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Abstract

Let n ∈ N \ {0, 1} and let K and K′ be fields such that K′ is a
quadratic Galois extension of K. Let Q−(2n + 1, K) be a nonsingular
quadric of Witt index n in PG(2n + 1, K) whose associated quadratic
form defines a nonsingular quadric Q+(2n+ 1, K′) of Witt index n+ 1
in PG(2n + 1, K′). For even n, we define a class of SDPS-sets of the
dual polar space DQ−(2n+1, K) associated to Q−(2n+1, K), and call
its members geometric SDPS-sets. We show that geometric SDPS-sets
of DQ−(2n + 1, K) are unique up to isomorphism and that they all
arise from the spin embedding of DQ−(2n+1, K). We will use geomet-
ric SDPS-sets to describe the structure of the natural embedding of
DQ−(2n+1, K) into one of the half-spin geometries for Q+(2n+1, K′).

Keywords: dual polar space, half-spin geometry, SDPS-set, spin embedding,
hyperplane, valuation
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1 Introduction

Let n ∈ N \ {0, 1}, let K and K′ be fields such that K′ is a quadratic Galois
extension of K and let θ denote the unique nontrivial element in Gal(K′/K).
Let Q−(2n+1,K) be a nonsingular quadric of Witt index n in PG(2n+1,K)
whose associated quadratic form defines a nonsingular quadric Q+(2n+1,K′)
of Witt index n + 1 in PG(2n + 1,K′). Let M+ and M− denote the two
systems of generators (= maximal subspaces) of Q+(2n+ 1,K′). Recall that
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two generators belong to the same system if they intersect in a subspace of
even co-dimension. For every ε ∈ {+,−}, let HSε(2n + 1,K′) denote the
point-line geometry whose points are the elements of Mε and whose lines
are the (n− 2)-dimensional subspaces of Q+(2n+ 1,K′) (natural incidence).
The isomorphic geometries HS+(2n+ 1,K′) and HS−(2n+ 1,K′) are called
the half-spin geometries for Q+(2n+ 1,K′). Let DQ−(2n+ 1,K) denote the
dual polar space associated to the quadric Q−(2n + 1,K). The map which
associates with every generator of Q−(2n + 1,K) the unique element of Mε

containing it, defines a full embedding ofDQ−(2n+1,K) intoHSε(2n+1,K′),
see Cooperstein and Shult [6] (for the finite case) and De Bruyn [9] (general
case). This full embedding is called the natural embedding of DQ−(2n+1,K)
into HSε(2n+ 1,K′).

An SDPS-set of a dual polar space ∆ of rank 2n′ is a very nice set of
points of ∆ carrying the structure of a dual polar space of rank n′ (see
Section 2). SDPS-sets of dual polar spaces were introduced by De Bruyn and
Vandecasteele [11] because of their connection with the theory of valuations
of near polygons. From that connection, it follows that the set of points of
∆ at non-maximal distance from a given SDPS-set X is a hyperplane of ∆.
We call this hyperplane the hyperplane of ∆ associated to X.

In Section 4, we will construct a certain class of SDPS-sets of DQ−(2n+
1,K), n even. The construction is as follows. Let α be a generator of Q+(2n+
1,K′) which is disjoint from its conjugate αθ (with respect to the quadratic
extension K′ of K). Let H denote the following set of points of α: a point
x of α belongs to H if and only if x is collinear on Q+(2n + 1,K′) with its
conjugate xθ. Then H is a nonsingular Hermitian variety of Witt index n

2
of

α.

Theorem 1.1 If β is a generator of H, then 〈β, βθ〉 ∩ PG(2n + 1,K) is a
generator of Q−(2n + 1,K). The set of generators of Q−(2n + 1,K) which
can be obtained in this way is an SDPS-set of DQ−(2n+ 1,K).

Any SDPS-set of DQ−(2n+1,K), n even, which can be obtained as described
in Theorem 1.1 is called geometric. We prove the following in Section 4.

Theorem 1.2 Up to isomorphism, there exists a unique geometric SDPS-set
in DQ−(2n+ 1,K), n even and n ≥ 2.

The following theorem provides information regarding the structure of the
natural embedding of DQ−(2n + 1,K) into one of the half-spin geometries
for Q+(2n+ 1,K′). We will prove it in Section 5.
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Theorem 1.3 Consider the natural embedding of ∆ = DQ−(2n+ 1,K) into
HSε(2n + 1,K′), ε ∈ {+,−}. Let dε(·, ·) and d∆(·, ·) denote the distance
functions in the respective geometries HSε(2n + 1,K′) and ∆. Then for
every point x of HSε(2n + 1,K′), there exists a K ∈ N and a geometric
SDPS-set X in a convex subspace of diameter 2K of DQ−(2n + 1,K) such

that dε(x, y) = bK+1+d∆(X,y)
2

c for every point y of ∆.

By [6] and [9], the dual polar space DQ−(2n + 1,K) has a nice full embed-
ding e into the projective space PG(2n − 1,K′), called the spin embedding
of DQ−(2n + 1,K). If π is a hyperplane of PG(2n − 1,K′), then the set
of all points x of DQ−(2n + 1,K) for which e(x) ∈ π is a hyperplane of
DQ−(2n + 1,K). Hyperplanes of DQ−(2n + 1,K) which can be obtained
in this way are said to arise from e. In Section 5, we will also prove the
following result.

Theorem 1.4 The hyperplanes of DQ−(2n + 1,K), n even, associated to
geometric SDPS-sets arise from the spin embedding of DQ−(2n+ 1,K).

Remark. An SDPS-set of DQ−(5,K) is nothing else than an ovoid of the
generalized quadrangle DQ−(5,K). For any field K, there are ovoids in
DQ−(5,K) which do not arise from the spin embedding, see e.g. Payne &
Thas [14, p. 57] for the finite case and De Bruyn & Cardinali [4, Theorem 1.7]
for the infinite case. So, an SDPS-set of DQ−(5,K) is not always geometric.
It is still an open problem whether every SDPS-set of DQ−(4m + 1,K),
m ≥ 2, is geometric.

2 Preliminaries

A near polygon is a partial linear space S = (P ,L, I), I ⊆ P × L, with
the property that for every point x ∈ P and every line L ∈ L, there exists
a unique point on L nearest to x. Here, distances are measured in the
collinearity graph Γ of S. If d is the diameter of Γ, then the near polygon
is called a near 2d-gon. A near 0-gon is a point and a near 2-gon is a line.
Near quadrangles are usually called generalized quadrangles.

If S = (P ,L, I) is a near polygon, then the distance between two points
x and y of S will be denoted by d(x, y). The set of points at distance i ∈ N
from a given point x ∈ P will be denoted by Γi(x). If x ∈ P and ∅ 6= X ⊆ P ,
then d(x,X) := min{d(x, y) | y ∈ X}.

A subspace S of a near polygon S is called convex if every point on a
shortest path between two points of S is also contained in S. The points
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and lines contained in a convex subspace of S define a sub-near-polygon of
S. Convex subspaces of diameter d′ are therefore also called convex sub-
2d′-gons. A convex subspace F of S is called classical in S if for every
point x of S, there exists a necessarily unique point πF (x) in F such that
d(x, y) = d(x, πF (x)) + d(πF (x), y) for every point y of F .

A near polygon is called dense if every line is incident with at least
three points and if every two points at distance 2 have at least 2 common
neighbours. If x and y are two points of a dense near 2d-gon at distance
d′ ∈ {0, . . . , d} from each other, then by Theorem 4 of Brouwer and Wilbrink
[1], x and y are contained in a unique convex subspace 〈x, y〉 of diameter d′.
These convex subspaces are called quads if d′ = 2, hexes if d′ = 3 and maxes
if d′ = d− 1.

A function f from the point-set of a dense near 2n-gon S to N is called a
valuation of S if it satisfies the following properties:

(V1) f−1(0) 6= ∅;

(V2) every line L of S contains a necessarily unique point xL such that
f(x) = f(xL) + 1 for every point x ∈ L \ {xL};

(V3) every point x of S is contained in a necessarily unique convex subspace
Fx such that the following properties are satisfied for every y ∈ Fx: (i)
f(y) ≤ f(x); (ii) if z is a point collinear with y such that f(z) = f(y) − 1,
then z ∈ Fx.

Valuations of dense near polygons were introduced in De Bruyn and Vande-
casteele [10]. We describe three constructions for obtaining valuations of a
given dense near polygon S = (P ,L, I).

(1) For every point x of S, the map fx : P → N; y 7→ d(x, y) is a valuation
of S. We call fx a classical valuation of S.

(2) Suppose O is an ovoid of S, i.e. a set of points of S meeting each line
in a unique point. For every point x of S, we define fO(x) := 0 if x ∈ O and
fO(x) := 1 otherwise. Then fO is a valuation of S. We call fO an ovoidal
valuation of S.

(3) Let F = (P ′,L′, I′) be a convex sub-near-polygon of S which is clas-
sical in S. Suppose that f ′ : P ′ → N is a valuation of F . Then the map
f : P → N;x 7→ f(x) := d(x, πF (x)) + f ′(πF (x)) is a valuation of S. We call
f the extension of f ′. If F = S, then the extension is called trivial.

Valuations can also induce others.

