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Abstract

A large suite of 228 atmospheric retrievals is performed on a curated sample of 19 brown dwarfs spanning the LO—
T8 spectral types using the open-source Helios-r2 retrieval code, which implements the method of short
characteristics for radiative transfer and a finite-element description of the temperature—pressure profile.
Surprisingly, we find that cloud-free and cloudy (both gray and nongray) models are equally consistent with the
archival SpeX data from the perspective of Bayesian model comparison. Only upper limits for cloud properties are
inferred if log-uniform priors are assumed, but the cloud optical depth becomes constrained if a uniform prior is
used. Water is detected in all 19 objects, and methane is detected in all of the T dwarfs, but no obvious trend exists
across effective temperature. As carbon monoxide is only detected in a handful of objects, the inferred carbon-to-
oxygen ratios are unreliable. The retrieved radius generally decreases with effective temperature, but the values
inferred for some T dwarfs are implausibly low and may indicate missing physics or chemistry in the models. For
the early L dwarfs, the retrieved surface gravity depends on whether the gray-cloud or non-gray-cloud model is
preferred. Future data are necessary for constraining cloud properties and the vertical variation of chemical
abundances, the latter of which is needed for distinguishing between the chemical instability and traditional cloud
interpretation of the L-T transition.
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1. Introduction

Brown dwarfs are substellar objects that are intermediate in
mass (~13M;-80Mj) between exoplanets and stars (Burrows &
Liebert 1993). The exact mass threshold depends on the
deuterium abundance and may range from ~11M; to 16M;
(Spiegel et al. 2011). In terms of spectral type, brown dwarfs
are late M dwarfs at young ages or L, T, or Y dwarfs (see
Kirkpatrick 2005, 2011; Cushing et al. 2011 for a review).

Traditionally, brown dwarfs have been studied in the context
of color-magnitude diagrams. Figure 1 shows our rendition,
including a sample of 19 L and T dwarfs we have curated. The
L-T transition has traditionally been interpreted as a variation in
the apparent cloudiness of a brown dwarf as cloud layers recede
below its photosphere with decreasing temperature (Tsuji &
Nakajima 2003; Burrows et al. 2006; Saumon & Marley 2008).
Furthermore, variable brown dwarfs are typically more variable
on the L-T transition (Radigan et al. 2014). More recently, the
L-T transition has been interpreted as being caused by a
chemical instability (Tremblin et al. 2015, 2016), although this
interpretation has been challenged (Leconte 2018).

Independent of the controversy surrounding the mechanism
behind the L-T transition, the spectra of brown dwarfs as
measured by ground-based telescopes are an excellent training
ground for atmospheric retrieval, as they are of a comparable
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quality to future spectra of exoplanets obtained using the James
Webb Space Telescope (JWST). Atmospheric retrieval pro-
vides a complementary approach to the traditional one of
analyzing brown dwarf spectra using precomputed grids of
atmospheric models (e.g., Marley et al. 1996; Burrows et al.
1997; Chabrier et al. 2000; Ackerman & Marley 2001; Allard
et al. 2001; Baraffe et al. 2002; Burrows et al. 2003, 2011;
Morley et al. 2014; Zhang et al. 2021a, 2021b).

A major advantage of a retrieval analysis is its ability to
constrain the abundances of chemical species beyond the
assumptions that are usually made in atmospheric models, such
as the validity of equilibrium chemistry, for example. The
atmosphere’s overall metallicity or C/O ratio is then an
outcome of the retrieval rather than an input parameter like in a
self-consistent atmospheric model. This allows one to directly
obtain information on the enrichment of directly imaged
planets or brown dwarfs, comparable to what we see in the
atmospheres of the solar system’s gas and ice giants (see
Madhusudhan et al. 2016a for a detailed review).

The first comprehensive retrieval study of two benchmark T
dwarfs was performed by Line et al. (2015). This pioneering
work was continued further in Line et al. (2017) with an
analysis of 11 T dwarfs. An important outcome of this study
was the lack of a significant trend associated with the
abundances of water, methane, or ammonia with the brown
dwarfs’ equilibrium temperatures. On the other hand, decreas-
ing abundances of the alkali metals sodium and potassium with
the effective temperature were found. Burningham et al. (2017)
performed atmospheric retrievals for spectra of two L dwarfs
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Figure 1. Color-magnitude diagram of brown dwarfs. The brown circles with
associated uncertainties form the standard L and T dwarfs of our curated
sample. In the background are data taken from Dupuy & Liu (2012) with
measured parallaxes: M dwarfs (red circles), L dwarfs (blue circles), and T
dwarfs (green circles).

but were unable to draw decisive conclusions on their cloud
properties. The same retrieval framework of Burningham et al.
(2017) was also used by Gonzales et al. (2020) to analyze a
brown dwarf binary system, consisting of an L7 and a T7.5
dwarf. This study especially noted that disregarding the data
blueward of 1.2 um avoids potential issues with the shapes of
the alkali resonance line wings. A similar conclusion was
drawn by Oreshenko et al. (2020), who used precomputed
models as training sets for performing atmospheric retrieval
using a supervised machine-learning method.

None of the aforementioned studies have performed a suite of
atmospheric retrievals on a sample of brown dwarfs spanning the
L-T transition, which is the approach of the current study.
Several key questions we wish to address include:

1. Are the retrieved chemical abundances and properties of
brown dwarfs robust to assumptions about whether the
atmospheres are cloud-free or populated with gray or
nongray clouds?

. Are cloudy models required to fit the spectra of L dwarfs?

. Are there trends in the retrieved chemical abundances
across the L-T transition?

4. Do the retrieved cloud properties vary across the L-T

transition?

W N

In Section 3, we describe the ingredients of our Bayesian
retrieval framework, as well as the curated set of 19 spectra. In
Section 4, we report outcomes from benchmarking tests, as
well as answers to the aforementioned questions. In Section 35,
we discuss limitations to our approach, which motivate
opportunities for future work.
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2. Sample of L and T Dwarf Spectra

For this study, we analyze several different brown dwarfs
across the L-T sequence. Similar to previous studies (e.g., Line
et al. 2015; Kitzmann et al. 2020), we use data taken by the
ground-based SpeX instrument (Rayner et al. 2003) on the
NASA Infrared Telescope Facility. The spectra for this
work are taken directly from the SpeX Prism Libraries
(Burgasser 2014).° SpeX Prism spectra typically cover a
wavelength range from 0.85 to about 2.45 pum, with a spectral
resolution A\/AN that varies between 85 and 300.

From the SpeX Prism Libraries we curate a sample of 19
brown dwarfs that represent a clean spectral sequence of L and
T dwarfs spanning from class LO to T8. Several standard (as
defined by the SpeX spectral library) brown dwarfs that were
previously found to be close binaries have been excluded. One
such example is Kelu 1, which was considered to be an L2
standard but has been revealed to be an early and mid-L binary
by Liu & Leggett (2005). Our LO and TO templates (2MASS
J03454316+2540233 and SDSS J120747.17+024424.8,
respectively) are suspected to be unresolved binaries, but so
far no conclusive observations on their potential binary nature
have been obtained (Burgasser et al. 2010; Dahn et al. 2017).
Therefore, we choose to keep them in our sample.

The spectra are flux-calibrated by using Two Micron All Sky
Survey (2MASS) photometric data (Skrutskie et al. 2006), and
the associated multiplicative scale factor is calculated sepa-
rately for the J (15.32 4 0.05 mag), H (15.27 4+ 0.09 mag), and
Kg (15.244+0.16 mag) bandpasses following the approach
described in Cushing et al. (2005). The scale factor takes into
account spectral measurement errors and photometric uncer-
tainties. We use the weighted average of these three values for
our final scale factor for the flux calibration of each object in
our sample.

Where possible, we use distances derived from the Gaia
parallax measurements (Gaia Collaboration et al. 2016). In all
other cases, less accurate parallaxes from ground-based
telescopes or estimates based on spectroscopy are used.

Our set of 19 brown dwarfs and their known parameters are
given in Table 1. Following the approach by Kitzmann et al.
(2020) and Line et al. (2015), we use only every third value of
the extracted spectrum to prevent oversampling of noninde-
pendent flux density values in each resolution element and
diminish the effect of correlated uncertainties. An overview of
all spectra is shown in Figure 2.

3. Retrieval Model

For the retrieval analysis of the brown dwarf spectra in this
study we employ an updated version of the Bayesian retrieval
code Helios-r2, first introduced in Kitzmann et al. (2020). It
is part of the open-source Exoclimes Simulation Platform (ESP;
https://github.com/exoclime). The computationally expensive
parts of the model run on a graphics card processor (GPU).
Since GPUs have in general thousands of computational cores,
the time for performing a forward model calculation is
substantially decreased compared to running it on a traditional
CPU.

