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Abstract: Isospin-breaking (IB) effects in the two-pion contribution to hadronic vacuum
polarization (HVP) can be resonantly enhanced, if related to the interference of the ρ(770)
and ω(782) resonances. This particular IB contribution to the pion vector form factor
and thus the line shape in e+e− → π+π− can be described by the residue at the ω pole
— the ρ-ω mixing parameter εω. Here, we argue that while in general analyticity requires
this parameter to be real, the radiative channels π0γ, ππγ, ηγ can induce a small phase,
whose size we estimate as δε = 3.5(1.0)◦ by using a narrow-width approximation for the
intermediate-state vector mesons. We then perform fits to the e+e− → π+π− data base
and study the consequences for the two-pion HVP contribution to the anomalous magnetic
moment of the muon, its IB part due to ρ-ω mixing, and the mass of the ω resonance. We
find that the global fit does prefer a non-vanishing value of δε = 4.5(1.2)◦, close to the
narrow-resonance expectation, but with a large spread among the data sets, indicating
systematic differences in the ρ-ω region.
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1 Introduction

The two-pion channel gives the dominant contribution to hadronic vacuum polarization
(HVP) in the low-energy region most relevant for the anomalous magnetic moment of the
muon [1], adding about 70% of the total leading-order (LO) effect [2–7]

aHVP, LOµ

∣∣
e+e−

= 693.1(4.0)× 10−10. (1.1)

Its contribution needs to be understood at a level of at least 0.3% to match the final precision
expected from the Fermilab E989 experiment [8]. The nominal combined sensitivity of the
2π data sets entering eq. (1.1) — from SND [9, 10], CMD-2 [11–14], BESIII [15], CLEO [16],
and dominated by the precision data sets from BaBar [17, 18] and KLOE [19–22] — does
reach 0.4%, but becomes diluted due to a tension between BaBar and KLOE, inflating
the 2π uncertainty included in eq. (1.1) to 0.7%. In dispersive approaches [4–6, 23, 24]
also space-like data [25, 26] can be used, and while stabilizing the extrapolation to the
space-like region, their impact on the time-like HVP integral is minor. More recently,
new data from SND [27] have become available, lying in between BaBar and KLOE, but
not at a comparable level of precision that would allow one to resolve the tension. Such
new precision measurements are expected from CMD-3 [28], BaBar [29], BESIII [30], and
Belle II [31] in the future.

Improved understanding of the 2π channel has further become critical to address the
emerging tension between lattice QCD [32–35] and e+e− data at least for the intermediate
window quantity [36], with immediate consequences for the current 4.2σ discrepancy
for the anomalous magnetic moment of the muon between experiment [37–41] and the
prediction in the Standard Model [1–7, 42–59] when the HVP contribution is derived from
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e+e− → hadrons cross-section data. While the detailed comparison to lattice QCD as well
as related observables defines an important path forward [60–67], so does renewed scrutiny
of the data-driven approach.

For the 2π channel, new precision data sets constitute the clear first priority, but another
aspect concerns the role of radiative corrections [29, 68], in particular, the question in which
cases the use of a point-like approximation [69–73] for the pion might miss relevant effects,
as recently observed in the forward-backward asymmetry [74, 75], and currently under study
for the C-even contributions [76]. In this work, we study a complementary point, i.e., not
isospin-breaking (IB) effects that manifest themselves as final- or initial-state radiation, but
corrections that are typically absorbed into the pion vector form factor (VFF) itself.1 The
most prominent such correction arises from ρ-ω mixing. From a dispersive point of view
the fact that the ω(782) resonance is so narrow allows one to describe this interference in
terms of a single real parameter: the ρ-ω mixing parameter εω. But given the extraordinary
precision requirements for the 2π channel together with the resonance enhancement in the
ρ-ω region, even higher-order effects may affect the value of this parameter and generate
non-negligible effects in aHVP, LOµ . Most notably, the radiative channels π0γ, ππγ, ηγ, all of
which couple to both ρ and ω, can induce imaginary parts in the mixing and thereby an
effective small phase δε in the parameter εω to which e+e− data might be sensitive.

