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Abstract
Background: Tissue plasticity and a substantial regeneration capacity based on stem cells are the hallmark of
several invertebrate groups such as sponges, cnidarians and Platyhelminthes. Traditionally, Acoela were seen as
an early branching clade within the Platyhelminthes, but became recently positioned at the base of the Bilateria.
However, little is known on how the stem cell system in this new phylum is organized. In this study, we wanted
to examine if Acoela possess a neoblast-like stem cell system that is responsible for development, growth,
homeostasis and regeneration.

Results: We established enduring laboratory cultures of the acoel Isodiametra pulchra (Acoela, Acoelomorpha)
and implemented in situ hybridization and RNA interference (RNAi) for this species. We used BrdU labelling,
morphology, ultrastructure and molecular tools to illuminate the morphology, distribution and plasticity of acoel
stem cells under different developmental conditions. We demonstrate that neoblasts are the only proliferating
cells which are solely mesodermally located within the organism. By means of in situ hybridisation and protein
localisation we could demonstrate that the piwi-like gene ipiwi1 is expressed in testes, ovaries as well as in a
subpopulation of somatic stem cells. In addition, we show that germ cell progenitors are present in freshly hatched
worms, suggesting an embryonic formation of the germline. We identified a potent stem cell system that is
responsible for development, homeostasis, regeneration and regrowth upon starvation.

Conclusions: We introduce the acoel Isodiametra pulchra as potential new model organism, suitable to address
developmental questions in this understudied phylum. We show that neoblasts in I. pulchra are crucial for tissue
homeostasis, development and regeneration. Notably, epidermal cells were found to be renewed exclusively from
parenchymally located stem cells, a situation known only from rhabditophoran flatworms so far. For further
comparison, it will be important to analyse the stem cell systems of other key-positioned understudied taxa.
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Background
The question how adult organisms maintain their tissue
homeostasis or perform wound healing and regeneration
after injury touches different biological and medical
research areas. The two main invertebrate model organ-
isms, Drosophila melanogaster and Caenorhabditis elegans
are largely post-mitotic and therefore cannot serve as
model systems for tissue renewal nor for the biology of
somatic stem cells. Vertebrate stem cell systems have been
addressed because of their medical relevance, but the
accessibility of these stem cell systems is limited. Flat-
worms are well known for their remarkable totipotent
stem cell system. These stem cells (so called neoblasts) are
the sole source for cell renewal during homeostasis, devel-
opment and regeneration [1-8], and give rise to all cell
types including germ cells [9,10]. A basal member of the
Platyhelminthes - the Acoela - became separated from
other flatworms [11-20] by molecular phylogeny and
were placed as a sistergroup to all Bilateria [16,19,20],
associated with the Deuterostomes [17] or located within
the Lophotrochozoa [18]. Already 20 years ago, the ques-
tion whether acoel flatworms are "Kingpins of Metazoan
evolution or specialized offshoot" [21] has been raised by
summarizing data of a century of morphological analyses
where Acoelomorpha have been associated to the phylum
Platyhelminthes [22]. By contrast, recent data on the dis-
tribution and proliferation of stem cells and the specific
mode of epidermal replacement could constitute for a
possible synapomorphy between the Acoela and the
major group of flatworms, the Rhabditophora [19]. Like
rhabditophoran flatworms, certain acoels exhibit tremen-
dous capacity to regenerate lost body parts [23,24] or
show modes of asexual reproduction such as reverse-
polarity budding [25,26].

Despite the growing interest in acoel phylogeny, knowl-
edge on the developmental biology of this taxon is lim-
ited. Few reports described the embryonic muscle
development [27], the characteristic spiral duet cleavage
[28], while others examined their stem cell system and
showed that acoels possess also neoblasts which resemble
stem cells of rhabditophoran flatworms [19,29,30]. How-
ever, very little is known on the cellular and molecular
basis that is driving homeostasis, asexual reproduction
and regeneration in these organisms. Research on acoels
has been hampered by the availability of an acoel species
that can be cultured and used as a suitable model system.
Here we present the acoel Isodiametra pulchra (Acoela,
Acoelomorpha) as an adequate species to address devel-
opmental and evolutionary questions. I. pulchra has sev-
eral advantages to perform these analyses: (1) long term
laboratory cultures can be maintained, (2) the animals are
small in size (1 mm), (3) reproduce rapidly (one egg per
animal per day the whole year through), (4) have a very
short embryonic development (36 hours) [27], (5) a short

generation time (one month), (6) 14.000 ESTs have been
sequenced (Ladurner and Agata, unpubl.), and (7) in situ
hybridization and RNA interference protocols are estab-
lished (see below).

The last decennia, the stem cell system of flatworms has
been characterized on a molecular level [31-35]. Some of
the well characterized stem cell regulatory genes in flat-
worms belong to the piwi-like gene family [33,34,36,37].
In most organisms studied so far, PIWI is a germline spe-
cific marker, essential in spermatogenesis, meiosis and
germ cell maintenance where it is involved in transposon
regulation [38-42]. An exception herein are rhabditopho-
ran flatworms, sponges and cnidarians where piwi-like
genes have been shown to play an extended role in
somatic stem cells [33,36,37,43-45].

Here we show that in I. pulchra, piwi is also expressed in a
subpopulation of somatic neoblasts. Next, we report on
the morphology of stem cells, their distribution and dif-
ferentiation capacity in this acoel species. Furthermore,
we studied the function of the stem cell system during
homeostasis, development, regeneration, hydroxyurea
treatment, starvation and after irradiation using histology,
electron microscopy, BrdU labelling, in situ hybridization
and RNA interference. To summarize, these data provide
new insides how stem cell systems might have been devel-
oped during animal evolution.

Results
Morphology, distribution, and differentiation of stem cells 
in Isodiametra pulchra
In order to describe the stem cell system of acoels, we first
addressed the morphology of Isodiametra pulchra (Figures.
1A, B) neoblasts. They are small in size and possess a high
nuclear to cytoplasmic ratio with only a thin rim of cyto-
plasm (Figures. 1C, D). The nucleus consists of mostly
uncondensed chromatin with few smaller clumps of con-
densed chromatin (Figure. 1C). When animals were mac-
erated into a single cell suspension after a 30 min BrdU
pulse, only cells with a neoblast morphology were
labelled (n = 198) (Figure. 1D). On ultrastructural level,
all cells that incorporated BrdU were small in size and
possessed a thin rim of cytoplasm (Figures. 1E). These
data suggest that neoblasts were the only dividing cells.