So far, Helios-r2 has been successfully used to
characterize atmospheres of brown dwarfs and exoplanets by
analyzing their emission spectra. This includes, for example,

® hitp:/ /www.browndwarfs.org /spexprism
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Table 1
Set of Brown Dwarfs and Their Observational Characteristics Used in This Study
Object d Ad J H Ks NIR SpT References
(po) (po) (mag) (mag) (mag)
2MASS J03454316+-2540233 26.6955 0.2985 13.997 £+ 0.027 13.211 £+ 0.030 12.672 £+ 0.024 LO 1, 12
2MASS J21304464-0845205 26.7916 0.3163 14.137 £+ 0.032 13.334 4+ 0.032 12.815 £+ 0.033 L1 2,12
SSSPM J0829-1309 11.6899 0.0235 12.803 £+ 0.03 11.851 +0.022 11.297 £ 0.021 L2 3,12
2MASS J150654414-1321060 11.6848 0.0393 13.365 £+ 0.023 12.380 £ 0.021 11.741 £ 0.019 L3 4,12
2MASS J21580457-1550098 25.0 5.0 15.040 £ 0.040 13.867 £+ 0.033 13.185 £+ 0.036 L4 2,13
SDSSJ083506.16+195304.4 26.1 5.1 16.094 £ 0.075 14.889 £+ 0.057 14.319 £ 0.049 L5 5, 14
2MASS J10101480-0406499 18.0 2.0 15.508 £+ 0.059 14.385 + 0.037 13.619 + 0.046 L6 6, 13
2MASS J01033203+4-1935361 23.0 2.0 16.288 + 0.080 14.897 4 0.056 14.149 £ 0.059 L7 7,13
2MASS J163229114-1904407 16.0 33 15.867 £+ 0.070 14.612 £+ 0.038 14.003 £ 0.047 L8 4, 14
DENIS-P J0255-4700 4.868 0.004 13.246 £+ 0.027 12.204 £ 0.024 11.558 £0.024 L9 8, 12
SDSS J120747.174+024424.8 14.5 29 15.580 £ 0.071 14.561 £ 0.065 13.986 + 0.059 TO 9, 14
SDSS J015141.69+124429.6 214 1.6 16.566 £+ 0.129 15.603 +0.112 15.183 £ 0.189 T1 10, 13
SDSS J125453.90-012247.4 13.48 0.419 14.891 £ 0.035 14.090 + 0.025 13.837 £+ 0.054 T2 10, 12
SDSS J120602.51+-281328.7 26.0 2.0 16.541 £+ 0.109 15.815 £ 0.126 15.817 £ 0.034 T3 5,13
2MASS J22541892+-3123498 14.0 2.0 15.262 £ 0.047 15.018 4 0.081 14.902 £ 0.147 T4 10, 13
2MASS J15031961+4-2525196 6.4549 0.0459 13.937 £+ 0.024 13.856 £ 0.031 13.963 £ 0.059 TS 10, 12
SDSS J162414.374+002915.6 11.0 0.1 15.494 £+ 0.054 15.524 4+ 0.100 15.518 + 0.050 T6 11, 13
2MASS J07271824+41710012 9.1 0.2 15.600 £ 0.061 15.756 + 0.171 15.556 + 0.194 T7 11, 13
2MASS J04151954-0935066 5.83 1.26 15.695 £ 0.058 15.537 £0.113 15.429 £+ 0.201 T8 10, 15

References (1) Burgasser & McElwain 2006; (2) Kirkpatrick et al. 2010; (3) Marocco et al. 2013; (4) Burgasser 2007; (5) Chiu et al. 2006; (6) Reid et al. 2006; (7)
Cruz et al. 2004; (8) Burgasser et al. 2006b; (9) Looper et al. 2007; (10) Burgasser et al. 2004; (11) Burgasser et al. 2006a; (12) Gaia Collaboration et al. 2016; (13)

Faherty et al. 2009; (14) Schmidt et al. 2010; (15) Lodieu et al. 2012.

the ultrahot Jupiter WASP-121b (Bourrier et al. 2020), where
Helios-r2 was able to constrain the abundances of the
important hydrogen anion, as well as a nonvertical, atmo-
spheric abundance of water in a spectrum taken by the WFC3
instrument on the Hubble Space Telescope (HST). It was also
used to analyze spectra of brown dwarfs, such as KELT-1b
(Wong et al. 2021) or HD 19467B (Mesa et al. 2020), for
example. In the following, we briefly summarize the important
parts of Helios-r2 and describe the updates that have been
made to the model.

3.1. Radiative Transfer: Emission Spectra

We solve the radiative transfer equation for a one-
dimensional, plane-parallel atmosphere using the method of
short characteristics (Olson & Kunasz 1987), as previously
implemented within the Helios-r2 code (Kitzmann et al.
2020). The method of short characteristics allows for a stable
and efficient solution of the transfer equation in the absence of
scattering. As stated in Kitzmann et al. (2020), we use the first-
order version of the short characteristic method presented in
Olson & Kunasz (1987). Due to the neglect of scattering, we
only need to calculate the spectral intensity in the upward
direction. It is calculated for a total of two different, discrete
polar angles, which is equivalent to a four-stream radiative
transfer method. The result is then numerically integrated over
these angles with a Gaussian quadrature to yield the outgoing
flux F .

Due to the low resolution of the SpeX instrument, we
calculate the theoretical high-resolution spectra with a constant
step size of 1cm™! in wavenumber space (Line et al. 2015;
Kitzmann et al. 2020). The resulting spectrum is convolved
with an appropriate instrument line profile before it is binned
down to the resolution of the measured spectra.

An additional scaling factor f is used in the radius—distance
relation to scale the outgoing flux F," of the brown dwarf to the
one measured by the observer (F,):

R 2
F,=F/f —”), 1
(- 0

where d is the distance between the observer and the brown
dwarf and R, the (prior) radius. For R, we choose a fixed value
of R,=1R; throughout this study. In practice, f serves as a
“catchall” scaling factor that absorbs uncertainties in the radius
and distance, as well as inaccuracies in the atmospheric models
and flux calibration of the measured spectra. Since all of these
quantities are essentially degenerate, we choose to combine
them all in a single factor.

Our distances listed in Table 1 are not all based on measured
parallaxes, but partly on estimated values based on spectro-
scopic data, such as our T8 (2MASS J04151954-0935066).
For our T8 brown dwarf, we have used the distance d based on
spectroscopy (Lodieu et al. 2012). Other studies have published
distances based on parallax measurements (e.g., Faherty et al.
2012; d =5.736 £ 0.362 pc). These small differences in d are
absorbed into the retrieved value of f and thus do not affect the
final outcome.

If fis assumed to only contain the deviations from the
assumed prior radius of 1Ry, it can be converted into the actual
radius of the brown dwarf in units of Jupiter radii via

R=f. ()

In practice, however, fusually also involves other uncertainties
and missing or inaccurate model physics, such that the derived
radius R should not always be considered as the true radius of
the brown dwarf (Kitzmann et al. 2020).
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Figure 2. Near-infrared spectra of the standard L and T dwarfs in our curated sample shown as red dots. For clarity, we have omitted the associated data uncertainties,
but these are shown for individual objects in Figures 11 and 12 in Appendix A. Spectra associated with the retrieved best-fit values are overlaid for comparison with
the green and blue curves corresponding to the full and restricted range of wavelengths, respectively; the gray area represents the omitted part of the spectra for the
restricted wavelength range. All spectra shown are for non-gray-cloud models with a reduced set of atoms/molecules (see text for details).

3.2. Temperature—Pressure Profile

For this study, we divide the atmosphere into a total of 70
levels (i.e., 69 layers). The levels are distributed equidistantly in
log pressure-space. The specification of a temperature—pressure
profile in atmospheric retrievals has a long history. Approaches
include the specification of a temperature value in each model
atmospheric layer (Irwin et al. 2008); the use of a nine-parameter,
ad hoc fitting function (Madhusudhan & Seager 2009); and self-
consistent but simplified profiles (Guillot 2010; Parmentier &
Guillot 2014; Heng et al. 2012, 2014). In particular, the self-
consistent temperature—pressure profiles invoke strong assump-
tions that can produce an artificially isothermal atmosphere at low
pressures (Heng et al. 2014).

As discussed in Kitzmann et al. (2020), Helios-r2
implements a description of the temperature profile based on
a finite-element approach. This ensures a continuous

temperature—pressure profile, described by a relatively small
number of free parameters. Unless stated otherwise, we use six
first-order elements for the temperature profile, which results in
a total of seven free parameters. Due to inherent, continuous
nature of this finite-element approach, we can evaluate the
temperature for any given pressure in the forward model.

Since this study is focused on brown dwarfs for which
temperature inversions are not anticipated, we force the profiles to
be monotonically decreasing with pressure (Kitzmann et al. 2020).
As shown in Bourrier et al. (2020), Helios-r2 is also able to
retrieve temperature inversions if the aforementioned assumption
of a monotonically decreasing profile is not employed.

3.3. Cloud Description

In its original version Helios-r2 has has the option of
adding a gray-cloud layer to the atmosphere. This
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Figure 3. Schematic of our brown dwarf retrieval framework.

approximation usually assumes that the cloud particles are
large compared to the wavelength range of the measured
spectrum.

For this study we extend Helios-r2 to also optionally use
non-gray-cloud layers. Here we only aim at parameterizing the
particles’ extinction coefficients. No attempt is made to actually
model the formation of these clouds.

We follow the work of Kitzmann & Heng (2018) to describe
the extinction efficiency of the cloud particles as a function of
wavelength. Their approach assumes cloud particles with single
radii and then approximates the extinction efficiencies Qex
resulting from Mie theory calculations with a simple, analytic
equation:

O

— 02’
Qoxy “° 4 x,

Qext (>\) = (3)

where Q; is a normalization constant, Q, determines the x-
value at which Q. is peaking, x, =2ma/\ is the dimension-
less size parameter, a is the particle radius, and a, is the power-
law index in the small particle limit, where Mie theory
converges to the limit of Rayleigh scattering.

The equation is not supposed to describe the exact behavior
of the extinction efficiencies, but should rather serve as a first-
order approximation. While the full Mie absorption and
scattering efficiencies of single particles usually exhibit low-
and high-frequency oscillations, the analytic fit provides a
smooth description. It is worth noting that O, can be a proxy
for the cloud particle composition (see Table 2 of Kitzmann &

Heng 2018).
The optical depth 7 of the cloud layer is then given by
T(A) = Oexe(MnAz = Qext(/\)ﬂ'azncAZ > 4)

with the extinction cross section aext:Qexmaz, the cloud
particle number density n., and the vertical extent of the cloud
layer Az.

