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Abstract

Bubbles and droplets both consist of a liquid in contact with a gas. In this paper,

we consider the interface between the incompressible liquid and the gas as a zero

thickness structure. The position of the interface is determined by the equilibrium

between surface tension effects and the fluid pressure difference across the interface.

So, the structure interacts with the fluids on either side. The behaviour of a limited

number of bubbles and droplets can therefore be simulated as a Fluid-Structure

Interaction (FSI) problem.

Most existing techniques frequently used for studying bubble and droplet dy-

namics, such as Level Set or Volume Of Fluid, use monolithic schemes. The flow

on both sides of the interface and the position of the interface are calculated in a

single code. In this contribution, a partitioned approach is presented. The position

of the interface is calculated with a structural solver. Given a displacement of the

interface, a separate flow solver calculates the flow on the liquid side of the inter-

face with the Arbitrary Lagrangian Eulerian (ALE) technique. The structural solver
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uses a reduced order model of the flow solver to obtain implicit coupling between

both solvers. This reduced order model is built up during the coupling iterations of

a time step. Grid and time converged solutions of two axisymmetric problems are

calculated: an oscillating water droplet in air and the growth and detachment of an

air bubble from the outlet of a vertical needle, submerged in quiescent water.

Key words: Bubble, Droplet, Sharp interface, Fluid-Structure Interaction, Modal

analysis, Reduced order model

PACS: 65M12, 65Z05, 76D45, 76T10

1 Introduction

Bubbles and droplets both consist of a liquid in contact with a gas. In this

paper, we consider the interface between the incompressible liquid and the

gas as a zero thickness structure. The interface position is calculated by a

structural solver given the pressure on the liquid side of the interface. The

latter is calculated by a flow solver given the position of the interface. This

is very similar to Fluid-Structure Interaction (FSI) calculations. Therefore a

short overview of methods frequently used to calculate bubble and droplet

dynamics is given, followed by an overview of basic FSI coupling algorithms,

before the new coupling algorithm is presented.

∗ Corresponding author.
Email address: Jan.Vierendeels@UGent.be (Jan Vierendeels).
URL: www.floheacom.ugent.be (Jan Vierendeels).
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1.1 Bubbles and droplets

Numerous techniques exist to simulate bubbles and droplets, and more in

general multiphase flow. We limit ourselves to the techniques for a limited

number of bubbles and droplets.

Front Capturing techniques do not track the interface with grid nodes. All

phases are treated simultaneously and the conservative form of the Navier-

Stokes equations is solved, so discontinuous physical properties at the interface

between the phases are allowed. A difficulty for these methods is to maintain a

sharp interface. Each of the following Front Capturing techniques differently

determines with which fluid a cell is filled. The Marker And Cell (MAC)

method uses marker particles to indicate fluid in a cell [13]. The Volume

Of Fluid (VOF) method uses a marker function to store the mass fraction

of one fluid currently residing in that cell [15,34,19]. The Level Set method

uses the zero level of a smooth function to indicate the interface [29]. All

these markers are transported with the flow. The Constrained Interpolation

Profile method also transports the spatial derivatives of the marker function

to reduce diffusion of the interface [48]. Front Capturing techniques often use

the Continuum Surface Force model [2] to convert the surface tension into a

volume force or the Continuum Surface Stress model [20] to convert it into a

stress tensor.

Front Tracking techniques use grid nodes to track the interface. Ryskin et al.

[36] use separate boundary fitted grids for each phase. Glimm et al. [12] use a

fixed Eulerian grid and a moving Lagrangian interface and solve the governing

equations of each phase separately. Tryggvason et al. [42] also work with an
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Eulerian grid and a Lagrangian interface, but they solve the Navier-Stokes

equations simultaneously for all phases and add the surface tension on the

interface with the Dirac δ-function. The Boundary Integral Method (BIM)

can be used for either inviscid [17] or Stokes flow [33] and has the advantage

that only on the interface an equation has to be solved. In the Vortex-In-Cell

(VIC) method, the interface is a vortex sheet moving over an Eulerian grid

[41,49].

Lagrangian techniques use a grid that deforms with the flow. The Particle

Finite Element Methode (PFEM) uses the Lagrangian framework [28]. An

Arbitrary Lagrangian-Eulerian (ALE) approach combines the advantages of

the Eulerian and Lagrangian approach: it permits complex fluid motion and

still maintains a sharp interface. An overview of the ALE description is given

by Donea et al. [6] and ALE calculations of droplets have been performed by

Deng et al. [4].

A completely different group are the lattice methods. Particles move from node

to node on an Eulerian grid with a very small spatial scale and with small

time steps. The rules for particle collision are adapted to model the physics of

the flow. This behaviour asymptotically simulates the incompressible Navier-

Stokes equations according to Frisch et al. [10]. An overview of lattice methods

for two-phase flow with surface tension is given by Rothman et al. [35].

For simulations with frequent changes of topology such as break up of bubbles

or droplets, the Front Capturing techniques and lattice methods are more

suitable than Front Tracking and Lagrangian techniques because the latter

have a deforming grid that has to be adapted to changes of topology. However,

by positioning grid points on the interface, the Front Tracking and Lagrangian
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techniques represent the interface more accurately with a relatively coarse

grid. In this work, change of topology is absent or limited but an accurate

representation of the interface is wanted so an ALE approach is used.

1.2 Fluid-Structure Interaction

Although some of these methods treat the phases separately or use a fixed

grid with a Lagrangian interface, they normally use a monolithic solver. In

this paper, the interface between the gas and liquid phase is represented as

a zero thickness structure and use separate solvers for the liquid flow and

this structure. The position X of the interface due to the fluid load P on

the interface is calculated with a structural solver X = S(P ). A flow solver

P = F (X) is used to calculate the fluid behaviour given the position of the

interface. The simulation of the bubble or droplet behaviour is here considered

as a problem involving FSI with partitioned solvers. Note that the flow solver

calculates the flow in the entire liquid domain and it returns only the fluid load

on the interface. Only the variables common to the fluid and the structure are

mentioned in X and P as only those variables are needed for the coupling;

other variables are hidden.