Proposition 2.1 ([10, Proposition 2.12]) Let f be a valuation of a dense
near polygon S, let F be a convex subspace of S and let m denote the minimal
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value attained by f(x) as x ranges over all points of F . For every point x of
F , we define fF (x) := f(x)−m. Then fF is a valuation of F .

The valuation fF defined in Proposition 2.1 is called the valuation of F
induced by f .

We now describe an important class of near polygons. Let Π be a nondegen-
erate polar space (Veldkamp [18]; Tits [17, Chapter 7]) of rank n ≥ 2. With
Π there is associated a point-line geometry ∆ whose points are the maxi-
mal singular subspaces of Π, whose lines are the next-to-maximal singular
subspaces of Π and whose incidence relation is reverse containment. The
geometry ∆ is called a dual polar space of rank n and is an example of a near
2n-gon (Cameron [3]). There exists a bijective correspondence between the
nonempty convex subspaces of ∆ and the possibly empty singular subspaces
of Π. If α is a singular subspace of Π, then the set of all maximal singular
subspaces of Π containing α is a convex subspace of ∆. Conversely, every
convex subspace of ∆ is obtained in this way. Every convex subspace of ∆
is classical in ∆. The point-line geometry induced on a convex subspace of
diameter n′ ≥ 2 of ∆ is a dual polar space of rank n′. If α1 and α2 are two
maximal singular subspaces of Π, then the distance between α1 and α2 in
the dual polar space ∆ is equal to n− 1− dim(α1 ∩ α2).

In the present paper, we will meet 3 classes of (dual) polar spaces. Let
n ≥ 2, let K and K′ be two fields such that K′ is a quadratic Galois extension
of K and let θ be the unique nontrivial element in Gal(K′/K).

(I) We denote by Q−(2n + 1,K) a nonsingular quadric of Witt index n in
PG(2n+1,K) whose associated quadratic form defines a nonsingular quadric
Q+(2n + 1,K′) of Witt index n + 1 in PG(2n + 1,K′). With respect to a
suitable reference system in PG(2n+1,K), Q−(2n+1,K) has equation X2

0 +
(δ+δθ)X0X1 +δθ+1X2

1 +X2X3 + · · ·+X2nX2n+1 = 0, where δ is some element
of K′ \K. We denote by DQ−(2n+1,K) and DQ+(2n+1,K′) the dual polar
spaces associated to Q−(2n+ 1,K) and Q+(2n+ 1,K′), respectively. We will
call (D)Q−(2n+ 1,K) an elliptic (dual) polar space and (D)Q+(2n+ 1,K′) a
hyperbolic (dual) polar space. (Notice that we have extended this terminology
from the finite case to the infinite case.)

(II) We denote by H(2n,K′, θ) a nonsingular θ-Hermitian variety of Witt
index n in PG(2n,K′) and by DH(2n,K′, θ) the dual polar space associated
to H(2n,K′, θ). (With θ-Hermitian we mean that the associated involutary
automorphism is equal to θ.) With respect to a suitable reference system
in PG(2n,K′), H(2n,K′, θ) has equation Xθ+1

0 + (X1X
θ
2 + X2X

θ
1 ) + · · · +

(X2n−1X
θ
2n +X2nX

θ
2n−1) = 0.

5



A hyperplane of a partial linear space S = (P ,L, I) is a proper subspace
meeting each line. A full (projective) embedding of S is an injective mapping
e from P to the point-set of a projective space Σ satisfying (i) 〈e(P)〉 = Σ;
(ii) e(L) := {e(x) |x ∈ L} is a line of Σ for every line L of S. If e is a
full embedding of S and if π is a hyperplane of Σ, then e−1(e(P) ∩ π) is
a hyperplane of S. We say that the hyperplane e−1(e(P) ∩ π) arises from
the embedding e. Let Q−(2n + 1,K) and Q+(2n + 1,K′) be the quadrics as
defined above and letHS(2n+1,K′) denote one of the half-spin geometries for
Q+(2n+1,K′) (as defined in the Introduction). The geometry HS(2n+1,K′)
has a nice full embedding into PG(2n−1,K′), see Chevalley [5] or Buekenhout
and Cameron [2]. We refer to this particular embedding as the spin embedding
of HS(2n+1,K′). Taking in mind the natural embedding of DQ−(2n+1,K)
into HS(2n+1,K′), we see that the spin embedding of HS(2n+1,K′) induces
a full embedding of DQ−(2n + 1,K) into a subspace Σ of PG(2n − 1,K′).
It can be shown, see Cooperstein and Shult [6] and De Bruyn [9] that Σ =
PG(2n−1,K′). The induced embedding of DQ−(2n+1,K) into PG(2n−1,K′)
is called the spin embedding of DQ−(2n+ 1,K).

Let ∆ be a thick dual polar space of rank 2n. A set X of points of ∆ is called
an SDPS-set of ∆ if it satisfies the following properties:

(SDPS1) No two points of X are collinear in ∆.

(SDPS2) If x, y ∈ X such that d(x, y) = 2, then X ∩ 〈x, y〉 is an ovoid of
the quad 〈x, y〉.

(SDPS3) The point-line geometry ∆̃ whose points are the elements of X and
whose lines are the quads of ∆ containing at least two points of X (natural
incidence) is a dual polar space of rank n.

(SDPS4) For all x, y ∈ X, d(x, y) = 2 · d̃(x, y), where d̃(x, y) denotes the

distance between x and y in the dual polar space ∆̃.

(SDPS5) If x ∈ X and L is a line of ∆ through x, then L is contained in a
(necessarily unique) quad of ∆ which contains at least two points of X.

SDPS-sets of dual polar spaces were introduced in De Bruyn and Vande-
casteele [11]. The discussion in [11] is however restricted to the finite case.
For a discussion including the infinite case, see De Bruyn [7, Section 5.6.7].
SDPS-sets give rise to valuations:

Proposition 2.2 (Theorem 5.29 of [7]) Let X be an SDPS-set of a thick
dual polar space ∆ of rank 2n. For every point x of ∆, we define f(x) :=
d(x,X). Then f is a valuation of ∆ whose maximal value is equal to n.
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A valuation which can be obtained from an SDPS-set in the way as described
in Proposition 2.2 is called an SDPS-valuation. By Property (V2) in the
definition of valuation, we have

Corollary 2.3 Let X be an SDPS-set of a thick dual polar space of rank 2n.
Let H denote the set of points of ∆ at distance at most n− 1 from X. Then
H is a hyperplane of ∆ (the so-called hyperplane of ∆ associated to X).

SDPS-valuations can be characterized as follows.

Proposition 2.4 (Theorem 5.32 of [7]) Let ∆ be a thick dual polar space
and let f be a valuation of ∆ with the property that every induced hex val-
uation is either classical or the extension of an ovoidal valuation of a quad.
Then f is the (possibly trivial) extension of an SDPS-valuation of a convex
subpolygon of ∆.

3 Notations and basic lemmas

Let K and K′ be fields such that K′ is a quadratic Galois extension of K. Let
θ denote the unique nontrivial element in Gal(K′/K) and let n ∈ N \ {0, 1}.

Let V (2n+2,K′) denote a (2n+2)-dimensional vector space over the field
K′ and suppose B∗ = {ē∗0, ē∗1, . . . , ē∗2n+1} is a basis of V (2n + 2,K′). The set
of all K-linear combinations of elements of B∗ defines a (2n+ 2)-dimensional
vector space V (2n+ 2,K) over the field K. If x̄ =

∑2n+1
i=0 Xiē

∗
i is a vector of

V (2n+ 2,K′), then we define x̄θ =
∑2n+1

i=0 Xθ
i ē
∗
i .

Let PG(2n + 1,K′) and PG(2n + 1,K) denote the projective spaces as-
sociated to V (2n + 2,K′) and V (2n + 2,K), respectively. An ordered basis
(ē0, ē1, . . . , ē2n+1) of V (2n + 2,K′) is called a reference system for PG(2n +
1,K) if 〈

∑2n+1
i=0 Xiēi〉 ∈ PG(2n + 1,K) for all X0, X1, . . . , X2n+1 ∈ K with

(X0, X1, . . . , X2n+1) 6= (0, 0, . . . , 0). If p = 〈
∑2n+1

i=0 Xiē
∗
i 〉 is a point of PG(2n+

1,K′), then we define pθ := 〈
∑2n+1

i=0 Xθ
i ē
∗
i 〉. For every subspace α of PG(2n+

1,K′), we define αθ := {pθ | p ∈ α}. Notice that we have given different
meanings to the map θ, but from the context it will always be clear what is
meant.

There is a natural inclusion of the projective space PG(2n + 1,K) into
the projective space PG(2n + 1,K′). In the sequel, we will regard points of
PG(2n+1,K) as points of PG(2n+1,K′). Every subspace α of PG(2n+1,K)
then generates a subspace α′ of PG(2n+ 1,K′) of the same dimension as α.