We next addressed the distribution of somatic stem cells
in adults. BrdU labelling and ultrastructural analyses
revealed a solely parenchymal distribution of S-phase
cells (Figures. 1F-I). The majority of stem cells were
located along the lateral sides of the animal, fewer cells
were present also closer to the midline (Figures. 1F, G).
Anterior to the statocyst, proliferating cells were almost
completely absent. Notably, proliferating cells were never
found in the epidermis of BrdU labelled animals (n =
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300+) (Figures. 1F-I). These observations were further
confirmed by ultrastructural investigations (Figure. 1I).
Our data indicate that all epidermal cells were exclusively
renewed from parenchymally located neoblasts.

We further followed the differentiation potential of BrdU
labelled stem cells (Figures. 1J-L) in I. pulchra. BrdU pulse-
chase experiments (Figures. 1K, L) revealed the differenti-
ation of neoblasts into various cell types after a 10 days
chase period (Figures. 1J-L). As mentioned above, all
BrdU labelled cells exhibited a stem cell phenotype after
30 min BrdU exposure. After 10 days chasing time how-
ever, only 6.5% of labelled cells possessed stem cell mor-
phology (11 out of 167) while 93.5% possessed a
differentiated cell phenotype (156 out of 167).

Ipiwi1 expression in adults, during regeneration and during 
development
Next, we analyzed the expression dynamics of piwi-like
genes in Isodiametra pulchra in adults, during develop-
ment, regeneration, starvation and after irradiation. From
I. pulchra, we have isolated two piwi-like genes, ipiwi1 and
ipiwi2 (Additional files 1 and 2, Figures. S1, S2), both
comprising the conserved Piwi and Paz domains (Addi-
tional file 3, Figure. S3), which are characteristic for mem-
bers of the Piwi/Ago family [46,47]. Comparable to most
organisms studied so far, ipiwi2 appeared to have a germ
line specific expression (Additional file 4, Figures. S4A-C).
Interestingly, ipiwi1 showed in addition to the germ line,
an expression pattern extended to somatic stem cells (Fig-
ure. 2), a situation only known from rhabditophoran flat-

The stem cell system of Isodiametra pulchra (A, B). Morphology (C-E), distribution (F-I), and differentiation (J-L) of neoblastsFigure 1 (see previous page)
The stem cell system of Isodiametra pulchra (A, B). Morphology (C-E), distribution (F-I), and differentiation (J-
L) of neoblasts. (A) Schematic drawing. (B) Differential interference contrast image. (C) Typical neoblast with nucleus (red) 
and thin rim of cytoplasm (yellow). (D-D") Macerated BrdU labelled cells show typical neoblast like morphology (E) BrdU 
labelled neoblast, as shown by immunogold staining after a 30 min BrdU pulse; arrowheads point to gold particles (F) histolog-
ical cross section; brown spots are BrdU labelled S-phase cells. (G, H) Confocal projection overview (G) and detail of lateral 
body margin (H) after 30 min BrdU pulse; the red spot in (H) is a mitotic figure. Note that S-phase cells were lacking in the epi-
dermis (between dotted lines). (I) Electron microscopic image of a posterio-lateral body margin. (J) Histological section, 10 
days after the initial BrdU pulse. Some of the neoblasts underwent differentiation into epidermal cells (arrows); (K) BrdU 
labelled cells, differentiated after 10 days chasing time. Differentiating spermatid (top left), epidermal cells (top middle), paren-
chymal cell (top right), nerve cells (bottom left), and a muscle cell (bottom right) (L) BrdU labelled differentiated epidermal cell 
after 10 days chasing; arrowheads point to gold particles. bwm, body wall musculature; c, cilium; cc, condensed chromatin; cs, 
central syncytium; d, diatoms; e, egg; de, developing eggs; ep, epidermis; g, golgi; m mitochondria; mo, mouth opening; n nucle-
olus; st, statocyst; tw, terminal web. Scale bars (A, B, G) 100 μm; (C, E, L) 1 μm; (D, H; K) 10 μm; (F, J) 25 μm; (I) 5 μm.

Ipiwi1 mRNA expression (A-C) and protein localization (D-G) and BrdU/ipiwi1 (H) double labelling in I. pulchraFigure 2
Ipiwi1 mRNA expression (A-C) and protein localization (D-G) and BrdU/ipiwi1 (H) double labelling in I. pul-
chra. (A) Whole mount ipiwi1 in situ hybridization of an adult specimen. (B) Detail of developing eggs (de) and testes (t). (C) 
Dorsal focal plane showing ipiwi1 mRNA expressed in neoblasts (open arrowheads). (D, E) Confocal projections of Ipiwi1 pro-
tein localisation in testes and developing eggs (D) and in neoblasts (nb) (E). (F) Detail of the anterior region of (E) demonstrat-
ing Ipiwi1 positive cells (open arrowheads). (G) Detail of the posterior region of (D) demonstrating Ipiwi1 positive cells (open 
arrowheads). (H) Double staining of stem cells in S-phase (green) and ipiwi1 positive cells (red). Confocal projection (1,02 μm) 
shows the presence of BrdU-only labelled cells (green arrows), ipiwi1-only labelled cells (red arrows) as well as BrdU/piwi dou-
ble labelled stem cells (yellow arrows). In all figures, anterior is to the top. Scale bars (A, D, E) 100 μm; (B, C, F-H) 50 μm.
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worms, sponges and cnidarians [33,36,37,43-45].
Therefore we focussed in this study on ipiwi1. To localize
Ipiwi1 protein, we have generated a specific polyclonal
antibody (Additional file 4, Figure. S4F).

In adult animals, ipiwi1 mRNA and protein were localized
in a subpopulation of somatic stem cells and gonads (Fig-
ure. 2) while the sense probe did not show any signal
(Additional file 4, Figure. S4D). Ipiwi1 positive cells in tes-
tes comprised two bands on the lateral sides of the animal
which consisted of spermatogonia and spermatocytes
(Figures. 2A, B, D). All stages of female germ cells
expressed ipiwi1 including oogonia, oocytes and mature
eggs (Figures. 2A, B, D). We further localized ipiwi1 mRNA
expression in neoblasts in the region posterior to the sta-
tocyst but not in the posterior end of the animal (Figures.
2A, C). In contrast, few Ipiwi1 protein positive cells were
also found anterior to the statocyst (Figures. 2E, F) and in
the tail region (Figure. 2G). These data suggest that Ipiwi1
protein functions also in differentiating neoblasts, a situ-
ation similar to triclad flatworms [33,34,37]. Double
labelling of ipiwi1 with BrdU revealed ipiwi1-only labelled
cells, BrdU-only labelled cells as well as ipiwi1/BrdU dou-
ble labelled stem cells (Figure. 2H). These data suggest
that ipiwi1 was restricted to only a subpopulation of neob-
lasts.