Since it is difficult to estimate a good prior for n., we replace
it with an optical depth at a reference wavelength of
Aref = 1 pm. The optical depth is then given as

extA Qoxy 4 + Xis
() = g 2N P T s
Qext(Arer) Q()XA O+ xy\

The position of the cloud layer in the atmosphere and its
vertical extent Az are described by two more free parameters:
the cloud’s top pressure p, and its bottom pressure p,. Instead
of using p,, directly as a free retrieval parameter, we instead use
a factor b. > 1, such that p;, = b p,. The factor b.. is limited to a
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maximum value of 10, such that a cloud layer can at most span
over one order of magnitude in pressure.

For the non-gray-cloud description we thus have six free
parameters in total, whereas the gray cloud requires three. A
summary of all cloud retrieval parameters and their prior
distributions is given in Table 3.

3.4. Bayesian Framework: Nested Sampling

We incorporate all of the components described in the
previous subsections into a Bayesian inference framework (see
Figure 3). Our choice of method to explore the multi-
dimensional parameter space is nested sampling (Skilling 2006)
in its MultiNest implementation (Feroz & Hobson 2008;
Feroz et al. 2009), which was previously implemented in
Helios-r2 by Kitzmann et al. (2020). Nested sampling was
introduced to the exoplanet atmospheric retrieval literature by
Benneke & Seager (2013). We assume that the prior
distributions of our free parameters are uniform, log-uniform,
or Gaussian (see Section 3.5 and Table 3).

A key ingredient of nested sampling is the specification of
the likelihood function £, which is the mathematical relation-
ship between the model D, ,, the observational data D;, and
uncertainties s; associated with the data for all measured data
points j. It is common practice to assume a Gaussian likelihood
function (Kitzmann et al. 2020)

1 D — Dim)* 1 5
InL=--> —L 2 — —InQnws)). (6)
20§ 2 !

Implicitly, this assumes not only that the data uncertainties s;
are Gaussian distributed but also that they are uncorrelated for
all j.

Following Line et al. (2015) and Kitzmann et al. (2020), we
account for the possibility that stated uncertainties of the
measured fluxes have been underestimated by implementing
the procedure of Hogg et al. (2010). Let the standard deviation
of the measured fluxes at each jth data point be o;. The effective
standard deviation of the jth data point is then given by

57 =075 4 e2nd, 7
where the parameter In § is part of the fit. Specifying Iné as a
fitting parameter ensures that ¢ >0 (Foreman-Mackey et al.
2013). For example, In§ = —4 corresponds to ¢ ~ 2%.

The key advantage of nested sampling is that it allows for the
calculation of the marginalized likelihood or Bayesian
evidence, which may be used to implement a formal form of
Occam’s razor known as Bayesian model comparison
(Trotta 2008).

A pair of models of differing complexity (characterized by
different numbers of parameters or prior distributions) are
compared by taking the ratio of their Bayesian evidences,
which is known as the Bayes factor (Trotta 2008). There is an
established correspondence between the Bayes factor and the
number of standard deviations that one of the models is
disfavored by the data, which we reproduce in Table 2. It is
worth pointing out, though, that Bayesian model comparison
may fail to exclude unphysical scenarios (e.g., Fisher &
Heng 2019).
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Table 2
Correspondence of the Bayes Factor B;; to the Number of Standard
Deviations o

B;; In B o Category

2.5 0.9 2.0

2.9 1.0 2.1 “weak” at best
8.0 2.1 2.6

12 2.5 2.7 “moderate” at best
21 3.0 3.0

53 4.0 33

150 5.0 3.6 “strong” at best
43,000 11 5.0

Note. Reproduced from Trotta (2008).

Table 3
Summary of Retrieval Parameters and Prior Distributions for the Free-
chemistry Approach Used in the Cloud-free, Gray-cloud, and Non-gray-cloud

Models

Parameter Prior

Type Value
logg uniform 35t 6.0cms 2
d Gaussian measured’
f uniform 0.1 to 5.0
T, uniform 1000 to 5000 K
b; uniform 0.1 to 0.95
Iné uniform —10to 1.0
X; log-uniform 1072 t0 0.1
Gray Clouds
D: log-uniform 102 to 50 bar
b, log-uniform 1to 10
T log-uniform 1075 to 20
Nongray Clouds
Ds log-uniform 1072 to 50 bar
b, log-uniform 1to 10
Tref log-uniform 107> to 20
Qo log-uniform 1 to 100
ag uniform 3t07
a log-uniform 0.1 to 50 pm

Note.
! Note that all the measured distances d can be found in Table 1.

3.5. Retrieval Parameters and Derived Quantities

The Bayesian framework requires us to define prior
distributions for all free parameters of the forward model. All
parameters and their priors are shown in Table 3.

For the general description of the brown dwarf atmosphere
we require the surface gravity log g, the distance d, and the
calibration factor f.” We use the measured distances and the
corresponding errors with a Gaussian prior (see Table 1). This
procedure propagates the error in the measured distances
through all other retrieval parameters. The temperature profile
is described by seven free parameters in total (see Section 3.2).

For the abundances of the chemical species we make the
usual assumptions that they are isoprofiles throughout the

7 Unless stated otherwise, values of logg are given in cgs units throughout
this study.
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atmosphere. Each considered chemical species, therefore,
requires one free parameter for its mixing ratio x;.

Specifically, we retrieve mixing ratios of the following
species: H,O, CHy4, NH3, CO,, CO, H,S, CrH, FeH, CaH, TiH,
and K. The mixing ratio of Na is determined from the one of
potassium by using the solar element abundance ratio of K and
Na (see also Kitzmann et al. 2020). Since the SpeX spectra are
only sensitive to the far line wings of the strong alkali
resonance lines, the abundances of K and Na are essentially
degenerate. It is, therefore, only possible to directly constrain
one of them (Line et al. 2015). The abundances of H, and He
are derived from the remaining background atmosphere,
assuming a solar H/He element abundance ratio.

Additionally, for the cloudy models we require the cloud
parameters as discussed in Section 3.3. For the nongray clouds
we use six free parameters, while the gray cloud needs three
parameters in total.

Besides the free retrieval parameters that are used directly
within the nested sampling, Helios-r2 also provides
posterior distributions for a set of derived quantities. One is
the effective temperature of the brown dwarf. This quantity is
obtained by integrating the high-resolution spectra of all
posterior samples over wavelengths and then converting the
resulting total flux to an effective temperature via the Stefan—
Boltzmann law.

Two other derived quantities are the C/O ratio and the
overall metallicity [M/H]. The C/O ratios are calculated by
counting the amount of carbon and oxygen atoms using the
retrieved mixing ratios of all carbon and oxygen carriers (e.g.,
Equation (19) of Line et al. 2013):

H
C/O = C 4+CO+C02‘
CO + 2CO, + H,0
The metallicity [M/H], on the other hand, is approximated
by summing up the constant mixing ratios for each species
weighted by the number of metal atoms and divided by the

abundance of hydrogen. The result is then compared to the sum
of solar metals relative to hydrogen.

®)

3.6. Opacity Calculations and Line Lists

Major absorbers (H,O, CH4, NH;, CO,, CO, H,S, CrH,
FeH, CaH, and TiH, as well as the alkali metals Na and K) are
considered in this study to cover the wavelength range of the
SpeX instrument, which is from 0.85 to about 2.45 pm.

Most opacities are calculated by the open-source HELIOS-K
opacity calculator (Grimm & Heng 2015; Grimm et al. 2021).
The line list data for these molecules are taken from the
ExoMol database (Barber et al. 2006; Yurchenko et al. 2011;
Yurchenko & Tennyson 2014; Azzam et al. 2016) and the
HITEMP database (Rothman et al. 2010). The collision-
induced absorption coefficients for H,H, and H,He are based
on Abel et al. (2011) and Abel et al. (2012), respectively. We
refer the reader to Tennyson & Yurchenko (2017) for a review
of the spectroscopic databases.

For the alkali metals K and Na, we use the descriptions of
their resonance line wings published by Allard et al. (2016) and
Allard et al. (2019), respectively. The computations of the Na
and K opacities are described in Kitzmann et al. (2020).

4. Results

We perform a suite of atmospheric retrievals on the curated
sample of all L and T dwarfs listed in Table 1. In Section 4.2
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Table 4
Comparison of Retrieval Outcomes with Values from the Published Literature for the T7 and T8 Dwarfs
Object Model A Tets log g Radius References
(pm) ) (cms™?) Ry
T7 1.00-2.50 807117 5134319 1.1279%7 1
T7 1.00-2.10 900 — 940 4850 2
T7 0.30-14.50 84571 4957043 0.94+0:18 3
T7 FC 0.85-2.45 847.6212 43 4925018 0.697004 *
T7 FG 0.85-2.45 845.48170:08 4917943 0.695004 *
T7 EN 0.85-2.45 852.59+2043 4594011 0.6879%3 *
T7 RC 1.20-2.45 7120253518 3.9140% 0.817908 *
T7 RG 1.20-2.45 691.80735% 3.8240:18 0.8679%¢ *
T7 RN 1.20-2.45 710727384 3.91%018 0.81500¢ *
T8 1.00-2.50 680113 5047920 1.065% 1
T8 1.15-2.25 600 — 800 40-55 0.89 — 1.33 4
T8 1.00-2.10 740 — 760 49-50 2
T8 0.30-14.50 67773 4.83%031 0.95+16 3
T8 FC 0.85-2.45 717.17732% 3.67°912 0.63*913 *
T8 FG 0.85-2.45 7153473038 3.67°043 0.63912 ’
T8 FN 0.85-2.45 716.907398 3.675018 0.637513 *
T8 RC 1.20-2.45 7220174274 3.667 518 0.52+%14 *
T8 RG 1.20-2.45 719.76+4439 3.677048 0.5331 :
T8 RN 1.20-2.45 844.14+3%2 4524039 0.4070% *

Note. Only models with the reduced set of molecules are tabulated. Variations of the models shown are as follows: full spectra cloud-free (FC), full spectra gray (FG),

full spectra nongray (FN), restricted spectra cloud-free (RC), restricted spectra gray (RG), and restricted spectra nongray (RN).
References () This work; (1) Line et al. 2017; (2) Burgasser et al. 2006a; (3) Filippazzo et al. 2015; (4) Liu et al. 2011.

we present a more detailed analysis of the results obtained for
the L5 and T5 dwarfs. Section 4.3 and Table 4 provide a
comparison of our results for the T7 and T8 dwarfs with those
of previous publications on the same objects. In Section 4.4 we
discuss the trends of the retrieved parameters across the L-T
sequence, including the surface gravity, chemical abundances,
and clouds. Appendix A provides the posterior distributions of
the cloud-free and non-gray-cloud models for the spectra cut
below 1.2um for all brown dwarfs in our sample. In
Appendix B, the Tables 5 and 6 provide a detailed overview
of the outcomes of a large suite of retrievals (six models for
each object) for all L and T dwarfs in our sample. Additionally,
Appendix C shortly addresses the impact of the prior choice.

