On geometric SDPS-sets of elliptic dual polar spaces

Bart De Bruyn*

Ghent University, Department of Pure Mathematics and Computer Algebra, Krijgslaan 281 (S22), B-9000 Gent, Belgium, E-mail: bdb@cage.ugent.be

Abstract

Let $n \in \mathbb{N} \setminus \{0, 1\}$ and let \mathbb{K} and \mathbb{K}' be fields such that \mathbb{K}' is a quadratic Galois extension of \mathbb{K} . Let $Q^{-}(2n+1, \mathbb{K})$ be a nonsingular quadric of Witt index n in $\mathrm{PG}(2n+1, \mathbb{K})$ whose associated quadratic form defines a nonsingular quadric $Q^{+}(2n+1, \mathbb{K}')$ of Witt index n+1in $\mathrm{PG}(2n+1, \mathbb{K}')$. For even n, we define a class of SDPS-sets of the dual polar space $DQ^{-}(2n+1, \mathbb{K})$ associated to $Q^{-}(2n+1, \mathbb{K})$, and call its members geometric SDPS-sets. We show that geometric SDPS-sets of $DQ^{-}(2n+1, \mathbb{K})$ are unique up to isomorphism and that they all arise from the spin embedding of $DQ^{-}(2n+1, \mathbb{K})$. We will use geometric SDPS-sets to describe the structure of the natural embedding of $DQ^{-}(2n+1, \mathbb{K})$ into one of the half-spin geometries for $Q^{+}(2n+1, \mathbb{K}')$.

Keywords: dual polar space, half-spin geometry, SDPS-set, spin embedding, hyperplane, valuation MSC2000: 51A45, 51A50

1 Introduction

Let $n \in \mathbb{N} \setminus \{0, 1\}$, let \mathbb{K} and \mathbb{K}' be fields such that \mathbb{K}' is a quadratic Galois extension of \mathbb{K} and let θ denote the unique nontrivial element in $Gal(\mathbb{K}'/\mathbb{K})$. Let $Q^{-}(2n+1,\mathbb{K})$ be a nonsingular quadric of Witt index n in $PG(2n+1,\mathbb{K})$ whose associated quadratic form defines a nonsingular quadric $Q^{+}(2n+1,\mathbb{K}')$ of Witt index n + 1 in $PG(2n + 1, \mathbb{K}')$. Let \mathcal{M}^{+} and \mathcal{M}^{-} denote the two systems of generators (= maximal subspaces) of $Q^{+}(2n+1,\mathbb{K}')$. Recall that

^{*}Postdoctoral Fellow of the Research Foundation - Flanders (Belgium)

two generators belong to the same system if they intersect in a subspace of even co-dimension. For every $\epsilon \in \{+, -\}$, let $HS^{\epsilon}(2n + 1, \mathbb{K}')$ denote the point-line geometry whose points are the elements of \mathcal{M}^{ϵ} and whose lines are the (n-2)-dimensional subspaces of $Q^+(2n+1, \mathbb{K}')$ (natural incidence). The isomorphic geometries $HS^+(2n+1, \mathbb{K}')$ and $HS^-(2n+1, \mathbb{K}')$ are called the *half-spin geometries* for $Q^+(2n+1, \mathbb{K}')$. Let $DQ^-(2n+1, \mathbb{K})$ denote the dual polar space associated to the quadric $Q^-(2n+1, \mathbb{K})$. The map which associates with every generator of $Q^-(2n+1, \mathbb{K})$ the unique element of \mathcal{M}^{ϵ} containing it, defines a full embedding of $DQ^-(2n+1, \mathbb{K})$ into $HS^{\epsilon}(2n+1, \mathbb{K}')$, see Cooperstein and Shult [6] (for the finite case) and De Bruyn [9] (general case). This full embedding is called the *natural embedding* of $DQ^-(2n+1, \mathbb{K})$ into $HS^{\epsilon}(2n+1, \mathbb{K}')$.