To derive the phenomenological consequences of this phase we first generalize the
dispersive representation of the pion VFF from ref. [4] and estimate its size based on a
narrow-resonance approach, see section 2. We then perform fits, to individual data sets and
globally, allowing for a free phase δε, to assess consistency both among the data sets and
with the narrow-resonance expectation, see section 3. Consequences for the IB contribution
to aµ due to ρ-ω mixing and the ω mass are discussed in sections 4 and 5, respectively,
before concluding in section 6.

2 Radiative channels and phase in the ρ–ω mixing parameter

2.1 Dispersive representation

Dispersive representations for the pion VFF, F Vπ (s), that link the matrix element of the
electromagnetic current jµem = (2ūγµu− d̄γµd− s̄γµs)/3,

〈π±(p′)|jµem(0)|π±(p)〉 = ±(p′ + p)µF Vπ ((p′ − p)2), (2.1)

to ππ scattering have been used for a long time in the literature [4, 6, 23, 82–91], not only
for the HVP application, but also for hadronic light-by-light scattering (HLbL), where the
extrapolation into the space-like region enters [50, 51, 92–95].

Here, we build upon the representation from ref. [4] (in turn based on refs. [83, 84]),
whose main features can be summarized as follows: the VFF is decomposed into three

1Such corrections were studied before in the context of relating VFF measurements in e+e− → π+π− to
τ± → π±π0ντ data [77–81]. Here, we aim instead at a rigorous implementation of ρ-ω mixing in a dispersive
framework, both to quantify its impact on aHVP, LOµ and as another powerful consistency check on the e+e−

data base.
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factors
F Vπ (s) = Ω1

1(s)Gω(s)GNin(s), (2.2)

corresponding to 2π, 3π, and higher intermediate states, respectively. The Omnès func-
tion [96]

Ω1
1(s) = exp

{
s

π

∫ ∞
4M2

π

ds′
δ1

1(s′)
s′(s′ − s)

}
(2.3)

implements 2π singularities in terms of the isospin I = 1 elastic ππ phase shift δ1
1(s)

in the isospin limit. The phase shift is further constrained by ππ Roy equations [97],
which are solved with the phase shifts at s0 = (0.8GeV)2 and s1 = (1.15GeV)2 as free
parameters [98, 99]. Systematic errors from the asymptotic continuation of δ1

1 beyond s1
are treated as described in ref. [4].

The focus of this work is the second factor, Gω, which takes into account the effect of
3π intermediate states. Here, the parameterization from ref. [4] reads

Gω(s) = 1 + s

π

∫ ∞
9M2

π

ds′
Im gω(s′)
s′(s′ − s)

1− 9M2
π

s′

1− 9M2
π

M2
ω

4

, (2.4)

with
gω(s) = 1 + εω

s

(Mω − i
2Γω)2 − s

. (2.5)

The dispersive reconstruction in eq. (2.4) ensures both the absence of unphysical imaginary
parts below s = 9M2

π (for real εω) and the correct threshold behavior above [83]. In
this formulation, εω is an effective parameter tightly related to the residue at the ω

pole. The latter, however, is complex in general, but its phase is expected to be tiny:
δε ' arctan Γω/Mω ' 0.6◦ arising from the analytic continuation from the real axis to the
pole position in the complex plane. Such a small difference is of no concern and if we take
it as a measure of the systematic uncertainty in the phase of εω, allows us to view the
latter as the residue at the ω pole. With the threshold behavior and the pole parameters
determined, the resulting Gω(s) is then largely insensitive to the parameterization of gω(s),
e.g., the numerator could be taken to a constant without any relevant changes to the fit
outcome. The main observation in this paper is that the assumption of a real εω no longer
holds if further IB effects due to radiative channels, X = π0γ, ππγ, ηγ, . . ., are considered,
and these imaginary parts, despite being small, can alter the fit parameters in a significant
way, as only the modulus |F Vπ (s)|2 is probed by the fit to the cross-section data.