The main advantages of a partitioned scheme are the use of existing state-of-

the-art solvers for each aspect of the calculation and the possibility to switch

to other solvers easily. The partitioned approach to FSI is the opposite of the

monolithic approach where fluid and structure are calculated within one code

[1,18]. A recent partitioned approach to FSI with free surfaces is given by

Wall et al. [46]. We now describe some basic partitioned coupling techniques

[5,9,11,14,44].
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The coupling between the solvers in a partitioned FSI scheme can be explicit,

implicit or a combination, irrespective of the explicit or implicit solution within

the solvers. Explicit coupling means that the flow solver uses Xn to calculate

P n+1 and the structural solver uses P n to obtain Xn+1. The superscript n

indicates the time step. The equilibrium between fluid and structure is there-

fore not guaranteed by explicit coupling. Explicit coupling is only stable when

the interaction between fluid and structure is weak and is therefore often used

in aeroelastic applications [8]. If the interaction is strong, e.g. with an in-

compressible liquid, implicit coupling is needed. The flow solver uses Xn+1 as

input to calculate P n+1 and the structural solver uses P n+1 to obtain Xn+1.

As the time scale of the fluid problem is often smaller than the time scale of

the structural problem, one time step of the structural problem can be divided

in smaller steps for the fluid problem. This is called subcycling [30]. For sim-

plicity, the same time step is used for fluid and structure in this work. The

time step is chosen based on the requirements of the flow solver as the time

step does not appear in the structural solver.

The design of the coupling scheme can be serial or parallel, with or without

coupling iterations [23,37]. For one parallel call to the solvers (Figure 1a), one

calls the flow solver and the structural solver with the data from the previous

time step and therefore this is fully explicit. For one serial call to the solvers

(Figure 1b), the displacement of the structure due to the fluid load of the

previous time step is calculated first, and then the flow that results from the

new displacement is determined. This is explicit coupling for the structure and

implicit for the fluid.

When iterative coupling is used, it is verified whether the equilibrium between

the fluid and the structure is reached in every time step. Fixed point iterations
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can be used in a parallel (block Jacobi) or serial (block Gauss-Seidel) way.

The coupling scheme shown in Figure 1c uses multiple parallel calls to the

solvers, the scheme in Figure 1d multiple serial calls. Both are implicit coupling

schemes, however explicit stepping is used: the load on the interface is constant

during the calculation of the interface position and vice versa. Aitken-like

underrelaxation increases the performance [26] and artificial compressibility

of the liquid can stabilize the coupling [45]. Newton iterations can perform

better than fixed point iterations, but they require the exact or approximate

Jacobians of the solvers [23,24,25]. However, the Jacobians of the solvers are

unavailable if the solvers are not accessible. Several other schemes have been

developed from these basic schemes [31,32,50].

To avoid instability of the coupling between a fluid and a light and flexible

structure, the mass of the structure can artificially be increased [39]. Causin

et al. [3] show with a simplified model of an artery that an incompressible

fluid works on the structure as an added mass. According to Causin et al., the

importance of the added mass effect increases if the density of the structure

decreases and the length of the domain increases. Gerbeau et al. [11] use a

reduced model for the flow solver, which enables them to capture the added

mass effect. The reduced model is a linear inviscid model for the fluid, so they

solve a flow problem that approximates the real flow problem through the

liquid domain. In aeroelastic applications, a reduced order model of the flow

solver can be constructed before the FSI simulation. This reduced order model

is then coupled with the structure model to perform the FSI simulation [47].

In this paper we use implicit coupling with implicit stepping of the pressure

on the interface in the coupling iterations: the structural solver uses a reduced

order model P̂ = F̂ (X) of the flow solver during the calculation of the interface
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position to have an approximate Jacobian of F and to update P . This reduced

order model is built up during the coupling iterations, with the responses from

the real flow solver. This coupling scheme is illustrated in Figure 2.

In Section 2, the structural solver and the flow solver are defined. Only ax-

isymmetric problems without mass transfer between the liquid and the gas

are considered. Section 3 gives an overview of the coupling algorithm. The

application of the method to an oscillating water droplet in air is presented in

Section 4.1. The formation of an air bubble at the outlet of a vertical needle,

submerged in quiescent water in the gravitational field is presented in Section

4.2.

2 Solvers

2.1 Structural solver

2.1.1 Surface tension

As only axisymmetric bubbles and droplets are considered in this work, the

interface is represented by a curve in a meridional plane. This curve is discre-

tised with N nodes. The nodes of the structure coincide with the nodes on

the boundary of the liquid domain. On an interface, the condition

(p1 − p2 + σκ)~n = (T1 − T2) · ~n +∇Sσ (1)

must be satisfied. A subscript 1 is used to indicate the fluid inside the bubble

or droplet, 2 is used for the surrounding fluid. p is the pressure, σ the surface

tension coefficient, κ the local surface curvature, ~n the unit normal to the
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surface pointing outwards, T the viscous stress tensor and ∇S the surface

gradient. For the examples considered in this paper, we neglect the viscous

forces on the interface and Marangoni effects, so we use

p1 − p2 + σκ = 0. (2)

These approximations yield accurate results, as will be shown in Sections 4.1

and 4.2.

The interface becomes a free slip boundary because the viscous forces on the

interface are neglected. Consequently, the nodes which represent the interface

can be moved arbitrarily along the interface and the velocity of the fluids

tangential to the interface is totally unrelated to the velocity of the interface

nodes tangential to the interface.

2.1.2 Curvature calculation

The surface curvature is defined with the principal radii of curvature R1 and

R2, which are positive if the interface is convex from the point of view of the

fluid inside the bubble or droplet.