Lemma 3.1 (Lemma 2.1 of [9]) If α is a subspace of PG(2n+1,K′), then
there exists a unique subspace β of PG(2n+ 1,K) such that α ∩ αθ = β′.
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For all i, j ∈ {0, . . . , 2n+ 1} with i ≤ j, let aij ∈ K such that

q
( 2n+1∑

i=0

Xiē
∗
i

)
:=

∑
0≤i≤j≤2n+1

aijXiXj

is a quadratic form of V (2n+ 2,K) and V (2n+ 2,K′) defining a nonsingular
quadric Q−(2n + 1,K) of Witt index n in PG(2n + 1,K) and a nonsingular
quadric Q+(2n + 1,K′) of Witt index n + 1 in PG(2n + 1,K′). Let B(·, ·)
denote the bilinear form of V (2n + 2,K′) associated to the quadratic form
q(·), i.e.

B(x̄1, x̄2) = q(x̄1 + x̄2)− q(x̄1)− q(x̄2)

for all x̄1, x̄2 ∈ V (2n+ 2,K′). Obviously, we have

q(x̄θ1) = [q(x̄1)]θ,

B(x̄θ1, x̄
θ
2) = [B(x̄1, x̄2)]θ,

for all x̄1, x̄2 ∈ V (2n+ 2,K′).
LetM+ andM− denote the two systems of generators of Q+(2n+ 1,K′)

and put M =M+ ∪M−.

Lemma 3.2 (Lemma 2.2 of [9]) We have (M+)θ = M− and (M−)θ =
M+. As a consequence, for every α ∈M, n− dim(α ∩ αθ) is odd.

Lemma 3.3 Let k ∈ {−1, 0, . . . , n − 1} such that n − k is odd. Then there
exists an α ∈M such that dim(α ∩ αθ) = k.

Proof. We can choose a reference system (ē0, ē1, . . . , ē2n+1) for PG(2n+1,K)
and a δ ∈ K′ \K in such a way that a point 〈

∑2n+1
i=0 Xiēi〉 of PG(2n + 1,K)

belongs to Q−(2n+ 1,K) if and only if

X2
0 + (δ + δθ)X0X1 + δθ+1X2

1 +X2X3 + · · ·+X2nX2n+1 = 0.

Now, let α be the element ofM generated by the points 〈δē0 − ē1〉, 〈ē4i−2 +
δē4i〉 (i ∈ {1, . . . , n−k−1

2
}), 〈ē4i−1 − 1

δ
ē4i+1〉 (i ∈ {1, . . . , n−k−1

2
}), 〈ē2n−2i〉

(i ∈ {0, . . . , k}). Then one readily verifies that α ∩ αθ = 〈ē2n−2i | 0 ≤ i ≤ k〉.
Hence, dim(α ∩ αθ) = k. �

Remark. Let π be a subspace of dimension k ∈ {−1, 0, . . . , n−3} of Q−(2n+
1,K). The subspaces of Q−(2n+1,K) through π define a polar space P . The
subspaces of Q+(2n+1,K′) through π′ define a polar space P ′. We can choose
a δ ∈ K′ \ K and a reference system (ē0, ē1, . . . , ē2n+1) for PG(2n + 1,K)
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such that (i) q
(∑2n+1

i=0 Xiēi

)
= X2

0 + (δ + δθ)X0X1 + δθ+1X2
1 + X2X3 +

· · ·+X2nX2n+1, (ii) π is the subspace of PG(2n+ 1,K) corresponding to the
subspace of V (2n+2,K) generated by ē2n+1, ē2n−1, . . . , ē2n+1−2k. Let π̃ denote
the subspace of PG(2n+1,K) defined by the vectors ē0, ē1, . . . , ē2n−2k−1. The

quadratic form q̃
(∑2n−2k−1

i=0 Xiēi

)
= X2

0 + (δ+ δθ)X0X1 + δθ+1X2
1 +X2X3 +

· · ·+X2n−2k−2X2n−2k−1 defines a nonsingular quadric Q̃−(2n− 2k − 1,K) of

Witt index n − k − 1 in π̃ and a nonsingular quadric Q̃+(2n − 2k − 1,K′)
of Witt index n − k in π̃′. There exists a natural bijection between the
singular subspaces of P (respectively P ′) and the subspaces contained in

the quadric Q̃−(2n − 2k − 1,K) (respectively Q̃+(2n − 2k − 1,K′)): if α
(respectively α′) is a subspace of Q−(2n+1,K) (respectively Q+(2n+1,K′))
through π (respectively π′), then α ∩ π̃ (respectively α′ ∩ π̃′) is a subspace

of Q̃−(2n − 2k − 1,K) (respectively Q̃+(2n − 2k − 1,K′)). Hence, P ∼=
Q−(2n − 2k − 1,K) and P ′ ∼= Q+(2n − 2k − 1,K′). Notice also that the
elements of one system of generators of Q+(2n+ 1,K′) through π′ define one

system of generators of P ′ ∼= Q̃+(2n − 2k − 1,K′). We will freely make use
of this remark in the sequel.

4 Geometric SDPS-sets of DQ−(2n + 1,K)

We will continue with the notation introduced in Section 3. In this section
however, we will assume that n is even and that α is an element of M
satisfying α∩ αθ = ∅. By Lemma 3.3 we know that such an α exists. Notice
that also αθ ∈M and α∩PG(2n+1,K) = ∅ since every point of α∩PG(2n+
1,K) is contained in α ∩ αθ.

Lemma 4.1 For every subspace β of α, γ = 〈β, βθ〉 ∩ PG(2n + 1,K) is a
subspace of PG(2n+1,K) of dimension 2·dim(β)+1. Moreover, γ′ = 〈β, βθ〉.

Proof. Since β ⊆ α and βθ ⊆ αθ are disjoint, 〈β, βθ〉 has dimension 2 ·
dim(β) + 1. Now, by Lemma 3.1, there exists a subspace γ1 of PG(2n +
1,K) such that γ′1 = 〈β, βθ〉 ∩ 〈β, βθ〉θ = 〈β, βθ〉. Obviously, dim(γ1) =
dim(〈β, βθ〉) = 2 · dim(β) + 1 and γ1 = 〈β, βθ〉 ∩ PG(2n+ 1,K). �

Now, letH denote the set of all points 〈x̄〉 of α for which h(x̄) := B(x̄, x̄θ) = 0.
Obviously, H is a θ-Hermitian variety of α. We observe the following for two
points 〈x̄〉, 〈ȳ〉 of α:

(I) 〈x̄〉 and 〈ȳθ〉 are collinear on the quadric Q+(2n + 1,K′) if and only if
B(x̄, ȳθ) = 0;
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(II) if 〈x̄〉 ∈ H and 〈ȳ〉 6= 〈x̄〉, then B(x̄, ȳθ) = 0 if and only if the line of
α through 〈x̄〉 and 〈ȳ〉 is either contained in H or intersects H in the
point 〈x̄〉.

By (I), a point p ∈ α belongs to H if and only if p is collinear on Q+(2n+1,K′)
with pθ.

Lemma 4.2 H is nonsingular.

Proof. Suppose 〈x̄〉 is a singular point of H. Then by (II) above, B(x̄, ȳθ) =
0 for all ȳ ∈ V (2n+ 2,K′) such that 〈ȳ〉 is a point of α. Hence, by (I) above,
〈x̄〉 is collinear on Q+(2n+ 1,K′) with every point of αθ. This is impossible
since αθ is a generator of Q+(2n+ 1,K′) and 〈x̄〉 6∈ αθ. �

Lemma 4.3 If β is a subspace of α contained in H, then 〈β, βθ〉 ∩PG(2n+
1,K) is a subspace of Q−(2n+ 1,K) of dimension 2 · dim(β) + 1.

Proof. Put k := dim(β) + 1 and let {p1, p2, . . . , pk} be an independent gen-
erating set of points for the subspace β. Then {p1, p2, . . . , pk, p

θ
1, p

θ
2, . . . , p

θ
k}

is an independent generating set of points for the subspace 〈β, βθ〉. Now, by
(I) and (II) above, {p1, p2, . . . , pk, p

θ
1, p

θ
2, . . . , p

θ
k} is a set of mutually collinear

points of the quadric Q+(2n + 1,K′). By Lemma 4.1, it now follows that
〈β, βθ〉 ∩PG(2n+ 1,K) is a subspace of dimension 2 · dim(β) + 1 of Q−(2n+
1,K). �

Lemma 4.4 Let x be a point of PG(2n+ 1,K). Then there exists a unique
line Lx in PG(2n+ 1,K′) through x which meets α and αθ in points. More-
over, (Lx∩α)θ = Lx∩αθ and Lx∩PG(2n+ 1,K) is a line of PG(2n+ 1,K).
If x ∈ Q−(2n + 1,K), then Lx ⊆ Q+(2n + 1,K′) and Lx ∩ PG(2n + 1,K) is
a line of Q−(2n+ 1,K).

Proof. Clearly, there is a unique line Lx through x meeting α and αθ in
points, namely the line through the points 〈α, x〉∩αθ and 〈αθ, x〉∩α. Since Lx
meets α and αθ and contains the point x, also Lθx meets α and αθ and contains
the point xθ = x. Hence, Lθx = Lx. This implies that (Lx ∩ α)θ = Lx ∩ αθ.
By Lemma 4.1, Lx ∩ PG(2n+ 1,K) is a line of PG(2n+ 1,K).