Finally, for the inelastic channels we continue to use a conformal polynomial, whose
phase is constrained by the Eidelman–Łukaszuk bound [100, 101]. Its threshold is chosen
as the ωπ0 threshold, below which inelasticities are negligibly small. After removing the
S-wave cusp, GNin(s) involves N − 1 free parameters, which together with εω and δ1

1(s0),
δ1

1(s1) are to be constrained in the fit. The fit range is restricted to s ≤ 1GeV2, going beyond
would require including the effects of ρ′, ρ′′ resonances along the lines of refs. [86, 102], an
extension left for future work.
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2.2 Radiative channels

Both ρ and ω possess non-negligible branching fractions into radiative channels, of which
π0γ yields the largest contribution. The corresponding imaginary part in the pion VFF can
be expressed as

ImF Vπ (s)
∣∣
π0γ

=
α(s−M2

π0)3

48s Fπ0γ∗γ∗(s, 0)
(
f1(s)

)∗
, (2.6)

where Fπ0γ∗γ∗ is the pion transition form factor normalized according to

Fπ0γ∗γ∗(0, 0) = Fπγγ =
√

4Γ[π0 → γγ]
πα2M3

π0
(2.7)

and f1 denotes the P -wave projection of the γπ → ππ amplitude, see refs. [103–107] for
detailed discussions of these amplitudes. To map this imaginary part onto Im εω, we first
write the full pion VFF in the approximation

F Vπ (s) =
(

1 + εω
s

M2
ω − s− iε

)
Ω1

1(s), (2.8)

where we have neglected inelastic corrections for the time being to focus on the interplay of
ρ and ω resonances, with the ω approximated in the narrow-width limit for simplicity. As a
first step, we show that an imaginary part in εω in this form is actually compatible with
unitarity. Applying Cutkosky rules to eq. (2.8), we have

1
2idiscF

V
π (s)

∣∣
2π =

(
1 + εω

s

M2
ω − s− iε

)
ImΩ1

1(s),

1
2idiscF

V
π (s)

∣∣
3π = ε∗ωsπδ(s−M2

ω)
(
Ω1

1(s)
)∗
,

1
2idiscF

V
π (s)

∣∣
π0γ

= Im εω
s

M2
ω − s− iε

(
Ω1

1(s)
)∗
. (2.9)

These equations are only consistent as long as the sum of these discontinuities is purely
imaginary. Collecting all terms, this consistency check is indeed satisfied,

Im
[ 1

2idiscF
V
π (s)

∣∣
2π + 1

2idiscF
V
π (s)

∣∣
3π + 1

2idiscF
V
π (s)

∣∣
π0γ

]
= ImΩ1

1(s)
(
Im εω

s

M2
ω − s

+ Re εωsπδ(s−M2
ω)
)

+ sπδ(s−M2
ω)
(
− Re εωImΩ1

1(s)− ReΩ1
1(s)Im εω

)
+ Im εω

(
− s

M2
ω − s

ImΩ1
1(s) + ReΩ1

1(s)sπδ(s−M2
ω)
)

= 0, (2.10)

so that as long as imaginary parts are avoided below the respective thresholds a phase in
εω is indeed possible.
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Next, the comparison of eqs. (2.6) and (2.9) points towards a strategy for a practi-
cal implementation, with Ω1

1(s) corresponding to f1(s), and the ω propagator to the ω
contribution in Fπ0γ∗γ∗(s, 0). The latter is given by

Fπ0γ∗γ∗(s, 0) ' gωπγ
gωγ

M2
ω

M2
ω − s− iε

(2.11)

(see, e.g., ref. [108]), while the former can be approximated by [106]

f1(s) ' 2gρπγgρππ
M2
ρ − s− iMρΓρ

, Ω1
1(s) '

M2
ρ

M2
ρ − s− iMρΓρ

, (2.12)

leading to

Im εω '
α(s−M2

π0)3

24s
gωπγgρπγgρππ

gωγM2
ρ

. (2.13)

Inserting the expressions for the radiative decay widths,

Γ[V → π0γ] =
α(M2

V −M2
π0)3

24M3
V

|gV πγ |2, V = ω, ρ, (2.14)

as well as the VMD predictions gρππ = gργ = gωγ/3, and evaluating eq. (2.13) at s = M2
V '

M2
ρ 'M2

ω, we find

Im εω '
√

Γ[ω → π0γ]Γ[ρ→ π0γ]
3MV

. (2.15)