An SDPS-set of a dual polar space Δ of rank 2n' is a very nice set of points of Δ carrying the structure of a dual polar space of rank n' (see Section 2). SDPS-sets of dual polar spaces were introduced by De Bruyn and Vandecasteele [11] because of their connection with the theory of valuations of near polygons. From that connection, it follows that the set of points of Δ at non-maximal distance from a given SDPS-set X is a hyperplane of Δ . We call this hyperplane the hyperplane of Δ associated to X.

In Section 4, we will construct a certain class of SDPS-sets of $DQ^{-}(2n + 1, \mathbb{K})$, *n* even. The construction is as follows. Let α be a generator of $Q^{+}(2n + 1, \mathbb{K}')$ which is disjoint from its conjugate α^{θ} (with respect to the quadratic extension \mathbb{K}' of \mathbb{K}). Let *H* denote the following set of points of α : a point *x* of α belongs to *H* if and only if *x* is collinear on $Q^{+}(2n + 1, \mathbb{K}')$ with its conjugate x^{θ} . Then *H* is a nonsingular Hermitian variety of Witt index $\frac{n}{2}$ of α .

Theorem 1.1 If β is a generator of H, then $\langle \beta, \beta^{\theta} \rangle \cap PG(2n+1, \mathbb{K})$ is a generator of $Q^{-}(2n+1, \mathbb{K})$. The set of generators of $Q^{-}(2n+1, \mathbb{K})$ which can be obtained in this way is an SDPS-set of $DQ^{-}(2n+1, \mathbb{K})$.

Any SDPS-set of $DQ^{-}(2n+1, \mathbb{K})$, *n* even, which can be obtained as described in Theorem 1.1 is called *geometric*. We prove the following in Section 4.

Theorem 1.2 Up to isomorphism, there exists a unique geometric SDPS-set in $DQ^{-}(2n + 1, \mathbb{K})$, n even and $n \geq 2$.

The following theorem provides information regarding the structure of the natural embedding of $DQ^{-}(2n + 1, \mathbb{K})$ into one of the half-spin geometries for $Q^{+}(2n + 1, \mathbb{K}')$. We will prove it in Section 5.

Theorem 1.3 Consider the natural embedding of $\Delta = DQ^{-}(2n+1,\mathbb{K})$ into $HS^{\epsilon}(2n+1,\mathbb{K}'), \ \epsilon \in \{+,-\}$. Let $d_{\epsilon}(\cdot,\cdot)$ and $d_{\Delta}(\cdot,\cdot)$ denote the distance functions in the respective geometries $HS^{\epsilon}(2n+1,\mathbb{K}')$ and Δ . Then for every point x of $HS^{\epsilon}(2n+1,\mathbb{K}')$, there exists a $K \in \mathbb{N}$ and a geometric SDPS-set X in a convex subspace of diameter 2K of $DQ^{-}(2n+1,\mathbb{K})$ such that $d_{\epsilon}(x,y) = \lfloor \frac{K+1+d_{\Delta}(X,y)}{2} \rfloor$ for every point y of Δ .

By [6] and [9], the dual polar space $DQ^{-}(2n + 1, \mathbb{K})$ has a nice full embedding e into the projective space $PG(2^{n} - 1, \mathbb{K}')$, called the *spin embedding* of $DQ^{-}(2n + 1, \mathbb{K})$. If π is a hyperplane of $PG(2^{n} - 1, \mathbb{K}')$, then the set of all points x of $DQ^{-}(2n + 1, \mathbb{K})$ for which $e(x) \in \pi$ is a hyperplane of $DQ^{-}(2n + 1, \mathbb{K})$. Hyperplanes of $DQ^{-}(2n + 1, \mathbb{K})$ which can be obtained in this way are said to *arise from e*. In Section 5, we will also prove the following result.

Theorem 1.4 The hyperplanes of $DQ^{-}(2n + 1, \mathbb{K})$, n even, associated to geometric SDPS-sets arise from the spin embedding of $DQ^{-}(2n + 1, \mathbb{K})$.