Suppose now that x ∈ Q−(2n + 1,K). Then the line Lx contains three
points of Q+(2n+ 1,K′), namely the point x and the unique points in Lx∩α
and Lx∩αθ. Hence, Lx ⊆ Q+(2n+ 1,K′). It follows that Lx∩PG(2n+ 1,K)
is a line of Q−(2n+ 1,K). �

Lemma 4.5 Let β be a subspace of α contained in H and let γ be the
subspace 〈β, βθ〉 ∩ PG(2n + 1,K) of Q−(2n + 1,K). Let x be a point of
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Q−(2n+ 1,K) \ γ which is collinear on Q−(2n+ 1,K) with every point of γ,
and let Lx denote the unique line of PG(2n+ 1,K′) through x which meets α
and αθ in the respective points v and vθ. Then

(i) Lx and 〈β, βθ〉 are disjoint;
(ii) the subspace 〈β, v〉 of α is contained in H.

Proof. (i) Since x 6∈ γ, also x 6∈ 〈β, βθ〉. Suppose Lx ∩ 〈β, βθ〉 is a singleton
{y}. By Lemma 4.4, Lx is generated by a line of PG(2n + 1,K) which is
contained in Q−(2n+ 1,K). Since both Lx and 〈β, βθ〉 = γ′ are generated by
subspaces of PG(2n+1,K), the point y must belong to PG(2n+1,K). Since
y ∈ 〈β, βθ〉 \ (β ∪ βθ), there exists a unique line through y meeting β and βθ

and this line necessarily coincides with the unique line through y meeting α
and αθ. It follows that Lx meets β and βθ, contradicting the fact that Lx
is not contained in 〈β, βθ〉 (recall x 6∈ 〈β, βθ〉). Hence, Lx and 〈β, βθ〉 are
disjoint.

(ii) We have β ⊆ H. Since Lx ⊆ Q+(2n + 1,K′), v and vθ are collinear
on Q+(2n+ 1,K′), i.e. v ∈ H. In order to show that 〈β, v〉 ⊆ H, we need to
prove that every point u of β is collinear on H with v, or equivalently, that
every point u of β is collinear with vθ on the quadric Q+(2n+ 1,K′) (see (I)
and (II) above).

Since x is collinear on Q−(2n+ 1,K) with every point of γ, it is collinear
on Q+(2n+1,K′) with every point of γ′ = 〈β, βθ〉. In particular, x is collinear
on Q+(2n+ 1,K′) with u. Now, since u is collinear on Q+(2n+ 1,K′) with v
and x, it is also collinear on Q+(2n + 1,K′) with vθ. This is precisely what
we needed to show. �

Proposition 4.6 H is a nonsingular θ-Hermitian variety of (maximal) Witt
index n

2
in α.

Proof. In view of Lemma 4.2, we need to show that there exists an (n
2
− 1)-

dimensional subspace on H.
We prove by induction on k ∈ {0, . . . , n

2
} that there exists a subspace

βk of dimension k − 1 on H. Obviously, this claim holds if k = 0. So,
suppose k ≥ 1. By the induction hypothesis, there exists a subspace βk−1 of
dimension k−2 on H. Put γk−1 := 〈βk−1, β

θ
k−1〉∩PG(2n+ 1,K). By Lemma

4.3, γk−1 is a subspace of dimension 2k − 3 of Q−(2n + 1,K). Since k ≤ n
2
,

there exists a point uk ∈ Q−(2n+ 1,K) which is collinear on Q−(2n+ 1,K)
with every point of γk−1. Let Luk denote the unique line through uk meeting
α and αθ in the respective points vk and vk

θ (see Lemma 4.4). By Lemma
4.5, βk := 〈βk−1, vk〉 ⊆ H and dim(βk) = k − 1. �
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Proposition 4.7 Let X be the set of generators of Q−(2n + 1,K) of the
form 〈β, βθ〉 ∩ PG(2n + 1,K), where β is some generator of H. Then X is
an SDPS-set of the dual polar space DQ−(2n + 1,K). Moreover, the dual
polar space defined on the set X by the quads of DQ−(2n+ 1,K) containing
at least two points of X is isomorphic to the dual polar space associated to
H.

Proof. Let d(·, ·) denote the distance function in the dual polar space
DQ−(2n+ 1,K). Let DH(n,K′, θ) denote the dual polar space associated to
H = H(n,K′, θ) and let d′(·, ·) denote the distance function in DH(n,K′, θ).

For every subspace γ of H, we define γφ := 〈γ, γθ〉 ∩ PG(2n + 1,K). By
Lemma 4.3, γφ is a subspace of Q−(2n + 1,K) of dimension 2 · dim(γ) + 1.
So, if γ is a point of DH(n,K′, θ), then γφ is a point of DQ−(2n+1,K). If γ1

and γ2 are two distinct subspaces on H, then γφ1 ∩ γ
φ
2 = 〈γ1, γ

φ
1 〉 ∩ 〈γ2, γ

φ
2 〉 ∩

PG(2n+ 1,K) = 〈γ1 ∩ γ2, (γ1 ∩ γ2)θ〉 ∩ PG(2n+ 1,K) = (γ1 ∩ γ2)φ. Hence,

d(βφ1 , β
φ
2 ) = 2 · d′(β1, β2) (1)

for any two points β1 and β2 ofDH(n,K′, θ). This proves property (SDPS1).
It is also obvious that φ defines a bijection between the set of lines of
DH(n,K′, θ) and the set of quads of DQ−(2n+ 1,K) which contain at least

two points of X. As a consequence, the partial linear space ∆̃ whose points
are the elements of X and whose lines are the quads of DQ−(2n + 1,K)
containing at least two points of X (natural incidence) is isomorphic to
DH(n,K′, θ), proving property (SDPS3). Property (SDPS4) now imme-
diately follows from equation (1).

We now prove property (SDPS2). Let β1 be a line of DH(n,K′, θ) and
put γ1 := 〈β1, β

θ
1〉 ∩ PG(2n+ 1,K) ⊆ Q−(2n+ 1,K). Let γ2 be an arbitrary

subspace of dimension n−2 of Q−(2n+1,K) containing γ1. We need to prove
that there exists a unique generator β2 of H(n,K′, θ) through β1 such that
γ2 ⊆ 〈β2, β

θ
2〉∩PG(2n+1,K). Let x be an arbitrary point of γ2\γ1 and let Lx

denote the unique line through x meeting α and αθ in the respective points v
and vθ. By Lemma 4.5, Lx ∩ 〈β1, β

θ
1〉 = ∅ and v is collinear on the Hermitian

variety H with every point of β1. If we put β∗ := 〈β1, v〉, then β∗ is a
generator ofH(n,K′, θ) through β1 satisfying γ2 ⊆ 〈β∗, (β∗)θ〉∩PG(2n+1,K).
Conversely, suppose that β2 is a generator of H(n,K′, θ) through β1 such that
γ2 ⊆ 〈β2, β

θ
2〉 ∩ PG(2n + 1,K). Since x ∈ 〈β2, β

θ
2〉 \ (β2 ∪ βθ2), there exists a

unique line through x meeting β2 and βθ2 . This line necessarily coincides with
Lx. Hence, v ∈ β2 and β2 = 〈β1, v〉 = β∗. Property (SDPS2) immediately
follows.

We now prove property (SDPS5). Let γ1 be a generator of Q−(2n+1,K)
corresponding to a point of X and let γ2 be an arbitrary hyperplane of γ1.

12



There exists a unique generator β1 of H such that 〈β1, β
θ
1〉∩PG(2n+1,K) =

γ1. Now, γ′2 is a hyperplane of γ′1 = 〈β1, β
θ
1〉 and hence intersects β1 in

either β1 or a hyperplane of β1. Suppose β1 ⊆ γ′2. Then βθ1 ⊆ γ′2
θ = γ′2 and

hence 〈β1, β
θ
1〉 ⊆ γ′2, a contradiction. Hence, γ′2 intersects β1 in a hyperplane

β2 of β1. Since β2 ⊆ γ′2, we have βθ2 ⊆ γ′2
θ = γ′2, 〈β2, β

θ
2〉 ⊆ γ′2 and hence

〈β2, β
θ
2〉∩PG(2n+1,K) ⊆ γ′2∩PG(2n+1,K) = γ2. So, the (n−3)-dimensional

subspace 〈β2, β
θ
2〉 ∩PG(2n+ 1,K) of Q−(2n+ 1,K) corresponds to a quad of

DQ−(2n+ 1,K) which contains the line of DQ−(2n+ 1,K) corresponding to
γ2. This proves property (SDPS5). �

SDPS-sets of the dual polar space DQ−(2n + 1,K) which can be obtained
as described in Proposition 4.7 are called geometric SDPS-sets of DQ−(2n+
1,K). A certain class of SDPS-sets of DQ−(2n + 1,K) has already been
described in De Bruyn & Vandecasteele [11] and Pralle & Shpectorov [15].
All these SDPS-sets are geometric. We will prove this in the appendix of this
paper using the description of [11].