In fact, in the narrow-width limit the same relation can be established for an arbitrary
intermediate state X, leading to estimates for the phases around 2.8◦ (π0γ), 0.2◦ (ηγ), and
0.02◦ (π0π0γ) when using the averages from ref. [109] for branching fractions and masses.
For the charged channel π+π−γ one needs to take into account the fact that the presence
of the Born-term contribution leads to an infrared divergence, in such a way that branching
fractions are typically quoted with a cut Eγ = 50MeV in the photon energy [110, 111].
However, combined with virtual corrections calculated in a scalar-QED approximation one
can define an infrared-safe decay width as

Γ[V → π+π−γ] = Γ[V → π+π−]α
π
η(M2

V ), (2.16)

where explicit expressions for the function η can be found in refs. [69–72]. This procedure
gives an estimate of 0.4◦ for the π+π−γ channel, subject to minor corrections from non-Born
contributions [111]. As for the relative signs, VMD arguments show that the π0γ and ηγ
channels enter with the same sign (in the standard phase conventions, both intermediate
states couple with the same sign to ρ and ω), and Born-term dominance for ρ, ω → π+π−γ,
as well as the positive sign of Re εω, suggest that its contribution should also add to the
other two. Taking further potential corrections due to the analytic continuation to the ω
pole as the uncertainty, we conclude that the range δε = 3.5(1.0)◦ should give a realistic
estimate of the phase in εω that can be expected.
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Finally, the discussion of the π0γ channel suggests that the dominant threshold can be
reproduced by implementing the imaginary part in εω via

Gω(s) = 1 + s

π

∫ ∞
9M2

π

ds′
Re εω

s′(s′ − s) Im
[

s′

(Mω − i
2Γω)2 − s′

]1− 9M2
π

s′

1− 9M2
π

M2
ω

4

+ s

π

∫ ∞
M2
π0

ds′
Im εω

s′(s′ − s)Re
[

s′

(Mω − i
2Γω)2 − s′

]1−
M2
π0
s′

1−
M2
π0

M2
ω


3

, (2.17)

but we also checked that the fit results are largely insensitive to the details of the implemen-
tation, such as the inclusion of the explicit π0γ threshold in the unphysical region of the
pion VFF. In fact, even replacing Gω(s) with gω(s) only leads to small changes as long as
the imaginary part in εω is kept, in line with the expectation that it is solely the resonance
enhancement that makes these higher-order effects relevant.

3 Fits to e+e− → 2π data

To gauge the impact of a possible phase in εω on the HVP contribution to aµ, we generalize
the global fits from ref. [4], including a free imaginary part via the prescription (2.17), and
express our results in terms of Re εω and δε. In particular, we now include the BESIII
data [15] and the SND measurement [27], which became available after ref. [4].2 The results
for the fits are shown in table 1 (single experiments) and table 2 (combinations), in terms
of the most relevant parameters: goodness of fit, the ω mass, real part and phase of εω, and
the contribution to aµ. In table 3, we also provide the decomposition into the Euclidean
windows from ref. [36].

In most cases, we observe a moderate improvement when a non-vanishing phase is
admitted, the main exception being the SND20 data, which we cannot describe with our
dispersive representation otherwise. Accordingly, in this case the resulting phase comes out
around 10◦ and thus much larger than can be justified via radiative intermediate states. A
similarly large phase is also found for the previous energy-scan experiments SND06 and
CMD-2, but in these cases good fits can still be found when imposing a realistic size of δε.
Even if a large phase is admitted in the fit to the SND20 data, the fit quality remains rather
poor.3 As long as the reason for this behavior, which might point towards underestimated
systematic effects, is not understood, we will therefore take the global fit to all experiments
apart from SND20 as our new central result, i.e.

Re εω = 1.97(3)× 10−3, δε = 4.5(1.2)◦,
aππµ |≤1GeV = 494.6(2.3)× 10−10, Mω = 782.09(12)MeV. (3.1)

2In the case of ref. [15] the corrected covariance matrix was critical for the inclusion of this data set
in a statistically meaningful way. For the uncertainty of the energy calibration at the ρ peak we use
∆E = 0.6MeV [112] and ∆E = 0.26MeV [113], respectively.