4.1. Terminology, Overview of Spectra, and Model Fits

Before we discuss the outcome of our retrieval calculations,
we first introduce the following terminology and the reasoning
behind it:

1. Oreshenko et al. (2020) previously demonstrated that
disregarding data in each spectrum blueward of 1.2 um
circumvents unresolved issues with the shapes of the
alkali metal resonance line wings but retains enough
information in the spectrum to constrain the surface
gravity spectroscopically. Following this approach,
spectra with and without this cut are referred to as
“restricted” and “full,” respectively.

2. If the full set of chemical species is used in the retrieval
(see Section 3.6), the label “all” is employed. In a follow-
up retrieval, species that only have upper limits on their
abundances are removed; we refer to this as the “reduced”
set of species. We explicitly check that inferred quantities

from the “all” versus “reduced” retrievals are consistent
with each other.

3. We consider both cloud-free and cloudy atmospheres. For
the cloudy cases, we either use gray or nongray clouds as
described in Section 3.3.

In total, there are 12 permutations of models for each
spectrum. However, we find that the Bayesian evidence
consistently favors models with a reduced set of chemical
species. This is to be expected since the Bayesian evidence
effectively penalizes models with more free parameters over
those with fewer if both models provide an adequate fit to the
measured spectrum. Therefore, we have only listed six models
for each object in Tables 5 and 6.

All 19 spectra, as well as a subset of the best-fit models (full
vs. restricted models), are shown in Figure 2 as an overview.
For presentational reasons, only models with nongray clouds
and a reduced set of atoms and molecules are shown.

The L4 to T1 brown dwarf spectra contain considerable
scatter in the measured spectral flux between 1.8 and 2.1 ym
owing to strong telluric absorption, where Earth’s atmosphere
is nearly opaque. This, however, does not impact the overall fit
of the spectrum because the elevated error bars in these spectral
regions considerably decrease their weight in the computed
likelihood (see Equation (6)). Other wavelength ranges where
telluric absorption might be an issue also include the
1.3-1.5 pm and 1.75-2.0 ym regions.

Figure 4 summarizes the outcome of a suite of 57 retrievals
performed on all 19 observed brown dwarf spectra with
restricted wavelength ranges and reduced sets of chemical
species.

Surprisingly, the logarithm of the Bayes factor (InB;) has
values of about unity when comparing cloud-free versus cloudy
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Figure 4. Bayes factors derived from our suite of nested sampling retrievals
with a restricted wavelength range and a reduced set of atoms/molecules. The
top panel shows the Bayesian model comparison between cloud-free and non-
gray-cloud models. The bottom panel compares models with gray and nongray
clouds. Denoting the Bayes factor by Bj;, InB; = 1 and 2.5 correspond to weak
and moderate evidence for one model vs. the other (see Table 2). The ratio of
Bayesian evidences is taken such that InB; > 0.

models (whether gray or nongray). Thus, the Bayesian
evidence does not allow us to favor one class of model over
the other. This essentially implies that all considered models
are consistent with the data and that the SpeX spectra do not
contain enough information to adequately distinguish between
the different model scenarios.

Since the study of clouds in brown dwarfs has an established
history (e.g., Tsuji & Nakajima 2003; Burrows et al. 2006;
Saumon & Marley 2008), we will often refer to the results and
retrieved quantities from the models with nongray clouds.

4.2. A Pair of Case Studies: L5 and TS Dwarfs

In this subsection we discuss the results for the L5 dwarf
SDSS J083506.164+195304.4 and the T5 dwarf 2MASS
J150319614-2525196 in greater detail.

The aforementioned inability of the atmospheric retrievals on
SpeX spectra to distinguish between cloud-free and cloudy
models is further illustrated in Figure 5 for the L5 and T5
dwarfs of our curated sample. The figure shows the posterior
spectra and the observed data for all six different models and
both objects.

The different posterior spectra and their residuals clearly
indicate that all considered model scenarios provide almost
equally good fits to the data. This also explains why the Bayes
factors between the models are close to unity for all cases.

The median values of the retrieval parameters for the two
objects are summarized in Tables 5 and 6. Plots of the entire
posterior distributions and the retrieved temperature profiles
can be found in Appendix B.

For the L5 dwarf, the reduced set of chemical species
consists of water, methane, carbon monoxide, hydrogen
sulfide, and iron hydride for the restricted range of wave-
lengths. If the full wavelength range is considered, potassium
(and thus sodium) is additionally detected. The models with
restricted wavelength range will in general not allow a
constraint of the abundances of K and Na because their
important resonance line wings are not contained in these
spectra. Since the inferred quantities are generally in good
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agreement between the “all” and “reduced” retrievals, we will
compare outcomes based on the reduced set of species in the
following.

For the L5 dwarf, if we compare the non-gray-cloud
retrievals performed on the restricted versus full spectra, the
retrieved surface gravities are logg = 5.83703% and
logg = 5.61703}, respectively. The derived carbon-to-oxygen
ratios are 0.59 £0.10 and 0.70 £0.12. This result is thus
roughly consistent with solar element abundances for carbon
and oxygen. The outcome also demonstrates that the C/O ratio
can be robustly inferred if the main carbon and oxygen carriers
can be constrained.

The derived radii and effective temperatures are also
consistent for both the restricted and full cases: 0.773%8 R,
versus 0.7970:05 Ry; 1432.867335; K versus 1493.117237¢ K.
These radii are consistent with the lower range of measured
values for this class of object (e.g., Burrows et al. 2011; Table 6
of Bayliss et al. 2017).

For the T5 dwarf, the reduced set of molecules consists of
H,0, CH,, NHj;, and FeH for the restricted range of
wavelengths, as well as K and TiH for the full spectrum. The
derived C/O ratios are 0.49 £+ 0.03 and 0.51 £ 0.03, respec-
tively, which again is roughly consistent with solar element
abundances of C and O.

For the T5 dwarf, if we compare the non-gray-cloud
retrievals performed on the restricted versus full spectra, the
retrieved surface gravities are log g = 4.73712 and 4.821011,
respectively. The retrieved radii and effective temperatures are

also consistent with each other: 0.69793 Ry versus 0.71°004 Ry;

964.7773373 K versus 1048.7073]82 K. With the exception of
the effective temperatures, the other quantities are comfortably
consistent for the pair of restricted versus full retrievals.

4.3. Comparison with Previous Studies: T7 and T8 Dwarfs

The T7 (2MASS J072718244-1710012) and T8 (2ZMASS
J04151954-0935066) dwarfs of our curated sample provide an
opportunity to compare our results with previous publications.
Table 4 summarizes outcomes from the current and previous
studies.

Based on the analysis using the full T7 brown dwarf
spectrum, we obtain a surface gravity of logg ~ 4.6-4.9,
consistent with the values reported by Burgasser et al. (2006a),
Line et al. (2017), and Filippazzo et al. (2015) for the same
object. Burgasser et al. (2006a) used the best-fit spectrum from
a model grid, while Line et al. (2017) performed an actual
retrieval. The results from Filippazzo et al. (2015), on the other
hand, are based on the evolutionary tracks of Baraffe et al.
(2003; CONDO03), as well as the cloud-free models published
by Saumon & Marley (2008; SMNCOS).

Our retrievals based on the restricted spectrum, however,
yield a log g value of about 3.8-3.9, considerably lower than
those based on the full spectra. This difference is likely caused
by the impact of the resonance line wings of the alkali metals
sodium and potassium. Restricting the wavelength range,
though, not only excludes the line wing of the K resonance
line at 0.77 pm but also removes the 0.9 ym H,O and the 1.0
pm FeH molecular absorption bands.

All retrieved radii (R ~ 0.7R;—0.9Ry) are smaller than the one
reported by Line et al. (2017) or Filippazzo et al. (2015). The
restricted-spectra values lie within the confidence interval of
the evolutionary model-derived value by Filippazzo et al.
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Figure 5. Comparing data (red dots with associated uncertainties) and various retrieved spectra (curves) of the L5 (left panel) and TS (right panel) brown dwarfs of our
curated sample. For each model, the median curve of the retrieved set of spectra is displayed. The associated residuals between the data and various models are shown.
Gray areas represent the omitted part of the spectra for the restricted wavelength range.

(2015). As discussed by Filippazzo et al. (2015), obtaining
consistent radii from the radius—distance relationship is
challenging owing to, e.g., incomplete molecular line lists
and spectrally poorly reproduced regions, especially below
0.9 pm or the H-band peak.