The process of regeneration in acoel flatworms was earlier
examined on both morphological and immunohisto-
chemical level but no molecular analyses have been per-
formed to date [23,24,26,30,48,49]. Here we show ipiwi1
expression dynamics during successive stages of tail regen-
eration (Figure. 3, Additional file 5, Figure. S5) (this spe-
cies is not able to perform anterior regeneration). One
hour after initial amputation, ipiwi1 could not be detected
at the regeneration site (Figures. 3A, A'). 10 hours postam-
putation however, a small rim of ipiwi1 positive cells
became visible below the epidermis (Figures. 3B, B'). At
25 hours after amputation, ipiwi1 was upregulated within
the small blastema (Figures. 3C, C'). From 48 to 68 hours
of regeneration, ipiwi1 expression was detected in neob-
lasts that were organized in a ring-shaped structure (Fig-
ures. 3D-F') and outlining the subsequent developing
reproductive organs. Ipiwi1 expression was upregulated
only locally within the regeneration blastema but not in
anterior regions of the animals (Additional file 5, Figure.
S5). As regeneration proceeded, blastemal cell differentia-
tion was paralleled by a gradual decrease in ipiwi1 expres-
sion (Figures. 3F-G').

We next examined the expression of ipiwi1 throughout
different stages of postembryonic development (Figure.
4). In freshly hatched I. pulchra, small parenchymally

Ipiwi1 mRNA expression (A-G) and protein localization (A'-G') during posterior regenerationFigure 3
Ipiwi1 mRNA expression (A-G) and protein localization (A'-G') during posterior regeneration. One hour after 
cutting (A, A'), ipiwi1 expression could not be detected at the regeneration site. After 10 hours, ipiwi1 was upregulated below 
the epidermis (arrows) (B, B'). At 25 hours postamputation (C, C') a significant proportion of cells within the regeneration 
blastema were ipiwi1 positive. From 48 hours onwards ipiwi1 expression and protein were present in the differentiating genital 
blastema (open arrows in D-F'). (G, G') After 76 h, ipiwi1 expression reached default levels. Scale bars 50 μm.
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Ipiwi1 expression (A-E) and Ipiwi1 protein (F-J) during postembryonic development of I. pulchraFigure 4
Ipiwi1 expression (A-E) and Ipiwi1 protein (F-J) during postembryonic development of I. pulchra. In freshly 
hatched animals, a subset of somatic neoblasts was visible as small piwi expressing cells (arrowheads) beside six to eight larger 
strongly stained primordial germ cells (that also express nanos, see text) (arrows in A, B, F). Until day seven neoblast number 
increased, PGCs multiplied and gave rise to testes and ovaries. At day seven testes and developing eggs could be observed (C, 
H). At days 10 and 12, a chain of developing eggs was present medially and testes were present along the lateral margin (D, E, 
I, J). Note the accumulation of ipiwi1 in the genital blastema (open arrowhead in E, J) which gives rise to the genital organs. A 
similar genital blastema was observed during regeneration (see Figure. 4). In all pictures, anterior is to the left. t, testes; de, 
developing eggs; (asterisk) autofluorescence of digested diatoms in the central syncytium. Scale bars 100 μm.



BMC Developmental Biology 2009, 9:69 http://www.biomedcentral.com/1471-213X/9/69
located somatic neoblasts and several larger ipiwi1 posi-
tive primordial germ cells were present in the central
region of the animal (Figures. 4A, F). Those larger ipiwi1
positive cells gave rise to testes and ovaries and we con-
firmed the nature of these cells by double-labelling with
an I. pulchra specific nanos probe (De Mulder, unpub-
lished). The presence of primordial germ cells in freshly
hatched I. pulchra suggested an embryonic segregation of
the germ line in this species. The number of ipiwi1 positive
cells increased up to four days post hatching (Figures. 4B,
G) and distinct ipiwi1 stained testes were present after one
week (Figures. 4C, H). Chains of developing eggs could be
discerned after 10 days of postembryonic development
(Figures. 4D, I). The number of ipiwi1 expressing somatic
stem cells gradually increased during postembryonic
development. A ring shaped structure of ipiwi1 positive
cells accounted for the genital blastema (Figure. 4E), a
structure identical to the differentiating genital blastema
after 42 hours to 68 hours of regeneration (compare with
Figure. 3G). The critical role of neoblasts became apparent
by treatment with ipiwi1 dsRNA during development. The
functional knock-down of ipiwi1 in developing worms
resulted in a lethal phenotype (see below).

Manipulation of the acoel stem cell system by 
hydroxyurea, radiation, and starvation
The inhibition of DNA-synthesis by hydroxyurea (HU)
leads to an arrest of proliferating cells in the S-phase of the
cell cycle and a pause of cell cycle progression [50] by

Figure 5

Ipiwi1 mRNA expression and cell proliferation (BrdU) in con-trols (A, B), during hydroxyurea treatment (C-J), after irradi-ation (K-N), and during starvation (O-R)Figure 5
Ipiwi1 mRNA expression and cell proliferation 
(BrdU) in controls (A, B), during hydroxyurea treat-
ment (C-J), after irradiation (K-N), and during starva-
tion (O-R). (C) Upon three days HU treatment ipiwi1 
mRNA could not be detected in neoblasts but was still 
present in testes (t) and ovaries (ov). (E) At five days of HU 
treatment ipiwi1 mRNA was present in all cells of the ovaries 
(ov) but not in testes (t, bracket indicates region of testes). 
(G) After 10 days ipiwi1 mRNA remained only in mature 
eggs; (t, testes; bracket indicates region of testes) (G). After 
15 days no ipiwi1 mRNA could be detected (I) The number 
of S-phase cells strongly decreased during hydroxyurea treat-
ment (D, F, H) and only single S-phase cells were found after 
15 days (J). Irradiation (K-N) resulted in a complete elimina-
tion of ipiwi1 expression (K, M) and a strong reduction in the 
number of S-phase cells after one day (L) and one week (N) 
post irradiation. During starvation (O-R), ipiwi1 expression 
and protein localization were weakly reduced after one week 
(O, P). After five weeks of food deprivation, dramatic 
degrowth led to a strong reduction of Ipiwi1 mRNA and 
BrdU (Q, R). In all figures, anterior is to the left. t, testes; o, 
ovaries. Asterisk marks autofluorescence of diatoms within 
the gut. Scale bars 100 μm.
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inhibition of the ribonucleotide reductase [51]. We have
applied hydroxyurea treatment for 18 days to halt the cell
proliferation of stem cells and germ cells. After three to
five days of HU treatment ipiwi1 expression of neoblasts
was abolished and the number of somatic S-phase cells
was drastically reduced (Figures. 5A-F). After 10 days,
ipiwi1 expression persisted only in mature eggs and no
ipiwi1 expression could be detected in the region of the
testes (Figures. 5G, H). These results indicated that germ
cell proliferation was interrupted but differentiation of
oogonia was still possible. Moreover, the faster cell turno-
ver in the testes resulted in an earlier reduction of ipiwi1
expressing cells (Figures. 5E, F). After 15 days of HU treat-
ment ipiwi1 expression and cell proliferation of somatic
stem cells were completely eradicated (Figures. 5I, J). The
decrease in cell proliferation in the ovaries became appar-
ent by the reduction in the production of eggs. Controls
produced the following average number of eggs per ani-
mal per day: 1.07 at the start of the experiment, 0.99 after
three days, 1.009 after five days, 1.45 after 10 days, 1.45
after 15 days (n = 287). In the HU treatment group egg
numbers decreased from 1.09 at the start of the experi-
ment to 0.79 after three days, 0.31 after five days, 0.017
after 10 days, and no eggs were laid anymore after 15 days
HU treatment. These data demonstrate that we can use
HU to manipulate and study stem cell- and germ cell
development in I. pulchra.

