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Clustering is a phenomenon that may emerge in multi-agent systems through self-
organization: groups arise consisting of agents with similar dynamic behaviour. It is
observed in fields ranging from the exact sciences to social and life sciences; consider
e.g. swarm behaviour of animals or social insects, dynamics of opinion formation,
or the synchronization (which corresponds to cluster formation in the phase space)
of coupled oscillators modelling brain or heart cells.

We consider a clustering model with a general network structure and saturating
interaction functions. We derive both necessary and sufficient conditions for clus-
tering behaviour of the model and we investigate the cluster structure for varying
coupling strength. Generically, each cluster asymptotically reaches a (relative) equi-
librium state. We discuss the relation of the model to swarming, and we explain
how the model equations naturally arise in a system of interconnected water basins.
We also indicate how the model applies to opinion formation dynamics.

Keywords: multi-agent systems, self-organization, clustering, swarming,
opinion formation

1. Introduction

The basic principles explaining the emergence of one (or several) clusters in multi-
agent systems, as documented in the literature, invariably adopt a simple model
for the behaviour of the agents.

Swarming models mostly focus on the collective behaviour and the cohesion of a
single cluster maintained by the attraction between the animals (or the alignment
of their velocities), in counterbalance with the repulsive interactions and/or the
drift induced by random walk behaviour (Mogilner et al. 2003, Gazi and Passino
2003, Vicsek et al. 1999).

Models for opinion formation often focus on consensus reaching (Hegselmann
and Krause 2002), i.e. the process of forming a single cluster of people agreeing
unanimously on a particular issue, or the coexistence of only two opposite opin-
ions, usually involving nearest neighbour interactions (Bordogna and Albano 2007,
Sznajd-Weron and Sznajd 2000). However, other models have been proposed that
produce multiple clusters with different opinions as a general outcome (Deffuant
et al. 2002).

A particular type of clustering is observed in systems of coupled oscillators,
such as aggregations of flashing fireflies and coupled Josephson junction arrays
(Strogatz 2003). (The term clustering is then often replaced by synchronization or
entrainment.) One distinguishes between phase clustering and frequency clustering.

Article submitted to Royal Society TEX Paper



2 F. De Smet and D. Aeyels

The first form (see e.g. (Okuda 1993, Golomb et al. 1992, Zanette and Mikhailov
2004)) is associated with networks of oscillators with identical natural frequencies.
(The natural frequency of an oscillator characterizes its behaviour in isolation, i.e.
without interaction with other oscillators.) Each cluster consists of oscillators with
(asymptotically) equal phases, with the number of different clusters depending on
the interaction. For non-identical natural frequencies for which the differences are
sufficiently small, it may still be possible to distinguish different phase clusters (Tass
1997). Larger differences between the natural frequencies may induce oscillators
having different long term average frequencies, resulting in frequency clustering
(Morelli et al. 2005, De Smet and Aeyels 2007): each cluster is characterized by the
long term average frequency of its members. For more details on both phenomena
and for examples of clustering in chaotic systems we refer to (Manrubia et al. 2004).

Due to the complexity and richness of the dynamics of some of these models,
analytical results are often hard to come by and restricted to the existence and
local stability properties of some of their solutions (Golomb et al. 1992, Tass 1997,
Aeyels and Rogge 2004), and exploration of the parameter space is usually done by
simulations (Grégoire et al. 2003, Maistrenko et al. 2004).

In a previous paper (Aeyels and De Smet 2007, 2008) we introduced a simple
model for clustering, corresponding to a system of non-identical attracting agents.
It may be considered as a simplification of the Kuramoto model of coupled os-
cillators (Kuramoto 1984) that retains its (frequency) clustering behaviour, while
exhibiting an increased potential for developing analytical results. Each agent has
an autonomous component — its natural velocity — and attracts other agents by
a saturating interaction function. The balance between autonomous behaviour and
attraction depends on the value of the coupling strength. For high values of the
coupling strength, distances between agents remain bounded, resulting in a single
cluster. For lower values several clusters arise; each cluster is characterized by the
common asymptotic velocity of its agents. When the coupling strength equals zero,
all agents move at their natural velocities. In contrast with many of the afore-
mentioned models, a thorough analysis is possible: we were able to analytically
characterize the cluster structure by a set of necessary and sufficient inequalities
in the model parameters, we showed that there exists a unique cluster structure
satisfying these inequalities for a given set of parameters and that the distances
between agents from the same cluster approach constant values.

In the last decade, researchers have introduced various network models repre-
senting links between agents in an attempt to reproduce some of the characteristics
of real life networks. Based on a few simple rules one is able to generate networks
representing collaborations between film actors or scientists, links in the World
Wide Web, or social networks, called respectively small-world networks (Watts and
Strogatz 1998), scale-free networks (Barabási and Albert 1999), and community
networks (Jin et al. 2001). For an overview we refer to (Albert and Barabási 2002,
Newman 2003). An important characteristic of small-world networks and commu-
nity networks also involves the notion of ‘clustering’, of course with a different
interpretation since no dynamics are associated to the nodes.

A question that naturally arises is how the behaviour of dynamical systems —
and in particular any emerging clustering behaviour — is affected by the network
structure that defines the interactions. Research in this direction has mostly fo-
cused on synchronization in networks of coupled dynamical systems (in particular
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in systems of coupled oscillators) (Hong et al. 2002, Moreno and Pacheco 2004,
Jadbabaie et al. 2004, Li and Chen 2003). The present paper also fits into this
research direction.

In this paper we show that the aforementioned results of (Aeyels and De Smet
2007, 2008) are not restricted to the all-to-all coupled case but can be extended
to more general interactions, with respect to both the interaction function and,
perhaps more importantly, with respect to the underlying network structure. To
illustrate the potential of the extended model we indicate how the model equations
naturally arise in a system of interconnected water basins (generalizing an example
discussed in (Aeyels and De Smet 2008)), and we illustrate its relevance in swarming
and opinion formation dynamics.

In the following sections we explain the model, we define the concept of cluster-
ing behaviour, and we calculate the asymptotic average cluster velocity. We then
present and discuss the results of this paper, and we provide an outline of the proofs.
In sections 7, 8 and 9 we show how the model applies to swarming, compartmental
systems and opinion formation respectively. For the detailed proofs of the analytical
results we refer to the electronic supplementary material.

2. The model

We consider the system described by the following differential equations.