3The fit presented in ref. [27] in terms of a sum of Breit-Wigner functions for V = ρ, ω, ρ′ displays a
slightly better fit quality, χ2/dof = 47/30 = 1.57, with p-value of 2.5%, but such a representation cannot be
reconciled with the analytic properties of the pion VFF.
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χ2/dof p-value Mω [MeV] 103 × Re εω δε [◦] 1010 × aππµ |≤1GeV

SND06 1.40 5.3% 781.49(32)(2) 2.03(5)(2) 499.7(6.9)(4.1)
1.08 35% 782.11(32)(2) 1.98(4)(2) 8.5(2.3)(0.3) 497.8(6.1)(4.9)

CMD-2 1.18 14% 781.98(29)(1) 1.88(6)(2) 496.9(4.0)(2.3)
1.01 45% 782.64(33)(4) 1.85(6)(4) 11.4(3.1)(1.0) 495.8(3.7)(4.2)

BaBar 1.14 5.7% 781.86(14)(1) 2.04(3)(2) 501.9(3.3)(2.0)
1.14 5.5% 781.93(18)(4) 2.03(4)(1) 1.3(1.9)(0.7) 501.9(3.3)(1.8)

KLOE 1.36 7.4× 10−4 781.82(17)(4) 1.97(4)(2) 492.0(2.2)(1.8)
1.27 6.7× 10−3 782.50(25)(6) 1.94(5)(2) 6.8(1.8)(0.5) 491.0(2.2)(2.0)

KLOE′′ 1.20 3.1% 781.81(16)(3) 1.98(4)(1) 491.8(2.1)(1.8)
1.13 10% 782.42(23)(5) 1.95(4)(2) 6.1(1.7)(0.6) 490.8(2.0)(1.7)

BESIII 1.12 25% 782.18(51)(7) 2.01(19)(9) 490.8(4.8)(3.9)
1.02 44% 783.05(60)(2) 1.99(19)(7) 17.6(6.9)(1.2) 490.3(4.5)(3.1)

SND20 2.93 3.3× 10−7 781.79(30)(6) 2.04(6)(3) 494.2(6.7)(9.0)
1.87 4.1× 10−3 782.37(28)(6) 2.02(5)(2) 10.1(2.4)(1.4) 494.9(5.3)(3.1)

Table 1. Comparison of fits to single experiments with and without a phase δε in εω. Note that
BESIII has only a few data points in the interference region and hence is not able to put a strong
constraint on δε (the corresponding line is indicated in gray). The first error is the fit uncertainty,
inflated by

√
χ2/dof, the second error is the combination of all systematic uncertainties.

χ2/dof p-value Mω [MeV] 103 × Re εω δε [◦] 1010 × aππµ |≤1GeV

Energy scan w/o SND20 1.28 2.1% 781.75(22)(1) 1.97(4)(2) 498.5(3.4)(2.6)
1.05 33% 782.39(23)(2) 1.93(4)(3) 9.9(1.8)(0.4) 497.3(3.1)(3.9)

Energy scan 1.65 6.3× 10−7 781.74(17)(2) 2.01(3)(3) 497.4(3.0)(4.4)
1.19 5.2% 782.37(16)(3) 1.97(3)(3) 10.1(1.3)(0.7) 496.0(2.6)(5.5)

All e+e− w/o SND20 1.25 1.8× 10−5 781.70(9)(4) 2.02(2)(3) 494.5(1.5)(2.3)
1.20 3.3× 10−4 782.10(12)(4) 1.96(2)(2) 4.5(9)(8) 494.2(1.4)(2.1)

NA7 + all e+e− w/o SND20 1.23 3.0× 10−5 781.69(9)(3) 2.02(2)(3) 494.8(1.4)(2.1)
1.19 4.8× 10−4 782.09(12)(4) 1.97(2)(2) 4.5(9)(8) 494.6(1.5)(1.7)

All e+e− 1.36 1.0× 10−9 781.71(8)(3) 2.02(2)(3) 495.0(1.4)(2.4)
1.30 2.3× 10−7 782.09(10)(4) 1.97(2)(2) 4.5(8)(8) 494.6(1.4)(2.1)

NA7 + all e+e− 1.34 2.5× 10−9 781.71(8)(3) 2.02(2)(3) 495.2(1.4)(2.2)
1.28 4.5× 10−7 782.09(10)(4) 1.97(2)(2) 4.5(8)(8) 494.9(1.4)(1.8)

Table 2. Comparison of fits to combinations of experiments with and without a phase δε in εω.
The first error is the fit uncertainty, inflated by

√
χ2/dof, the second error is the combination of all

systematic uncertainties.