Radiation is a widely used method in flatworm research to
selectively destroy the stem cell system, which in turn
stops maintenance of physiological homeostasis, cell
renewal and regenerative capability [10,52-54]. In order
to study the effect of irradiation on stem cell gene expres-
sion in acoels, we performed irradiation experiments with
I. pulchra. We found that ipiwi1 expression was completely
abolished one and seven days after irradiation, while the
expression of the housekeeping gene ipefα (Isodiametra
pulchra elongation factor alpha) persisted (Figures. 5K, M
and Additional file 4, Figures. S4G-I). Furthermore, neob-
last proliferation was drastically reduced one day and one
week after irradiation (Figures. 5L, N). These results con-
firmed that in I. pulchra neoblasts can be eliminated by
irradiation. Notably, few cells were still detectable by
BrdU incorporation at one day (Figure. 5L) and one week
(Figure. 5N) postradiation. It is possible that certain cells
conduct intensified DNA repair which could lead to the
incorporation of BrdU [55]. Another possibility is that cer-
tain stem cells were in a less radiosensitive phase of the
cell cycle during radiation and started to divide and to
incorporate BrdU. However, our results suggest that nei-
ther DNA repair nor the presence of radio resistant stem
cells were able to reconstitute the entire stem cell popula-
tion since irradiation led to death of the animals.

To date, nothing is known of the effect of starvation on
the stem cell system of acoels. For this reason, we exam-
ined the expression dynamics of ipiwi1 during starvation
in I. pulchra (Figures. 5O-R). After prolonged starvation
the number of ipiwi1 positive cells was diminished, ani-
mals were drastically reduced in size and completely
devoid of reproductive organs on morphological level. In
I. pulchra, small ipiwi1 positive germ cells remained even
after several weeks of starvation (Figures. 5Q, R). After
refeeding, animals regrew again to adult stage within one
month. These results suggest that degrowth of the ani-
mals, the reduction of reproductive organs, and the plas-
ticity of the stem cell system during starvation is a feature
how I. pulchra deals with food deprivation.

Ipiwi1 RNA interference in adults, during regeneration and 
during development
In order to examine the function of piwi-like genes in Iso-
diametra pulchra, we applied RNA interference in adults,
during development and regeneration. We examined the
effect of the loss of ipiwi1 mRNA and protein by whole
mount in situ hybridization of ipiwi1, the expression of the
vasa-like gene ipvasa, by Ipiwi1 protein localization, and
by BrdU labelling after 7 and 21 days of ipiwi1 dsRNA
application. We confirmed the specificity of ipiwi1 and
ipiwi2 dsRNA probes for silencing their respective target
(Additional file 6, Figure. S6).

In adults, luciferase dsRNA was applied as control and no
noticeable mock effects were observed regarding ipiwi1
expression, BrdU incorporation and animal morphology
(Figures. 6A, D, G, J). In contrast, ipiwi1 RNAi treatment
led to an elimination of ipiwi1 mRNA and protein after
seven and 21 days (Figures. 6B, C, E, F). Ipiwi1 RNAi
resulted in a subsequent reduction in ipvasa expression
after three weeks of treatment (Figures. 6H, I). Remarka-
bly, ipiwi1 knock-down had at that time no apparent effect
on stem cell proliferation and the phenotype of the ani-
mals (Figures. 6K, L).

A comparable role of ipiwi1 was observed during regener-
ation (Additional file 7, Figure. S7). Animals were cut
twice - at one and two weeks of ipiwi1 RNAi treatment
respectively - and were analyzed after 21 days, i.e. seven
days after the final amputation. Ipiwi1 dsRNA treated
regenerates lacked Ipiwi1 mRNA and protein (Additional
file 7, Figures. S7B, D), had reduced ipvasa expression
(Additional file 7, Figures. S7E, F), but preserved normal
cell proliferation (Additional file 7, Figures. S7K, L), and
were able to rebuild the missing body parts. However,
these animals were unable to produce viable offspring.
Taken together, these results suggest that Ipiwi1 is not
involved - fulfils a redundant function - in the regulation
of stem cell maintenance in adult and regenerating ani-
mals, but is crucial for offspring development.
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Finally, we wanted to address whether ipiwi1 had an
essential function during development of I. pulchra.
Therefore we eliminated ipiwi1 already in developing eggs
of adult worms to abolish maternal ipiwi1 mRNA. As such,
the term development used here includes all stages from a
maturating egg within an adult, to embryonic and
postembryonic stages. Eggs from adult worms, which
were treated with ipiwi1 dsRNA for two weeks died with-
out hatching. Embryos collected from one week ipiwi1
dsRNA treated adults hatched, but had abrogated ipiwi1
mRNA (Figure. 7B) and Ipiwi1 protein (Figure. 7D). They
also did not retain ipvasa expression (Figure. 7F), com-
pletely lacked proliferating cells (Figure. 7H), and juve-
niles died within the first week of postembryonic

development. These data suggest that ipiwi1 has an essen-
tial function during development.