ẋi(t) = bi + KAi

N∑
j=1

γjfij(xj(t) − xi(t)), ∀ i ∈ IN � {1, . . . , N}, (2.1)

with Ai, γj > 0, K ≥ 0, N > 1. For all i, j ∈ IN , the functions fij are non-
decreasing, Lipschitz continuous and satisfy

fji(ξ) = −fij(−ξ), ∀ ξ ∈ R,

lim
ξ→+∞

fij(ξ) = Fij , and thus lim
ξ→−∞

fij(ξ) = −Fji,

for some Fij ∈ R. (It follows that the functions fii (i ∈ IN ) are odd, and since
they are only evaluated in zero they play no role but are retained for notational
convenience.) The interval [−Fji, Fij ] covers the range of the interaction of agent j
with agent i. If both Fij and Fji are positive, then the interaction between agents
i and j will be attractive, except when the distance xj(t) − xi(t) between agents i
and j belongs to the interval between zero and f−1

ij (0). The extent to which each
individual agent j tends to interact with other agents is represented by the weight
γj . The parameter Ai reflects the sensitivity of agent i to interactions with other
agents; K is the global coupling strength.

The conditions that K ≥ 0 and that the functions fij are non-decreasing are
important to be able to show that the clustering behaviour (defined in the next
section) is independent of the initial condition. If these conditions are not satisfied,
some of the results presented in this paper may still partially hold (e.g. we suspect
that the system will still exhibit clustering behaviour), but independence of initial
conditions and uniqueness of the cluster structure for a given set of parameters
cannot be maintained.
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Since we can rewrite the system (2.1) in the form

ẋi(t) = bi + K

N∑
j=1

γjfij(xj(t) − xi(t)), ∀ i ∈ IN , (2.2)

by setting f ′
ij � AifijAj (f ′

ij retains the properties of fij), γ′
j � γj

Aj
(i, j ∈ IN ),

and then omitting the accents, we will only consider the system (2.2) for the math-
ematical analysis, corresponding to putting Ai = 1, for all i in IN .

The model in (Aeyels and De Smet 2007, 2008) corresponds to an all-to-all
interaction structure with γi = 1

N and Ai = 1, for all i in IN , and where the
interaction functions fij are all equal to the same function f , which is assumed to
be odd, and reaches its saturation value:

f(x) = F, ∀x ≥ d,

for some F, d > 0. As is shown in the present paper, the results from (Aeyels and De
Smet 2007, 2008) can be generalized to the system (2.2). The generalization requires
a slightly amended definition of the notion of cluster structure, in comparison with
(Aeyels and De Smet 2007, 2008). The formulation of the conditions determining
a cluster structure also needs some adaptation. The proofs of the results tend to
be quite technical at places, mainly due to the general nature of the interactions.
In turn, however, new applications may now be envisaged, as will be illustrated in
sections 8 and 9.

3. Clustering behaviour

We consider the following definition of clustering behaviour of a solution x to (2.2)
with respect to a cluster structure G = (G1, . . . , GM ), representing an ordered set
partition of IN :

• The distances between agents in the same cluster remain bounded (i.e. |xi(t) − xj(t)|
is bounded for all i, j ∈ Gk, for any k ∈ IM , for t ≥ 0).

• For any D > 0 there exists a time after which the distances between agents
in different clusters are at least D.

• The agents are ordered by their membership to a cluster: k < l ⇒ xi(t) <
xj(t), ∀ i ∈ Gk, ∀ j ∈ Gl, ∀ t ≥ T , for some T > 0.

This definition differs slightly from the one in (Aeyels and De Smet 2007, 2008), but
the results from (Aeyels and De Smet 2007, 2008) remain valid with this modified
definition.

In (Aeyels and De Smet 2008) we show that there exist inequalities in the pa-
rameters of the model, which constitute a necessary and sufficient set of conditions
for clustering behaviour of all solutions of the all-to-all coupled model with equal
weights w.r.t. a given cluster structure (G1, . . . , GM ). We also show that for every
given set of parameters b ∈ RN , K ∈ R+ and F ∈ R+

0 there exists a unique ordered
set partition (G1, . . . , GM ) of clusters satisfying these conditions, and that the in-
ternal behaviour of the clusters asymptotically reaches an equilibrium situation.

We will generalize these results to the model (2.2) (although, for convenience,
some non-generic cases are not included in the generalization).
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4. Asymptotic average cluster velocity

Set
ϕ(D) � K max

i∈IN

∑
j∈IN

γj max(Fij − fij(D), Fji − fji(D)).

(Notice that limD→+∞ ϕ(D) = 0.)
Consider a non-empty set G0 ⊂ IN . For a vector w ∈ RN we define 〈w〉G0 as

the weighted average of wi over G0, with weighting factors γi:

〈w〉G0 �
∑

i∈G0
γiwi∑

i∈G0
γi

.

Because of the properties of the interaction functions fij , all internal interactions
(i.e. interactions between agents in G0) will cancel in the expression for 〈ẋ(t)〉G0 .
Pick D > 0 and assume that, at some time instance t0, the agents in G0 are
separated by at least a distance D from all other agents (i.e. |xi(t0) − xj(t0)| ≥ D
whenever i ∈ G0 and j /∈ G0). Then the interaction of agent i in G0 with an
agent j not in G0 will deviate at most max(Fij − fij(D), Fji − fji(D)) from its
saturation value. Assume furthermore that at t0 each agent not belonging to G0

has an xi(t0)-value either smaller or larger than all xi(t0)-values of agents in G0.
Denote by G−

0 , resp. G+
0 , the set of agents with xi(t0)-values smaller, resp. larger,

than the xi(t0)-values of the agents in G0. Then for any i ∈ G0 it follows that∣∣∣∣∣∣ẋi(t0) − bi + K
∑

j∈G−
0

γjFji − K
∑

j∈G0

γjfij(xj(t0) − xi(t0)) − K
∑

j∈G+
0

γjFij

∣∣∣∣∣∣
≤ ϕ(D),

and thus ∣∣〈ẋ(t0)〉G0 − ṽ(G−
0 , G0, G

+
0 )
∣∣ ≤ ϕ(D), (4.1)

where we define the function ṽ as

ṽ(G−
0 , G0, G

+
0 ) � 〈b〉G0 +

K∑
i∈G0

γi

∑
i∈G0

γi

∑
j∈G+

0

γjFij −
∑

j∈G−
0

γjFji

 ,

for all G−
0 , G0, G

+
0 ⊂ IN with G0 non-empty.

For an ordered set partition G = (G1, . . . , GM ) of IN , let G<
k denote

⋃
k′<k Gk′ ,

and let G>
k �

⋃
k′>k Gk′ .

If the solution x exhibits clustering behaviour with respect to G = (G1, . . . , GM ),
then application of (4.1) with G0 = Gk, G−

0 = G<
k , and G+

0 = G>
k (for some

k ∈ IM ), and considering the limit D → +∞ (implying t0 → +∞ because of the
clustering behaviour), results in

lim
t→+∞〈ẋ(t)〉Gk

= ṽ(G<
k , Gk, G>

k ).

In theorem 5.3 it is shown (for the generic case) that this is then also the asymptotic
velocity for each member of Gk.
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5. Results

We present our main results. The proof is outlined in the next section; the detailed
proofs are given in the electronic supplementary material.

