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Abstract 35 

Zn exposure of Daphnia magna during one generation has been shown to modulate gene 36 

transcription differently in Zn exposed organisms compared to their non-exposed offspring. 37 

Here we studied the transcriptional gene regulation with a cDNA microarray in D. magna 38 

exposed to Zn for three generations (F0-F2). For the first time molecular effects of 39 

multigeneration toxicant exposure in D. magna are described. Out of 73 differentially 40 

transcribed genes in the F1 Zn exposed generation (compared to the F1 control), only 7 genes 41 

were also differentially transcribed in the same direction in the F0 Zn exposed daphnids (up 42 

or down, compared to the F0 control). The majority of the differentially transcribed unigenes 43 

in F1 Zn exposed daphnids (78 %) were not differentially transcribed in the F0 Zn exposed 44 

organisms. This indicates that Zn exposure affected other molecular pathways in the second 45 

exposed generation, although a reduced reproduction and a reduction in juvenile growth 46 

were observed in both Zn exposed generations, compared to the respective controls. In the 47 

third Zn exposed generation (F2), no reduction in growth or reproduction compared to the 48 

control was observed. This acclimation was reflected in a significantly lower number of 49 

differentially transcribed genes, compared to the Zn exposed F0 and F1 generations.  50 

 51 
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1. Introduction 56 

In the young and rapidly growing research field of ecotoxicogenomics, genomic tools are 57 

used to detect the molecular responses an organism experiences when exposed to 58 

pollutants, providing clues to the toxic effects in the organism and the compensatory 59 

mechanisms that are induced (Poynton and Vulpe, 2009). With DNA microarrays, 60 

ecotoxicological effects of exposure can be linked with transcription profiles of large 61 

numbers of genes. The transcriptional patterns obtained provide a means to identify 62 

complex pathways and strategies that are altered or induced in an organism when it is 63 

exposed to environmental stressors (Steinberg et al., 2008). In recent years, a number of 64 

studies has investigated the transcriptional responses of Daphnia sp. exposed to different 65 

types of environmental stress, using Daphnia microarrays. This way, molecular effects 66 

induced by exposure of daphnids to e.g. Cd, dietary Zn, fenarimol, Ni and even binary metal 67 

mixtures or munitions constituents have been discovered and elucidated (Soetaert et al., 68 

2007; Connon et al., 2008; De Schamphelaere et al., 2008; Garcia-Reyero et al., 2009; 69 

Vandenbrouck et al., 2009). 70 

Under continuous, multigenerational exposure to certain metals, Daphnia magna is known 71 

to develop tolerance to this stress. This was demonstrated in experiments with Cd, Cu and 72 

Zn (Bossuyt and Janssen, 2004; Muyssen and Janssen, 2004; 2005). Molecular analyses can 73 

reveal insights into the underlying mechanisms of tolerance development during the 74 

acclimation period. This knowledge may be useful for screening or monitoring potential 75 

tolerance development in response to chemical exposure, or for investigating other 76 

environmental factors that could affect this tolerance. Except for an investigation of 77 

metallothionein induction, related to multigenerational Cd acclimation (Guan and Wang, 78 
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2006), no molecular studies related to tolerance development in metal acclimated D. magna 79 

are available in the literature. 80 

In a recent study, transcriptional patterns of D. magna exposed to Zn for one generation and 81 

cultured under non-exposed standard conditions for two subsequent generations were 82 

analyzed using a custom cDNA microarray (Vandegehuchte et al., 2010b). This revealed 83 

transcriptional regulation of several genes, both in the exposed daphnids and in the two 84 

subsequent non-exposed generations. An interesting observation was that the differentially 85 

transcribed genes of the F0 Zn exposed daphnids (compared to the F0 control organisms) 86 

were different from those in their non-exposed F1 and F2 offspring (compared to F1 and F2 87 

control daphnids). 88 

In parallel with these two generations of non-exposed offspring, two generations of 89 

offspring were cultured under continuous Zn exposure. In the present study, gene 90 

transcription as well as higher-level effects in three generations of Zn exposed daphnids 91 

were studied to evaluate transcriptional effects of continuous multigeneration Zn exposure 92 