Discussion
Acoels possess a potent stem cell system that is responsible 
for development, homeostasis, growth and regeneration
In recent years it has been shown that flatworms can serve
as suitable model systems for understanding basis mech-
anisms of stem cell biology, regeneration, and aging
[2,56-59]. Here we characterized the stem cell system of
the acoel Isodiametra pulchra and clearly illustrated that I.
pulchra possesses neoblast-like proliferating cells, earlier
also described for the acoels Convolutriloba longifissura and
Convoluta naikaiensis [29,30]. Epidermal cells as well as all

Influence of Ipiwi1 RNAi on adult I. pulchra at seven and 21 days of ipiwi1 dsRNA treatmentFigure 6
Influence of Ipiwi1 RNAi on adult I. pulchra at seven and 21 days of ipiwi1 dsRNA treatment. RNAi with luciferase 
control dsRNA did not show any effect on the level of i piwi1 expression (A), Ipiwi1 protein (D), ipvasa expression (G) or cell 
proliferation (J). Ipiwi1 mRNA was abrogated after seven days or 21 days of RNAi (B, C). Ipiwi1 protein was strongly reduced 
after seven days of ipiwi1 RNAi (E) and was completely eliminated after 21 days of ipiwi1 RNAi (F). Ipvasa expression was still 
prominent after seven days of ipiwi1 RNAi (H) and became significantly reduced after 21 days of ipiwi1 dsRNA treatment (I). 
Cell proliferation remained high up to 21 days of ipiwi1 dsRNA treatment (K, L). The specimen in figure 7L was processed for 
in situ hybridization before immunocytochemistry and therefore the nuclei appear larger. This protocol however did not alter 
cell number. In all figures, anterior is to the left. (t) testes; (de), developing eggs. Scale bars 100 μm.
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Effect of ipiwi1 RNAi on development of I. pulchra after seven days of ipiwi1 dsRNA treatmentFigure 7
Effect of ipiwi1 RNAi on development of I. pulchra after seven days of ipiwi1 dsRNA treatment. As a control, 
RNAi with luciferase dsRNA was performed which did not lead to any change in ipiwi1 or ipvasa mRNA expression (A, E), 
Ipiwi1 protein (C) or cell proliferation (G). After seven days of ipiwi1 RNAi treatment, ipiwi1 and ipvasa mRNA and protein 
were drastically reduced (B, D, F) and cell proliferation had completely stopped (H). All ipiwi1 knock-down juveniles died 
before eight days of postembryonic development. In all figures, anterior is to the left. Autofluorescence of diatoms is marked 
with an asterisk. (t) testes. Scale bars 100 μm.
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other cell types from the three germ layers were exclusively
renewed from these mesodermally located stem cells. A
similar mode of tissue homeostasis and epidermal
replacement is known from rhabditophoran Platy-
helminthes such as macrostomids [2,60-63], triclads
[5,6,52,64-67] and neodermata [68-73]. Within the Bilat-
eria, a stem cell population crucial for development, tissue
homeostasis and regeneration is hitherto only known
from Acoela and Rhabditophora. In the cnidarian Hydra,
I-cells serve as stem cells for most tissues, whereas two epi-
thelial cell lineages guarantee for epithelial tissue home-
ostasis [74]. Likewise, in other taxa with high regeneration
capacity such as sponges [45], several stem cell popula-
tions ensure tissue specific homeostasis.

In basal metazoan taxa with high regeneration and
transdifferentiation capacity such as sponges and cnidari-
ans, piwi-like genes play a role in the regulation of gonadal
and somatic stem cells [43,45]. Notably, studies on the
expression of piwi-like genes of key positioned taxa such as
catenulids, nemertodermatids, gnathostomulids, gastrot-
richs are lacking. Here we showed that in the adult I. pul-
chra ipiwi1 is expressed in a subpopulation of somatic
stem cells and in germ cells. Regarding the crucial phylo-
genetic position of acoels, our data give evidence that piwi
expression extended to somatic stem cells might have per-
sisted from basal Bilateria to higher organisms including
ascidians and human blood cells [75,76].

Since I. pulchra is not able to regenerate a new head, we
focussed in the current study on posterior regeneration.
During the first days, ipiwi1 expression was locally upreg-
ulated underneath the wound epithelia. As regeneration
proceeded, differentiation of the tissue was paralleled by
decrease of piwi expression. Notably there was an appar-
ent similarity between piwi expression dynamics during
formation of the genital organs during development and
regeneration. Such a local piwi upregulation was also
found during regeneration in triclads [34], as well as dur-
ing regeneration and development in Macrostomum lig-
nano [77].

During the development of animals with sexual reproduc-
tion, a biological decision has to be made to separate
soma (body cells) from the germline (gametes). However,
in some phyla, such as sponges, cnidarians, acoels and
rhabditophoran flatworms, the border between those two
lineages is not clearly made and germ cells can be formed
de novo from somatic stem cells (reviewed in [78]). Here
we show that in the acoel I. pulchra, germ cell precursors
are already present in freshly hatched worms, suggesting
an embryonic formation of the germline. Although in flat-
worms it was initially supposed that the germline is
formed postembryonically [79,80], several publications
recently showed the presence of germ cells in late embryos

or freshly hatched worms [3,77,81]. However, despite the
fact that germ cells might be already present in late
embryos of I. pulchra and some rhabditophoran flat-
worms they maintain somatic neoblasts during adult-
hood which retain the capacity to differentiate into germ
cells [82,83].

Ipiwi1 expression dynamics following stem cell depletion 
by HU treatment, irradiation and starvation
In I. pulchra, prolonged HU treatment resulted in a drastic
decline in stem cell proliferation and ipiwi1 expression.
The faster elimination of ipiwi1 expression and BrdU in
somatic stem cells and testes, compared to ovaries could
be explained by the faster cell turnover in these tissues
[84]. Notably, after 10 days of HU treatment, few cells
were still able to incorporate BrdU. These cells might be
gonadal cells or slow cycling neoblasts, activated upon
stem cell depletion [60]. In triclad flatworms hydroxyurea
was applied to detect fast and slow cycling neoblasts [85].
In the parasitic platyhelminth Schistosoma mansoni it was
found that both sexes were sensitive to hydroxyurea treat-
ment [86]. Interestingly, it was shown that hydroxyurea
had no effect on metamorphosis of miracidia [87]. In the
cnidarian Hydra HU was used to reduce the number of
interstitial cells [88] and to follow nerve cell and nemato-
cyte differentiation [89]. To conclude, our data demon-
strate that we can use HU to manipulate and study stem
cell- and germ cell development in I. pulchra.

