in the head and neck region possibly have a different ori-
gin as compared to the rest of the body. Cranial skeleton and other
mesenchymal tissues of head and neck are mainly derived from the
neural crest (NC),21 except for the occipital and otic (partly) regions
of the skull, which are derived from the mesoderm.22 Trunk and
limb mesenchyme is derived from the mesoderm.23 NC can gener-
ate MSCs. Mesoderm can generate mesenchymal tissues without
transiting through an MSC intermediate and it is unclear whether
MSCs are derived from the mesoderm.24 The development of MSCs
arises in multiple waves from distinct origins (Fig. 1).24 The earliest
wave originates in the neuroepithelial and NC cells. An NC gene
network regulates EMT (epithelial-to-mesenchymal transition) of
Please cite this article in press as: De Boeck A et al. Resident and bone marrow-d
Oral Oncol (2010), doi:10.1016/j.oraloncology.2010.01.016
neuroectodermal cells at the dorsal aspect of the neural tube and
generates the NC, containing highly invasive cells that give rise
to MSCs, as well as neurons and glial cells.21,25 Later, a wave of
MSCs from as yet unidentified sources, possibly mesoderm or
NC-derived MSCs, becomes increasingly important.24

Besides their role in embryogenesis of mesenchymal tissues,
MSCs colocalize with foci of haematopoiesis early in ontogeny sug-
gesting that they support fetal haematopoiesis. MSCs circulate in
fetal blood, from at least 7 weeks gestation at the onset of haemat-
opoiesis and disappear from the circulation by the end of the first
trimester, before haematopoiesis becomes established.26
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FMSC distribution and function in adult tissues

BM serves as a reservoir for MSCs, were they represent 0.01–
0.001% of all nucleated cells.27 MSCs are also distributed through-
out the body. Specifically, MSCs have been isolated from several
oral tissues including dental pulp, dental follicle, apical papilla,
periodontal ligament and palatine tonsil.28–32 MSCs are not found
in peripheral blood under normal conditions,33–35 but can be de-
rived from granulocyte colony-stimulating factor (G-CSF) mobi-
lised peripheral blood or umbilical cord blood.33 The distribution
of MSCs throughout the body raised the question whether there
exist a common MSC niche.34 The derivation from the aorta, vena
cava and other vessels points to a perivascular niche.34,36 With
the use of the markers Stro-1 and CD146, MSCs are found lining
blood vessels in human BM and dental pulp.29 Localisation of MSCs
to perivascular niches throughout the body gives them easy access
to all tissues when needed for tissue repair or remodelling, pro-
vided they conserve the invasive characteristics of their progeni-
tors, e.g. NC cells. MSCs can either provide daughter cells that
differentiate and then participate in the structural repair of a
wound, or can supply secreted factors that support wound repair
and modulate the immune system.37 After systemic administra-
tion, BM MSCs home and engraft in damaged organs such as vascu-
lar tissue, myocardium, brain, liver, kidney, lung and skin resulting
in morphological and functional improvements (reviewed in38).
During radiotherapy, damage will occur in normal tissues lying
in the radiation field. For radiotherapeutic treatment of HNSCC,
the salivary glands are one of the tissues at risk. G-CSF-mobilized
BM-derived cells specifically homed to radiation-induced damaged
salivary glands after radiotherapy and induced repair processes.39
MSCs in HNSCC

Tumor metastasis involves extensive interactions of the inva-
sive cancer cells with host stromal components. Tumor stroma
comprises extracellular matrix (ECM) and a plethora of cells that
work in concert such as myofibroblasts, tumor-associated macro-
phages, mast cells, neutrophils, endothelial cells, and bacteria.40

All of them critically influence the process of carcinogenesis and
tumor progression. The mechanisms by which cancer cells manip-
ulate their local ecosystem are still a matter of debate. In this re-
view we discuss the hypothesis that resident and BM MSCs are
precursors of the stroma associated with HNSCC, thereby promot-
ing invasive tumor growth and distant metastasis. Furthermore,
we will address the question whether radiotherapy affect MSC
recruitment and differentiation and by inference the surrogate
endpoints invasion and metastasis. HNSCC is a significant health
problem, with extremely poor outcomes and significant morbidity
if patients have a disease recurrence at the locoregional site. After
surgical resection, microscopic cancer cells left behind in the
wound margins of the surgical resection bed increase the likeli-
hood of local failures.41 The immediate postoperative period may
be a time of maximum growth stimulus for any residual cancer
erived mesenchymal stem cells in head and neck squamous cell carcinoma.