(a) Necessary and sufficient conditions for clustering behaviour

For any set S, let P(S) denote the set of all ordered partitions of S in two
subsets, i.e.

P(S) = {(S1, S2) : S1, S2 � S with S2 = S \ S1}.
Theorem 5.1. Let G = (G1, . . . , GM ) be an ordered set partition of IN . The
following set of inequalities is sufficient for clustering behaviour w.r.t. G of all
solutions of the system (2.2):

ṽ(G<
k , Gk, G>

k ) < ṽ(G<
k+1, Gk+1, G

>
k+1), ∀ k ∈ IM−1, (5.1a)

ṽ(G<
k ∪ Gk,1, Gk,2, G

>
k ) < ṽ(G<

k , Gk,1, G
>
k ∪ Gk,2),

∀ (Gk,1, Gk,2) ∈ P(Gk),
∀ k ∈ IM .

(5.1b)

The following set of inequalities is necessary for clustering behaviour w.r.t. G of
all solutions of the system (2.2):

ṽ(G<
k , Gk, G>

k ) ≤ ṽ(G<
k+1, Gk+1, G

>
k+1), ∀ k ∈ IM−1, (5.2a)

ṽ(G<
k ∪ Gk,1, Gk,2, G

>
k ) ≤ ṽ(G<

k , Gk,1, G
>
k ∪ Gk,2),

∀ (Gk,1, Gk,2) ∈ P(Gk),
∀ k ∈ IM .

(5.2b)

Remark 5.1. If the saturation values Fij are attained, i.e. if fij(ξ) = Fij for ξ
sufficiently large, for all i, j ∈ IN , then the conditions (5.1a) and (5.2b) are necessary
and sufficient for clustering behaviour w.r.t. G of all solutions of the system (2.2).
This is easily shown by adaptation of the proof of theorem 5.1, given in the electronic
supplementary material; it encompasses a similar result in (Aeyels and De Smet
2007, 2008) for the case of all-to-all interaction. The conditions (5.1a) and (5.2b)
are not necessary and not sufficient in case saturation is not attained, as follows
from the example below.

Example 5.1. An example showing that in general (5.1) is not necessary and (5.2) is
not sufficient, is constructed as follows. Consider the system (2.2) with two agents,
with K = 1, b1 = −1 and b2 = 1, γ1 = γ2 = 1, and F12 = F21 = 1. Then (5.1) is
not satisfied for any cluster structure, while (5.2) is satisfied for both the cluster
structures ({1, 2}) and ({1}, {2}), since

ṽ(∅, {1}, {2}) = 0 = ṽ({1}, {2}, ∅).

Both ({1, 2}) and ({1}, {2}) are possible cluster structures, but which cluster struc-
ture characterizes the behaviour of (solutions of) the dynamical system cannot di-
rectly be derived from theorem 5.1. However, if the interaction function f12 reaches
its saturation value F12, then the above remark guarantees the emergence of the
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cluster structure ({1, 2}), as it satisfies the conditions (5.1a) and (5.2b). Indeed,
subtracting the system equations for agents 1 and 2 results in

ẋ2(t) − ẋ1(t) = 2 − 2f12(x2(t) − x1(t)),

showing that the system will exhibit clustering behaviour, with agents 1 and 2
belonging to the same cluster if and only if f12 attains its saturation value F12 = 1
for finite values of its argument. The other cluster structure ({1}, {2}) emerges
when saturation is not reached.

(b) Clustering behaviour with varying coupling strength

Theorem 5.2. For every b ∈ RN and every matrix F ∈ (R)N×N with Fij +Fji ≥ 0
for all i, j ∈ IN , there exists a partition of R+ in a finite number of intervals, such
that each interval corresponds to a unique ordered set partition G of IN , for which
(5.1) holds for all K in the interior of this interval.

When (5.1) is satisfied for values of K in the interior of some interval, it follows
that (5.2) is satisfied for K in the closure of this interval. At the end points more
than one cluster structure will satisfy (5.2), and no cluster structures will satisfy
(5.1), as is illustrated by the example with two agents in the previous section.

Considering the relevance of theorem 5.2 for system (2.2), the conditions Fij +
Fji ≥ 0 are required for the existence of non-decreasing interaction functions fij

with saturation values −Fji and Fij . In the proof of theorem 5.2 the uniqueness
of the clustering behaviour with respect to initial conditions of solutions to (2.2)
guarantees the uniqueness of the cluster structure G for a given value of the coupling
strength. Without these conditions, the result remains valid (as follows from the
proof) except for the uniqueness of the cluster structure.

If all entries of F are non-negative and F is irreducible (i.e. for any partition
(G1, G2) ∈ P(IN ) there exist i ∈ G1 and j ∈ G2 with Fij = 0), then for large
K-values one can check that the cluster structure will be equal to a single set
containing the entire population, i.e. G = (IN ).

As an illustration of the varying cluster structure for different ranges of K, figure
1 shows the long term average velocities vi � limt→∞ xi(t)/t (which are of course
equal for agents from the same cluster, and thus the vector v reflects the emerging
cluster structure) of the agents for varying coupling strength K, with γi = 1

6 , for
all i in I6, and

b =



−2.4
−2
−1
1

1.3
4

 , F =



0 1 1 0 1 1
1 0 1 0 1 1
1 1 0 0 1 1
0 0 0 0 1 1
1 1 1 1 0 1
1 1 1 1 1 0

 .

From this figure, the intervals for K and the corresponding cluster structures can
be inferred immediately. Notice that clusters may split up with increasing coupling
strength; a similar phenomenon can be observed in the all-to-all coupled Kuramoto
model (De Smet and Aeyels 2007).
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−3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

6

7

v
i

K

Figure 1. Asymptotic velocities vi for varying coupling strength K. The curve
corresponding to agent 4 is indicated in bold.

(c) Internal behaviour of the clusters

To investigate the internal behaviour of a cluster we will exclude interaction
functions that are constant in an infinite number of disjunct intervals of non-zero
length; i.e. we only consider functions fij for which the set{

f̃ij ∈ R : |f−1
ij ({f̃ij})| > 1

}
(with |S| denoting the number of elements of a set S) is finite. Furthermore not all,
but almost all values of b ∈ RN are allowed; for convenience the formulation of the
exact conditions under which theorem 5.3 is true is postponed to the proof.

Theorem 5.3. Consider the system (2.2) with interaction functions fij having a
finite number of function values f̃ij for which f−1

ij ({f̃ij}) is an interval of non-zero
length. For almost all b ∈ RN the following is true:
If x is a solution with cluster structure G = (G1, . . . , GM ), then for each k ∈ IM ,
if i, j ∈ Gk,

lim
t→+∞(xi(t) − xj(t)) exists and is independent of x(0),

lim
t→+∞ ẋi(t) exists and equals ṽ(G<

k , Gk, G>
k ).