κ =
1

R1

+
1

R2

(3)

For the calculation of R1 and R2 in node i (i = 1, . . . , N) of the interface, a

local parametric description of the interface is constructed with polynomial

interpolants.

x(s) = c0 + c1s + c2s
2 + c3s

3 + c4s
4 (4a)

r(s) = d0 + d1s + d2s
2 + d3s

3 + d4s
4 (4b)
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with x the axial coordinate, r the radial coordinate and s the arc length along

the curve that represents the interface, starting from s = 0 at node i− 2. An

index i outside the range 1, . . . , N denotes a ghost node, which represents a

node that is mirrored around the axis of symmetry. In every node i, an iterative

procedure is used to calculate the arc length s and a set of coefficients cj, dj

(j = 0, . . . , 4). s is initialized with the length of the line segments between the

nodes. Every iteration starts with the calculation of the coefficients cj in Eq.

(4a) by solving



xi−2

xi−1

xi

xi+1

xi+2



=



1 si−2 s2
i−2 s3

i−2 s4
i−2

1 si−1 s2
i−1 s3

i−1 s4
i−1

1 si s2
i s3

i s4
i

1 si+1 s2
i+1 s3

i+1 s4
i+1

1 si+2 s2
i+2 s3

i+2 s4
i+2





c0

c1

c2

c3

c4



(5)

with si−2 the arc length in node i− 2, used for the parametric description of

the interface around node i. Analogously for the coefficients dj. The next step

is calculating the new arc length ŝ by treating s as an ordinary parameter.
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ŝi−2 = 0 (6a)

ŝi−1 = ŝi−2 +
∫ si−1

si−2

√√√√(dx

ds

)2

+

(
dr

ds

)2

ds (6b)

ŝi = ŝi−1 +
∫ si

si−1

√√√√(dx

ds

)2

+

(
dr

ds

)2

ds (6c)

ŝi+1 = ŝi +
∫ si+1

si

√√√√(dx

ds

)2

+

(
dr

ds

)2

ds (6d)

ŝi+2 = ŝi+1 +
∫ si+2

si+1

√√√√(dx

ds

)2

+

(
dr

ds

)2

ds (6e)

The integrals in Eqs. (6) are calculated with Boole’s rule. The new arc length

ŝ is now used to calculate a new parametrisation with Eq. (5). Three iterations

are sufficient to obtain good accuracy for the arc length in the cases presented

in this paper.

The derivatives of the parametric description Eqs. (4) evaluated in node i are

used to calculate the principal radii of curvature.

R1 =

[(
dx
ds

)2
+
(

dr
ds

)2
] 3

2

dx
ds

d2r
ds2 − dr

ds
d2x
ds2

(7a)

R2 =−r

√(
dx
ds

)2
+
(

dr
ds

)2

dx
ds

(7b)

On the axis of symmetry, a numerical singularity arises during the calculation

of R2, as both r and dx
ds

become zero. Limits and L’Hôpital’s rule show that

R2 converges to R1 as the distance to the axis approaches zero. So, on the axis

the surface curvature κ is defined as

κ =
2

R1

. (8)

To test the curvature calculation, the curvature of half an ellipsoid with semi-
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axes of 1.5E-3m and 1.0E-3m has been calculated both analytically and nu-

merically. The maximal, minimal and root mean square value of the relative

error over the surface are shown in Figure 3. The relative error is the absolute

value of the difference between the numerical and the analytical curvature,

divided by the inverse of the long semi-axis. If N represents the number of

nodes, the maximal error decreases as N2, the root mean square error as N3

and the minimal error as N4.

2.1.3 Solver definitions

The left hand side of Eq. (2) in node i (i = 1, . . . , N) is called gi. The first

condition that must be satisfied in every unconstrained node of the interface

is given by

gi = 0, (9)

with i = 1, . . . , N , except for constrained nodes.

The position of the nodes along the interface is arbitrary as stated in Sec-

tion 2.1.1. To minimize the distortion of the fluid mesh surrounding the inter-

face, the nodes are kept equidistant by a second set of equations

[
(xi − xi−1)

2 + (ri − ri−1)
2
]
−
[
(xi − xi+1)

2 + (ri − ri+1)
2
]
= 0, (10)

with i = 1, . . . , N , except for constrained nodes. It is possible to make the

position of the nodes on the interface dependent on the curvature by adding

weights related to the curvature to both terms in the previous equation. Al-

though this would be beneficial for the calculation of the curvature, it could

be detrimental for the flow solver as highly curved parts of the interface are

not necessarily more important for the flow and therefore this is not used in
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this work. The left hand side of Eq. (10) is further called hi and with this

notation, Eq. (10) becomes

hi = 0. (11)

The first and the last node (i = 1, N) are constrained in the examples pre-

sented in this paper, but also other nodes can be constrained. If a constrained

node i has one degree of freedom, gi is the standard expression and hi is defined

as

a · xi + b · ri + c, (12)

with a, b and c constants. If a node i is fixed, both gi and hi are replaced by

an expression as Eq. (12).

The expressions gi and hi with i = 1, . . . , N are placed together in an array

S.

S =


g1 h1 . . . gi hi . . . gN hN f

T

(13)

The expression f(t) = t− (tn + ∆tn+1) stating that the time t does not vary

during the time step is added. This enables the use of data from previous time

steps in the reduced order model, as is explained later. To satisfy Eqs. (9) and

(11), S must equal zero.

S(X, P ) = 0 (14)

with X the array that contains the node coordinates and the time t. P is the

array with the node values of the pressure on the liquid side of the interface.
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X =


x1 r1 . . . xi ri . . . xN rN t

T

(15a)

P =


p1 . . . pi . . . pN

T

(15b)

The code that solves Eq. (14) for the position of the interface X is called the

structural solver.

2.2 Flow solver

The pressure distribution on the liquid side of the interface P is required, but

also the gas pressure has to be known.