http://dx.doi.org/10.1016/j.oraloncology.2010.01.016
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Figure 1 Early embryonic sources and fate of MSCs. Embryonic MSCs are derived from the NC and possibly from the mesoderm. Adult MSCs are possibly derived from
derivatives of the mesoderm or from NC-derived MSCs. Solid arrows indicate the direction of development. Dashed arrows indicate possible directions of development.
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(stem) cell.42 Furthermore, the process of wound repair after surgi-
cal extirpation in the surgical wound involves the recruitment of
MSCs and consequent secretion of many factors that stimulate re-
pair37 and relapse if residual cancer (stem) cells are present. Post-
operative adjuvant radiotherapy may further increase the
recruitment of MSCs into the wound site causing a vicious cancer
progression cycle. Traditionally, patients with positive margins re-
ceive postoperative radiotherapy and/or chemotherapy; however
the prognosis for these patients remains poor. Approximately
75% of patients with positive surgical margins develop local recur-
rence following radiotherapy according to one study.43
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Recruitment of MSCs to HNSCC

Cytokines and growth factors secreted by tumors recruit resi-
dent and distant respondent cells such as MSCs.44,45 Intravenously
injected green fluorescent protein (GFP)-labelled MSCs in the tail
vein of tumor bearing mice are recruited to xenografts derived
from several cancer cell lines including UMSCC1 HNSCC cells.12 Al-
tered expression of cytokines and growth factors plays a major role
in the malignant transformation of many cancers including
HNSCC.46 Decreasing cytokine levels in serum are associated with
response to therapy, while increasing levels are related to HNSCC
progression and recurrence.47 Over-expression of tumor necrosis
factor (TNF)-a, vascular endothelial growth factor (VEGF), hepato-
cyte growth factor (HGF), platelet-derived growth factor (PDGF)-
AB, transforming growth factor (TGF)-b1 and interleukins (ILs),
has been observed in HNSCC cells in vitro as well as in patients’ tu-
mor specimens and serum.46,48 Among them, PDGF-AB, VEGF, HGF
en IL-8 exert strong chemotactic effects on BM MSCs and are pos-
sibly involved in MSC recruitment to HNSCC.49 Priming of MSCs
with pro-inflammatory cytokines like TNFa enhances migration
of MSCs in vitro suggesting that the mobilisation and subsequent
homing to tumors depend on the systemic and local inflammatory
state.49 Indeed, a chronic increase in inflammatory mediators in
the oral cavity and oropharynx can lead to increased invasion
and metastasis.50 Furthermore, inflammatory cytokines stimulate
specific matrix metalloproteinase (MMP) activity in MSCs assisting
passage through the basement membrane during extravasation.51

Anti-cancer treatment influences recruitment of MSCs. Irradi-
ated tumors, compared to unirradiated tumors, show an increase
in MSC recruitment.13 This was demonstrated by bilateral hind
leg breast tumor implants: one was left untreated, whereas the
other was irradiated before intravenous injection of MSCs. At
48 h postirradiation, more MSCs were detected in the irradiated
than in the unirradiated limbs. In unirradiated tumors, MSCs were
more commonly associated with intravascular or perivascular
structures, whereas in irradiated tumors, MSCs were present in
Please cite this article in press as: De Boeck A et al. Resident and bone marrow-d
Oral Oncol (2010), doi:10.1016/j.oraloncology.2010.01.016
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Ohigher proportions in the tumor parenchyma. MSC migration to
irradiated tumors may result from a dynamic interplay in which
cancer cells secrete cytokines in response to radiation, leading to
chemokine receptor upregulation on MSCs, and ultimately result-
ing in enhanced migration towards the chemokine ligand-bearing
tumor. The consequent production of MSC-derived factors may
contribute to relapse and metastasis. In this context it may be
interesting to compare immunohistochemically, provided specific
markers can be developed, the presence of MSCs and/or terminally
differentiated myofibroblasts in HNSCC patients treated or not by
IMRT. In a cell culture model we may understand how MSCs react
to cancer management protocols including radio-chemotherapy.
EMSCs and HNSCC progression

In vitro and in vivo models have shown that MSCs stimulate
invasive growth of solid and haematological tumors.52,53 Tumor–
stroma interactions are important in HNSCC pathogenesis.48,54,55

We suggest that MSCs are involved in HNSCC progression by: (i)
supporting blood- and lymph angiogenesis, (ii) modulating the im-
mune system, and (iii) generating tumor-associated myofibro-
blasts (Fig. 2).