Our derived effective temperatures for the full-spectra
retrievals fall within the predicted range published in earlier
studies. For the restricted-spectra range retrievals, we obtain
values that are approximately 100 K below the lower bound
estimated by Line et al. (2017). This discrepancy might be
caused by the different obtained radii that enter the radius—
distance relationship, which is used to scale the total emitted
flux of the atmosphere. Thus, smaller retrieved radii result in
higher total flux values, which yields larger derived effective
temperatures. Specifically, in Equation (1), smaller values of R
are compensated by larger values of F," in order to produce the
same F.

We constrain the abundances of the molecules H,O, CH,, K,
and FeH. As expected, potassium is not detected in the case of
the restricted spectra for most of our models. The individual
abundances of molecules are of the same orders of magnitude
as those of Line et al. (2017), with the exception of FeH, which
was not considered in their study. On the other hand, Line et al.
(2017) constrained the abundance of the theoretically expected
NH;, which was not found by our retrieval. Our upper limit for
NH; is orders of magnitudes smaller than the lower bound
retrieved by Line et al. (2017).

For the T8 dwarf, we obtain a surface gravity of log g ~ 3.7.
This value is below the lower bounds estimated by Burgasser
et al. (2006a), Line et al. (2017), Liu et al. (2011), or Filippazzo
et al. (2015). Only the wavelength-restricted, non-gray-cloud
retrieval (RN) resulted in a higher log g value of ~4.5. All
derived radii (R ~ 0.4R;—0.6Ry) are again smaller than the ones
reported by Line et al. (2017), Filippazzo et al. (2015), and Liu
et al. (2011). These small radii might indicate that some model
physics is missing in the current version of Helios-r2. The
effective temperatures fall within the predicted confidence
interval published in earlier studies. The only exception is,
again, the wavelength-restricted, non-gray-cloud case, where
Ter is somewhat higher. Peaks in the measured fluxes are
underestimated by the posterior spectra, especially with the H
-band being spectrally poorly reproduced. For reasons unclear

to us, the fit in the H band is noticeably worse for the spectrum
of the T8 dwarf compared to other objects, possibly due to a
missing opacity source.

Our retrieved molecular abundances of H,O and CH, are of
the same order of magnitude, while abundances of K are an
order of magnitude lower than reported by Line et al. (2017).
This difference is expected owing to the different considera-
tions of sodium and potassium. Line et al. (2017) used the
mixing ratio of Na as a free parameter and calculated K
subsequently, while we derive Na from the retrieved K mixing
ratio by using their solar elemental abundance ratio (Kitzmann
et al. 2020). Similar to the previous case, Line et al. (2017)
constrained the expected NHj3, which was not found in our
retrieval. Overall, we conclude that differences in the input
physics and/or chemistry probably account for deviations in
the retrieved surface gravities and radii. As already noted by
Kitzmann et al. (2020), it remains unclear how to set a
physically motivated prior on the radius and therefore to judge
whether a retrieved value of the radius is unphysical.

4.4. Trends across the L-T Sequence

So far, our results have focused on four individual brown
dwarfs. In the following, we discuss trends of retrieved
quantities (or lack thereof) across our curated sample of L
and T dwarfs. Figures 6 and 8 summarize the retrieved
parameter values as a function of the spectral type. The
posterior distributions and best-fit spectra are all depicted in
Appendix A. For the retrieved molecular abundances, we have
chosen to focus on H,O, CHy, K, and CO. Figures 7 and 9
display the effective temperatures and retrieved temperature—
pressure profiles, respectively.

The following general conclusions may be drawn:

1. Retrievals that include all chemical species or just a
reduced set of detected atoms and molecules yield
parameter values that are in excellent agreement.

2. For the T dwarfs, the retrieved parameter values are
robust to the choice of either cloud-free or cloudy (both
gray and nongray) models. This indicates that the
outcome is unaffected when clouds are absent.
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Figure 6. Comparing the retrieved parameters from our suite of brown dwarf retrievals across the L-T sequence. Shown are various permutations of all vs. a reduced
set of atoms/molecules and the full vs. restricted range of wavelengths associated with the measured spectra. In each panel, the cloud-free (blue line), gray-cloud
(olive-green line), and non-gray-cloud (red line) models are compared. 1o uncertainties are shown.

In the following subsections we discuss the results for some
of the important retrieval and derived parameters.

4.4.1. Surface Gravities

For the early L dwarfs, there is considerable scatter in the
retrieved surface gravities, regardless of whether the “all,”
“reduced,” “full,” or “restricted” retrievals are employed. The
cloud-free models versus the ones with gray clouds are
consistent with each other. The strongest difference is between
the models with nongray clouds and the cloud-free/gray-cloud

models.

10

Overall, there is no obvious trend of the surface gravity
across the L-T sequence with log g values varying from about 4
to 5. Non-gray-cloud models consistently yield higher values of
log g ~ 6 for the early L dwarfs.

4.4.2. Derived Brown Dwarf Radii

The derived brown dwarf radii overall decrease with
decreasing effective temperature, consistent with an evolu-
tionary cooling sequence. Comparing these retrieved radii with
evolutionary models, however, requires not only knowledge of
the ages but also the cloud configuration (Burrows et al. 2011).
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Figure 7. Comparison of all inferred effective temperatures over the entire L-T
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It is worth noticing that the retrieved radii are consistent
between the trio of cloud-free, gray-cloud, and non-gray-cloud
models, regardless of whether “all,” “reduced,” “full,” or
“restricted” retrievals are employed. One important outcome of
our retrievals is that the derived radii for the L dwarfs decrease
monotonically with effective temperature only for the retrievals
performed on the full spectra. This suggests that the resonance
line wings of the alkali metals have a decisive impact on the
analysis of brown dwarf spectra.

Some of the retrievals, especially for the T dwarfs, result in
implausibly small values of R = 0.5Rj. As already mentioned in
Section 3, the radius is derived from the calibration factor f,
assuming that f only contains contributions with respect to the
assumed prior radius of 1R;. Thus, these small values of f, and
thus R, might indicate, for example, missing physics and
chemistry or problems in the spectra calibration as already
noted by Kitzmann et al. (2020).

4.4.3. Derived Effective Temperatures

As mentioned in Section 3, the effective temperature T is
obtained in a post-processing step by calculating the total
outgoing flux from all posterior spectra and converting the
result into an effective temperature by using the Stefan—
Boltzmann law. The derived T.g for all spectral classes are
shown in Figure 7.

The resulting effective temperatures show a general decrease
from about 1800 K for the LO dwarf to 800 K (T8) across the
entire L-T sequence. This outcome is found for all different
model scenarios, regardless of whether all or a reduced set of
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chemical species is used or whether the full or restricted spectra
are being analyzed. The general trend of decreasing effective
temperatures with spectral class and, thus, age is consistent
with theoretical expectations and observations (e.g.,
Kirkpatrick 2005; Filippazzo et al. 2015; Kirkpatrick et al.
2021). Our results are, in particular, also robust with respect to
the choice of cloud model.

4.4.4. Abundances of Chemical Species

There is no clear trend in the water abundances across the
L-T sequence with the volume mixing ratio being roughly
constant at xy,o ~ 1074-1073, regardless of whether “all,”
“reduced,” “full,” or “restricted” retrievals are employed. We
obtain the same behavior for the potassium abundance. Here xx
is roughly constant with values of about 10~ '—10~°. Methane
is constrained for all of the T dwarfs and additionally also the
L9 dwarf with a roughly constant mixing ratio of xcy, ~ 107>
—10~*. With the exception of the L9 case, CH, is rarely found
in the other L dwarfs, as expected from theoretical predictions.
Carbon monoxide, on the other hand, is only detected in a few
objects, most notably in the L-dwarf spectra.

No obvious trend for the C/O ratios can be found. The
considerable scatter in C/O is likely a consequence of the
inability to constrain all import carbon- and oxygen-bearing
molecules in every spectrum. While water is consistently
detected in all 19 objects, other major carbon and oxygen
carriers, such as CHy, CO, and CO,, are not always retrieved
with sufficient constraints to provide good estimates on their
mixing ratios. It is possible that this is caused by the 3.3 ym
CH, and 4.3 um CO absorption bands not being covered by the
SpeX instrument. Consequently, deriving the C/O from the
retrieved molecular abundances for these cases becomes
unreliable.

4.4.5. Inability to Retrieve Cloud Properties

As already noted, the Bayesian evidence does not strongly
favor cloud-free or cloudy models. The Bayes factor of these
two model scenarios is usually around unity, suggesting that
neither model is preferred from a data-driven point of view. An
overview of our retrieved cloud properties is presented in
Figure 8 for all brown dwarfs in our sample.

Perhaps one of the most surprising outcomes of this study is
that in most instances only upper limits for the cloud properties
are obtained.

The cloud optical depth is unconstrained when a log-uniform
prior is used (see Figure 8). However, when a uniform prior is
used for 7, it becomes constrained (see Figure 17 in
Appendix C). Other cloud properties remain unconstrained.
Consequently, we are unable to obtain any clear trends in cloud
properties across the L-T sequence as suggested by the
retrieved cloud parameters depicted in Figure 8. We obtain
these results for both the gray and the non-gray-cloud
scenarios.

4.4.6. Temperature—Pressure Profiles

The temperature—pressure profiles for all brown dwarfs in
our sample are shown in Figure 9. The figure also additionally
depicts the dry adiabatic lapse rates for comparison. These
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Figure 8. Comparing the retrieved cloud parameters from our suite of brown
dwarf retrievals across the L-T sequence. Parameters p, and p, represent the
cloud top and bottom pressures, T,¢ is optical depth at a reference wavelength,
Qo is the proxy for the cloud particle composition, @ is the monodisperse
particle radius, and @, is the power-law index that describes wavelength
variation. In each panel, gray-cloud (olive-green line) and non-gray-cloud (red
line) models are compared. Overall, only upper limits are obtained.

adiabats are given by

©)

where c), is the heat capacity at constant pressure.