For BESIII, the preferred central value for δε comes out even larger, yet with a very
large uncertainty that reflects the limited sensitivity to δε, resulting from a relatively small
number of data points in the ρ-ω region (accordingly, this line is indicated in light gray
in tables 1 and 3). Finally, the KLOE fits produce a phase slightly larger than expected,
while the BaBar data are even consistent with δε = 0. We thus observe a large spread in
the results for the phase of δε, pointing towards systematic differences among the data sets
in the ρ-ω region.
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δε [◦] SD window int window LD window 1010 × aππµ |≤1GeV

SND06 13.9(2)(1) 140.0(2.0)(1.0) 345.8(4.7)(3.0) 499.7(6.9)(4.1)
8.5(2.3)(0.3) 13.9(2)(1) 139.6(1.8)(1.2) 344.3(4.1)(3.6) 497.8(6.1)(4.9)

CMD-2 13.9(1)(0) 139.5(1.1)(0.4) 343.6(2.7)(1.8) 496.9(4.0)(2.3)
11.4(3.1)(1.0) 13.9(1)(1) 139.4(1.0)(0.9) 342.6(2.5)(3.2) 495.8(3.7)(4.2)

BaBar 14.0(1)(0) 140.6(1.0)(0.5) 347.3(2.2)(1.5) 501.9(3.3)(2.0)
1.3(1.9)(0.7) 14.0(1)(0) 140.6(1.0)(0.5) 347.3(2.3)(1.3) 501.9(3.3)(1.8)

KLOE′′ 13.6(1)(1) 137.3(6)(6) 340.9(1.4)(1.2) 491.8(2.1)(1.8)
6.1(1.7)(0.6) 13.6(1)(0) 137.1(6)(4) 340.2(1.4)(1.3) 490.8(2.0)(1.7)

BESIII 13.7(1)(0) 138.0(1.4)(0.5) 339.0(3.3)(3.4) 490.8(4.8)(3.9)
17.6(6.9)(1.2) 13.7(1)(0) 137.8(1.3)(0.4) 338.8(3.1)(2.6) 490.3(4.5)(3.1)

SND20 13.9(2)(1) 139.4(1.9)(1.5) 340.9(4.6)(7.4) 494.2(6.7)(9.0)
10.1(2.4)(1.4) 13.8(2)(0) 139.2(1.5)(0.5) 341.9(3.7)(2.6) 494.9(5.3)(3.1)

NA7 + all e+e− w/o SND20 13.7(0)(0) 138.3(4)(5) 342.7(1.0)(1.6) 494.8(1.4)(2.1)
4.5(9)(8) 13.7(0)(0) 138.3(4)(4) 342.5(1.0)(1.3) 494.6(1.5)(1.7)

Table 3. Decomposition of 1010 × aππµ |≤1 GeV into the Euclidean windows from ref. [36]. The first
error is the fit uncertainty, inflated by

√
χ2/dof, the second error is the combination of all systematic

uncertainties.

In addition, we confirm a correlation between δε andMω, as already observed in ref. [18]:
the larger the phase, the larger the extracted value of Mω. However, as discussed in more
detail in section 5, the size of the phase permitted by radiative intermediate states, roughly
in line with the result of the global fit shown in table 2, does not suffice to remove the
tension with ω-mass determinations from e+e− → 3π and e+e− → π0γ.

In this regard, we also observe that the BESIII data suggest larger values of Mω than
all other data sets, with the result for δε = 0 close to the global fit with non-vanishing phase.
Within uncertainties there is still consistency, but it is noteworthy that the size and direction
of the effect echo a similar tension in e+e− → 3π [12, 114–116] and η′ → π+π−γ [117, 118].

4 Isospin-breaking contribution to aµ from ρ–ω mixing

Based on the dispersive representation (2.2) we can quantify aρ–ωµ — the IB contribution to
aµ due to εω — by contrasting the full result to the HVP integral evaluated with εω = 0.
In principle, there is some ambiguity due to final-state radiation (FSR), but in practice this
effect comes out well below 0.1× 10−10. For definiteness, in table 4 we show the variant
without FSR, to isolate the pure O(εω) terms.