and to elucidate the acclimation process at a transcriptional level.  93 

2. Materials and methods 94 

2.1 Daphnia cultures and experimental design 95 

D. magna Straus (clone K6) used in our experiments was originally collected from a pond in 96 

Kiel (Antwerp, Belgium) and has been successfully cultured under controlled laboratory 97 

conditions for more than 10 years in aerated carbon filtered tap-water, enriched with 98 

selenium (1 µg/L) and vitamins (7.5 mg/L thiamin, 100 µg/L cyanocobalamin and 75 µg/L 99 

biotin).  100 
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Daphnids were cultured in 10 mL medium per surviving daphnid during the first week and in 101 

20 mL medium per surviving daphnid from the second week onwards, maintaining a 102 

constant density of organisms and food, as described by Vandegehuchte et al. (2010b). 103 

Culture media were renewed three times per week and juveniles were removed at these 104 

occasions. The experimental design used in the current study is as follows. A set of neonates 105 

(0-24h) taken from the laboratory culture was divided into two batches. One batch was 106 

transferred to modified standard M4 medium (Elendt and Bias, 1990) and cultured in this 107 

control medium for three generations (F0C–F2C). A second batch of neonates was transferred 108 

into the same medium, but with the Zn concentration adjusted to 388 µg/L and cultured in 109 

this Zn contaminated medium for three generations (F0Zn–F1Zn). Based on previous studies, 110 

the higher Zn concentration was estimated to be sublethal, with a significant effect on 111 

reproduction (Heijerick et al., 2005; Muyssen and Janssen, 2005). Each combination of 112 

generation and exposure (control or Zn contaminated medium) is termed a ‘treatment’ 113 

throughout this paper (Fig. 1). The standard M4 medium was modified by replacing EDTA 114 

and Fe by 4 mg/L of natural Dissolved Organic Carbon (DOC) to avoid the use of excessively 115 

high metal concentrations due to EDTA complexation and to increase the environmental 116 

relevance of the medium. The dissolved organic matter was collected from a small unpolluted 117 

creek (Ruisseau de St. Martin, Bihain, Belgium) using a portable reverse osmosis system (PROS/2) 118 

(Sun et al., 1995). It was stored in the dark at 4 °C in a 50 L barrel, at a concentration of 119 

approximately 400 mg/L DOC. This DOC stock was thoroughly mixed each time before the 120 

preparation of new medium. The same batch of DOC was used for all treatments and media 121 

renewals. The Zn concentration in the control medium was adjusted to 19 µg/L Zn, i.e. within 122 

the optimal concentration range of this essential element for daphnids (Muyssen and 123 

Janssen, 2004).  124 
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Reproduction as total number of living juveniles per surviving adult after 21 days was 125 

measured by counting the number of juveniles per organism three times per week for each 126 

individual daphnid. Ten individual daphnids were kept in plastic cages (fitted with 200 µm 127 

mesh size gauze) which were suspended in the same aquaria as the treatment cultures. The 128 

length from the top of the head until the base of the spine was measured for ten different 129 

individual organisms per treatment by analyzing a microscopic image with UTHSCSA Image 130 

Tool 3.0 (San Antonio, TX, USA). This was done on day 6, day 13 and one to three days after 131 

the fifth brood was observed in the aquarium, when sufficient 0-24h offspring were available 132 

to start the next generation treatment. Internal Zn concentrations were determined as 133 

described in Vandegehuchte et al. (2010b). All Zn concentrations were measured by atomic 134 

absorption spectrometry (SpectrAA-100, Varian, Mulgrave, Australia). 135 

2.2 Statistical analysis 136 

All statistics were performed with Statistica (Statistica, Tulsa, USA). Differences between the 137 

Zn exposed and the control daphnids in reproduction (total number of juveniles per surviving 138 

female), length or internal Zn concentration were assessed using t-tests. For the comparison 139 

of the internal Zn concentrations in daphnids from the three Zn exposed generations, a one-140 

way ANOVA was used. Assumptions of normality and homoscedasticity were tested with 141 