Most of the T dwarfs show temperature profiles that follow
those of theoretical models, with a potentially convective,
lower atmosphere and an upper atmosphere that does not
follow the adiabatic lapse rate. In theoretical brown dwarf
models, the latter part of the atmosphere would be governed by
radiative equilibrium (Marley & Robinson 2015).

The L dwarfs and some of the T dwarfs, however, result in
temperature profiles that are unexpectedly shallow in the lower
atmospheres. The temperature is in many cases almost
isothermal, with lapse rates of the median profile of about
I~5x10° K km™'. With adiabatic lapse rates of about
Iwa~40 K km ' in these regions, the atmosphere is
convectively stable.

The same behavior was already noted by Kitzmann et al.
(2020) in their analysis of the spectrum of the brown dwarf e
Indi Ba. Such an isothermal behavior could be explained by the
absence of clouds. A thick cloud layer would effectively block
the emission of the lower atmosphere. If the spectrum is
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Figure 9. Retrieved median temperature—pressure profiles with their associated
1o uncertainties. In each panel, we compare the cloud-free (blue line), gray-
cloud (olive-green line), and non-gray-cloud (red line) models. Only retrieved
profiles from models using a reduced set of chemical species and analyzing
spectra with a restricted wavelength range are shown. Adiabatic profiles (black
dashed line) are indicated for comparison.

dominated by clouds, a retrieval without clouds would replicate
this cloud impact by making the lower atmosphere more or less
isothermal, with a temperature corresponding to the location of
the cloud layer.

However, as already explained in the previous subsection,
even when clouds are added to the model, the retrieval is
unable to constrain any cloud properties, except for their
optical depths if a uniform prior is used. The retrieval seems to
prefer isothermal temperature profiles over the potential
existence of cloud layers. One reason for this behavior might
be caused by the description of the temperature profile being
too flexible and allowing it to deviate strongly from the
expected, adiabatic lapse rates in the lower atmosphere.

On the other hand, this outcome might also be explained by a
chemical instability, as discussed in Tremblin et al. (2015) and
Tremblin et al. (2016). This instability would effectively
change the adiabatic index of the atmosphere in a way that
allows for very small lapse rates even in the lower parts of the
atmosphere.

5. Discussion
5.1. Summary

In the current study, we subjected a curated sample of 19
SpeX spectra (0.85-2.45 ym) of brown dwarfs, from spectral
type LO to T8, to a large suite of atmospheric retrievals. Our
findings include the following:
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1. From the perspective of Bayesian model comparison,
cloud-free and cloudy models (with both gray and
nongray clouds) fit the data equally well. In other words,
the SpeX data are consistent with both the absence and
presence of clouds from atmospheric retrieval analysis.
Consequently, only upper limits on cloud properties are
retrieved. However, when a uniform (rather than log-
uniform) prior is used for the cloud optical depth, it
becomes constrained.

2. Water and potassium are detected in all 19 objects, and
their abundances are roughly constant across the L-T
sequence. Methane is detected in all of the T dwarfs,
while carbon monoxide is only detected in less than half
of the sample. Consequently, the retrieved C/O ratios are
unreliable and heterogeneous across the L-T sequence.

3. For early L dwarfs, the retrieved surface gravity depends
on whether the gray or non-gray-cloud model is used,
with the resulting uncertainty sometimes spanning an
order of magnitude or more.

4. The retrieved radius is robust to whether the cloud-free,
gray-cloud, or non-gray-cloud model is used, but the
values associated with T dwarfs are often implausibly
low, possibly indicating missing physics or chemistry
(Kitzmann et al. 2020).

5. All models are generally consistent in their T-P profiles,
and their atmospheres are stable to convection. We obtain
shallow temperature gradients, with the lower atmosphere
being almost isothermal, especially when looking at L
dwarfs. T dwarfs mostly follow the adiabatic lines where
radiation pressure becomes inefficient.

5.2. How May We Test the Chemical Instability Hypothesis?

Instead of clouds, Tremblin et al. (2015, 2016) previously
proposed that the variation in observed color across the L-T
sequence may alternatively be explained by a chemical
instability. One of the signatures of this instability is the
vertical/radial variation of the adiabatic index. Such a variation
requires the relative abundances of atoms and molecules to
vary across height/pressure. In the current suite of retrievals,
we have assumed chemical abundances that are constant across
height /pressure, which imply that the adiabatic index is
constant throughout. Given the inability of these retrievals to
distinguish between cloud-free and cloudy models, it is
unlikely that retrievals with vertically /radially varying chemi-
cal abundances will be adequately constrained by the SpeX
spectra. Spectra measured by the Hubble Space Telescope
(Apai et al. 2013) and the upcoming James Webb Space
Telescope will be decisive for addressing this question.

5.3. Looking toward the Future: Better Data or Better Models?

The formation and evolution of clouds in brown dwarfs, as
well as their observational manifestation, remain incompletely
understood. Forward models of brown dwarfs continue to be
developed (e.g., Marley et al. 2021). Retrieval models have a
useful role to play, as they may offer hints on future directions
for forward models, while incorporating the latest ideas on first-
principles cloud formation models.
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Figure 10. Median restricted spectra (F) associated with the L6 dwarf of our
curated sample, comparing the gray-cloud models with the original prior of
optical depth (gray line) and the adjusted (orange line) models. Data are shown
as dots with associated uncertainties.

Our retrieval study based on SpeX spectra alone is unable to
constrain the cloud properties of brown dwarfs. Nonetheless,
letting our model predict the spectra within a larger wavelength
region toward the IR, we spot a slight difference in Figure 10
when considering a change in the cloud prior distributions and,
thus, retrieving optical depths that indicate a cloud existence
(see Appendix C). Clouds seem to diminish spectral features
within the IR.

A plausible next step is to perform retrieval analyses of HST
observations of brown dwarfs (Apai et al. 2013; Madhusudhan
et al. 2016b), where the enhanced signal-to-noise ratio of the
data may allow both cloud properties and vertical variation of
chemical abundances to be constrained. It is possible that
viewing geometry and variability may play a role in data
procurement and interpretation (Vos et al. 2017; Bowler et al.
2020). Analysis of the HST data will provide a glimpse of what
to expect with spectra from the James Webb Space Telescope,
which will potentially offer 0.6-28 pm coverage in addition to
exquisite signal-to-noise ratio.

We acknowledge partial financial support from the Swiss
National Science Foundation, the European Research Council
(via a Consolidator Grant to K.H.; grant number 771620), and
the Center for Space and Habitability (CSH). This research has
benefited from the SpeX Prism Library, maintained by Adam
Burgasser at http://www.browndwarfs.org /spexprism.

Appendix A
Supplementary Figures

For completeness, Figures 11 and 12 compare the cloud-free
and non-gray-cloud models for restricted spectra with reduced
sets of chemical species. The corresponding full sets of
posterior distributions of the parameters are shown in
Figures 13 and 14.
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Figure 11. Median restricted spectra (F) and residuals (AF) associated with the LO dwarf of our curated sample for a cloud-free model with a reduced set of
molecules. Data are shown as dots with associated uncertainties. The complete figure set for the entire LO to T8 sequence (19 images) is available in the online journal.

(The complete figure set (19 images) is available.)
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Figure 12. Median restricted spectra (F) and residuals (AF) associated with the LO dwarf of our curated sample for a non-gray-cloud model with a reduced set of
molecules. Data are shown as dots with associated uncertainties. The complete figure set for the entire LO to T8 sequence (19 images) is available in the online journal.

(The complete figure set (19 images) is available.)
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standard brown dwarf of our curated sample. The vertical dashed lines correspond to the median parameter values and their 1o uncertainties. Accompanying each
montage of joint posterior distributions is the retrieved median temperature—pressure profile and its associated 1o uncertainties. The effective temperature T, is the
only parameter that is determined via post-processing (see text for details). The complete figure set for the entire LO to T8 sequence (19 images) is available in the

online journal.

(The complete figure set (19 images) is available.)
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Appendix B
Supplementary Data

For completeness, Tables 5 and 6 record the outcomes of a
large suite of retrievals (6 models for each object).
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—0.30 0.50+033
033 0.451033
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Table 5

(Continued)
Model Parameter L0 L1 L2 L3 L4 L5 L6 L7 L8 L9
FN P 0.511032 0.4473} 0.51403 0.507932 0.507031 0477939 0.5003) 0.48793} 0511931 0.4479%
RC s
RG Db 0.50+933 0.50932 0.49*932 0.50933 0.50+939 0.51593% 0.50+932 0.50+93? 0.50+933 0.487933
RN Pb 0.513930 0.515930 0.50+938 0.50932 0.49*939 0.50193} 0.50*+939 0.515928 0.50+933 0.467939
FG T 0.96193* —2.00%%34 0.74+938 —0.807933 —2.51+1:% 091793 —1.5771% 0.5979¢ —2.52%1 % 0.657933
FN T —3.23+ 44 0.87937 —~3.08713] —271478 —2.555108 0.877937 —2.027%3 0.541047 —2.974133 0.74+938
RG T —2.52+214 —~1.863% —1.7634 —2.57418 —2.20%1 23 —2.6673% —2.57411) —2.134333 254720 0.825030
RN T —2.81F] % —2.5871% —1.91%332 271547 —2.34+18 —2.98+13¢ —2.70H3} —2.05733% —291%1% 0.761932
FC Qo
FN 0o 10.367 342 9.1673%37 9.967 343! 9.9573%09 9.92+31.24 8.9272%92 9.73+3%7 9.6772%%3 100873373 9.374342°
RC Qo . . . . .
RN Qo 10.434348 10.0873%1° 10.0173%32 10175333 10.5473%10 9.813% 1 9.5072%57 10.09727,43 10.0543%33 9.85+2501
FC aop
FG ao
FN ap 0.70+319 0.70+9% 0.70+319 0.7019 0.70+319 0.70+39% 0.70:0% 0.69+319 0.70+319 0.69919
RC a . .. . .. . . . .. . ..
RG ao
RN ag 0.70*519 0.70+593 0.70+519 0.70+319 0.70+393 0.70*519 0.70+393 0.7079% 0.70+519 0.6975%
FC a
FN a 0347088 0.66798 03119082 0.36:08¢ 0.36083 0.6570:53 0.37+98 0.3949% 0.407982 0.361933
RG a
RN a 0.3559% 0.341582 0.37598 0.34+0% 0.337938% 0.31598¢ 0.377581 0.3797¢ 0.30+5%] 047574