Definition. Again, suppose that n is even and consider the inclusion PG(n−
1,K) ⊂ PG(n−1,K′). We denote by θ here the conjugation in PG(n−1,K′)
with respect to the field extension K′/K. There exists an (n

2
−1)-dimensional

subspace β of PG(n − 1,K′) such that β ∩ βθ = ∅. For every point x ∈ β,
Lx := xxθ ∩PG(n− 1,K) is a line of PG(n− 1,K). The set S = {Lx |x ∈ β}
is a spread of PG(n−1,K), i.e. a set of lines of PG(n−1,K) partitioning the
point-set of PG(n−1,K). Any spread of PG(n−1,K) which can be obtained
in this way is called a regular spread. For a discussion of regular spreads in
the finite case, see Hirschfeld [12, Chapter 4] and [13, Chapter 17].

Let X be as defined in Proposition 4.7 and let x be a point of X. The convex
subspaces of DQ−(2n+1,K) containing the point x define a projective space
Lx isomorphic to PG(n−1,K). The quads through x containing at least two
points of X define a spread Sx of Lx by property (SDPS5).

Proposition 4.8 For every point x of X, the spread Sx of Lx is regular.

Proof. Let γ be the generator of Q−(2n + 1,K) corresponding to x. Then
there exists a generator β of H such that γ = 〈β, βθ〉 ∩ PG(2n + 1,K). The
lines of the spread Sx of Lx correspond to the subspaces 〈η, ηθ〉 ∩ PG(2n +
1,K) = 〈η, βθ〉∩〈ηθ, β〉∩PG(2n+1,K), where η is some hyperplane of β. In
this way, we obtain a regular spread in the dual projective space associated
to γ. This proves the proposition. �

The following proposition is precisely Theorem 1.2.
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Proposition 4.9 Any two geometric SDPS-sets of DQ−(2n+ 1,K) are iso-
morphic.

Proof. Let V be the subspace of V (2n + 2,K′) whose nonzero elements
consist of all vectors x̄ for which 〈x̄〉 ∈ α. For all vectors x̄ and ȳ of V , we
define H(x̄, ȳ) := B(x̄, ȳθ). Then H(·, ·) is a Hermitian form on V and H is
the Hermitian variety of α associated to it. Let δ be an element of K′ such
that δθ 6∈ {δ,−δ}. [If char(K) = 2, then δ is an arbitrary element of K′ \K.
If char(K) 6= 2, then for an arbitrary µ ∈ K′ \ K, δ can be chosen in the
set {µ, µ+ 1}.] Now, we can always choose a k ∈ K \ {0} and vectors f̄0, f̄i
(i ∈ {1, . . . , n

2
}), ḡi (i ∈ {1, . . . , n

2
}) in V such that

• α = 〈f̄0, f̄1, . . . , f̄n
2
, ḡ1, . . . , ḡn

2
〉,

• H(f̄0, f̄0) = −k(δ − δθ)2,

• H(f̄0, f̄i) = H(f̄0, ḡi) = 0 for all i ∈ {1, . . . , n
2
},

• H(f̄i, f̄j) = H(ḡi, ḡj) = 0 for all i, j ∈ {1, . . . , n
2
},

• H(f̄i, ḡi) = k · δθ−δ
δθ

for every i ∈ {1, . . . , n
2
},

• H(f̄i, ḡj) = 0 for all i, j ∈ {1, . . . , n
2
} with i 6= j.

[If β1 and β2 are two disjoint generators of H and p = 〈β1, β2〉ζ , where ζ is the
Hermitian polarity of α associated toH, then we can choose f̄0, f̄1, . . . , f̄n

2
, ḡ1, . . . , ḡn

2

in such a way that p = 〈f̄0〉, β1 = 〈f̄1, . . . , f̄n
2
〉 and β2 = 〈ḡ1, . . . , ḡn

2
〉.] Now,

put

ē0 =
f̄ θ0 − f̄0

δθ − δ
, ē1 =

δf̄ θ0 − δθf̄0

δθ − δ
,

and

ē4i−2 =
δθf̄i − δf̄ θi
δθ − δ

, ē4i =
f̄ θi − f̄i
δθ − δ

,

ē4i−1 =
δθḡθi − δḡi
δθ − δ

, ē4i+1 =
δθ+1(ḡθi − ḡi)

δθ − δ
,

for every i ∈ {1, . . . , n
2
}. Then ē0, ē1, . . . , ē2n+1 ∈ V (2n + 2,K). Moreover,

these 2n + 2 vectors are linearly independent since α ∩ αθ = ∅. Hence,
(ē0, ē1, . . . , ē2n+1) is a reference system for PG(2n+ 1,K). Suppose

q(
2n+1∑
i=0

Xiēi) =
∑

0≤i≤j≤2n+1

aijXiXj.
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Let i ∈ {1, . . . , n
2
}. Since 〈f̄i〉 ∈ H, 〈f̄i〉 and 〈f̄ θi 〉 are collinear points on

Q+(2n + 1,K′). Hence, 〈ē4i−2〉, 〈ē4i〉 ∈ Q−(2n + 1,K). In a similar way, one
can prove that 〈ē4i−1〉, 〈ē4i+1〉 ∈ Q−(2n+1,K). We can conclude that aii = 0
for every i ∈ {2, . . . , 2n+ 1}.

Notice that since α is a generator of Q+(2n+1,K′), B(x̄, ȳ) = H(x̄, ȳθ) =
0 for all x̄, ȳ ∈ {f̄0, f̄1, . . . , f̄n

2
, ḡ1, . . . , ḡn

2
}.

We calculate

a01 = B(ē0, ē1)

= B(
f̄ θ0 − f̄0

δθ − δ
,
δf̄ θ0 − δθf̄0

δθ − δ
)

=
δ ·B(f̄ θ0 , f̄

θ
0 )− δθ ·B(f̄ θ0 , f̄0)− δ ·B(f̄0, f̄

θ
0 ) + δθ ·B(f̄0, f̄0)

(δθ − δ)2
.

Now, B(f̄0, f̄0) = 0, B(f̄ θ0 , f̄
θ
0 ) = (B(f̄0, f̄0))θ = 0 andB(f̄ θ0 , f̄0) = B(f̄0, f̄

θ
0 ) =

H(f̄0, f̄0) = −k(δ − δθ)2. It follows that

a01 = k(δ + δθ).

After some straightforward calculations, one finds in a similar way that

• a0i = a1i = 0 for all i ∈ {2, . . . , 2n+ 1},

• a2i,2i+1 = k for all i ∈ {1, . . . , n},

• aj1,j2 = 0 for all j1, j2 ∈ {2, . . . , 2n+ 1} with j1 < j2 and (j1, j2) not of
the form (2i, 2i+ 1) for some i ∈ {1, . . . , n}.

Now, since 〈f̄0〉 = 〈δē0 − ē1〉 ∈ α and 〈f̄ θ0 〉 = 〈δθē0 − ē1〉 ∈ αθ are points of
Q+(2n+ 1,K′), we have{

a00 · δ2 + k(δ + δθ)(−δ) + a11 = 0,
a00 · (δθ)2 + k(δ + δθ)(−δθ) + a11 = 0.

Hence, a00 = k and a11 = kδθ+1. So, with respect to the reference system
(ē0, ē1, . . . , ē2n+1) of PG(2n+ 1,K), Q−(2n+ 1,K) has equation

X2
0 + (δ + δθ)X0X1 + δθ+1X2

1 +X2X3 + · · ·+X2nX2n+1 = 0.

Now, suppose α† is another generator of Q+(2n + 1,K′) such that (α†)θ ∩
α† = ∅. Then construct in the same way as above a reference system
(ē†0, ē

†
1, . . . , ē

†
2n+1) for PG(2n + 1,K) associated to suitable vectors f̄ †0 , f̄ †i

(i ∈ {1, . . . , n
2
}), ḡ†i (i ∈ {1, . . . , n

2
}). With respect to the reference system
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(ē†0, ē
†
1, . . . , ē

†
2n+1) of PG(2n + 1,K), Q−(2n + 1,K) has also equation X2

0 +
(δ+δθ)X0X1 +δθ+1X2

1 +X2X3 + · · ·+X2nX2n+1 = 0. It is now clear that the
linear map

∑2n+1
i=0 Xiēi 7→

∑2n+1
i=0 Xiē

†
i of V (2n + 2,K′) induces an automor-

phism of PG(2n+ 1,K′) fixing PG(2n+ 1,K) and Q−(2n+ 1,K) setwise and
mapping α = 〈f̄0, f̄1, . . . , f̄n

2
, ḡ1, . . . , ḡn

2
〉 to α† = 〈f̄ †0 , f̄

†
1 , . . . , f̄

†
n
2
, ḡ†1, . . . , ḡ

†
n
2
〉.

Hence, the geometric SDPS-sets of DQ−(2n + 1,K) associated to α and α†

are isomorphic. �

5 The natural embedding of DQ−(2n + 1,K)

into the half-spin geometry for Q+(2n+1,K′)
We will continue with the notation introduced in Section 3. For every α ∈M
and every generator γ of Q−(2n+ 1,K), we define

fα(γ) := M − dim(γ′ ∩ α),

where

M := max{dim(η′ ∩ α) | η is a generator of Q−(2n+ 1,K)}.

Proposition 5.1 For every α ∈M, fα is a valuation of the dual polar space
DQ−(2n+ 1,K) associated to Q−(2n+ 1,K).

Proof. By definition, the minimal value attained by fα is equal to 0. So,
property (V1) is satisfied.