In general, aρ–ωµ is sensitive to the assumed line shape [119]. However, we find that
the dispersive representations (2.4) or (2.17) are quite robust in that regard, i.e., with
the threshold behavior and the properties close to the ω pole determined, the remaining
interpolation only has a marginal effect, e.g., changing s→M2

ω in the numerator of eq. (2.5)
changes the outcome for aρ–ωµ again by less than 0.1 × 10−10. In contrast, whether or
not a phase in εω is permitted does change the resulting value for aρ–ωµ in a significant
way, and we show results for both scenarios (the difference in the FSR contribution is of
O(e2εω) and negligible). Since εω in the global fit comes out close to the narrow-resonance
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SD window int window LD window total

1010 × aρ–ωµ , δε = 0 0.08(0)(0) 1.06(1)(2) 3.23(3)(5) 4.37(4)(7)
1010 × aππ,FSRµ , δε = 0 0.11(0)(0) 1.12(0)(0) 3.00(1)(1) 4.23(1)(2)

1010 × aρ–ωµ , δε = 4.5(1.2)◦ 0.05(0)(0) 0.83(5)(4) 2.79(9)(6) 3.68(14)(10)
1010 × aππ,FSRµ , δε = 4.5(1.2)◦ 0.11(0)(0) 1.12(0)(0) 3.00(1)(1) 4.24(1)(2)

Table 4. IB contribution to aππµ |≤1 GeV due to ρ-ω mixing, compared to the effect of FSR and split
into the different Euclidean windows from ref. [36]. We only include the linear effects, i.e., O(εω)
for the ρ-ω-mixing contribution and the O(e2) effect for FSR — O(e2εω) effects give very small
corrections. The results correspond to the combined fit to all experiments apart from SND20. The
first error is the fit uncertainty, inflated by

√
χ2/dof, the second error is the combination of all

systematic uncertainties.

expectation, we quote the variant with non-vanishing δε as our preferred result, which has
already been used as input in estimating the three-flavor quark-disconnected contribution
to aµ in ref. [120].4 Finally, we also provide the breakdown of aρ–ωµ onto the Euclidean
windows from ref. [36].

Further, for the comparison to lattice QCD it is also of interest to study the decom-
position of εω into its O(e2) and O(mu −md) pieces, as was discussed in the context of
resonance chiral perturbation theory in ref. [121]. Translated to our normalization one has
the prediction [121]

ε̃ω = 2
3R

MK∗ −MV

MV
− e2

|gωγ |2
, R = ms − m̂

md −mu
, m̂ = mu +md

2 , (4.1)

where we have written the electromagnetic component in terms of the ω-γ coupling, as
this is the quantity that enters directly in the corresponding diagram. However, this latter
diagram produces a one-particle-reducible correction, and would thus be subtracted when
vacuum polarization is removed from the e+e− → π+π− cross sections. Accordingly, we
have that our conventions are related to the ones of ref. [121] by

ε̃ω = εω + ε̃ω|e2 , ε̃ω|e2 = − e2

|gωγ |2
= −0.34(1)× 10−3, (4.2)

using Γ[ω → e+e−] = 4πα2Mω/(3|gωγ |2) and the average of ref. [109] for the ω → e+e−

branching fraction.
The prediction for the O(mu − md) part of ε̃ω, which coincides with our εω, is far

less robust, as already from higher-order quark-mass and SU(3)-breaking corrections one
would expect an accuracy around 30%. Using the Nf = 2 + 1 and Nf = 2 + 1 + 1 averages
from ref. [122], R = 38.1(1.5) [123–128] and R = 35.9(1.7) [129–133], respectively, and
identifying the vector mesons with the neutral ρ and K∗ resonances, the predictions for the
strong IB contribution become ε̃ω|2+1

mu−md = 2.71(11)× 10−3, ε̃ω|2+1+1
mu−md = 2.88(14)× 10−3,

4The tiny difference to the number for aρ–ωµ quoted therein as private communication originates from the
improved implementation of the π0γ threshold (2.17).
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Reference e+e− → 3π e+e− → π0γ e+e− → 2π PDG average