Note. Only models with the reduced set of molecules are tabulated. Variations of the models shown are as follows: full spectra cloud-free (FC), full spectra gray (FG), full spectra nongray (FN), restricted spectra cloud-

free (RC), restricted spectra gray (RG), and restricted spectra nongray (RN).
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Mod . Table 6
el Parameter — Summary of Retrieval Outcomes for the S
FC 1 o T2 e Standard T Dwarfs
F og 8 4361089 3
G o -0-032 4.461007 4
g8 4274032 —0.07 3.7+0.08 T5
FN 1 024 4.48+0-09 -12-0.08 5361012 6
og g 426104 “+0-0.08 3.93+022 IP-0.12 3.72+0.10 T7
RC 1 25 4.47+007 2:79-0.24 5.38+0.14 —0.10 4.83+011 TS
0g & 4.061028 1007 3761024 20013 3751018 +65-0.10 4611023
RG I -U6-019 4501013 +19-011 5.38+0-13 +19-0.11 4.83+0-1 025 4.92+016
0og & 4.0510-20 -V-0.10 3.71+0-12 +20-0.12 3.74+0.09 +09-0.10 4. 60*0 .24 0.13 3.67+012
RN 1 052018 4.45009 o 5.37+0.11 190,00 4.82+0.11 02 4911013 -0.10
0g & 4047018 “49-0.08 3.72+0.12 2 7-011 4361026 -02-0.09 4.60+024 74 0.12 3.6710-12
UF-0.16 4.487009 Hle-oll 54171021 +29-0.23 4731014 0.2 4.59+017 —0.10
FC “79-0.08 3.71+0-11 ‘=013 4371024 +19-0.13 4.5310- 32 —0.15 3.670-11
R 0684010 3. 7150710 5357008 21-022 4731013 99052 3.91+020 2010
FG 63010 0.48+003 -39-010 4374023 -13-013 4.53+0.30 ~017 3.667016
R 0691009 4S-003 0.94+005 37070 4734012 -33-026 3.827016 010
EN R 0920710 0.48003 -7%—0.04 0.66+0-06 —0.12 4567927 S04 3.67°513
0.687099 +10-0.03 0.93+004 “P-0.06 0.79+010 —0.42 3911018 .10
RC R -68-0.09 0.48+003 930,04 0.660.06 -17=010 0.71+004 0.16 4524032
0721010 -+0-0.03 0.93+004 -09-0.06 0.7970.09 -11-004 0.85+0-11 30
RG R 120 0.49+0.04 0.04 066096 -7P-010 0.71+0.04 -89-010 0.69+004
0. 72+0.10 “17-0.04 0. 99+0 .06 -9Y-0.05 0 79+0.o9 +11-0.04 0.86*0"0 —0.04 0.63*0'13
RN R 0.10 0.50+0.04 0.05 0.61+006 -79-0.09 0.717084 0,09 0.69+0.04 -0.12
0. 72+0 .09 0.04 0. 99+0 .06 +91-0.06 0 69+0.09 0. 85*0“9 —0.04 0'63+0V12
09 0. 50+0 .04 +77-0.06 0.60+0:06 +97-0.09 0. 69*0 .05 +9--0.09 0.6879-03 —0.12
FC 0.99+005 000,06 0.687009 0.84+013 0,03 0.637012
Tt 1333.79+3271 77005 0.6110-06 99009 0.69+9 os —0.13 0.8110:06 —0.12
FG T +17=31.91 1464.5172697 77-0.05 0.68+0.08 —0.05 0.84+014 —0.06 0.52:(;.11
eff 1325.20+22:94 212614 1169.0772271 —0.08 0.6910.03 —0.12 0.8670:06 .10
EN T 2073888 1461.66+26-13 D1-218s 1295.39+37:30 —005 0.811012 0.06 0.537014
R off 1328.49739.28 U490 1176.50+34% U8 1124.4573338 —ol1 0.811008 10
C T 497129706 1465.75+2483 072257 1297.46+37-19 A90-2447 10491573013 05 0.40+9%7
R eff 1220.51734:67 <19-2478 1171.62+2138 “TY-37.22 11242812438 +1-26.50 853.72 3244 .05
G T -0 13474 1349.59139.18 -02-2200 1295.48+36.89 <0-2383 1047.87+32:33 4768 847.62°3 8
R eff 1218.15+3298 ~27-36.57 1061.97+2¢6:21 “+9-35.03 1120.24 12430 012579 852.41+39-37 —20.41 717.17+3200
N T 19-33.68 1334.25+3275 71-2582 1227.07+4833 ET-22.77 1048.70+27:83 —45.69 845.4812098 ~30.67
eff 1217.48+3147 +49-33.94 1062.4312811 V71-47.49 1116. 11+38 24 +1V-24.88 856.36748%9 —19.99 715.34131-38
“+0-32.82 1340.131 31.06 <72-26.39 1237 30+52.22 37.32 968 86+34A15 43.37 852'59+20.49 —30.18
FC 1 -19-32.94 1059.99+25:65 -U-4899 1115.92+3639 -60-3422 787.84+71.06 —18.69 716.90139:83
og H,0 _3. 97+0.35 +77-24.68 1221 94+43‘60 .27 967.32+33:33 —61.32 712.02+2618 —29.83
FG 1 0.1 _3.81+005 44175 1116.21+3438 -38 7878476591 -2257 722.01+4274
og H,0 —4.00°931 003 3917004 3088 964.77+3313 75038 691.80+2699 “a077
FN log H 00, _3.81108 : 3641003 777507 798.66+0334 2036 719.76+4130
g H20 —4.00%883 s 51005 3851007 64005 376005 5431 710723338 30.73
RC loec H =009 _3.811005 —0.07 _3.6310.06 -10-005 3441004 —2175 844.14738
g H,0 _4.087009 Slo04 ~3.89+04¢ 052005 3751006 004 _3.6010-10 5389
RG log H. -V9-0.08 -3 82+0A08 -3 63+0.05 —3.44 +0.04 -OV—0.10 73.02+0.O7
g H,0 _4.087007 822006 _3.93+0 03 632005 _3. 74+0 03 A42004 3601010 0.06 _3.59+0.06
RN log H o007 —3.84+0.06 +70-0.04 —3.611006 —3.44+0:04 V=009 —3.,02+0.06 0.05
g H,0 _4.09+007 -84-005 _3.03+005 61905 _3.50+0- (e A4-004 —3.607010 ~0.06 _3.59+005
7007 —3.8310.0¢6 004 ~3.5910.10 V=012 —3.451005 Y-0.09 —3.07+003 —0.05
FC ) -©°-005 —3.93+004 0.06 3501014 9005 —3.631014 <005 —3.5979%2
og CH, _5.091061 0.04 —3.611003 V=012 _3.45+0.03 05-0115 _3.04+0.06 20.05
FG 1 09 017 4861006 0.05 3497013 A3-005 ~3.631013 ~0.05 _3.581007
og CH, 5134019 -80-0.07 _4.921006 2ol _3.457005 11 3061003 —~0.06
FN log CH 0.13 _4.847008 0.07 _4.0910:07 —0.05 —3.611012 004 —3.58%900
R g CHy ~5.13+0% -0%-0.07 4811014 070,07 _4.37+006 0.13 3247006 0.06
C log CH 0.3 _4.857007 0.12 4087008 -3720.06 3731008 —~0.05 —3.201014
R g CHy 5034014 +09-0.07 _4.8910.12 J0-0.07 4351009 0.06 _375t014 13
G log CH. +£9-0.12 —4 84““3 +07-0.08 —4 08+0.07 +2~-0.07 -3 73+0 .06 <19-0.15 —3.26" 0.09
2 4 _5.2471011 07-0.10 —4.9470:07 V0-0.07 —4.35+006 +19-0.06 —3.7610-13 —0.08 —3.9410:07
RN log C =T-0.11 —4 89+0_09 -7 -0.07 —4, 06+0 .08 +22-0.06 -3 73+0,06 <1Y-0.14 *3~26+0'08 —0.06
g CHy _ 5047011 -07-0.08 _4.94+007 oo7 —3.95+0.19 0+ 19005 —3.75%0.13 —0.07 —3.94+0:0¢
=T—0.11 —4 86*0-09 +77-0.07 —4. 03+() +72-0.16 -3 76*0'07 +19-0.14 _339+0.03 —0.05
FC 1 -00-0.08 _4.94+007 0.09 _3.95+0.18 16007 _3.8070-19 272008 _3.04+006
og NH; _5.63070 420,07 _4.07+006 3-9320.16 _3.76+007 800227 _3.73+011 ~005
FG 1 6371 070,06 _3.94+017 3-716-007 —3.797018 —~0.08 _3.04+0.08
og NH; _576+033 2942015 _3.76+007 25 _379+0.08 —0.06
EN 1 762133 162007 377401 19006 _3.04+008
og NH; 5771047 23 —3.73+0.10 —0.06
RC log N SH12179 _539+0.18 —0.08 3471018
g NH; —6.0919:46 27-0.40 —4.97+018 0.13
RG log N -Y7-3.08 -5 39+0.18 <7 1-021
g NH; —6.137043 07-037 —4.977018
RN log N . 3.12 -5 39+0,17 +21-0.20
g NH; _6.02+047 97033 _4.971018
-LL-3.22 -5 65+0_31 +Z1-0.20
FC 1 -9Y-3.17 -5 02+0.24
og CO, _ 5651031 V2034
FG log C 09-331 _ 5011023
EN og CO, 5621028 05035
RC log CO, 182 5004037
RG log CO,
RN log CO,
log CO,
F
Fg log CO
log CO
+025
FN o C —3.69102 Y
R g CO —~3.661933
¢ log C z ~2.831018
RG g CO ~3.69+92) 021
V7-0.24 — +
1°g Cco -3 80+U.24 2 84 18
2:0U-026 _2 g7+o 2
-3 80+8%3 +071-024
-89-026 _n.gpto2l
2.827533
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Table 6