Let β be an arbitrary (n − 2)-dimensional subspace of Q−(2n + 1,K).
Then there exists a unique generator η of Q+(2n + 1,K′) through β′ for
which dim(α ∩ η) = dim(α ∩ β′) + 2. Let γ be the unique subspace of
PG(2n+1,K) such that γ′ = η∩ηθ (see Lemma 3.1). Then γ ⊆ Q−(2n+1,K)
and β′ ⊆ γ′ ⊆ η. By Lemma 3.2, dim(γ′) = n − 1. So, γ is a generator of
Q−(2n+1,K) through β. Since β′ ⊂ γ′ ⊂ η and dim(α∩η) = dim(α∩β′)+2,
dim(α ∩ γ′) = dim(α ∩ β′) + 1. Conversely, suppose that κ is a generator of
Q−(2n + 1,K) through β such that dim(α ∩ κ′) = dim(α ∩ β′) + 1. Then
κ′ is necessarily contained in η. Then κ′ = κ′θ ⊆ ηθ and κ′ ⊆ η ∩ ηθ = γ′.
Since κ′ and γ′ have the same dimension, we have κ = γ. It follows that the
line of DQ−(2n+ 1,K) corresponding to β has a unique point with smallest
fα-value, namely the point corresponding to γ, and that all the remaining
points of that line have value fα(γ) + 1. This proves that property (V2) is
satisfied.

Now, let β be an arbitrary generator of Q−(2n + 1,K). By Lemma 3.1,
there exists a subspace γ of PG(2n+ 1,K) such that γ′ = 〈α ∩ β′, αθ ∩ β′〉 ∩
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〈α∩β′, αθ∩β′〉θ = 〈α∩β′, αθ∩β′〉 ⊆ β′. Let Fβ denote the convex subspace of
DQ−(2n+1,K) corresponding to the subspace γ of Q−(2n+1,K). Obviously,
the point of DQ−(2n+ 1,K) corresponding to β belongs to Fβ.

We will now prove that property (V3) is satisfied with respect to the
convex subspace Fβ. Let η be a generator of Q−(2n+ 1,K) through γ. Then
η′ contains γ′ = 〈α ∩ β′, αθ ∩ β′〉 and hence dim(η′ ∩ α) ≥ dim(α ∩ β′),
i.e. fα(η) ≤ fα(β). Now, let κ be an arbitrary generator of Q−(2n + 1,K)
such that fα(κ) = fα(η) − 1 and dim(η ∩ κ) = n − 2. So, dim(α ∩ κ′) =
dim(α ∩ η′) + 1 and dim(κ′ ∩ η′) = n − 2. Let p be an arbitrary point of
(α ∩ κ′) \ (α ∩ η′). Then κ′ ∩ η′ is the set of points of η′ collinear with p on
Q+(2n + 1,K′). Since every point of α ∩ η′ is collinear on Q+(2n + 1,K′)
with p ∈ α, α ∩ η′ ⊆ η′ ∩ κ′, i.e. α ∩ η′ ⊆ κ′. Hence, also αθ ∩ η′ ⊆ κ′. Since
α ∩ β′ ⊆ α ∩ η′ (recall η′ ⊇ γ′ = 〈α ∩ β′, αθ ∩ β′〉) and αθ ∩ β′ ⊆ αθ ∩ η′,
γ′ = 〈α ∩ β′, αθ ∩ β′〉 ⊆ 〈α ∩ η′, αθ ∩ η′〉 ⊆ κ′, i.e. γ ⊆ κ. So, fα satisfies
property (V3). �

Proposition 5.2 Suppose there exists a generator β of Q−(2n+ 1,K) such
that β′ ⊆ α. Then fα is a classical valuation of DQ−(2n+ 1,K), namely, for
every generator γ of Q−(2n+1,K), fα(γ) equals the distance d(β, γ) between
β and γ in the dual polar space DQ−(2n+ 1,K).

Proof. From β′ ⊆ α, it follows β′ = β′θ ⊆ αθ and hence β′ = α ∩ αθ (recall
Lemma 3.2). Let γ be an arbitrary generator of Q−(2n + 1,K). Suppose
γ′ contains a point x of α \ β′. Since x, xθ ∈ γ′ ⊆ Q+(2n + 1,K′), xxθ ⊆
Q+(2n+ 1,K′) and 〈α, αθ〉 ⊆ Q+(2n+ 1,K′). This is impossible since α and
αθ are generators of Q+(2n+ 1,K′). Hence, γ′ ∩α ⊆ β′, i.e. γ′ ∩α = γ′ ∩ β′.
Hence, fα(γ) = M − dim(γ′ ∩ α) = M − dim(γ′ ∩ β′) = M − dim(γ ∩ β),
where M = max{dim(η′∩α) | . . .} = max{dim(η′∩β′) | . . .} = max{dim(η∩
β) | . . .} = n− 1. So, fα(γ) equals the distance between β and γ in the dual
polar space DQ−(2n+ 1,K). �

Lemma 5.3 Let x be a point of α∩αθ∩PG(2n+1,K), let β be a generator of
Q−(2n+1,K) not containing x and let γ be the unique generator of Q−(2n+
1,K) containing x intersecting β in a subspace of dimension n − 2. Then
dim(γ′ ∩ α) = dim(β′ ∩ α) + 1.

Proof. Since x ∈ γ′ \ β′, β′ 6= γ′. So, β′ ∩ γ′ is a hyperplane of both β′

and γ′ and dim(γ′ ∩ α) ≤ dim(β′ ∩ γ′ ∩ α) + 1 ≤ dim(β′ ∩ α) + 1. We will
now prove that dim(β′ ∩ α) + 1 ≤ dim(γ′ ∩ α). If x ∈ Q−(2n + 1,K) were
collinear on Q+(2n + 1,K′) with every point of β′, then x would also be
collinear on Q−(2n+ 1,K) with every point of β, contradicting the fact that
x ∈ Q−(2n + 1,K) \ β and β is a generator of Q−(2n + 1,K). Hence, the
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points of β′ collinear on Q+(2n+ 1,K′) with x form a hyperplane of β′ which
necessarily coincides with (β ∩ γ)′. Since every point of β′ ∩α is collinear on
Q+(2n+1,K′) with x ∈ α, β′∩α ⊆ (β∩γ)′ = β′∩γ′. Hence, β′∩α ⊆ γ′∩α.
Now, since x ∈ (γ′ ∩ α) \ (β′ ∩ α), we have dim(γ′ ∩ α) ≥ dim(β′ ∩ α) + 1. �

Suppose x is a point of α∩αθ ∩PG(2n+ 1,K), where n ≥ 3. The subspaces
of Q−(2n+1,K) (respectively Q+(2n+1,K′)) through x define a polar space
Q−(2n − 1,K) (respectively Q+(2n − 1,K′)). The maximal subspaces of
Q−(2n+1,K) through x form a max M ∼= DQ−(2n−1,K) of DQ−(2n+1,K).
Since α is a maximal subspace of Q+(2n−1,K′), we can define a valuation fMα
of M , similarly as we could define the valuation fα of DQ−(2n+ 1,K) from
the maximal subspace α of Q+(2n+1,K′). From Lemma 5.3, we immediately
obtain:

Proposition 5.4 Let fMα be as defined before this proposition. Then the
valuation fα of DQ−(2n+ 1,K) is the extension of the valuation fMα of M .

Proposition 5.5 (i) If n = 2, then fα is a classical or ovoidal valuation of
DQ−(5,K).

(ii) If n = 3, then the valuation fα of DQ−(7,K) is either a classical
valuation or the extension of an ovoidal valuation of a quad of DQ−(7,K).

Proof. (i) If n = 2, then α is a generator of Q+(5,K′). Since α and αθ belong
to different systems of generators of Q+(5,K′), α ∩ αθ is either a line or the
empty set. If α ∩ αθ is a line, then fα is a classical valuation of DQ−(5,K)
by Lemma 3.1 and Proposition 5.2. Suppose therefore that α∩αθ = ∅. Then
dim(β′ ∩ α) ≤ 0 for every generator (= line) β of Q−(5,K). It follows that
fα can only attain the values 0 and 1. This implies that fα is an ovoidal
valuation of DQ−(5,K).

(ii) If n = 3, then since α and αθ belong to different systems of generators
of Q+(7,K′), dim(α ∩ αθ) ∈ {0, 2}. By Lemma 3.1, there exists a point
x ∈ α∩αθ∩PG(2n+1,K). Claim (ii) follows from Claim (i) and Proposition
5.4. (Notice that extensions of classical valuations are again classical.) �

Proposition 5.6 The valuation fα is the possibly trivial extension of an
SDPS-valuation of a convex subspace of DQ−(2n+ 1,K).

Proof. Let DQ+(2n + 1,K′) denote the dual polar space associated to
Q+(2n+1,K′) and let d+(·, ·) denote the distance function inDQ+(2n+1,K′).

By Proposition 5.5, the proposition holds if n ≤ 3. So, suppose n ≥ 4.
Let U denote an arbitrary hex of DQ−(2n+1,K) corresponding to an (n−4)-
dimensional subspace β of Q−(2n+ 1,K). The subspace β′ of Q+(2n+ 1,K′)
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corresponds to a convex subspace F of diameter 4 of DQ+(2n + 1,K′). Let
α̃ denote the unique point of F nearest to α. For every generator γ of
Q−(2n+ 1,K) through β, put

f̃α̃(γ) = M̃ − dim(γ′ ∩ α̃),

where

M̃ := max{dim(η′ ∩ α̃) | η is a generator of Q−(2n+ 1,K) through β}.