MSCs support blood and lymph angiogenesis

Blood- and lymph angiogenesis are key components of the met-
astatic spread of cancer cells. Blood angiogenesis is controlled by
angiogenic factors directly produced by cancer cells, as well as by
factors from the surrounding stromal tissues. VEGF and IL-8 are
prominent pro-angiogenic factors that are upregulated in HNSCC
tumors and associated with aggressive tumor growth and de-
creased survival.56 MSCs can act as precursors of endothelial cells
and pericytes and promote angiogenesis.57 When treated with
VEGF, MSCs acquire an endothelial cell phenotype, with expression
of vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2,
vascular endothelial (VE)-cadherin, vascular cell adhesion mole-
cule (VCAM)-1 and von Willebrand Factor (vWF).58 MSCs reside
in perivascular niches throughout the body29,34 and can engraft
within blood vessels at sites of hypoxia,59 supporting the contribu-
tion of MSCs in blood angiogenesis at hypoxic tumor sites. In addi-
tion, paracrine factors of MSCs recruit endothelial cells and smooth
muscle cells and stimulate their proliferation.60 Local injection of
MSC-derived conditioned medium (CM) enhances vascularisation
and perfusion in an ischemic hindlimb mouse model.60 Tissue hy-
poxia, as present in tumors, is a major stimulus for vascularisation.
Hypoxia stimulates MSCs to a 2–fold increase in secretion of pro-
angiogenic factors like VEGF-A, fibroblast growth factor (FGF)-2,
FGF-7, IL-1, IL-6, PDGF, TGF-b, TNF-a.60–62 Hypoxic MSCs show
erived mesenchymal stem cells in head and neck squamous cell carcinoma.
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improved angiogenic potency compared to naive MSCs when im-
planted in ischemic hindlimbs.62

The involvement of regional lymph nodes is an important indi-
cator of tumor aggressiveness and is a prognostic factor for HNSCC
patients. Increased tumor lymph angiogenesis correlates with
lymph node metastasis in HNSCC,63 but the mechanisms regulating
metastatic spread through the lymphatic route remain largely
unexplored to date. VEGF-C and VEGF-D are implicated in tumor
lymph angiogenesis and lymph node metastases.64 A direct corre-
lation exist between VEGF-C expression and the presence of lymph
node metastases in HNSCC.63,65,66 In patients with tongue carci-
noma, VEGF-C was associated with primary tumor size, regional
lymph node metastasis, distant metastasis and prognosis. More-
over, VEGF-C expression correlated with locoregional recurrence
and distant failure.66 MSCs have been shown to play a role in
lymph angiogenesis and acquire a lymphatic phenotype when ex-
posed to VEGF-C.67 Migratory activity of MSCs towards VEGF-C
in vitro suggests that VEGF-C may recruit circulating MSCs.

The identification of soluble cancer or stromal cell-derived
mediators which stimulate both blood and lymph angiogenesis
can reveal targets by which to interrupt tumor angiogenesis which
would, in turn, limit the growth and metastatic potential of solid
cancers such as HNSCC.
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UMSCs modulate the immune system