Since neoblasts are the only proliferating cells in rhabdi-
tophoran flatworms, radiation is a commonly used
method to confirm stem cell specific gene expression
[4,53,84,90-92]. In this study, we showed that a similar
situation was observed after depleting the stem cell popu-
lation of acoels by radiation. Radiation drastically reduced
the expression of ipiwi1, confirming his stem cell specific
expression. One week post radiation, few cells were still
able to incorporate BrdU. Further experiments will reveal
if these cells are activated slow cycling neoblasts or
gonadal stem cells which were shown to possess higher
radio tolerance in rhabditophoran flatworms [84].

Food deprivation resulted in degrowth of I. pulchra. Dur-
ing prolonged starvation, animals successively decreased
in body size, possessed reduced gonads, and showed a
diminished proliferation activity. After refeeding how-
ever, animals regrew again to adult size. Comparably,
some annelids [93], nemerteans [94] and rhabditophoran
flatworms [6] are able to starve for months and undergo
degrowth during that period. The terrestrial triclad Arthur-
dendyus triangulatus undergoes natural periods of growth
and degrowth correlated with the availability of its prey -
the earthworm [95-97]. Upon starvation, adult animals
resorb their tissues and deplete body reserves [98] and
cannot be distinguished from juvenile animals [99]. The
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striking cellular responses of freshwater triclads to
degrowth include the reduction of cell proliferation, a
decrease in cell numbers, and autophagy [100-103]. Sim-
ilar observations of growth and degrowth were found in
the macrostomid flatworm M. lignano [84,104]. We con-
clude that degrowth, and the reduction of reproductive
organs are features how I. pulchra deals with food depriva-
tion.

Ipiwi1 function is essential for acoel development
In order to analyse the function of piwi-like genes in
acoels, we established a non-invasive RNAi protocol by
soaking. Ipiwi1 RNA interference during development
resulted in a lethal phenotype, demonstrating the crucial
role of ipiwi1 during development. Although ipiwi1 is
expressed in a subpopulation of somatic stem cells and in
germ cells no visible phenotype could be observed after
prolonged RNAi treatment regarding homeostasis and
regeneration. The absence of a clear phenotype could be
explained by the fact that other piwi-like genes might com-
pensate for Ipiwi1 function. At the moment, we cannot
exclude this possibility since the genome of I. pulchra is
not yet available and screening with several different
degenerated primers did not result in the isolation of
additional piwi-like genes. We can exclude a redundancy
with ipiwi2 since ipiwi1/ipiwi2 double RNAi did not lead to
a more severe phenotype (data not shown).

Although redundant piwi-like genes might exist in I. pul-
chra, it is intriguing that redundancy would act during
homeostasis and regeneration, but not during develop-
ment. These observations indicate that stem cells might be
differentially regulated and expression of different piwi-
like genes might vary during development and homeosta-
sis [77]. Further characterization of all piwi-like genes
might clarify if we deal with different stem cell popula-
tions or if stem cells are differentially regulated.

Conclusions
In this study, we presented the acoel Isodiametra pulchra as
suitable model organism to address developmental ques-
tions in this understudied phylum. We established stable
laboratory cultures of I. pulchra with unlimited availabil-
ity of offspring the whole year through, and developed a
whole mount ISH protocol and a simplified RNAi method
by soaking.

Summarizing all data we can conclude that (1) acoel
neoblasts are the only proliferating cells in Isodiametra pul-
chra, (2) acoel stem cells show a characteristic morphol-
ogy on the light and electron microscopical level, (3)
neoblasts are exclusively located parenchymally with a
lack of proliferating cells in the epidermis, (4) cell renewal
for tissue homeostasis, during growth and regeneration is
based exclusively on parenchymal stem cells, (5) piwi

expression in I. pulchra is, in addition to the germline,
present in a subpopulation of somatic neoblasts, (6) I.
pulchra exhibits a high plasticity upon starvation accom-
panied by substantial degrowth and the reduction of
reproductive organs. Refeeding leads to a full restoration
of size and reproduction, (7) irradiation leads to the elim-
ination of neoblasts and finally to the death of the ani-
mals, (8) functional knock-down of Ipiwi1 reveals an
essential role of Ipiwi1 during development.

Methods
Animal culture
Isodiametra pulchra (Acoela, Acoelomorpha) was kept in
petri dishes with nutrient-enriched f/2 artificial sea water
[105] and fed ad libitum with diatoms (Nitzschia curvilin-
eata). Climate chamber conditions were 20°C and 60%
humidity with 14/10 hours day/night cycle.

Cloning of piwi-like genes and sequence analysis
Partial Sequences of Ipiwi1 and Ipiwi2 were obtained from
an EST project (Ladurner and Agata, unpublished). Con-
catenation of five EST's resulted in the full length ORF of
Ipiwi1 (accession number Ipiwi1 [EMBL:AM942741]);
while another clone represented a partial sequence of
Ipiwi2. Full length sequence of Ipiwi2 was obtained by
5'RACE-PCR using a SMART RACE cDNA amplification
kit (BD Bioscience) with the sequence specific primers 5'-
GAATTGGCTCATGCGGGTCAGTC-3' and 5'-GGAAGTC-
CTCCCGCATCTTGTCC-3'. The revealed PCR product was
cloned using a pGEM-T vector system I (Promega) and
sequenced by MWG (Germany). Nested primers were
made in the newly obtained sequence: 5'-CTCGAACT-
TCAGCAACCGCATGA-3', 5'-GTTCTGGCATGGAAGG-
GGATTGG-3' and 5'-GGGAGGGCTGAAATCGACAT-
GGTA-3' and used for nested PCR with the I. pulchra
cDNA phage library as template. The obtained PCR prod-
uct was cloned into a pCR II-TOPO vector (Invitrogen)
and sequenced by GATC (Konstanz, Germany). The acces-
sion number of Ipiwi2 is [EMBL:AM942742].

Whole mount in situ hybridization
Whole mount in situ hybridization was carried out as
described previously for M. lignano (Pfister et al. 2007),
except for the proteinase K treatment (7 min for I. pul-
chra). Riboprobes were generated using the DIG RNA
labelling KIT SP6/T7 (Roche), following the manufactur-
ers protocol.