Shapiro-Wilk’s test and Bartlett’s test, respectively. When one of these assumptions was not 142 

met, non-parametric Mann-Whitney U tests were performed to assess differences between 143 

exposed and control treatments (USEPA, 2000). In all tests, the limit of significance was set 144 

at p = 0.05. 145 

2.3 Microarrays  146 
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Three D. magna cDNA libraries enriched with genes related to energy metabolism, molting 147 

and life stage specific processes have been developed by Soetaert et al. (2006; 2007) using 148 

the suppression subtractive hybridization technique. Next to these cDNA libraries, two extra 149 

cDNA fragments, corresponding to expressed sequence tags (ESTs) from genes that are 150 

reported to be sensitive to Zn were spotted on the array: ESTs with homology to (1) ferritin 151 

(AJ292556) and (2) retinol dehydratase (DV437801) gene fragments (Poynton et al., 2007). 152 

Finally, also two ESTs with homology to putative MTs (metallothioneins) (DV437799 and 153 

DV437826) were spotted because MTs have been shown to be induced by Zn (Fan et al., 154 

2009). The preparation and spotting of the sequences are reported by Vandegehuchte et al. 155 

(2010b). 156 

 157 

2.4 Microarray preparation 158 

Three replicates of ten adult daphnids per treatment (‘treatment’ = combination of 159 

generation and exposure type, see Fig. 1) were sampled for mRNA analysis on the day the 160 

next generation was started (see above). The methods for RNA-extraction, conversion into 161 

cDNA, labeling and hybridization following a universal reference design can be found in 162 

Vandegehuchte et al. (2010b).  163 

2.5 Bioinformatic analysis of microarray data 164 

The microarrays were scanned using a Genepix personal 4100 Scanner (Axon instruments, 165 

USA). Scanned images were analyzed using Genepix Pro Software 4.0 (Axon Instruments) for 166 

spot identification and for quantification of the fluorescent signal intensities. Subsequently, 167 

data were further evaluated using the Bioarray Software Environment database (BASE 168 
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1.2.17, http://www.islab.ua.ac.be/base/), i.e. a MIAME based microarray analysis package 169 

developed by the Intelligent Systems Laboratory (University of Antwerp, Belgium). Spots 170 

were background corrected by local background subtraction. Spots with saturated intensities 171 

were filtered out by visual inspection. The Cy5/Cy3 ratio was calculated for each spot, log2 172 

transformed, and normalized between arrays using variance stabilization normalization 173 

(Huber et al., 2002). Analysis of significant differences in transcription between treatments 174 

was performed by using Limma (linear models for microarray data) (Smyth, 2004; Smyth et 175 

al., 2005). Fragments for which the p-value, adjusted for false discovery rate, was lower than 176 

0.05, were retained as significantly up- or downregulated (Benjamini and Hochberg, 1995). 177 

Only those fragments for which the log2 ratio was outside the interval [-0.75, 0.75] were 178 

retained for further analysis. Sequence descriptions and annotations were obtained through 179 

Blast2GO (Conesa et al., 2005)(www.blast2go.de), which allowed genes to be classified into 180 

functional groups (Fig. 2). A heat plot was created with MultiExperiment Viewer (MeV) 4.5.1 181 

(Saeed et al., 2006).  182 

http://www.blast2go.de/
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Results and discussion 183 

Differences between exposed and control treatments will only be mentioned when they are 184 

statistically significant (p < 0.05).  185 

An effect of Zn exposure on growth (vs. the respective controls) was noted in 6-day old 186 

daphnids of the F0Zn and F1Zn treatments (Fig. 3A, Table 1). Growth reduction in juvenile 187 

daphnids is not uncommon and has been observed in toxicity tests with 188 

cetyltrimethylammonium bromide and 5-azacytidine (Knops et al., 2001; Vandegehuchte et 189 

al., 2010a). Like in the F0 generation, a Zn induced reduction in juvenile growth (compared to 190 

the respective control) was also observed in their F1Zn offspring. However, no growth 191 

reduction was noted in the F2 generation (compared to the F2 control). The absence of 192 

growth reduction in the F2Zn daphnids can be interpreted as acclimation to Zn in the third 193 

exposed generation. This acclimation in the F2Zn organisms is also suggested by the fact that 194 

their reproduction is not affected (compared to the F2 control daphnids), although 195 

reproduction results in F2 should be interpreted with care, considering the decreased control 196 

reproduction in F2C. In the first and second generation of Zn exposed daphnids a reduction in 197 

reproduction was observed (compared to the control of the same generation, Fig. 3B, Table 198 