Then f̃α̃ is a valuation of U , which by Proposition 5.5 is either a classical
valuation or the extension of an ovoidal valuation of a quad of U .

Now, for every generator γ of Q−(2n+1,K) through β, n−1−dim(γ′∩α)
is equal to the distance d+(γ′, α) between the line γ′ of DQ+(2n+ 1,K′) and
the point α of DQ+(2n + 1,K′). Since F is classical in DQ+(2n + 1,K′),
d+(γ′, α) = d+(γ′, α̃) + d+(α̃, α) and hence dim(γ′∩α) = n− 1−d+(γ′, α) =
n−1−d+(γ′, α̃)−d+(α̃, α) = dim(γ′∩α̃)−d+(α̃, α). So, fα(γ) = M−dim(γ′∩
α) = M+d+(α̃, α)−dim(γ′∩ α̃) = M+d+(α̃, α)−M̃+ f̃α̃(γ). It follows that

f̃α̃ is the valuation of U induced by fα. Since U was arbitrary, every induced
hex-valuation is either classical or the extension of an ovoidal valuation of
a quad. By Proposition 2.4, it now follows that fα is the possibly trivial
extension of an SDPS-valuation of a convex subspace of DQ−(2n+ 1,K). �

Definition. Let Fα denote the convex subspace of DQ−(2n+1,K) such that
fα is the extension of an SDPS-valuation of Fα. Let Xα denote the SDPS-set
of Fα corresponding to the SDPS-valuation of Fα giving rise to fα. The set
Xα consists of those points of DQ−(2n + 1,K) whose fα-value is equal to
0, or equivalently, consists of those generators γ of Q−(2n + 1,K) for which
dim(γ′ ∩ α) attains its maximal value M .

Proposition 5.7 Fα is the convex subspace of DQ−(2n+1,K) corresponding
to the subspace (α∩αθ)∩PG(2n+1,K) of Q−(2n+1,K) and Xα is a geometric
SDPS-set in Fα.

Proof. (i) Suppose first that α ∩ αθ = ∅. Then n is even by Lemma 3.2.
Recall that M is the maximal value of dim(γ′ ∩ α), where γ ranges over
all generators of Q−(2n + 1,K). Let H denote the set of points x of α
which are collinear on Q+(2n + 1,K′) with xθ. Then by Proposition 4.6, H
is a nonsingular θ-Hermitian variety of Witt index n

2
in α. The set X of

generators of Q−(2n + 1,K) of the form 〈β, βθ〉 ∩ PG(2n + 1,K) where β is
some generator of H is a (geometric) SDPS-set of DQ−(2n+ 1,K).
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If γ is a generator of Q−(2n + 1,K), then γ′ ∩ α and (γ′ ∩ α)θ = γ′ ∩ αθ
are disjoint subspaces of γ′. Since dim(γ′) = n − 1, we necessarily have
dim(γ′ ∩ α) ≤ n

2
− 1. Hence, M ≤ n

2
− 1.

If β is a generator of H, then γ = 〈β, βθ〉 ∩ PG(2n+ 1,K) is a generator
of Q−(2n+ 1,K). Moreover, γ′ ∩ α = 〈β, βθ〉 ∩ α = β has dimension n

2
− 1.

So, we can conclude that M = n
2
− 1. It is clear from the above that the

generators γ of Q−(2n+1,K) for which dim(γ′∩α) = n
2
−1 are precisely those

generators of Q−(2n+1,K) which are of the form 〈β, βθ〉∩PG(2n+1,K) for
some generator β of H. So, Xα = X is a geometric SDPS-set of DQ−(2n +
1,K). Since DQ−(2n + 1,K) is the convex subspace of DQ−(2n + 1,K)
corresponding to the subspace ∅ = α∩αθ ∩PG(2n+ 1,K) of Q−(2n+ 1,K),
we have proved our claim.

(ii) Suppose β := α ∩ αθ ∩ PG(2n + 1,K) 6= ∅. Let F denote the convex
subspace of DQ−(2n + 1,K) corresponding to β. By successive application
of Proposition 5.4, we see that fα is the extension of a valuation fFα of F . So,
Xα must be a set of points of F . Now, taking the quotient polar spaces P and
P ′ obtained by considering all subspaces of Q−(2n+1,K) and Q+(2n+1,K′)
through β and β′, respectively, and applying (i), we see that Xα must be a
geometric SDPS-set in F . �

Now, put

K :=
n− 1− dim(α ∩ αθ)

2
.

Then K ∈ N by Lemma 3.2. More precisely, we have 0 ≤ K ≤ bn
2
c. By

Proposition 5.7, the diameter diam(Fα) of Fα is equal to (n− 1)− dim(α ∩
αθ) = 2K. So, the maximal value of an SDPS-valuation of Fα is equal to K.
It follows that the maximal value of fα is equal to

K + diam(DQ−(2n+ 1,K))− diam(Fα) = n−K.

In the following proposition, we determine the precise value of the parameter
M = max{dim(η′ ∩ α) | η is a generator of Q−(2n+ 1,K)}.

Proposition 5.8 We have M = n−K − 1.

Proof. We have dim(α ∩ αθ) = n − (2K + 1). Let π be the (n − 2K − 1)-
dimensional subspace of PG(2n + 1,K) such that π′ = α ∩ αθ. Taking the
quotient of Q−(2n+ 1,K) and Q+(2n+ 1,K′) over the respective subspaces
π and π′ = α∩αθ, we obtain polar spaces isomorphic to Q−(4K + 1,K) and
Q+(4K + 1,K′). By successive application of Lemma 5.3, we see that M =
dim(π′) + 1 + dimension of a generator of H(2K,K′, θ) = n−K−1. (Recall
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that by the proof of Proposition 5.7, M equals the dimension of a generator
of H if α ∩ αθ = ∅.) �

Corollary 5.9 There exists a generator η of Q−(2n+1,K) such that η′∩α =
∅.

Proof. For every generator η of Q−(2n+1,K), we have fα(η) = M−dim(η′∩
α) = n−K − 1− dim(η′ ∩ α). The claim now follows from the fact that the
maximal value of fα(η) is equal to n−K. �

Now, let ε ∈ {+,−} such that α ∈ Mε. Recall that HSε(2n + 1,K′) de-
notes the half-spin geometry for Q+(2n + 1,K′) defined on the set Mε. Let
dε(·, ·) denote the distance function in HSε(2n + 1,K′). For any two ele-

ments α1, α2 ∈ Mε, we have dε(α1, α2) = n−dim(α1∩α2)
2

. The diameter of
HSε(2n+ 1,K′) is equal to bn+1

2
c.

For every generator γ of Q−(2n+ 1,K), let γφ denote the unique element
of Mε through γ′. Then φ defines a full embedding of ∆ = DQ−(2n +
1,K) into HSε(2n + 1,K′) (the natural embedding of DQ−(2n + 1,K) into
HSε(2n+ 1,K′)). Since γφ and α belong to the same system of generators of
Q+(2n+1,K′), n−dim(α∩γφ) is even. Obviously, dim(α∩γφ)−dim(α∩γ′) ∈
{0, 1}. Hence, n− dim(α ∩ γφ) = 2 · bn−dim(α∩γ′)

2
c, i.e.

dε(α, γ
φ) = bn− dim(α ∩ γ′)

2
c.

Since the maximal value of dim(α ∩ η′), where η ranges over all generators
of Q−(2n+ 1,K), is equal to n−K − 1, we have

dε(α,∆
φ) = bK + 1

2
c.

Now, for every generator γ of Q−(2n+ 1,K),

dε(α, γ
φ) = bn− dim(α ∩ γ′)

2
c

= bn−M +M − dim(α ∩ γ′)
2

c

= bK + 1 + fα(γ)

2
c

= bK + 1 + d∆(γ,Xα)

2
c.

This proves Theorem 1.3.
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Remark. Since the maximal value of fα(γ) = d∆(γ,Xα) is equal to n −
K, the maximal value of dε(α, γ

φ) is equal to bn+1
2
c which is precisely the

diameter of HSε(2n+ 1,K′).

We will now prove Theorem 1.4. We will need the following lemma, which is
easy to prove, see e.g. [9, Lemma 2.5].

Lemma 5.10 (i) If n is odd, then the set of elements ofMε meeting a given
element of Mε is a hyperplane of HSε(2n+ 1,K′).

(ii) If n is even, then the set of elements of Mε meeting a given element
of M−ε is a hyperplane of HSε(2n+ 1,K′).

Now, suppose that n is even, that α ∈ Mε and that α ∩ αθ = ∅. Then
by Lemma 5.10 (ii) and Lemma 3.2, the set of elements of Mε meeting αθ

defines a hyperplane Hα of HSε(2n+ 1,K′).
Let γ be an arbitrary generator of Q−(2n + 1,K). Then γφ ∈ Hα if and

only if dim(αθ ∩ γφ) ≥ 0. Now, dim(αθ ∩ γφ) − dim(αθ ∩ γ′) ∈ {0, 1} and
dim(αθ∩γφ) is odd since αθ and γφ belong to different systems of generators.
It follows that γφ ∈ Hα if and only if dim(αθ ∩ γ′) ≥ 0. Now,

dim(αθ ∩ γ′) = dim(α ∩ γ′)
= M − fα(γ)

= n−K − 1− fα(γ).