Template DNA for producing DIG-labelled probe was
made by standard PCR (primer couple for Ipiwi1: 5'-CAT-
GCTGGAGATGGGCAAGATCAC-3' and 5'-GGTGCCG-
GAGATTTCATTGCTCTC-3; for Ipiwi2: 5'-
GCATGAGCCAATTCATC-AGTCGAG-3' and 5'-
GGCAGCTCACCGTCATTCATCTCT-3'; for IpVasa: 5'-
ACCCACGAAGGCATCAACTTC-3' and 5'-TCGCATCTCT-
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TCTTCATCTCG-3' [EMBL_FN298396]); for IpEfα 5'-
GTCAGTATTGTCGTCATTGGCC-3' and 5-'GCTCCAT-
TCTTTAAACCAGGGC-3' ([EMBL_FN298397]) which
produced ISH probes for Ipiwi1 (826 bp), Ipiwi2 (865 bp),
Ipvasa (882 bp) and IpEfα (624 bp). During hybridization
riboprobes were used at working concentrations of 0,05
for Ipiwi1 and Ipvasa and 0,1 ng/μl for Ipiwi2 and IpEfα,
respectively. Pictures were made using a Leica DM5000
microscope and a Pixera Penguin 600CL digital camera.

Immunohistochemistry
Antibody stainings were performed as previously
described (Ladurner et al., 2005) with the following mod-
ifications: animals were fixed for only 30 min with 4%
PFA at room temperature (RT). Multiple PBS-T (0,1%)
washes (3 × 5 min, 1 h at RT) were followed by 30 min
blocking in PBS-BSA-T (1%) (RT). Primary antibody was
incubated overnight in PBS-BSA-T (4°C) (1/1000 for
Ipiwi1). After washing with PBS-T (0,1%) (3 × 5 min),
specimen were incubated in secondary antibody (1/200
FITC-swine-anti-rabbit, 1 h RT, DAKO) and washed again
3 × 5 min in PBS-T. Specimen were mounted with
Vectashield (VECTAR) and analyzed with a Leica
DM5000. Confocal images were made with a Zeiss LSM
510.

To localize Ipiwi1 proteins, we have generated a specific
polyclonal antibody (Additional file 4, Figures. S4). Pri-
mary polyclonal Ipiwi1 antibody was produced by Gen-
Script (GenScript Corp, NJ, USA). The following peptide
was used for immunisation: DREERPRFINDENV(C) (aa
98-111).

Electron microscopy and immunogold labelling were 
performed according to Bode et al.[60]
Double labelling of S-phase cells (BrdU) and Ipiwi1
expressing cells (in situ hybridization) Preceding fixation,
animals were pulsed for 30 min with 5 mM BrdU to label
neoblasts in S-phase [61]. In situ hybridization was per-
formed as described above, except for color development,
which was carried out with Fast Red, in order to obtain
fluorescent staining (Sigma, F4648). After in situ hybridi-
zation, animals were rinsed in ddH2O and further proc-
essed through the BrdU staining protocol [61] except for
protease XIV treatment, which was done at a final concen-
tration of 0,1 mg/ml for 20 minutes at 37°C.

Single cell maceration
In order to prevent algae contamination, animals were
starved for 2 days. For each maceration, 3 adult animals
were BrdU pulsed for 30 min (5 mM in F/2), washed twice
with culture medium and directly further processed (BrdU
pulse) or left for 10 days under standard culture condi-
tions in the dark (BrdU pulse-chase). Specimens were
gradually relaxed for 5 min in 7,14% MgCl2 and dissoci-

ated in CMF/1% trypsin solution for 1 hour at 37°C. Dur-
ing maceration, animals/cells were carefully mixed every
15 minutes. Cells were pelleted, supernatant was
removed, and cells were resuspended in 200 μl PFA (4%
in PBS) and fixed for 40 min at room temperature. Cells
were transferred on coated slides (DAKO, S2024), and
dried for 10 minutes. 6 × 5 min PBS-T (0,1%) washing
steps were performed, followed by 45 min incubation in
2 N HCl (37°C). After 3 × 5 min PBS-T washes, unspecific
staining was blocked during 30 min, in PBS-BSA (1%)-Tri-
ton (0,1%). Primary antibody was used in a final concen-
tration of 1/800 in PBS-BSA-T (mouse anti BrdU, Roche)
and incubated overnight at 4°C. The next day, cells were
washed 3 × 5 min in PBS-T and incubated for 1 hour in
secondary antibody (goat anti mouse FITC; 1/200,
DAKO). Excessive antibody was removed by 5 × 5 min
incubation in PBS-T and cells were mounted in Vectash-
ield. Pictures were taken using a Leica DM5000 micro-
scope.

Western blot
Animals were starved for 1 day. Total protein of 650 ani-
mals was extracted in 100 μl 2× Slab/100 μl PBS and
loaded onto 12% acrylamide gels (90 min, 150 V). Pro-
tein was blotted on polyvinylidene fluoride membranes
(90 min, 25 V) (Immobilon-P; Millipore) and blocked for
2 h with PBS (pH 7,4) containing 0.3% Tween 20, 1%
skimmed milk powder. Blots were incubated overnight at
4°C in primary antibody with a final concentration of 1
μg/ml for Ipiwi1. After washing the blots for 3 × 10 min in
PBS-Tween (0,3%), membranes were incubated with alka-
line phosphatase-conjugated anti-mouse immunoglobu-
lin (1/10,000 Sigma, 2 h, RT). Finally, after several
washing steps (8 × 10 min), immunocomplexes were
detected using nitro blue tetrazolium: 5-bromo-4- chloro-
3 indolyl phosphate (LifeTechnology).

Post embryonic development, regeneration, and starvation
About 1000 staged eggs were collected of I. pulchra. Dur-
ing the whole postembryonic development (19 days), 50
juveniles were fixed each day and stored in methanol until
further processed for ISH and immunohistochemistry.

To obtain regenerating animals, 500 I. pulchra were cut at
the tail region. Every day, 40 animals were fixed and
stored in methanol (-20°C) until further processed for
ISH and immunohistochemistry respectively.

During starvation, worms were kept in petri dishes filled
with culture media (f/2) without food. Medium was
changed twice a week. Every week, a batch of 50 animals
was fixed and stored in MeOH until further processing.
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Hard X-ray irradiation
Intact worms were exposed to 60 Gray, using a linear
Accelerator (8 MeV, 400 cGy/min; Radio-Oncology, Med-
ical Hospital, Innsbruck). Animals were fixed one hour,
one day, one week, two weeks and three weeks postirradi-
ation and examined for piwi expression and BrdU incor-
poration.

Hydroxyurea treatment
A batch of 400 adults (30 - 40 days old) was treated with
2,8 mM hydroxyurea, a specific inhibitor of DNA synthe-
sis (HU, Sigma H-8627) [106]. During the whole treat-
ment (18 days), animals were kept continuously in the
dark and HU medium was changed daily. Every second
day, a batch of worms was pulsed for 30 min with BrdU
(5 mM in F/2), relaxed and fixed for in situ hybridisation,
as described earlier.