1). Muyssen et al (2005) showed that exposure to Zn for six generations can increase or 199 

decrease the reproductive output, depending on the acclimation concentration and the test 200 

concentration to which the sixth-generation daphnids were exposed. These authors 201 

reported a significantly higher reproduction in daphnids of the sixth versus the first 202 

generation acclimated to 45 µg/L Zn2+ (which is higher than the optimal concentration 203 

range), when exposed to an optimal test concentration of 22 µg/L Zn2+. In that study, 204 

reproduction in the actual acclimation treatments was not reported. Tolerance 205 

development/acclimation to a metal can occur even after two generations of exposure, as 206 
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demonstrated for net reproduction in D. magna exposed to 5 to 35 µg/L of Cu (Bossuyt and 207 

Janssen, 2003). This is in accordance with our results on reproduction.  208 

The average Zn body burdens of the exposed F1Zn and F2Zn treatments (resp. 165 and 157 209 

µg Zn/g dry weight) were higher than those of the F1C and F2C controls (resp. 49 and 51 µg 210 

Zn/g dry weight). This is in accordance with the previously reported internal Zn 211 

concentrations of F0Zn and F0C (resp. 229 and 69 µg Zn/g dry weight, Vandegehuchte et al., 212 

2010b). There was no significant difference between the internal Zn concentrations of the 213 

three Zn exposed treatments. 214 

When the gene transcription patterns of control treatments were compared (i.e. F0C vs F1C, F1C vs 215 

F2C or F0C vs F2C), a large number of genes were found to be differentially transcribed, as reported by 216 

Vandegehuchte et al. (2010b). This concerned more than 15% of the unigenes on the array. The 217 

differential transcription of these genes is likely due to differences in the molting phases and 218 

reproductive cycles of the daphnids in the different generations and is as such not specific to the Zn 219 

exposure. Therefore, those genes that significantly varied in transcription between different control 220 

generations, were removed from the list of differentially transcribed genes between Zn treated 221 

organisms and controls obtained with the microarray analysis. Thus, 38 to 46 % of the differentially 222 

transcribed unigenes between treatments and controls were retained for further analysis. In the 223 

following section of the manuscript, differential transcription will always be related to the 224 

control of the same generation. Differentially transcribed genes for which a sequence 225 

description could be obtained are listed in Fig. 2. Genes for which no homology was found 226 

are summarized in the supplementary online material. Redundant fragments on the array 227 

were grouped into contigs. The resulting 1207 unique identified fragments on the array are 228 

termed unigenes (Vandegehuchte et al., 2010b). 229 
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In the F1Zn daphnids, 73 differentially transcribed unigenes were found (Table 1). This 230 

number is comparable to the 71 regulated unigenes in the F0Zn treatment, where also a 231 

reduction in reproduction and in body length at day 6 were observed. Seven genes were 232 

regulated in the same direction in F0Zn and in F1Zn. However, another set of seven common 233 

genes were differentially transcribed in opposite directions in F0Zn and F1Zn (Fig. 2 and 234 

supplementary online table). Although some of the remaining 59 differentially transcribed 235 

unigenes in F1Zn may belong to the same gene as fragments that were differentially 236 

transcribed in F0Zn (such as genes with homology to D. magna vitellogenin or to a 237 

hemoglobin subunit), for most of these fragments this is not the case. Zn exposure in the 238 

second generation daphnids clearly elicited different effects at the transcriptional level 239 

compared to the first generation. Some differentially transcribed genes in F1Zn for which a 240 

sequence description could be obtained through Blast will be discussed in the next 241 

paragraphs. 242 

General trends per functional group of genes differ between F0Zn and F1Zn organisms. While 243 

in F0Zn all affected transcription and translation related genes were downregulated, four out 244 

of five transcription and translation related genes are upregulated in F1Zn. All five of these 245 

regulated unigenes are different from those in F0Zn. The potential stress-induced energy-246 

saving mechanism of decreasing ribosomal protein synthesis (Brown-Peterson et al., 2005), 247 

which was suggested based on the downregulation of ribosomal protein coding genes in 248 