In this work, the gas pressure is modelled uniform in space. The pressure

gradient in the gas is due to inertia, gravity and viscous stresses. As the

density and viscosity of a gas are often a hundred to a thousand times lower

than those of a liquid, we neglect the pressure variation on the gas side of the

interface with respect to the variation on the liquid side. However, in cases

where this assumption is not valid, it would be no problem for the presented

method to compute the gas dynamics as well.

The pressure of the gas surrounding a liquid droplet is modelled constant. The

pressure inside a bubble is calculated from the mass, temperature and volume

(X) of the bubble with the ideal gas law. The gas pressure is calculated within

the structural solver.

In order to demonstrate the general applicability of the method, a black box

code (Fluent 6.1, Fluent Inc.) is used to determine the pressure on the liquid

side of the interface. Any code capable of computing the pressure distribution
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on the liquid side of the interface, given a deformation of this interface, can be

used. The interface is modelled as a free slip wall since tangential stresses are

assumed to be negligible. Its position is not known a priori. The ALE formu-

lation of the Navier-Stokes equations is used to calculate the incompressible

liquid flow. The grid nodes in the liquid domain close to the interface move

along with the interface. A smaller fraction of the interface’s displacement is

applied as the distance to the interface increases.

The code that calculates the pressure distribution on the liquid side of the

interface P for a given position of the interface X, is called the flow solver,

indicated with F .

P = F (X) (16)

3 Coupling algorithm

Successive calls of the structural solver to obtain a new position of the inter-

face and the flow solver to obtain a new distribution of the pressure on the

liquid side of the interface without underrelaxation, lead to divergence of the

coupling iterations within the time step for the examples presented in Sec-

tion 4. Iterative coupling of the solvers with explicit stepping in the coupling

iterations of a time step fails due to the strong interaction between the incom-

pressible liquid and the structure. Therefore, the structural problem, Eq. (14),

has to be solved with an implicit treatment of the pressure on the liquid side

of the interface. We use Newton’s method to solve Eq. (14) for X with implicit

calculation of P . This requires the Jacobian of F . As the flow solver used here

is inaccessible, this Jacobian is unavailable. So, a reduced order model of the
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flow solver is constructed based on modal analysis. An approximation of the

Jacobian can be obtained from this reduced order model and the pressure dis-

tribution on the liquid side of the interface can be updated during the Newton

iterations in the structural solver.

The new coupling procedure is now explained in detail. The values of Xn+1 and

P n+1 are calculated, starting from the known values of Xn, P n, Un and Un−1

(if available), with the superscript n + 1 (n = 0, . . .) indicating the current

time level. U contains the time derivative (indicated with an overdot) of all

the elements in X.

U =


ẋ1 ṙ1 . . . ẋi ṙi . . . ẋN ṙN 1

T

(17)

A subscript k+1 (k = 0, . . .) is used to indicate the current coupling iteration.

• First coupling iteration (k = 0)

A first guess for the position of the interface at tn+1 is determined with an

explicit scheme, third order accurate if the time step is constant.

Xn+1
1 = Xn +

(
3

2
Un − 1

2
Un−1

)
∆tn+1 (18)

with ∆t the time step. The initial velocity is zero, so in the first time step

(n = 0) we use X1
1 = X0 with the initial position X0 and initial pressure

distribution P 0 given. In the second time step (n = 1), we use X2
1 = X1 +

U1∆t2, with ∆t2 the duration of the second time step. For the computed

examples, the number of coupling iterations decreased by less than 2% when

we used the third order scheme instead of a second order scheme, so higher

order does not make sense here.

The pressure distribution on the liquid side of the interface is obtained

from the flow solver.
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P n+1
1 = F n+1

(
Xn+1

1

)
(19)

The superscript of the flow solver indicates that the boundary conditions

are updated to the time level n + 1.

• Further coupling iterations (k ≥ 1)

At the start of coupling iteration k + 1, k positions of the interface are

known at tn+1, with the corresponding distributions of the pressure on the

liquid side of the interface. But also data from the previous l time steps

can be reused, with l ≥ 0. If the time step is sufficiently small, the data

of the previous time steps are still relevant. They are reused to make a

better reduced order model and as a result to reduce the number of coupling

iterations. We include the time t in the array X to make a decomposition

based on the position of the interface and the corresponding time.

The following pairs of the interface position and the corresponding load

on the liquid side are known:

(
Xn+1−j

i , P n+1−j
i

)
(20)

with i = 1, . . . , k for j = 0 and if l > 0 then also with i = 1, . . . , kn+1−j
last for

j = 1, . . . , min(l, n). The index kn+1−j
last indicates the last coupling iteration

of time step n+1− j. We limit j by the minimum of l and n to ensure that

no values before the start of the simulation are required. We indicate the

total number of pairs by

m =


k if l = 0

k +
∑min(l,n)

j=1 kn+1−j
last if l > 0

(21)

and notate the pairs as

(X, P )i (22)
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with i = 1, . . . ,m. Pair m contains the data of coupling iteration k at tn+1.

We want to convert pairs (X, P )i, i = 1, . . . ,m − 1 into pairs (Vi, Wi) of

displacement Vi relative to Xn+1
k and change in pressure distribution Wi

relative to P n+1
k . We therefore subtract pair m from pairs 1, . . . ,m− 1.

(Vi, Wi) = (X, P )i − (X, P )m (23)

with i = 1, . . . ,m − 1. Each pair (Vi, Wi) consists of a displacement mode

Vi with the corresponding change in pressure distribution Wi. From now

on, the superscript n + 1 is dropped for clarity as all variables are at tn+1.

However, the Vi and Wi can contain data from previous time steps. During

the first time step (n = 0) and when no data from the previous time steps

are used (l = 0), m = 1 if k = 1 and then no pair (Vi, Wi) is available. We

explain this exceptional case (m = 1) first, before the general case (m > 1).

· No pair (Vi,Wi) is available (m = 1)

No displacements or changes in pressure distribution can be computed.