The conditions on b are related to the conditions on the functions fij ; e.g. if all
functions fij are increasing on R, then theorem 5.3 holds for all b ∈ RN , as will be
clear from the proof.

The second result of the previous theorem (stating that the velocities of the
agents approach a constant value) is valid for all b ∈ RN , and for all interaction
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functions satisfying the conditions introduced in §2. (For a proof we refer to future
work (F. De Smet and D. Aeyels 2008, in preparation).)

To show that the first result of the previous theorem does not always hold, we
present an example for which the distance between two agents from the same cluster
does not converge.

Example 5.2. We will construct an example with N = 5 and K = 1 where x4(t) −
x3(t) and x3(t) − x2(t) do not converge, although agents 2, 3 and 4 belong to the
same cluster. All weighting factors γi are set equal to 1. The vector b and the
matrices F and d (where dij � inf f−1

ij ({Fij})) are chosen as

b =


−5
−2
0
2
5

 , F =


0 1 1 1 1
1 0 1 2 1
1 1 0 1 1
1 2 1 0 1
1 1 1 1 0

 , d =


−∞ 1 +∞ 1 1
1 −∞ 1 8 1

+∞ 1 −∞ 1 +∞
1 8 1 −∞ 1
1 1 +∞ 1 −∞

 .

The resulting cluster structure is G = ({1}, {2, 3, 4}, {5}), with asymptotic velocities
respectively −1, 0, and 1, as can be verified by application of theorem 5.1, since G
satisfies (5.1).

All functions fij (i = j), except for {i, j} ∈ {{1, 3}, {3, 5}, {2, 4}}, are set equal
to f∗, with

f∗(ξ) �
{

ξ
|ξ| , |ξ| ≥ 1;

ξ, |ξ| ≤ 1.

Furthermore

f24(ξ) = f42(ξ) = 2f∗( ξ
8 ) =

{
2 ξ
|ξ| , |ξ| ≥ 8;

ξ
4 , |ξ| ≤ 8.

The idea is that, for a well-chosen initial condition, x2 and x4 remain fixed at
−2 and 2 respectively, with agent 3 in between, and agents 1 and 5 going to −∞
and +∞ respectively, and with all agents separated by at least 1 for all t ≥ t0
(t0 > 0 yet to be defined). Consequently all interactions are saturated, except for
the interaction between agents 1 and 3, the interaction between agents 3 and 5,
and the interaction between agents 2 and 4. In general the asymptotic relative
positions of the agents in a cluster are determined by the internal interactions and
the saturation values of external interactions. However, in the present example the
interaction between agents 2 and 3 and the interaction between agents 3 and 4
are saturated, and the saturation values of the interactions of 1 and 5 on 3 cancel.
Consequently, the relative position of agent 3 within the cluster {2, 3, 4} depends on
the initial condition and on the way the interaction functions f13 and f35 approach
their saturation values F13 and F35. The dependence on the initial condition already
shows that the result of theorem 5.3 does not hold; we will also choose f13 and f35

appropriately to construct a solution to (2.2) for which x3(t) returns infinitely many
times to both −1 and 1, and therefore there is no convergence of x4(t)− x3(t) and
x3(t) − x2(t).

The (asymptotic) relative position of agents 2 and 4 is determined by the choice
for the function f24, which guarantees that if x4(t)− x2(t) equals 4 for t = t0, then
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10 F. De Smet and D. Aeyels

it remains equal to 4 for t > t0. Although this choice for f24 is not necessary and we
could have chosen f24 equal to the function f∗, it makes sure that (5.1) is satisfied
for the cluster structure G, showing that this non-generic situation, with distances
between agents from the same cluster not converging to a value independent of the
initial condition, is not necessarily related to the non-generic situation where (5.2)
is satisfied with at least one equality (and therefore (5.1) is not satisfied).

With the interactions between agents 2 and 3 and agents 3 and 4 saturated, the
behaviour of agent 3 satisfies

ẋ3(t) = f31(x1(t) − x3(t)) + f35(x5(t) − x3(t)),

for all t ≥ t0. For t sufficiently large we can assume that x3(t) − x1(t) and x5(t) −
x3(t) are increasing in t (as their derivatives approach 1), and therefore f31(x1(t)−
x3(t)) is non-increasing, and f35(x5(t) − x3(t)) is non-decreasing in t. In a first
attempt, we can choose f31 and f35 piecewise constant, such that f31(x1(t)−x3(t))
and f35(x5(t)− x3(t)) are non-increasing, resp. non-decreasing, and approach their
saturation values of −1, resp. 1. When x3(t) equals 1, the first term is decreased
such that ẋ3(t) < 0; when x3(t) equals −1, the second term is increased such
that ẋ3(t) > 0. This results in x3(t) repeatedly going from −1 to 1 and from 1 to
−1. Since f31 and f35 approach their saturation values, the derivative ẋ3(t) will
approach zero, and the time needed for x3(t) to cross the interval [−1, 1] will grow
unbounded.

In order to obtain a simple expression for x3(t), we will consider other interaction
functions f31 and f35 than those proposed in the previous paragraph, with the result
based on the same underlying principle. We postulate a deviation for f31(x1(t) −
x3(t)) and f35(x5(t) − x3(t)) from their saturation values −1 and 1 of the order
O(1/t) for large t-values, and we consider the following behaviour for agent 3:

x3(t) = sin(ln(t)), for t ≥ t0.

(Another option would be to consider x3(t) = sin(tα), with α ∈ (0, 1), based on a
deviation for f31(x1(t) − x3(t)) and f35(x5(t) − x3(t)) from their saturation values
of the order O(1/t1−α).) As a result we require that

ẋ3(t) = f31(x1(t) − x3(t)) + f35(x5(t) − x3(t)) =
cos(ln(t))

t
,

for all t ≥ t0. For t sufficiently large we can assume that x3(t)−x1(t) and x5(t)−x3(t)
are increasing in t (as their derivatives approach 1), and we can put forward the
following expressions

f31(x1(t) − x3(t)) = −1 +
C

t
, (5.3a)

f35(x5(t) − x3(t)) = 1 − C

t
+

cos(ln(t))
t

, (5.3b)

for t ≥ t0, where C ≥ 0 is to be chosen such that the right hand sides are non-
increasing, resp. non-decreasing, in t. As the right hand side of (5.3a) is obviously
non-increasing in t, we consider the derivative of the right hand side of (5.3b) to t
and demand that

1
t2

(C − cos(ln(t)) − sin(ln(t))) ≥ 0,
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for all t ≥ t0. We therefore set C �
√

2 (since cos α + sinα =
√

2 sin(α + π
4 )) and

we derive that for a well-chosen initial condition

x1(t) = −2 − t −
√

2 ln(t),
x2(t) = −2,

x3(t) = sin(ln(t)),
x4(t) = 2,

x5(t) = 2 + t +
√

2 ln(t) − sin(ln(t)),

for all t ≥ t0. To meet the requirements that the arguments of f31 and f35 in (5.3)
are decreasing, resp. increasing, and that all agents are separated over at least 1, we
set t0 � 1. The continuation for the undefined parts of f31 and f35 is not important,
as long as the functions are non-decreasing and approach their saturation values.