F0Zn, is not present in the second generation of Zn exposed daphnids anymore. Similarly, the 249 

oxidative stress response related genes peroxiredoxin 6 and glutathione S-transferase, which 250 

were upregulated in F0Zn, were not differentially regulated in F1Zn.  251 
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While most metabolism-related differentially transcribed genes were upregulated in F0Zn, 252 

this was the case for only four out of nine metabolism-related differentially transcribed 253 

genes in F1Zn. A gene coding for a serine threonine protein phosphatase, which was 254 

upregulated in F0Zn, was downregulated in F1Zn. In the presence of Fe2+, Zn2+ is known to 255 

influence the activity of these phosphatases (Chu et al., 1996). It is hypothesized that in the 256 

F0Zn daphnids, the internally available Zn2+ concentration may have been high enough to 257 

reduce the phosphatase activity compared to the control daphnids. A transcriptional 258 

upregulation could compensate for this. Still following this hypothesis, the internally 259 

available Zn2+ concentration may have changed in the F1Zn daphnids, due to Zn induced 260 

defense mechanisms, resulting in a phosphatase activity which is near the optimum and 261 

higher than in the control, thus explaining the lower transcription. The upregulation of a 262 

serine protease, as seen in the F1Zn treatment, was also observed specifically after Zn 263 

exposure in a study of transcriptional responses in Daphnia magna exposed to munitions 264 

constituents, such as metals and nitroaromatic compounds (Garcia-Reyero et al., 2009). 265 

Similarly, the observed downregulation of a chitinase is consistent with previous studies with 266 

Zn exposed D. magna, where Zn toxicity was suggested to be associated with molting and 267 

exoskeleton maintenance (Poynton et al., 2007; Garcia-Reyero et al., 2009).  268 

The upregulation of a gene coding for the heat shock protein Hsp90 can be a stress response 269 

leading to elevated levels of Hsp90 in Zn exposed daphnids, as observed in earthworms 270 

exposed to Zn and Pb contaminated soils (Marino et al., 1999). Another likely stress 271 

response, which was already noted in the F0Zn treatment, is the upregulation of a gene 272 

related to glutathione S-transferase, which is involved in oxidative stress abatement 273 

(Newman and Clements, 2008). Also similar to F0Zn, all differentially transcribed genes with 274 

homology to D. magna vitellogenin, which is fused with a superoxide dismutase module 275 
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(Kato et al., 2004), were upregulated. These genes are involved with vitellogenesis, the 276 

production of yolk proteins in the oocytes. Their differential transcription is likely due to 277 

random differences in reproductive cycle phases and associated vitellogenesis between the 278 

F1Zn and F1C daphnids, as indicated by the differential transcription between two control 279 

treatments of a unigene with the same homology (Vandegehuchte et al., 2010b). Stibor 280 

(2002) has demonstrated large differences in yolk protein levels at different times between 281 

the deposition of two consecutive broods into the brood pouch. 282 

The transcriptional downregulation of genes coding for a hemoglobin protein subunit was 283 

already noted in F0Zn. Martinez-Tabche et al. (2000) reported that Zn exposure decreased 284 

the hemoglobin level in the oligochaete worm Limnodrilus hoffmeisteri. These authors 285 

suggested that this was caused by a Zn induced inhibition of heme synthesis. If Zn inhibits 286 

heme synthesis, it can be speculated that transcription of hemoglobin related genes would 287 

not lead to the formation of hemoglobin protein and transcriptional downregulation could 288 

be an energy-saving mechanism. Zn exposure is indeed known to decrease the hemoglobin 289 

content in D. magna (Berglind, 1986). A last remarkable upregulated gene in the F1Zn 290 

treatment showed homology to cytochrome p450. P450s are proteins involved with phase I 291 

detoxification, lipid metabolism and hormone synthesis/breakdown (Baldwin et al., 2009). 292 