We use Newton’s method to calculate X2 with P = P1. The Newton

iterations are indicated with a second subscript j +1 (j = 0, . . .) and start

from X2,0 = X1.

X2,j+1 = X2,j −
(

∂S

∂X

)−1

X2,j ,P1

· S (X2,j, P1) (24)

X is underrelaxed with factor ω as explicit stepping for the pressure is

employed in Eq. (24).

X2 ≡ ωX2 + (1− ω)X1 (25)

For the examples in this paper, ω = 0.001 is used. The pressure distri-

bution on the liquid side of the interface is then calculated with the flow

solver.

P2 = F (X2) (26)
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· At least one pair (Vi,Wi) is available (m > 1)

If m > 1, the displacement modes Vi and the corresponding changes in

pressure distribution Wi, with i = 1, . . . ,m − 1, are known. In order to

have a reduced order model of the flow solver, we want to decompose a

new displacement ∆X as a linear combination of the Vi.

∆X ≈V · α (27a)

with

∆X = X −Xk (27b)

V =


V1 V2 . . . Vm−1

 (27c)

α =


α1 α2 . . . αm−1

T

(27d)

This is an overdetermined set of equations as the dimension of X is larger

than m− 1. To minimize the Euclidian norm squared of ∆X − V · α, we

use linear least squares.

α =
(
V T · V

)−1
· V T ·∆X (28)

The change of P corresponding to ∆X can be estimated as

∆P = W · α (29a)

with

∆P = P − Pk (29b)

W =


W1 W2 . . . Wm−1

 (29c)

We define A = W ·
(
V T · V

)−1
· V T, so Eq. (29a) becomes

∆P = A ·∆X (30)

The reduced order model for P is given by
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P̂ = Pk + ∆P (31a)

= Pk + A · (X −Xk) (31b)

= F̂ (X) . (31c)

To distinguish between distributions of the pressure on the liquid side of

the interface coming from the reduced order model and distributions from

the flow solver, a hat is used for those from the reduced order model. The

Jacobian of this reduced order model is

dP̂

dX
=

dF̂ (X)

dX
= A (32)

The reduced order model is substituted in Eq. (14). So, Eq. (14) can

be solved with Newton’s method, with Xk+1,0 = Xk. After every Newton

iteration, P is updated with the reduced order model.

Xk+1,j+1 = Xk+1,j

−
(

∂S

∂X
+

∂S

∂P

dP̂

dX

)−1

Xk+1,j ,P̂k+1,j

· S
(
Xk+1,j, P̂k+1,j

)
(33a)

P̂k+1,j+1 = Pk +
dP̂

dX
· (Xk+1,j+1 −Xk) (33b)

When the Newton iterations have converged, the flow solver is used to

obtain Pk+1.

Pk+1 = F (Xk+1) (34)

The maximal node displacement from Xk to Xk+1 is monitored. If the dis-

placement has decreased enough, the time step has converged. Otherwise,

another coupling iteration has to be performed. The convergence criteria

we used in the examples are given in the following section.
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4 Results and discussion

4.1 Oscillating droplet

With the implicitly coupled partitioned solvers, the oscillation of a water

droplet in air is simulated. An unstructured triangular grid used to calculate

the water flow is shown in Figure 4.

The horizontal and vertical edges of the grid are the axes of the coordinate

system. The problem is considered to be axisymmetric around the horizon-

tal axis, but also symmetric around the plane normal to the horizontal axis

through the origin. Gravity is neglected. The initial shape of the droplet of

water at rest is the second spherical harmonic. The radius R at the beginning

of the simulation is given as a function of the polar angle θ.

R(θ) = R0 · [1 + a2,0 · P2(cos θ)] (35)

a2,0 is the initial amplitude of the second spherical harmonic and P2 the second

Legendre polynomial. The oscillation amplitude reduces due to viscosity and

finally the droplet becomes a sphere with equilibrium radius R0.

The physical properties of water (subscript 1) and the water-air interface used

for the simulations are given in Table 1. The flow solver for the water is a

segregated incompressible solver with SIMPLE pressure-velocity coupling and

a first order implicit unsteady formulation. A second order upwind scheme is

used for the discretization of the momentum equation and the pressure at the

faces is interpolated from the cell centered values with momentum equation

coefficients. Local remeshing preserves the quality of the mesh: large cells are

split, small cells are merged and the skewness of the cells is automatically
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limited.

The liquid domain does not have a boundary condition to set the absolute

pressure, so the pressure coming from the flow solver is determined up to

a constant. The physically correct value of that constant is calculated by

minimizing the root mean square value of S after the call to the flow solver.

The constant to set the absolute pressure level is an additional unknown, which

can be viewed as a Lagrange multiplier for the constant volume constraint

which is added to the structural solver.

The angular frequency and the time constant of the damping of the small am-

plitude oscillation can be compared with the linear, irrotational approximation

for low viscosity fluids by Lamb [21], who analyzed the droplet oscillation as an

infinite sum of spherical harmonics. In this theory, Eq. (2) is used on the inter-

face. The angular frequency ω̂i of the ith mode of an oscillating liquid droplet

is given by Eq. (36a) as a function of the undamped angular frequency ωi and

the time constant τi:

ω̂i = ωi

√
1− (ωiτi)

−2 (36a)

with:

ωi
2 =

σ

ρR0
3 i(i− 1)(i + 2) (36b)

τi =
ρR0

2

µ(i− 1)(2i + 1)
. (36c)

The second mode is triggered by the initial shape, with an initial amplitude

of a2,0 = 0.01. According to Lamb’s theory, the amplitude of the oscillation is

a2(t) = a2,0 exp (−t/τ2) cos (ω̂2t) . (37)
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A time step dependence study has been performed, with N = 21 nodes on

the interface and R0 = 1 mm. The number of nodes on the interface has little

effect on ω̂2 and τ2 as shown in Table 2. Consequently, there are N = 21 nodes

on the interface in all simulations of the time step dependence study. The time

step ∆t varies from ∆T = 0.00035 s to ∆T/128. The results of the time step

dependence study for ω̂2 and τ2 are given in Table 3. The values for ω̂2 and τ2

are calculated during the second period of the oscillation to minimize the effect

of the initial condition where the fluid is at rest. The Richardson extrapolation

γextr of a quantity γ is calculated with the values of the 3 simulations with

the smallest time steps (γ(∆T/32), γ(∆T/64) and γ(∆T/128)):

γextr = γ(∆T/64) +
γ(∆T/128)− γ(∆T/64)

1− 2−α
(38)

α =
ln
(

γ(∆T/32)−γ(∆T/64)
γ(∆T/64)−γ(∆T/128)

)
ln(2)

. (39)

The Error given in Table 3 is the relative difference with the Richardson

extrapolation.