HNSCC develop molecular strategies to escape efficient antitu-
mor immune responses.68,69 HNSCC are infiltrated primary with
T cells and dendritic cells (DC), but also with B cells, natural killer
(NK) cells, macrophages and eosinophils. Impaired function of T
cells and DC is observed in HNSCC.68 MSCs exert local immunosup-
pressive effects, implicating that engraftment of MSCs in HNSCC
creates an immunosuppressive environment. Djouad et al.70 dem-
onstrated that MSCs prevented the rejection of allogenic tumor
cells in immunocompetent mice. MSCs infused systemically or
adjacent to subcutaneously implanted B16 melanoma cells re-
Please cite this article in press as: De Boeck A et al. Resident and bone marrow-d
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Esulted in enhanced tumor formation, whereas melanoma cells in-
jected alone were eliminated by the host immune system,
suggesting a facilitatory role of MSCs on allogenic tumor formation.
MSCs affect the proliferation and function of immune cells includ-
ing T cells, DC, NK cells, B lymphocytes and macrophages (re-
viewed in71). In vivo and in vitro evidence suggest that the
proliferation of stimulated T cells is inhibited by MSCs without
immunological restriction; similar suppressive effects being ob-
served under autologous and allogenic conditions.72 This suppres-
sion of T cells affects antigen specific proliferation, expression of
activation markers, cytotoxic T cell (CTL) formation and interferon
(IFN)-c and IL-4 production.73,74 MSCs also induce T cell anergy, an
observation supported by their lack of co-stimulatory molecules
(B7-1 and B7-2) and the restoration of proliferation following MSCs
removal.73,75,76 In addition, MSCs modulate the effects of CTLs and
suppress CD8 + CTLs, but not activated CD8 + CTLs cells, suggesting
a possible inhibition of lymphocyte proliferation with reduced
overall CTLs cytolytic response rather than inhibiting cytolysis it-
self.77,78 Both human and mice MSCs inhibit the proliferation of B
cells stimulated by CD40L and cytokines.79,80 Furthermore, human
MSCs inhibit the differentiation, chemotactic behaviour and anti-
body secretion of B cells.80
MSCs are a source of HNSCC-associated myofibroblasts

Myofibroblasts are abundantly present in the stroma of devel-
oping tumors and drive invasive tumor growth by providing a suit-
able environment.81,82 There is ample evidence for the pro-invasive
growth activity of tumor-associated myofibroblasts (recently re-
viewed in14), and there is no evidence to suggest that there is a dif-
ferent behaviour of tumor-associated myofibroblasts between
HNSCC and other tumors. Myofibroblasts are large spindle-shaped
cells with indented nuclei, a-SMA containing stress fibers and
well-developed cell–matrix interactions (fibronexus). Character-
ization of stromal myofibroblasts is based on a combination of po-
sitive markers such as a-SMA, c-SMA, desmin, vimentin, prolyl-4
erived mesenchymal stem cells in head and neck squamous cell carcinoma.
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Table 1
Efferent signals leading to the upregulation of myofibroblast markers and pro-invasive molecules in MSCs.

Efferent signal Myofibroblast marker Pro-invasive molecule Reference

Single agent
1-Oleol-LPA a-SMA SDF-1 106

5-Azacytidine a-SMA; desmin; FSP 92

PDGF-AA a-SMA 107

TGF-b1 a-SMA; calponin; SM22a SDF-1 106

TGF-b3; D-erythro-SPC a-SMA; calponin; SM22a 108

CCCM
MDA-MB-231; PANC-1; U87 a-SMA; desmin; FSP SDF-1 92

OVCAR-3; ascites ovary tumor a-SMA SDF-1 106

SK-OV-3 a-SMA; desmin; FAP; FSP FAP; IL-6; TGF-b1; TNC; TSP1; VEGF 52

Coculture
HCT115; HT29 a-SMA; calponin 109

Abbreviations: CCCM, cancer cell-conditioned medium; LPA, lysophospatidic acid; PDGF, platelet-derived growth factor; TGF, tumor growth factor; SPC,
sphingosylphosphorylcholine; SMA, smooth muscle actin; FSP, fibroblast-specific protein; SM22a, smooth muscle 22a; FAP, fibroblast activating protein; SDF, stromal-
derived factor; TNC, tenascin-C; TSP1, thrombospondin-1; IL, interleukin; VEGF, vascular endothelial growth factor.
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hydroxylase (P4H) and negative markers such as cytokeratin,
CD31, CD34 and smoothelin.14 Stromal myofibroblasts produce
ECM components, ECM remodelling enzymes, growth factors, cyto-
kines and chemokines in order to create an invasive growth pro-
moting ecosystem.14