For this solution, the velocities of all agents approach a constant value, but the
differences x3(t) − x2(t) and x4(t) − x3(t) do not converge.

6. Outline of the proofs

This section describes the main arguments underpinning the results claimed in
the previous section. For full mathematical details one is referred to the electronic
supplementary material.

(a) Theorem 5.1

The characteristics of the interaction play a key role in the proof of theorem 5.1.
Because of the anti-symmetry properties of the functions fij , all internal interac-
tions (i.e. interactions between agents in the same cluster) cancel when calculating
the velocity of the ‘centre of mass’ (weighted with the parameters γi) of a cluster,
similar to the cancellation of internal interactions in mechanics. The saturation of
the interaction functions implies that the interactions between agents from differ-
ent clusters can be approximated by their saturation values whenever the agents
involved are separated by a sufficiently large distance.

These properties lead to the aforementioned conclusion that for a solution x
exhibiting clustering behaviour with respect to G = (G1, . . . , GM ), the asymptotic
average cluster velocity only depends on the functions fij through their saturation
values Fij as follows:

lim
t→+∞〈ẋ(t)〉Gk

= ṽ(G<
k , Gk, G>

k ),

for all k ∈ IM .
Applying this formula under the assumption of clustering behaviour leads to

the approximation

〈ẋ(t)〉Gk+1 − 〈ẋ(t)〉Gk
≈ ṽ(G<

k+1, Gk+1, G
>
k+1) − ṽ(G<

k , Gk, G>
k ),

for t sufficiently large, and the ordering of the agents and distances growing un-
bounded with time for agents in different clusters then leads to the conditions
(5.2a). Since the functions fij are non-decreasing, one similarly derives that

〈ẋ(t)〉Gk,2 − 〈ẋ(t)〉Gk,1 � ṽ(G<
k ∪ Gk,1, Gk,2, G

>
k ) − ṽ(G<

k , Gk,1, G
>
k ∪ Gk,2)
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12 F. De Smet and D. Aeyels

(with � meaning that the right hand side is an approximative lower bound of the
left hand side), for any two subsets Gk,1 and Gk,2 partitioning Gk. Since distances
between agents from the same cluster remain bounded, this leads to the conditions
(5.2b). This implies the necessity of the inequalities (5.2) for the existence of a
solution of (2.2) satisfying clustering behaviour.

For the proof of sufficiency of the conditions (5.1), the main idea is based on
the construction of a trapping region R for solutions of (2.2): any solution starting
in R remains in R for all later time instances. The trapping region R incorporates
both a bounded distance between agents of the same cluster, and a minimal sepa-
ration of agents from different clusters. The proof that R (defined in the electronic
supplementary material) is a trapping region is based on similar expressions as in
the previous paragraph in combination with the inequalities (5.1). From the prop-
erties of R it then easily follows that any solution x starting in R satisfies clustering
behaviour (with T = 0, and the clusters equal to the sets Gk).

Any other solution x̂ of (2.2) will exhibit the same clustering behaviour (i.e.
identical clusters, possibly a different value for T ). This follows by observing that
we can introduce a modified square distance in the state space RN between x and
x̂ that is non-increasing in time, due to the monotonicity of the functions fij :

d
dt

(
N∑

i=1

γi(xi(t) − x̂i(t))2
)

≤ 0.

It follows that xi(t) − x̂i(t) remains bounded for all i in IN , and therefore x and x̂
exhibit the same clustering behaviour.

(b) Theorem 5.2

The relation between the cluster structure and the corresponding intervals for
the coupling strength is investigated as follows. The cluster structure G = ({1}, . . . , {N})
satisfies the conditions (5.2) for K = 0, and therefore also for values of K in some
interval [0,Kt] (with Kt ≥ 0; if Kt = 0, then (5.2) is satisfied for K = 0 only —
ignoring negative values for K). When K increases, transitions to a different clus-
ter structure will take place each time one of the inequalities in (5.2) becomes an
equality. At the transition value Kt, a new cluster structure can be constructed that
satisfies (5.2) for values of K in some interval [Kt,K

′
t] (with Kt < K ′

t). If one of the
inequalities in (5.2a) becomes an equality at Kt, then the corresponding clusters
Gk and Gk+1 will merge and form a new cluster. If one of the inequalities in (5.2b)
becomes an equality at Kt, then the cluster Gk will split in two new clusters Gk,1

and Gk,2 corresponding to the two subsets involved in the equality. (The calcula-
tions showing that this new cluster structure satisfies (5.2) for K in [Kt,K

′
t] may

be tedious, but they are quite straightforward.) Repeating this procedure we ob-
tain intervals for the coupling strength K, each associated with a particular cluster
structure satisfying (5.2) in this interval, and therefore satisfying (5.1) in the inte-
rior of this interval. The uniqueness of the cluster structures follows from theorem
5.1.
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(c) Theorem 5.3

To investigate the internal behaviour of a cluster Gk, k ∈ IM , we consider
the subsystem that corresponds to the agents in this cluster, with their position
relative to the average position of the agents in Gk, and where the interaction
with any agent from another cluster is modelled as the sum of the corresponding
saturation value and a time-varying deviation that tends to zero for large t, because
of the clustering behaviour. By introducing a Lyapunov function it is possible to
show that the solution of this subsystem approaches a unique equilibrium point,
and therefore that distances between agents from the same cluster will approach
a constant value, independent of the initial condition, and that the velocity of an
agent converges to the asymptotic average cluster velocity.

7. Swarming

As mentioned before, most swarming models focus on the collective behaviour of
a species and their cohesion as a single cluster. This may be ensured by imposing
periodic or reflective boundary conditions on a bounded region (Czirók and Vicsek
2000), or by including attractive interactions (Mogilner et al. 2003, Gazi and Passino
2003). The attraction may decay to zero with increasing mutual distance while
still maintaining a coherent cluster (unless it equals zero from some distance on,
as in (Czirók et al. 1996)). The size of the population defining a coherent group
motivates the short range attraction; indeed, swarms such as schools of fish may
consist of several thousands to a million individual animals (Camazine et al. 2003).
The attraction counteracts the propensity to diverge due to either repulsive terms
(Mogilner et al. 2003) or drift induced by random walk behaviour (often modelled
by inserting a white noise term in the system equations (Mikhailov and Zanette
1999)), or both.