Time constant τ2 is calculated as

τ2 =
tmax2 − tmax1

ln
(

a2,max1

a2,max2

) . (40)

with tmax the time when a maximum occurs and a2,max the amplitude at the

maximum. The parameters on the right hand side of Eq. (40) are indicated

on Figure 5. Once τ2 has been calculated for a simulation, we express that

the time derivative of the amplitude is zero in a maximum which gives us an

equation in ω̂2.

cos (ω̂2tmax) =
1√

1 + (τ2ω̂2)
−2

. (41)
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The amplitude of the oscillation is shown in Figure 5 for the different time

step sizes, together with Lamb’s theory and the Richardson extrapolation.

The extrapolation is close to Lamb’s theory. The time convergence is however

slow due to the first order time accuracy of the flow solver. This once again

emphasizes the need for higher order time accuracy on moving grids [7].

The number of coupling iterations required to bring the maximal node dis-

placement below 1/108 of the droplet radius each time step of the simulation

with ∆t = ∆T/64 is given in Figure 6(a), with an average of 9.8. The con-

vergence behaviour of a time step with the minimal, average and maximal

number of coupling iterations is shown in Figure 6(b). The minimal, average

and maximal number of coupling iterations required to bring the maximal

node displacement below 1/108 of the droplet radius is shown in Table 4 for

the simulations of the time step dependence study. Data from the previous

time step are used to improve the reduced order model (l = 1). The number

of coupling iterations increases with the decreasing time step: due to inertia,

a given error on the displacement of the interface results in a larger error on

the pressure on the liquid side of the interface when the time step is smaller.

Table 5 shows the number of coupling iterations for the same simulation as

Table 4, but without using data from the previous time step in the reduced

order model. If the number of coupling iterations in Table 5 is compared with

that in Table 4, it is shown that using the data from the previous time step

reduces the number of coupling iterations. If the data of the two previous time

steps are used (l = 2), the coupling iterations do not always converge for these

examples. We therefore do not present results for l = 2. We only mention that

in the simulation with time step ∆t = ∆T/128 and l = 2, the average number

of coupling iterations in the converged time steps decreases by approximately
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10% with respect to l = 1. The number of coupling iterations is independent

of the number of nodes on the interface, as can be seen from Table 6.

4.2 Bubble growth and detachment from a vertical needle

The second application of the model is the growth and detachment of an air

bubble from a vertical needle with inner radius r, submerged in quiescent

water in the gravitational field. A specific case already studied experimentally

by Longuet-Higgins et al. [22] and numerically by Og̃uz et al. [27], has been

simulated. The scheme of the geometry is given in Figure 7.

The air mass flow rate ṁ through the needle is modelled as done by Og̃uz et

al. [27].

ṁ =
π

16

r4

Lµ1

pC
2 − p1

2

RT
(42)

with pC the pressure in the device delivering the mass flow, R the specific gas

constant of air (287 J
kgK

) and T the temperature which is modelled constant

at 297K. p1 is the pressure inside the bubble and µ1 is the dynamic viscosity

of air. L is the effective length of the needle: constrictions are converted into

an equivalent needle length.

Eq. (42) is integrated implicitly in time, to avoid time step restrictions.

mn+1 = mn +
π

16

r4

Lµ1

pC
2 − pn+1

1
2

RT
·∆tn+1 (43)

The air pressure is calculated with the ideal gas law.

pn+1
1 =

mn+1RT

Vn+1
(44)
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with V the volume of the bubble, calculated from the position of the interface

nodes. Eqs. (43) and (44) are a set of two equations, resulting in a quadratic

equation for mn+1. The physically correct solution for mn+1 is selected and

then substituted in Eq. (44) to obtain pn+1
1

The pressure at the top of the computational domain is modelled as a pressure

outlet with a uniform pressure. To compensate for the change of the bubble

volume, the pressure at the outlet is adjusted with

Vn+1 − V0

π ·R2
· ρ2 · g (45)

with g the gravitational acceleration and R the radius of the reservoir. The

interface is modelled as free slip wall. All other boundaries except for the top

of the domain are no slip walls. The point where the interface touches the

needle’s top is fixed.

The bubble starts as half a sphere at the end of the needle. In this situation

the radii of curvature are at their lowest value, so the air pressure p1 in the

bubble is maximal.

p1 = p∞ +
2σ

r
(46)

with p∞ the stagnation pressure at the needle’s tip on the water side of the

interface. This situation can only be reached if pC > p∞+ 2σ/r. The pressure

difference between the air in the bubble and the device delivering the mass flow

is small in this situation and bubble growth is slow. The initial water velocity

is set to zero. This initial condition causes a sudden but small oscillation of

the position of the bubble’s top above the needle, but the amplitude is within

0.1% of the needle radius after 0.003 s while the formation of a complete
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bubble takes 0.65 s.

For this simulation the parameters stated in Table 7 are used [27], resulting in

a volumetric growth rate around 200mm3/s. The settings for the flow solver

are identical to those described in Section 4.1. The area of the bubble in a

cross-section orthogonal to the needle’s axis is monitored in the nodes on the

interface close to the needle’s outlet. When the smallest area is within 1% of

the area of the needle’s cross-section, the node closest to the axis is duplicated

and both nodes are placed on the axis of symmetry. This way the interface is

split in two parts.