(Continued)
Model Parameter TO T1 T2 T3 T4 T5 T6 T7 T8
RN log CO -3.81%0%2 —2.84701
FC log H,S
FG log H,S
FN log H,S
RC log H,S
RG log H,S
RN log H,S
FC log K —7.297044 —6.462010 —6.78700% —7.042¢ 1 —6.51200% —6.87-0(¢ —7.1745013 —6.68700; —7.07531]
FG log K -7.3275013 —6.46201 —6.797007 —7.0274 17 —6.527¢88 —6.872008 —7.162817 —6.68100; —7.07531]
FN log K —7.315313 —6.4478% —6.797007 —7.047¢ 1 —6.49708% —6.877003 —7.15531 —6.867013 —7.05431]
RC log K —6.47H08 —6.8319%
RG log K —7.27%9%9 —6.87703) —5.991942
RN log K —6.69194¢ —6.907934
FC log CrH —9.011332 —9.475047
FG log CrH —9.061512 —9.40*318
FN log CrH —9.061018
RC log CrH
RG log CrH
RN log CrH *7-16f8§8
FC log FeH —9.44+347 —9.60%514 ~10.257933 —10.12+438
FG log FeH —9.42+018 —9.60%514 —10.24+933 —10.11+938
EN log FeH —9.42+0.16 —9.62+014 —10.25793%
RC log FeH —7.27+930 —7.964012 —7.79+012
RG log FeH —7.275518 —7.961513 —~8.697979
RN log FeH 7265017 —7.96+013 —7.79+047
FC log CaH 35255042
FG log CaH
FN log CaH —3.59190%
RC log CaH
RG log CaH
RN log CaH
FC log TiH —10.5010:28 —10.24793 —10.0993]
FG log TiH —10.501028 —10.241331 —10.08933
FN log TiH —10.54+339 —10.24793
RC log TiH —-8.60108
RG log TiH
RN log TiH —8.931938
FG P 0.547037 0.58 038 0.55%947 0.50799¢ 0.47+9¢¢ 0.12+1:47 0.08*11$ 0.14+113 0.20*1%
FN P 0.33+080 042797 0.53+044 0.29+1:4¢ 0.28+999 03698 0.09+143 0.401912 0.19+1%
RC e
RG P 0411973 0.3219%2 0.7619%8 0.22+199 0.09+]43 0.07+143 0.25+0:94 027493
RN P 0.25+1932 0.29*)8¢ 0.09711¢ 0.20+9%9 0.117]42 0.097119 0.23799% 0.237999
FG Py 0.50933 0.50*933 0.49*932 0.50+933 0.49*933 0.515933 0.50*933 0.50*933 0.50*933
FN 3 0.50°3:3 0.517°83 0.49*43] 0.508:3 0.50*8:33 0.52°33% 0.50°3:3% 0.54*837 0.50"3%
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Table 6

(Continued)
Model Parameter TO T1 T2 T3 T4 T5 T6 T7 T8
RC s
RG o 0.50032 0517931 050793} 0.507933 0.50933 0.507933 0.50933 050933 0.517933
RN s 051103 0.507931 0.51+93! 0.51+932 0.51+93! 0.51+931 0.507033 0.50" 032 0.50+3%
FG T —2.19733 —2.197332 0.41933 —2.554378 —2.17+382 —2.99%13] —2.761133 —2.86714 —2.68+1 %8
FN T —2.6373% —2.667 718 —1.621244 —2.771%7 —2.68"14%2 —2.77°148 —2.761132 0.04+3:1 —2.661188
RG T —2.647168 ~2.567%3) —2.5172% —2.21+239 —2.787149 —2.92+141 —2.664137 —2.67H18 —2.52+18
RN T —2.70713] —2.79+14¢ -2.607118 —2.927141 —2.76+13% —291142 —2.647133 —2.6641%7 —2.48*1%
FC Qo
FN 0o 9.83+3280 10.06+333 9.56+3566 9.9113519 9.8913232 107813592 10241343 18.6813%532 10.18+3411
RC [} . . . . . i . . .
RN Qo 9.8513%4% 10.321357° 9.96+3%88 10.2573%3! 10.08+3%37 10.1473%° 10.1343%77 10.2253%¢ 9.7813L84
FC ap
FN ao 0.70019 0.707919 0.70*919 0.70919 0.707919 0.70919 0.70019 0.6979%8 0.70+349
RC ao . . . .
RN ap 0.70919 0.70919 0.70+319 0.70+319 0.70319 0.70+319 0.70919 0.70919 0.70919
FC a
FG a
FN a 0.351986 0.35+084 0414080 0.33+088 0.36-986 0.1575%3 0.30991 —0.817014 0.347988
RC a .
RG a
RN a 034708 03508 037408 030148 0.331086 0.301488 0321988 0321988 032498

Note. Only models with the reduced set of molecules are tabulated. Variations of the models shown are as follows: full spectra cloud-free (FC), full spectra gray (FG), full spectra nongray (FN), restricted spectra cloud-
free (RC), restricted spectra gray (RG), and restricted spectra nongray (RN).
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Appendix C
Impact of Prior Choice

As mentioned in Section 3.5, we retrieve mixing ratios of the
following species: H,O, CH4, NH3, CO,, CO, H,S, CrH, FeH,
CaH, TiH, and K. In the case of the L5 brown dwarf, we first
constrained both CO and CH,4 for the restricted-wavelength,
reduced, nongray retrieval, which goes against general
expectation (e.g., Fegley & Lodders 1996; Hubeny &
Burrows 2007). To check this issue, we repeat the retrieval
but exclude CH, as chemical species to retrieve. Discarding
CH,4 resulted in an decreased value of log g from 6.197332 to
5.837039 in our retrieval, without changing other quantities
remarkably. Thus, high logg values for non-gray-cloud
retrievals may therefore also be reasoned on the basis of the

Lueber et al.

selected prior values. Still,
constrained.

In Section 4.4.5 we describe the inability to retrieve cloud
properties, especially that in most instances only upper limits
for the cloud properties are obtained. To investigate the
potential impact of our prior choice of the optical depth on the
other retrieval parameters, we show the spectra and joint
posterior distributions from the free-chemistry retrieval analysis
of the spectrum with a restricted wavelength range and gray
clouds for the L6 standard brown dwarf of our curated sample
(see Figures 15 and 16).

Interestingly, changing the prior of 7 to a uniform
distribution (between —10 and 20) results in now constraining
an optical depth. The same behavior is also found for most of
the other gray and non-gray-cloud retrievals. Figure 17 shows

no cloud parameters can be

x10-15 Spectra of L6-Dwarf with gray clouds
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Figure 15. Median restricted spectra (F) and residuals (AF) associated with the L6 dwarf of our curated sample, comparing the gray-cloud model with the original log-
uniform prior for 7 (gray line) and the adjusted uniform prior (orange line). Data are shown as dots with associated uncertainties.
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Figure 16. Joint posterior distributions from the free-chemistry retrieval analysis of the spectrum with a restricted wavelength range and gray clouds for the L6
standard brown dwarf of our curated sample. Left panel: log-uniform prior for 7. Right panel: uniform prior for 7. See Figures 13 and 14 for details on the posterior
plots. The graphs in both upper right corners show the retrieved temperature—pressure profiles. The solid line corresponds to the median profile, while the shaded area

corresponds to the 1o confidence intervals.
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——non-gray cloud models gray cloud models
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Figure 17. Retrieved cloud parameters from our suite of brown dwarf retrievals
across the L-T sequence for the cloud models and a restricted wavelength
range. In each panel, gray-cloud (olive-green line) and non-gray-cloud (red
line) models are compared. Parameters p, and p,, represent the cloud top and
bottom pressures, respectively, and 7 is optical depth. Qy is the proxy for the
cloud particle composition, a is the monodisperse particle radius, and ay is the
power-law index that describes wavelength variation.

the retrieved cloud parameters from our suite of brown dwarfs
across the L-T sequence with the gray-cloud and non-gray-
cloud model and a restricted wavelength range. Values of 7 and
p; are mostly constrained up to T3 dwarf, whereas for later T
dwarfs only upper and lower limits can be found.

Not only do we now retrieve optical depths that indicate a
cloud existence, but also the temperature—pressure profile
changes at the lower atmosphere without significantly changing
values of the other retrieved quantities (see Figure 18). This
indicates that we are still having a prior dependency when
considering retrieving for clouds. Thus, further investigations
are needed.
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