In the following paragraphs we will explain how the model (2.1) may be useful
as a model for swarming. For simplicity we may think of a group of larger land
mammals, such as a herd of grazing ungulates.

Since in the model (2.1) the behaviour of an agent is restricted to one dimension,
we interpret its dynamics in applications to swarming as reflecting the behaviour
along one direction, thus providing qualitative and not quantitative information.
(An extension of the model and some of the results to a multi-dimensional state-
space for each agent is possible (De Smet and Aeyels 2008a), but here we focus on
the one-dimensional case.)

Other differences between (2.1) and most swarming models described in the lit-
erature concern the range of the attraction and the incorporation of the propensity
to diverge. In the current model, the range of the attraction is not limited, which
for small herds may be a reasonable assumption. Furthermore, the model makes it
possible to restrict interactions according to a given network structure, which could
be of interest where interaction refers to e.g. kinship.

We now discuss the propensity to diverge, represented by the autonomous com-
ponents bi. They may be interpreted as individual preferences, or as (short term)
average velocities resulting from generalized random walk behaviour (with a contin-
uous range for its increments) due to e.g. external influences. In the latter case, bi

is time-varying on a large time scale with the cluster structure varying accordingly.

Article submitted to Royal Society



14 F. De Smet and D. Aeyels

Assuming that the clusters develop sufficiently fast, it is possible to observe the
cluster structure before another cluster structure emerges. Although, considered on
a small time scale, multiple clusters will emerge, they will not persist. The long
term average values for bi are small in absolute value (because of the random walk
behaviour, bi is of the order 1/

√
t, with t denoting time), and (for most time in-

stances) these long term average values will satisfy the conditions (5.1) for a cluster
structure consisting of a single cluster, i.e. G = (IN ). Therefore, the behaviour of
the animals will roughly correspond to a single cluster on a larger scale. Animals
may drift off to graze further away, but due to the continuous change in cluster
structure, they will, on a large scale, form a single cluster; this cluster may not be
bounded since some members of the group may continue to wander off in time. (The
resulting time-variant model and associated results will be investigated in detail in
future work (De Smet and Aeyels 2008b).)

(a) Simulations of the all-to-all coupled model

In our initial simulations we consider the model from (Aeyels and De Smet
2007, 2008), i.e. the system (2.1) with an all-to-all interaction structure, γi = 1

N
and Ai = 1, for all i in IN , and with the interaction functions fij all equal to
the same function f , which is odd, and has a saturation value denoted by F . The
function f is linear in the interval [−2, 2] (in m), with slope F/2. We set N = 10,
K = 2m/s and F = 1. For all simulations with K = 2m/s we use the Euler
method with a time step equal to 1 s. Trial showed that smaller time steps were not
necessary. The animals start from a single cluster at the position zero: xi(0) = 0
for all i ∈ IN .

In a first simulation we highlight the emergence of various cluster structures
with varying bi-values by keeping the bi-values constant during fixed time intervals,
allowing us to observe the development of the clusters as predicted by the analytical
results. The bi-values are chosen randomly from a Gaussian distribution with zero
mean and standard deviation 1m/s. They are piecewise constant in time: they
are assigned (independently of previous values) every 500 seconds. Given that the
interaction function f reaches its saturation value for a distance between interacting
animals equal to 2m, and that the velocities bi are of the order 1m/s, we can expect
that the time needed for the formation of the clusters is much smaller than the time
scale on which the bi-values vary.

A simulation showing the position of the animals in time is given in figure 2(a):
the emerging cluster structures can be clearly identified. Given the abrupt changes
in position following each discontinuity in bi this scenario is unrealistic, except
perhaps when modelling the sudden appearance of a predator.

To generate a more natural behaviour in time, in a second simulation (shown in
figure 2(b)) the bi-values are smoother, obtained by sending white noise through a
low-pass filter, implemented by the following difference equation in the simulations
with a time step of 1 s (with n denoting the step number in the Euler integration
scheme):

bi(n + 1) = 0.998bi(n) + 0.06Xi(n). (7.1)

The random variable Xi(n) is chosen (each second) from a Gaussian distribution
with zero mean and standard deviation 1m/s. The initial value bi(0) is drawn ran-
domly from the same Gaussian distribution. The cut-off frequency of the filter is
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1/500Hz, causing a substantial reduction of frequency components with a period
smaller than 500 s. The filter dynamics imposed on bi result in a Gaussian distri-
bution for bi(n) (as bi(n + 1) is a linear combination of bi(n) and Xi(n), which
are mutually independent Gaussian random variables). The resulting behaviour,
as shown in figure 2(b), is more natural with respect to the evolution of the clus-
ter structure. Several simulations with the same parameters indicate that a central
cluster can be distinguished, containing animals with smaller bi-values (in absolute
value). Individual animals or smaller groups, characterized by (temporarily) more
extreme bi-values, occasionally drift off, returning to the main herd later on.
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Figure 2. Time evolution of the position of the animals for a simulation of the all-to-all
coupled model with N = 10, and piecewise constant bi-values (figure (a)) or smooth
bi-values (figure (b)).

(b) Simulations with a random network structure

In the next simulations we consider N = 50 animals, and we abandon the all-
to-all interaction structure, but keeping K = 2m/s and Ai = 1, for all i in IN .

First we choose the network structure for the interactions as a random graph,
with each possible edge being selected independently with probability 1/5. The
weighting factors are adjusted accordingly, to keep the total attraction experienced
by an animal on average equal to the value from the previous simulations: γi = 5

N ,
for all i in IN . The interaction functions fij are either equal to zero (if there is
no link in the interaction network), or equal to the same function f as described
before, with saturation value F = 1. The results of a simulation with smooth bi-
values (generated as in the previous simulation) are shown in figure 3.

Again a central cluster can be distinguished, with individual animals or smaller
groups drifting off and returning to the main herd later on.

(c) Simulations with a nearest neighbour network structure

As mentioned before, biological models usually consider short range interactions.
In the model (2.1) this may be reflected, without changing the characteristics of
the interaction functions, by adopting a nearest neighbour network structure. The
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Figure 3. Time evolution of the position of the animals for a simulation of (2.1) with a
random network structure, N = 50, and smooth bi-values. Figure (b) follows from zooming
into a region of figure (a).

network structure is then no longer constant, but is updated each time the order of
the xi(t)-values changes. We choose a network structure where each animal interacts
with its three nearest neighbours on each side (or less if there are less than three
neighbours on one side). We adjust the weighting factors accordingly: γi = 1

6 , for
all i in IN (for convenience no exceptions are made for animals interacting with
less than six neighbours). The result is shown in figure 4(a), and indicates that the
interaction is insufficient for the development of clusters.