RNA interference
An RNA interference protocol by soaking was newly devel-
oped for I. pulchra using a dsRNA probe generated by an
in vitro transcription system (T7 RibomaxTM Express
RNAi System, Promega). The dsRNA probe used for RNAi
overlaps completely with the ISH probes for ipiwi1 (bp
1304 - bp 2131) (Additional file 1, Figure. S1) and ipiwi2
(865 bp) (Additional file 1, Figure. S2). As a negative con-
trol for RNA interference, a 1002 bp Luciferase fragment
was used (pGEM-luc Vector (Promega). dsRNA was
diluted in f/2 culture medium to a final concentration of
3 ng/μl and supernatant was changed every 12 hours.
Throughout the whole experiment, animals were fed ad
libitum in 24 well plates (25 animals per well). Specimens
were examined for BrdU incorporation, piwi mRNA and
protein expression as well as the influence of piwi RNAi on
vasa expression after 7 days and 21 days treatment. Sur-
vival, reproducibility and regeneration capacity were fol-
lowed during the whole experiment (d = 21).
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Additional material

Additional file 1
Figure S1: Nucleotide sequence and predicted protein product of 
Ipiwi1. Conserved PAZ and PIWI domains highlighted in blue (PAZ) 
and green (PIWI). The piwi box within the piwi domain is marked in red. 
Start and stop codon are underlined and marked in bold. ISH primers are 
underlined within the sequence. Accession number for Ipiwi1 
(AM942741).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
213X-9-69-S1.JPEG]

Additional file 2
Figure S2: Nucleotide sequence and predicted protein product of 
Ipiwi2. Conserved PAZ and PIWI domains are highlighted in blue 
(PAZ) and green (PIWI). The piwi box within the piwi domain is marked 
in red. Start and stop codon are underlined and marked in bold. ISH 
primers are underlined within the sequence. Accession number for Ipiwi2 
(AM942742).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
213X-9-69-S2.JPEG]

Additional file 3
Figure S3:. Alignment of predicted piwi-like genes from I. pulchra 
with piwi-like genes from other species. (A) Amino acid alignment of 
the conserved PAZ domain. (B) Amino acid alignment of the conserved 
PIWI domain. The PIWI box is highlighted in purple. Amino acids indi-
cated with green asterisks are supposed to create a binding pocket for the 
5'phosphate group of binding RNA. Red asterisks indicate putative RNase 
active site carboxylate residues. Amino acids indicated in purple can dis-
tinguish members of the piwi and argonaute subfamily. The Genbank 
accession numbers: Isodiametra pulchra Ipiwi1 (AM942741); Isodi-
ametra pulchra Ipiwi2 (AM942742); Macrostomum lignano 
Macpiwi (AM942740); Schmidtea mediterranea Smedwi1 
(DQ186985) Smedwi2 (DQ186986); Dugesia japonica DjPiwi1 
(AJ865376); Podocoryne carnea Cniwi (AAS01181); Caenorhabdi-
tis elegans PRG1 (NP492121); Drosophila melanogaster DmPiwi 
(AF104354); Strongylocentrotus purpuratus Seawi (AY014899); 
Homo sapiens Hiwi (AF104260).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
213X-9-69-S3.JPEG]

Additional file 4
Figure S4: Ipiwi2 expression, Ipiwi1 and Ipiwi2 control sense probes, 
Ipiwi1 Western Blot and radiation controls. Ipiwi2 whole mount in 
situ hybridization (A) with detail of expression in testes (t) (B) and in 
developing eggs (de) (C). (D) Ipiwi1 sense control. (E) Ipiwi2 sense 
control. (F) Western blot of Ipiwi1 polyclonal antibody, showing a signal 
at the expected size (100 kDa). (G-I) Hard X ray radiation of 60 Gray 
did not result in a significant downregulation of the housekeeping gene 
Isodiametra pulchra elongation factor alpha (IpEfα). IpEfα Control 
(G); IpEfα expression after one day (H) and one week (I) postirradia-
tion. Scale bars 100 μm in (A, D, E, G, H, I), 50 μm in (B) and 25 μm 
in (C).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
213X-9-69-S4.JPEG]
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Additional file 5
Figure S5: . Overview of Ipiwi1 expression and dynamics during poste-
rior regeneration in Isodiametra pulchra. This whole mount overview 
clearly demonstrates that Ipiwi1 is only locally upregulated within the 
regeneration blastema (for details see Figure. 4). Expression of Ipiwi1 
mRNA (A-I) and protein localization (J-R). One hour after cutting (A; 
J) and up to five hours postamputation (B, K) Ipiwi1 could not be 
detected at the regeneration site by in situ hybridization. Ipiwi1 was 
upregulated in the regeneration blastema (arrow) after 10 hours (C, L) 
and 25 hours postamputation (D, M). From 42 hours onwards Ipiwi1 
remained downregulated in the regeneration blastema (E-R) and Ipiwi1 
expression and protein were only present in the differentiating genital 
blastema (open arrows in E-Q). Scale bars 100 μm.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
213X-9-69-S5.JPEG]

Additional file 6
Figure S6: Specificity of the dsRNA silencing of Ipiwi1 and Ipiwi2. RNA 
interference of Ipiwi1 resulted in the elimination of Ipiwi1 mRNA within 
7 days (A) but ipiwi2 remained present (C). Likewise, RNA interference 
using Ipiwi2 dsRNA resulted in the elimination of ipiwi2 transcripts (D) 
but ipiwi1 was not affected (B). Scale bars 100 μm.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
213X-9-69-S6.JPEG]

Additional file 7
Figure S7:. Effect of Ipiwi1 RNAi on the regeneration of I. pulchra 
after 21 days of Ipiwi1 dsRNA treatment. RNAi with luciferase 
dsRNA did not show any effect on Ipiwi1 or Ipvasa mRNA expression (A, 
E), Ipiwi1 protein (C) or cell proliferation (G). After 21 days of Ipiwi1 
dsRNA treatment ipiwi1 expression was eliminated both on mRNA (B) 
as well as on protein level and only weak ipvasa mRNA could be detected 
in remnant eggs (F). Notably, cell proliferation was not affected up to 21 
days of ipiwi1 dsRNA treatment (H). (de) developing eggs; (t) testes. 
Scale bars 100 μm.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
213X-9-69-S7.JPEG]
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