To investigate the influence of the number of nodes on the interface and the

time step, we performed a simulation with coarse, medium and fine resolution.

The size of the first time step ∆t, the initial number of nodes on the interface

and the initial number of cells of the unstructured grid in the water are given

in Table 8 for these 3 simulations. The number of nodes on the bubble interface

is constant while the number of cells in the water varies slightly during the

simulation.

The time step size is adapted at the onset of every time step to have a node

displacement that is close to the maximal node displacement of the first time

step.

∆tn+1 = (1− ωt) ∆tn + ωt
max |X1 −X0|

max |Un|
(47)

with the relaxation factor ωt set to 0.2 for this example. The time step is

adapted because the dynamics of the bubble alter a lot during the simulation.

The shape of the bubble just before pinch off is shown in Figure 8. The position
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of the bubble’s top above the needle ht at detachment is shown in Table 8 for

the 3 simulations. From Table 8, it can be seen that the difference between

the simulations is small. The position of the bubble’s top ht above the needle

as a function of time is shown in Figure 9. It can be seen that the results from

the simulations with coarse, medium and fine resolution match.

Further results are derived from the simulation with medium resolution. The

simulated bubble shapes are compared with the experimental results of Longuet-

Higgins et al. at 10 different moments and they show good agreement (Figure

10).

Figure 11(a) shows the number of coupling iterations needed to drop the max-

imal node displacement below 1/103.3 of the needle radius for every time step,

with an average of 10.29. As the time step decreases towards the detachment

of the bubble in time step 705, the number of coupling iterations increases.

After detachment of the bubble, the time step increases and so the number

of coupling iterations decreases again. Time steps with a high number of cou-

pling iterations build up a good reduced order model and the subsequent time

step only needs few coupling iterations. As only data of the previous time step

are used, the following time step starts with a poor reduced order model and

requires a lot of coupling iterations. The number of coupling iterations oscil-

lates from high to low during the time steps, as can be seen clearly on Figure

11(a). Again, when the data from the two previous time steps are used, the

coupling iterations do not always converge and therefore l = 2 is not used here.

As the number of coupling iterations is very high near the detachment of the

bubble, there are so many displacement modes and corresponding changes in

pressure distribution that it becomes very likely that the data will contradict

itself if data from several time steps are used, which leads to divergence of
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the coupling iterations. Figure 11(b) shows the convergence behaviour of the

coupling iterations for the fastest, an average and the slowest converging time

step.

5 Conclusions

In this paper, the interface between a gas and a liquid is represented by a

zero thickness structure. We calculate the position of the interface with a

structural solver and the pressure on the liquid side of the interface with a flow

solver. The focus is on the implicit coupling technique between the accessible

structural solver and the black box flow solver, without adding compressibility

to the liquid. The structural solver uses a reduced order model of the flow

solver, generated during the coupling iterations of the time step, to predict

the pressure on the liquid side of the interface during the calculation of a new

interface position. We presented a grid and time step dependence study for two

axisymmetric problems: the oscillation of a liquid droplet and the growth and

detachment of an air bubble from the outlet of a vertical needle, submerged

in quiescent water in the gravitational field. The simulations correspond well

with analytical theories and experiments and the computational cost of the

coupling is affordable. The sharp representation of the interface gives accurate

results even with a coarse grid. This coupling technique can be applied to other

Fluid-Structure Interaction problems with one accessible solver. The technique

is independent of the flow solver code used to demonstrate the coupling.
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Fig. 1. Coupling schemes for a flow solver F and a structural solver S. X is the

position of the interface, P is the pressure on the interface. (a) One parallel call

to the solvers, (b) one serial call, (c) multiple parallel calls and (d) multiple serial

calls. The superscript n + 1 indicates the current time step and the subscript k + 1

denotes the coupling iteration. k starts from 0 and Xn+1
0 = Xn, Pn+1

0 = Pn.
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with a reduced order model for the flow solver inside the structural solver. The

superscript n + 1 indicates the current time step and the subscript k + 1 denotes

the coupling iteration. k starts from 0 and Xn+1
0 = Xn, Pn+1

0 = Pn.
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Fig. 3. Convergence of the curvature calculation for half an ellipsoid with semi-axes

of 1.5E-3m and 1.0E-3 m. The maximal, minimal and root mean square value of

the relative error over the surface are shown as a function of the number of nodes.

The relative error is the absolute value of the difference between the numerical and

analytical curvature, divided by the inverse of the long semi-axis.
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Eq. (35) are indicated.
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cillation of a water droplet with time steps ∆t = ∆T to ∆t = ∆T/128, with

∆T = 0.00035 s, together with a Richardson extrapolation and Lamb’s theory. The

number of nodes on the interface is N = 21 in all simulations.
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Fig. 6. (a) The number of coupling iterations required to bring the maximal node

displacement below 1/108 of the droplet radius each time step of the oscillation of

a water droplet with N = 21 nodes on the interface and time step ∆t = ∆T/64

and (b) the convergence behaviour of the coupling iterations for time step 373 (2

iterations), 618 (10 iterations) and 1 (28 iterations).
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Fig. 7. Scheme of the geometry used for the simulation of bubble growth and de-

tachment. r = 0.002 m, R = 0.020 m, h = 0.040 m, H = 0.100 m and L = 128m.

The constriction in the needle present in the experimental setup has been converted

into an equivalent length of straight needle in the simulation.
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Fig. 8. Bubble shape just before pinch off for the coarse, medium and fine simulation,

with ∆T = 0.005 s and N = 32. The position of the bubble’s top above the needle

ht is given in Table 8.
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Fig. 9. The position of the bubble’s top above the needle ht as a function of time

for the coarse, medium and fine simulation, with ∆T = 0.005 s and N = 32.