Immunohistochemical analysis of a-SMA reveals that myofibro-
blasts are abundantly present in the stroma of HNSCC.54,83–85

iTRAQ (a non-gel based technique using isotopes to identify and
quantify proteins from different sources in one single experiment)
multidimensional liquid chromatography and tandem mass spec-
trometry revealed the myofibroblast-associated S100-A11 protein
calgizarrin as a novel HNSCC biomarker.86 Myofibroblast appear-
ance increases with increasing tumor invasiveness in squamous
cell carcinoma of the oral cavity.81 Abundant presence of myofibro-
blasts in the stroma is associated with several clinicopathological
features of HNSCC including lymph node metastasis, disease stage
and regional recurrence.54,83 Understanding the origin and molec-
ular events for the generation of tumor-associated myofibroblasts
is still a matter of debate. Tumor-associated myofibroblasts are
thought to arise from several mobilised cell types87 including
migratory neighbours such as tissue-resident MSCs or tissue-resi-
dent fibroblasts, and distant invaders such as BM-derived
MSCs.44,45,88 Myofibroblast differentiation is regulated by growth
factors, mainly of the TGF-b family,89 which are secreted abun-
dantly by HNSCC.82,90 Interestingly, irradiation generates reactive
oxygen species causing oxidation of specific amino acids in the la-
tent TGF-b complex and release of its active form.91 MSCs exposed
to cancer cell-conditioned medium (CCCM), ascites from ovarian
cancer patients or soluble cancer cell-derived factors like TGF-b
or after long-term coculture with cancer cells, acquire a myofibro-
blast phenotype, characterized by an increased a-SMA expression
and ECM, protease, and growth factor production (Table 1). These
data put forward MSCs as myofibroblast precursors in the stroma
of several solid cancers including HNSCC. Moreover, gene expres-
sion profiling reveals similarities between CCCM-exposed MSCs
and stromal myofibroblasts.92,93 The fact that myofibroblasts share
surface antigens and functions with MSCs suggest they may origi-
nate from the BM.94 BM-derived MSC’s contribute to 25% of the to-
tal myofibroblast population in the tumor stroma in a mouse
model of pancreatic insulinoma44 and in a subcutaneous pancre-
atic xenograft tumor.45 Furthermore, these BM-derived MSC-de-
rived myofibroblasts actively participate in the production of
matrix proteins, such as collagen type I, in xenograft tumors.44

TGF-b1 derived from several oral squamous cell carcinoma cell
lines (OSCC) induces myofibroblast differentiation of primary
fibroblasts. Fibrosis in metastatic lymph nodes is a factor of worse
prognosis in cancer of the oral cavity.35 Several paracrine factors
produced by MSCs may be implicated in HNSCC progression. The
Please cite this article in press as: De Boeck A et al. Resident and bone marrow-d
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Oc-Met receptor tyrosine kinase is a potential therapeutic target
for HNSCC since scatter factor (SF)/HGF, secreted by stromal
HNSCC cells, stimulates invasive growth and angiogenesis.95,96

Galectin-1 is significantly overexpressed in the tumor-associated
stroma as well as in the invasion front during early oral carcino-
genesis and associate with worse disease-free survival.97 Stro-
mal-derived factor (SDF)-1a, frequently detected in secretomes
of MSCs,98 promotes invasion of HNSCC by activating Nuclear Fac-
tor-jB.99 Furthermore, gene expression profiles identify activation
of Nuclear Factor-jB as characteristic of high-risk HNSCC.100 Acti-
vation of toll-like receptor 4 signalling in HNSCC cells promotes tu-
mor development101 and this activation may be mediated by the
tumor-associated stromal cell-derived ECM protein tenascin-C
(TNC).102 Coculture of primary and metastatic HNSCC cells with
fibroblasts derived from human gingiva causes increases in expres-
sion of cytokines which are involved in HNSCC cell invasion.48

Fibroblast-derived membrane type 1 (MT1)-MMP promote HNSCC
cancer cell invasion in cell culture and tumor growth in xenograft
models.103 The so called isolated fibroblast populations in these
studies are likely to be multipotent MSCs, since MSCs can be iso-
lated from a variety of oral tissues by explant culture, as used in
these studies.104

Conclusions and perspectives

Understanding the mechanisms of how supporting host cells
composing the tumor ecosystem promote invasive growth and
metastasis and react to cancer management strategies is pro-
foundly important. Given the role of MSCs in wound repair37 and
their emerging use as therapeutic agents,105 we propose that MSCs
are a critical, manipulable component in pre-cancerous conditions
such as oral submucous fibrosis5 and in the tumor ecosystem of
HNSCC. Understanding the role of MSCs within pre-cancerous
and cancerous conditions will be extremely valuable. What we lack
are methods to specifically mark and trace the lineage of resident
MSCs. Such methods, when available, will help us to determine
the extent to which MSCs act as stem cells or as sources of secreted
factors, as well as to identify distinct functional subpopulations.
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