We therefore increase the coupling strength K to 6m/s, resulting in figure 4(b).
The simulation time step is decreased to 0.2 s. However, bi(n) is still updated each
second according to (7.1) — with bi kept constant between updates — to facilitate
a comparison with the previous simulations. In figure 4(b) one clearly notices the
emergence of several clusters on a small spatial scale, which due to the time-variance
of the bi-values and corresponding cluster structure, constitute a single cluster on
a large scale. As opposed to the behaviour in previous simulations (figures 2(b)
and 3), this single cluster is not built around a central herd, but consists of several
smaller clusters of similar size.

For comparison, the simulation with a random graph is repeated with K = 6m/s
(and again a time step of 0.2 s), resulting in figure 5. Here the increase in coupling
strength leads to a single cluster containing all animals, with almost no animals
drifting off.

8. Compartmental systems

To illustrate the relation of the proposed clustering model with compartmental sys-
tems we will focus on a system of interconnected water basins with arbitrary con-
nection structure. In (Aeyels and De Smet 2008) we considered a similar example,
restricted to the all-to-all coupled case. For completeness we will again introduce
and discuss the relation between the physical system and the clustering model, but
now having an arbitrary network structure in mind.
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Figure 4. Time evolution of the position of the animals for a simulation of (2.1) with a
nearest neighbour network structure, N = 50, smooth bi-values, and K = 2 m/s (figure
(a)) or K = 6 m/s (figure (b)).
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Figure 5. Time evolution of the position of the animals for a simulation of (2.1) with a
random network structure, N = 50, smooth bi-values, and K = 6 m/s.

(a) Interconnected water basins

We consider N separate basins connected by pipes, each basin furthermore sub-
ject to either a constant external inflow or outflow of water. For laminar flow through
a pipe connecting two basins, the fluid velocity is proportional to the pressure differ-
ence (Hagen–Poiseuille law). For larger velocities the flow becomes turbulent and
the relation between velocity and pressure difference is described by the Darcy–
Weisbach equation (Plapp 1968):

∆p = λ
L

D

ρv2

2
,

with ∆p the pressure difference, L and D length and diameter of the pipe, ρ the
fluid density, v the mean fluid velocity (i.e. the ratio of the volume flow rate and the
cross-section area), and λ the friction factor. Although the friction factor depends
on the Reynolds number (which is proportional to the fluid velocity) its variation
is small for large values of the Reynolds number. We will approximate the resulting
relation (v(∆p) ∼ ±√|∆p|) by a saturating function, keeping in mind that the flow
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rate cannot grow unbounded (because of the finite basin heights and finite resulting
pressures). In other words, we assume that the pipes have a maximal throughput,
which may depend on the direction of the flow, and is denoted by Fij for the
pipe connecting basin i and j in the direction from j to i, and Fji for the other
direction. Representing the water height of basin i by xi, the pressure difference
between basins i and j will be proportional to xj − xi, and thus the volume flow
rate through the connecting pipe can be represented by fij(xj −xi). The absence of
a pipe between basins i and j corresponds to setting the corresponding saturation
values Fij and Fji equal to zero.

Denoting the inflow for basin i by Qi and its surface area — which we assume
to be water level independent — by Si, one derives

ẋi =
Qi

Si
+

1
Si

∑
j∈IN

fij(xj − xi), ∀ i ∈ IN ,

which is the model (2.1) with K = 1, bi = Qi

Si
, γi = 1, and Ai = 1

Si
for all i.

The dynamics will exhibit clustering behaviour as predicted by our analysis, in
the sense that the water level heights of some of the basins will (asymptotically)
increase/decrease with the same velocity. The velocity vk associated with cluster
Gk can be calculated as

vk =
1∑

i∈Gk
Si

∑
i∈Gk

Qi +
∑
k′>k

∑
j∈Gk′

Fij −
∑
k′<k

∑
j∈Gk′

Fji

 .

It is clear that the model is valid as long as the basins do not overflow and all
pipes remain below the water level of the basins they connect. We assume that the
basins and initial water level heights are such that these conditions are satisfied
during the transient behaviour. As explained in the next paragraph, this implies
that we can derive the behaviour of the physical system (with respect to overflowing
basins, or basins running empty) from the cluster structure of the mathematical
model and the corresponding long term velocities vk.

The problem we are interested in is to check whether a network of basins is prone
to flooding, i.e. one requires vk ≤ 0 for all clusters Gk. Assume from now on that
the total external inflow equals the total external outflow. When for this case the
dynamical behaviour of the model reveals the existence of more than one cluster,
there would be at least one cluster Gk corresponding to flooding, with a positive
value for vk. Basins will overflow and after some time the model will no longer
represent the physical situation. However, the model (2.1) continues to be useful
for investigating compartmental systems and revealing problematic situations with
respect to flooding. Indeed, a simulation of the mathematical model, although only
valid in a finite time interval, may reveal in its long term behaviour the existence
of multiple clusters: the overflowing basins in the real world system correspond to
the clusters with a positive vk.

For a solution with two clusters G1 and G2 (with v1 negative and v2 positive),
the interpretation of the corresponding inequality (5.1a) is that the production in
the basins belonging to G2 cannot be transported to the basins belonging to G1 by
their interconnections.
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Under the assumption of balanced in- and outflow, a solution with a single
cluster G1 = IN , has a corresponding velocity equal to v1 =

P
i∈G1

Qi
P

i∈G1
Si

= 0. This is
a case where no flooding will occur, no basins will run empty, and the model will
remain valid for all positive time, with each xi approaching a constant value.

As an illustration, consider a configuration of N = 10 basins all having the same
surface area Si = 1, implying that bi = Qi. (For simplicity we will omit units.) The
vector b containing the bi-values is given by

b =
[−5 4 1 −2 −3 0 6 −3 0 2

]T
.

(Notice that the net inflow in the configuration is zero.) The pipes all have a maxi-
mal throughput equal to 2 (in both directions) and are connected in a ring structure,
as shown in figure 6(a). A simulation (figure 7(a)) reveals that this interconnection
structure is not able to prevent basins from overflowing (i.e. there are different
clusters and at least one of them has a positive velocity). Notice that any simula-
tion with arbitrary initial condition will settle into the same cluster structure, as is
shown in the proof of theorem 5.1. The objective is to alter the connection structure
by adding a minimal number of pipes (of maximal throughput 2) in order to avoid
flooding, i.e. in order to obtain a single cluster at zero velocity.
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Figure 6. Interconnection structure.