44



t = -480.49 t = -80.21 t = -30.11 t = -9.96 t = -1.99

t = 0 t = 2.00 t = 5.01 t = 8.01 t = 11.01

(a)

(b)

Fig. 10. Shape of the bubble at 10 different moments. Time t in ms; negative time

is before pinch off, positive time after pinch off. (a) Medium resolution simulation

and (b) experiment from Longuet-Higgins et al. [22], reproduced with permission of

M. Longuet-Higgins.

45



0

10

20

30

40

0 200 400 600 800 1000 1200 1400

Time step

N
um

be
r o

f c
ou

pl
in

g 
ite

ra
tio

ns

(a)

-4.00

-3.00

-2.00

-1.00

0.00

0 5 10 15 20 25 30 35 40 45

Coupling iteration

Lo
g(

m
ax

 d
is

pl
ac

em
en

t/r
)

Time step 8
Time step 803
Time step 792

(b)

Fig. 11. (a) The number of coupling iterations required to bring the maximal node

displacement below 1/103.3 of the needle radius each time step during the simula-

tion of a bubble that pinches of in time step 705, with initial number of nodes on

the interface N = 63 and initial time step ∆t = ∆T/2 (∆T = 0.005 s). (b) The

convergence behaviour of the coupling iterations for time step 8 (2 iterations), time

step 803 (10 iterations) and 792 (44 iterations).
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ρ1 998.2 kg/m3

µ1 0.001003 Pa s

σ 0.070 N/m

Table 1

Parameters used for the simulation of an oscillating droplet.
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∆t N ω̂2 Error τ2 Error

[rad/s] [%] [s] [%]

∆T 21 764.98 1.56 0.00910 94.71

∆T/2 21 757.33 0.55 0.01680 90.24

∆T/2 42 756.50 0.44 0.01847 89.27

∆T/2 61 756.49 0.44 0.01849 89.26

∆T/2 81 756.44 0.43 0.01860 89.20

∆T/16 21 754.01 0.11 0.07578 56.00

∆T/32 21 753.43 0.03 0.10558 38.69

∆T/32 42 749.36 0.51 0.11821 31.36

∆T/32 61 751.22 0.26 0.12798 25.69

∆T/32 81 751.20 0.27 0.12971 24.68

Table 2

Influence of the number of nodes on the interface on the angular frequency ω̂2 and

the time constant of the damping τ2 compared with the influence of the time step

∆t, with ∆T = 0.00035 s. The Error is the relative difference with the Richardson

extrapolation in Table 3.

48



∆t ω̂2 Error τ2 Error

[rad/s] [%] [s] [%]

∆T 764.98 1.56 0.00910 94.71

∆T/2 757.33 0.55 0.01680 90.24

∆T/4 761.19 1.06 0.02967 82.77

∆T/8 755.13 0.26 0.04929 71.38

∆T/16 754.01 0.11 0.07578 56.00

∆T/32 753.43 0.03 0.10558 38.69

∆T/64 753.34 0.02 0.13135 23.73

∆T/128 753.28 0.01 0.14716 14.55

Richardson extrapolation 753.21 0.17221

Lamb 749.56 0.48 0.19884 15.47

Table 3

Time step dependence study of the angular frequency ω̂2 and time constant of the

damping τ2 during the second period of a water droplet’s oscillation. The number of

nodes on the interface is N = 21 in all simulations and ∆T = 0.00035 s. The Error

is the relative difference with the Richardson extrapolation.
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∆t Minimal Average Maximal

∆T 3 4.8 10

∆T/2 4 5.0 13

∆T/4 3 5.0 13

∆T/8 3 5.5 15

∆T/16 3 6.5 19

∆T/32 2 8.1 23

∆T/64 2 9.8 28

∆T/128 2 11.4 36

Table 4

The minimal, average and maximal number of coupling iterations required to bring

the maximal node displacement below 1/108 of the droplet radius for the simulations

of the time step dependence study. The number of nodes on the interface is N = 21

in all simulations and ∆T = 0.00035 s. Data from the previous time step are used

(l = 1).
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∆t Minimal Average Maximal

∆T 5 7.2 10

∆T/2 6 8.4 14

∆T/4 7 9.4 47

Table 5

The minimal, average and maximal number of coupling iterations required to bring

the maximal node displacement below 1/108 of the droplet radius for the first three

simulations of the time step dependence study. The number of nodes on the interface

is N = 21 in all simulations and ∆T = 0.00035 s. No data from the previous time

steps are used (l = 0).
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N Minimal Average Maximal

21 4 5.0 13

42 4 5.1 11

61 4 5.1 12

81 4 5.2 16

Table 6

The minimal, average and maximal number of coupling iterations required to bring

the maximal node displacement below 1/108 of the droplet radius for the second

simulation of the time step dependence study with different number of nodes N on

the interface. ∆t is ∆T/2 in all simulations, with ∆T = 0.00035 s. Data from the

previous time steps are used (l = 1).
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p∞ 105 Pa

pC 100073 Pa

σ 0.070 N/m

µ1 1.81 · 10−5 Pa s

µ2 0.001003 Pa s

ρ2 998.2 kg/m3

g 9.81 m/s2

Table 7

Parameters used for the simulation of bubble growth and detachment from a vertical

needle.
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Resolution ∆t N Cells ht

[m]

Coarse ∆T 32 1602 8.6938E-3

Medium ∆T/2 63 5112 8.7807E-3

Fine ∆T/4 126 18810 8.4577E-3

Experiment 8.73E-3

Table 8

Results from the time step and grid dependence study for the position of the bubble’s

top above the needle ht at detachment, with ∆T = 0.005 s. Experimental value from

Longuet-Higgins et al. [22].

54


	Introduction
	Bubbles and droplets
	Fluid-Structure Interaction

	Solvers
	Structural solver
	Flow solver

	Coupling algorithm
	Results and discussion
	Oscillating droplet
	Bubble growth and detachment from a vertical needle

	Conclusions
	Acknowledgments
	References