So, γφ ∈ Hα if and only if fα(γ) ≤ n −K − 1. Now, the maximal value of
the valuation fα is equal to n −K. So, γφ ∈ Hα if and only if γ belongs to
the hyperplane of DQ−(2n+ 1,K) associated to the SDPS-set Xα. Now, let
e denote the spin embedding of HSε(2n + 1,K′). Then by the main result
of Shult [16] (see also Corollary 1.3 of [8] for an alternative proof) every
hyperplane of HSε(2n+ 1,K′) arises from e. In particular, Hα arises from e.
Now, the map e ◦ φ defines a full embedding e′ of DQ−(2n + 1,K) which is
isomorphic to the spin embedding of DQ−(2n+ 1,K). Since Hα arises from
e, the hyperplane of DQ−(2n + 1,K) associated to the SDPS-set Xα arises
from e′. This proves Theorem 1.4.

6 Appendix: An alternative construction for

the unique geometric SDPS-set of DQ−(2n+

1,K)

In De Bruyn and Vandecasteele [11] a construction was given to obtain SDPS-
sets of the dual polar space DQ−(2n+ 1, q). We recall this construction.
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Consider the finite field Fq2 with q2 elements and let Fq denote the subfield
of order q of Fq2 . Let δ denote an arbitrary element of Fq2 \Fq. Consider the
following bijection φ between the vector spaces F4n+2

q and F2n+1
q2 :

φ(X1, X2, . . . , X4n+2) = (X1 + δX2, . . . , X4n+1 + δX4n+2).

Let 〈·, ·〉 be a nondegenerate Hermitian form of F2n+1
q2 . For every x̄ ∈ F2n+1

q2 ,

we define h(x̄) := 〈x̄, x̄〉 and for every x̄ ∈ F4n+2
q , we define q(x̄) := 〈φ(x̄), φ(x̄)〉.

The equation h(x̄) = 0, respectively q(x̄) = 0, defines a nonsingular Her-
mitian variety H(2n, q2) in PG(2n, q2), respectively a nonsingular elliptic
quadric Q−(4n + 1, q) in PG(4n + 1, q). With every generator of H(2n, q2),
there corresponds (via the map φ−1) a generator of Q−(4n + 1, q). The set
of generators of Q−(4n + 1, q) which arise in this way is an SDPS-set of
DQ−(4n+ 1, q).

We will now show that the SDPS-sets which arise in this way are geo-
metric. In order to facilitate the proof, we will give a slightly different but
equivalent construction (which is presented here for possibly infinite fields).

Let K, K′, θ, n, V (2n+ 2,K), V (2n+ 2,K′), PG(2n+ 1,K) and PG(2n+
1,K′) be as in Section 3 and suppose that n is even. Let V be an (n +
1)-dimensional subspace of V (2n + 2,K′) such that V θ ∩ V = {ō}. Let
{ē0, ē1, . . . , ēn} be a basis of V and let α be the subspace of PG(2n + 1,K′)
corresponding to V . For every i ∈ {0, . . . , n}, we define

f̄i := ēi + ēθi ,

ḡi := δ · ēi + δθ · ēθi ,

where δ is some given element of K′\K. Then {f̄0, f̄1, . . . , f̄n, ḡ0, ḡ1, . . . , ḡn} is
a basis of V (2n+2,K). Define the following bijection φ between V (2n+2,K)
and V :

φ
( n∑
i=0

(Xif̄i + Yiḡi)
)

:=
n∑
i=0

(Xi + δYi)ēi.

The following claim is obvious:

Claim I: For every vector x̄ 6= ō of V (2n+ 2,K), the point 〈x̄〉 of PG(2n+
1,K′) is contained on the line connecting the points 〈φ(x̄)〉 ∈ α and 〈φ(x̄)θ〉 ∈
αθ.

Now, let < ·, · > be a nondegenerate θ-Hermitian form of V of maximal Witt
index n

2
. For every vector x̄ of V (2n+ 2,K), we define

q(x̄) := 〈φ(x̄), φ(x̄)〉.
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Claim II: q is a nondegenerate quadratic form of Witt index n of V (2n +
2,K).
Proof. For every x̄ ∈ V (2n + 2,K) and every k ∈ K, we have q(kx̄) =
k2q(x̄). Now, for all x̄1, x̄2 ∈ V (2n+ 2,K), we put B(x̄1, x̄2) := q(x̄1 + x̄2)−
q(x̄1)− q(x̄2) = 〈φ(x̄1), φ(x̄2)〉+ 〈φ(x̄2), φ(x̄1)〉. Obviously, B is a symmetric
K-bilinear form on V (2n + 2,K). We prove that B is nondegenerate. If
B were degenerate, then there exists an x̄∗ ∈ V (2n + 2,K) \ {0̄} such that
κ(ȳ) := 〈φ(x̄∗), ȳ〉 + 〈ȳ, φ(x̄∗)〉 = 0 for all ȳ ∈ V . From κ(ȳ) = κ(δȳ) = 0, it
then follows that 〈φ(x̄∗), ȳ〉 = 0 for all ȳ ∈ V . This contradicts the fact that
〈·, ·〉 is nondegenerate.

If U is a subspace of vector dimension n
2

of V which is totally isotropic
with respect to 〈·, ·〉, then q(x̄) = 0 for every x̄ ∈ φ−1(U). Hence, the Witt
index of q is at least n. Suppose the Witt index of q is bigger than n.
Then there exists a vector x̄∗ ∈ V (2n + 2,K) not belonging to φ−1(U) such
that q(x̄) = 0 for every vector x̄ belonging to the subspace of V (2n + 2,K)
generated by x̄∗ and φ−1(U). This implies that κ(ȳ) := 〈φ(x̄∗), ȳ〉+〈ȳ, φ(x̄∗)〉
for any ȳ ∈ U . From κ(ȳ) = κ(δȳ) = 0, it then follows that 〈φ(x̄∗), ȳ〉 = 0
for any ȳ ∈ U . Since also 〈φ(x̄∗), φ(x̄∗)〉 = q(x̄∗) = 0 and φ(x̄∗) 6∈ U , this
contradicts the fact that U is a maximal totally isotropic subspace of V .

So, q is a nondegenerate quadratic form of Witt index n in V (2n+ 2,K).
�

So, with q there is associated a nonsingular quadric Q of Witt index n in
PG(2n + 1,K) and a quadric Q̃ in PG(2n + 1,K′). Since the bilinear form

associated to q is nondegenerate, Q̃ is a nonsingular quadric of Witt index
n′ ∈ {n, n + 1} in PG(2n + 1,K′). Let H̃ be the θ-Hermitian variety of α
associated to 〈·, ·〉 and let ζ denote the Hermitian polarity of α associated to

〈·, ·〉. We will prove that α ⊆ Q̃. Let p = 〈ȳ〉 be an arbitrary point of α.

(a) Suppose first that p ∈ H̃. By Claim I, for every point 〈x̄〉 ∈ ppθ ∩
PG(2n + 1,K), φ(x̄) is a multiple of ȳ. Hence, the line ppθ ∩ PG(2n + 1,K)

of PG(2n+ 1,K) is completely contained in Q−(2n+ 1,K). So, ppθ ⊆ Q̃. In

particular, p ∈ Q̃.
(b) Suppose p ∈ α \ H̃. Clearly, there exists a point r ∈ H̃ \ pζ . For

such a point r, rp ∩ H̃ is a Baer subline of rp. Since each of the |K|+ 1 ≥ 3

points of rp ∩ H̃ are contained in Q̃, the whole line rp is contained in Q̃. In
particular, p ∈ Q̃.

Since Q̃ contains subspaces of projective dimension n, the Witt index of
Q̃ must be equal to n+ 1. In the sequel, we will denote Q by Q−(2n+ 1,K)

and Q̃ by Q+(2n + 1,K′). Now, let H denote the set of all points p of α
which are collinear on Q+(2n + 1,K′) with pθ. Clearly, p ∈ H if and only
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if every point of ppθ ∩ PG(2n + 1,K) belongs to Q−(2n + 1,K). Now, a
point 〈x̄〉 ∈ ppθ ∩ PG(2n + 1,K) belongs to Q−(2n + 1,K) if and only if

p = 〈φ(x̄)〉 ∈ H̃. It follows that H = H̃. Hence, the geometric SDPS-set of
DQ−(2n+ 1,K) associated to α coincides with the set of all generators 〈U〉
of Q−(2n+1,K) for which φ(U) is a maximal totally isotropic subspace of V
with respect to the Hermitian form 〈·, ·〉. This is precisely what we needed
to prove.

Remark. Although both constructions give rise to isomorphic SDPS-sets,
there is an important difference between them. The construction described
in this paper allows to obtain many (geometric) SDPS-sets in a given dual
polar space isomorphic to DQ−(2n+ 1,K). The other construction allows to
obtain an SDPS-set in some dual polar space isomorphic to DQ−(2n+ 1,K).
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