Transcriptional upregulation of a P450 coding gene in D. magna was also observed after Cd 293 

exposure (Connon et al., 2008). Zn exposure, as well as Cu exposure, induced P450 activity in 294 

earthworms (Lukkari et al., 2004).  295 

It is striking that in the third generation of Zn exposed daphnids (F2Zn) a much lower number 296 

of genes than in the previous generations are differentially transcribed: only 23 of which 11 297 

were upregulated (Table 1). Daphnids from this treatment seem to be acclimated to the Zn 298 
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exposure in the sense that no negative effects on reproduction or body length were 299 

observed, although the internal Zn concentration of 157 µg Zn/g dry weight in body tissue 300 

was still elevated and not significantly different from the previous Zn exposed generations. 301 

Roelofs et al. (2009) also reported a smaller number of Cd-induced differentially transcribed 302 

genes in a Cd tolerant versus a reference population of the springtail Orchesella cincta. 303 

Additionally, these authors suggested that the absence of inhibitory effects on translation 304 

and digestive enzyme related genes could explain the smaller growth reduction upon Cd 305 

exposure in tolerant Orchesella populations (Posthuma et al., 1992). Our results for Zn are in 306 

line with this suggestion. No growth reduction was observed in the ZnF2 daphnids, for which 307 

only one translation and two metabolism related genes were differentially regulated, 308 

compared to six to seven and nine genes, respectively, in the previous generations with 309 

juvenile growth reduction. Two notable differences between the present study and that of 310 

Roelofs et al. (2009) can be remarked. First, springtails, unlike daphnids, are not 311 

parthenogenetic and thus genetic variation was present in their populations. Second, the 312 

springtails were selected from populations in different field sites, of which one had a long 313 

history of metal pollution, whereas the daphnids in the present study originated from the 314 

same parental generation and only differ in their three-generation exposure history. As such, 315 

no genetic selection can have acted on the daphnids in this study. 316 

The genes for hydroxyisourate hydrolase (HIU hydrolase, involved in purine metabolism) and 317 

for obstractor d, involved in chitin metabolism, were downregulated in F2Zn. Genes involved 318 

in chitin metabolism have been observed to be both up- and downregulated in several 319 

studies with metal exposed D. magna (Poynton et al., 2007; De Schamphelaere et al., 2008; 320 

Vandenbrouck et al., 2009). As in the other Zn exposed treatments, a gene coding for 321 

vitellogenin was upregulated and genes coding for hemoglobin subunits were 322 
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downregulated. Next to these, genes coding for a wd repeat protein and for a small 323 

nucleolar ribonucleoprotein involved in mRNA splicing or its regulation as well as genes with 324 

homology to chromosome 3 open reading frame 23 and to an inorganic pyrophosphatase 325 

were downregulated. Transcriptional upregulation was observed for genes coding for two 326 

proteins: one with homology to a hypothetical protein of the body louse Pediculus humanus 327 

corporis and another one with homology to a midline fasciclin, which mediates cell adhesion 328 

and signaling (Hu et al., 1998). 329 

In conclusion, continuous Zn exposure resulted in acclimated D. magna in the third exposed 330 

generation, which exhibited no adverse effect on reproduction or growth. At the 331 

transcriptional level, few unigenes were regulated in the same direction in the three 332 

generations of Zn exposed daphnids: two genes with no homology, a vitellogenin coding 333 

gene and a hemoglobin chain coding gene. In the second Zn exposed generation (F1Zn), a 334 

large number of the differentially transcribed genes were different from those in F0Zn, 335 

although a reduction in reproduction and juvenile growth was observed in both treatments. 336 

Multigenerational exposure to Zn elicits different molecular effects in the different 337 

generations. The acclimation in the third exposed generation was reflected in a considerably 338 

smaller number of differentially transcribed genes. No direct molecular acclimation 339 

mechanisms could be deduced from the transcriptional results obtained with this custom 340 

cDNA microarray, on which a limited, although ecotoxicologically relevant, set of genes is 341 

represented. Currently, the D. magna genome is being sequenced by the Daphnia Genomics 342 

Consortium, coordinated at Indiana University. When this genome becomes available, wider 343 

transcriptome studies can be undertaken to elucidate the molecular mechanisms of metal 344 

acclimation in D. magna.  345 
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