Ref. [5] 782.631(28)
Ref. [46] 782.584(28)
Ref. [4] 781.68(10)
This work, δε = 0 781.69(9)
This work, δε = 4.5(1.2)◦ 782.09(12)

Ref. [109] 782.53(13)

Table 5. Dispersive determinations of Mω in MeV from e+e− reactions, compared to the global
average from ref. [109]. In all cases, vacuum-polarization corrections are not included, and the
average from ref. [109] has been adjusted accordingly using ∆Mω = 0.13MeV [117].

about 40% larger than results from our fit to the e+e− → π+π− data. This is in line with
subsequent work on vector mesons in chiral perturbation theory [134, 135], which concluded
that higher-order corrections can be substantial. This includes photon loops, short-distance
corrections, and meson loops, parts of which scale with e2 and thus lead to electromagnetic
effects not subtracted when removing vacuum polarization in the definition of the bare
cross section.

However, from the LO expression (4.1) it still follows that the ρ-ω-mixing contribution
to aµ should be considered primarily a quark-mass effect,

aρ–ωµ

[
e2,LO

]
= 0, aρ–ωµ

[
mu −md,LO

]
= 3.68(17)× 10−10, (4.3)

which is expected to yield the dominant strong IB contribution to aµ.5 This number agrees
well with a recent estimate from SU(3) chiral perturbation theory, aµ[mu − md]

∣∣
[136] =

3.32(89) × 10−10, where the required low-energy constant is determined from hadronic
τ decays. Both indicate a somewhat larger central value than the lattice-QCD result
aµ[mu −md]

∣∣
[32] = 1.9(1.2)× 10−10.

5 Consequences for the ω mass

The correlation between δε and Mω discussed in section 3 affects the resulting determination
of Mω from e+e− → 2π. In table 5 we compare our updated extraction from the 2π data
to analogous ones from e+e− → 3π, e+e− → π0γ, as well as the average from ref. [109].
As discussed in more detail in refs. [4, 5, 46], the PDG average involves a cancellation
between determinations from e+e− → π0γ [137] and p̄p→ ωπ0π0 [138], while dominated by
Breit-Wigner-based extractions from e+e− → 3π [12, 116] that are in agreement with the
dispersive result given in table 5 (further confirmed by the recent BaBar measurement [115],
while BESIII suggests a larger value [114]). Our updated value for δε = 0 changes only
marginally compared to ref. [4], leading to the same 5σ tension with the PDG value observed
therein. Allowing a finite value for δε instead removes about half the discrepancy, but we

5Resonance-enhanced threshold effects in the K̄K channels largely cancel between K+K− and KSKL.
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emphasize that this effect cannot explain the entire tension as it would require a size of δε
that cannot be reconciled with the strength of the radiative channels giving rise to a phase
in εω in the first place.

6 Conclusions

In this work we performed a detailed study of ρ-ω mixing in e+e− → π+π−, based on a
dispersive representation of the pion vector form factor. In particular, we investigated the
role of imaginary parts that can be generated by radiative intermediate states coupling ω
and ρ resonances, estimated their size by narrow-width arguments, and devised a strategy
to include their effect in fits to the e+e− → π+π− data base. We found that while the size
of the phase of the ρ-ω mixing parameter in a global fit does come out in agreement with
narrow-resonance expectations, see eq. (3.1) for the central results, there is a substantial
spread among the different data sets, ranging from a vanishing phase to values as large
as 10◦. As applications, we derived the isospin-breaking part of the HVP contribution to
aµ originating from ρ-ω mixing and quantified the changes in the extracted value of the ω
mass when a non-vanishing phase is permitted.

Our work reveals systematic differences in the low-energy hadronic cross sections that
go beyond the well-known BaBar-KLOE tension in the e+e− → π+π− total cross section,
including the spread in the phase of the ρ-ω mixing parameter and discrepancies in the ω
mass extracted from different decay channels, both of which can be unambiguously defined
in terms of pole parameters and residues. While of course resolving the tension in the HVP
integral itself carries the highest priority, forthcoming high-precision data on e+e− → π+π−

should also allow one to address the tensions pointed out here, and thus increase confidence
that the hadronic cross sections are understood at the level required for robust data-driven
evaluations of the HVP contribution to the anomalous magnetic moment of the muon.
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