Figure 7(a) shows that there are 6 different clusters: G1 = {1}, G2 = {4, 5},
G3 = {8, 9, 10}, G4 = {6}, G5 = {2, 3}, G6 = {7}. Adding an extra pipe will not
affect the velocity of the cluster with largest (resp. smallest) vk unless the pipe is
connected to one of the basins in this cluster. Therefore if one extra connection
would be sufficient it would have to connect basins 1 and 7. A simulation with
this extra connection results in 3 clusters: G′

1 = {4, 5}, G′
2 = {1, 6, 7, 8, 9, 10},

G′
3 = {2, 3} (see figure 7(b)), implying that we still need (at least) one extra

connection between a basin from G′
1 and a basin from G′

3. Simulations show that
any extra connection between either 4 or 5 and 2 or 3 lead to one cluster at zero
velocity, solving the problem. A possible solution is shown in figure 6(b).

This example shows that the model (2.1) is useful for the analysis of compart-
mental systems and in suggesting solutions to associated problems.
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Figure 7. Compartmental systems: Figure (a) shows the time evolution of the xi resulting
from the initial configuration. Figure (b) shows the time evolution of the xi when an extra
pipe is added between basins 1 and 7.

(b) Other examples

Other applications of compartmental systems may require specific adaptations
of the model and may suggest extensions.

• Consider a system of lakes interconnected by rivers or channels, for which
the lakes, rivers and channels are not allowed to overflow. The volume flow
of rivers emanating from artificial lakes can be controlled, and accordingly
one can prevent them from flooding. The main objective is then to avoid
the reservoirs from overflowing. Rivers emanating from natural lakes have no
control mechanism to restrict the water supply to their maximal throughput,
imposing a second objective of preventing the rivers from overflowing. In both
cases the volume flow rate of a river flowing from one lake to another will not
be a mere function of the water level difference between the lakes (for natural
lakes the volume flow rate mainly depends on the absolute water level height
of the lake), and the model (2.1) will not be able to describe the behaviour
of the water level heights. However, the inequalities (5.2b) express that the
capacity of the channels and rivers has to be sufficiently large for transporting
the water excess out of (the lakes in) regions with a positive net supply rate.
Therefore these inequalities are necessary to prevent flooding. They can be
checked directly or by simulation of the differential equations (2.1). To obtain
a set of sufficient conditions for flood prevention, additional conditions (e.g.
to include directionality of connections or expressing that rivers should not
overflow) need to be included.

• A major issue regarding road traffic is to avoid congestions. Different regions
can be considered as compartments interconnected by highways which have
limited transport capacities. Again the expression for the flow rate needs to
be modified, but the main property — the saturation — still holds. Regarding
regular traffic the model will need to incorporate the fact that cars are not
interchangeable since each driver has its own destination. This aspect can be
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neglected in special cases (e.g. in the holiday season) where there is a common
destination for the majority of the drivers and then the remark on necessity
of the inequalities in the previous item still applies.

9. Opinion formation

We represent opinions on a particular matter by real numbers, with zero correspond-
ing to a neutral position. We consider N individuals taking part in a meeting; each
individual has his own opinion on the issue on the agenda, which may evolve in time
due to discussion with the other members. Since opinions cannot grow unbounded,
xi in (2.1) is not an appropriate quantity to represent an opinion. Instead we will
take the derivatives yi = ẋi as a measure of someone’s opinion. The equations for yi

can be written as (assuming xi(0) = 0, ∀ i ∈ IN , without loss of generality regarding
the long term behaviour)

yi(t) = bi +
KAi∑

j∈IN
γjFij

∑
j∈IN

γjfij

(∫ t

0
(yj(t′) − yi(t′))dt′

)
, (9.1)

∀ i ∈ IN , where we have redefined the sensitivity factors Ai to explicitly include
a normalization of the interaction, such that each agent’s opinion deviates at
most KAi from its a priori value bi (corresponding to ‘no discussion’). With yi(t)
representing the opinion of agent i at time t, the absolute value of the integral∫ t

0
(yj(t′) − yi(t′))dt′ may reflect the level of disagreement accumulated over time,

or the amount of discussions taking place between agents i and j, proportional with
time and with difference in opinion. We assume that all Fij are non-negative, and
that fij(0) = 0 for all i, j ∈ IN ; interactions are attractive and take place only if
there is discussion.

In general everyone starts with his own opinion bi, while with time and through
interaction, different groups are formed, each group characterized by a final opinion
vi obtained through discussion. The pressure to reach a decision, or the tendency
to adapt one’s opinion by paying attention to each other’s arguments is reflected
by the coupling strength K.

In figure 8(a) we show the evolution of the opinions vi eventually reached as
a function of K. (The other parameters are left unchanged.) The vi-values were
calculated by means of an algorithm based on the inequalities (5.1), not by a simu-
lation of the integral equation (9.1). We considered 100 agents with bi chosen from a
Gaussian distribution with zero mean and standard deviation one. The parameters
Ai, γi, and Fij (i = j) were all taken equal to one. Notice a steady convergence
to complete agreement as a function of K. In figure 8(b) the time evolution of the
opinions yi for K = 1.5, as obtained by numerical integration of the mathematical
model, is shown.

In a second simulation (figure 8(c)) we kept the same parameters bi, but the
values for Ai and γi were changed to account for the fact that people with extreme
opinions are reluctant to change their point of view (smaller Ai) while making more
efforts to persuade other people (larger γi). Also Fij decreases with increasing values
of |bj − bi|, reflecting the idea that people tend to pay more attention to people
with similar opinions:

γi = 1 + 2b2
i , (9.2)
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Figure 8. Opinion formation: Figures (a) and (c) show the opinions vi as a function of the
coupling strength K. Figures (b) and (d) show the time evolution for a constant K (1.5
and 15 respectively). For figures (a) and (b) the parameters Ai, γi and Fij are all equal
to one (except Fii = 0, ∀ i ∈ IN ), for figures (c) and (d) the parameter values are given
by equations (9.2) to (9.4) (except again Fii = 0, ∀ i ∈ IN ).

Ai =
1

1 + b2
i

, (9.3)

Fij = exp(−2|bj − bi|). (9.4)

In figure 8(d) we show the time evolution of the yi for K = 15, again obtained by
numerical integration. (For the numerical integration in figures 8(b) and 8(d) the
Euler method was used with a time step of 0.03/K.)

While in the first case it seems possible to take a decision by a unanimous
consent, in the second case — which is more realistic — it is far more favorable
to let a majority vote decide, as one notices a deadlock of extreme opinions for
K around 15. Total consensus can only be reached under much higher pressure
compared to the pressure needed for reaching a decision by a majority vote and
might require unreasonable concessions from all parties involved.

As an important distinction with other existing models (for an overview, see
(Hegselmann and Krause 2002)) we want to emphasize that the model (9.1) allows
the coexistence of several groups, each characterized by its own group opinion — as
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opposed to models focusing on total consensus or the coexistence of only two opin-
ions (such as in (Sznajd-Weron and Sznajd 2000)) — while still allowing analytical
exploration — as opposed to models for which the results rely on simulations (as
in (Deffuant et al. 2002)) or statistical methods (see e.g. (Bordogna and Albano
2007)).
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