Remark. An SDPS-set of $DQ^{-}(5, \mathbb{K})$ is nothing else than an ovoid of the generalized quadrangle $DQ^{-}(5, \mathbb{K})$. For any field \mathbb{K} , there are ovoids in $DQ^{-}(5, \mathbb{K})$ which do not arise from the spin embedding, see e.g. Payne & Thas [14, p. 57] for the finite case and De Bruyn & Cardinali [4, Theorem 1.7] for the infinite case. So, an SDPS-set of $DQ^{-}(5, \mathbb{K})$ is not always geometric. It is still an open problem whether every SDPS-set of $DQ^{-}(4m + 1, \mathbb{K})$, $m \geq 2$, is geometric.

2 Preliminaries

A near polygon is a partial linear space $S = (\mathcal{P}, \mathcal{L}, \mathbf{I})$, $\mathbf{I} \subseteq \mathcal{P} \times \mathcal{L}$, with the property that for every point $x \in \mathcal{P}$ and every line $L \in \mathcal{L}$, there exists a unique point on L nearest to x. Here, distances are measured in the collinearity graph Γ of S. If d is the diameter of Γ , then the near polygon is called a *near 2d-gon*. A near 0-gon is a point and a near 2-gon is a line. Near quadrangles are usually called *generalized quadrangles*.

If $S = (\mathcal{P}, \mathcal{L}, \mathbf{I})$ is a near polygon, then the distance between two points x and y of S will be denoted by d(x, y). The set of points at distance $i \in \mathbb{N}$ from a given point $x \in \mathcal{P}$ will be denoted by $\Gamma_i(x)$. If $x \in \mathcal{P}$ and $\emptyset \neq X \subseteq \mathcal{P}$, then $d(x, X) := \min\{d(x, y) \mid y \in X\}$.

A subspace S of a near polygon S is called *convex* if every point on a shortest path between two points of S is also contained in S. The points

and lines contained in a convex subspace of S define a sub-near-polygon of S. Convex subspaces of diameter d' are therefore also called *convex sub-*2d'-gons. A convex subspace F of S is called *classical* in S if for every point x of S, there exists a necessarily unique point $\pi_F(x)$ in F such that $d(x,y) = d(x,\pi_F(x)) + d(\pi_F(x),y)$ for every point y of F.

A near polygon is called *dense* if every line is incident with at least three points and if every two points at distance 2 have at least 2 common neighbours. If x and y are two points of a dense near 2*d*-gon at distance $d' \in \{0, \ldots, d\}$ from each other, then by Theorem 4 of Brouwer and Wilbrink [1], x and y are contained in a unique convex subspace $\langle x, y \rangle$ of diameter d'. These convex subspaces are called *quads* if d' = 2, *hexes* if d' = 3 and *maxes* if d' = d - 1.

A function f from the point-set of a dense near 2n-gon S to \mathbb{N} is called a *valuation* of S if it satisfies the following properties:

(V1) $f^{-1}(0) \neq \emptyset;$

(V2) every line L of S contains a necessarily unique point x_L such that $f(x) = f(x_L) + 1$ for every point $x \in L \setminus \{x_L\}$;

(V3) every point x of S is contained in a necessarily unique convex subspace F_x such that the following properties are satisfied for every $y \in F_x$: (i) $f(y) \leq f(x)$; (ii) if z is a point collinear with y such that f(z) = f(y) - 1, then $z \in F_x$.

Valuations of dense near polygons were introduced in De Bruyn and Vandecasteele [10]. We describe three constructions for obtaining valuations of a given dense near polygon $\mathcal{S} = (\mathcal{P}, \mathcal{L}, I)$.

(1) For every point x of \mathcal{S} , the map $f_x : \mathcal{P} \to \mathbb{N}; y \mapsto d(x, y)$ is a valuation of \mathcal{S} . We call f_x a *classical valuation* of \mathcal{S} .

(2) Suppose O is an *ovoid* of S, i.e. a set of points of S meeting each line in a unique point. For every point x of S, we define $f_O(x) := 0$ if $x \in O$ and $f_O(x) := 1$ otherwise. Then f_O is a valuation of S. We call f_O an *ovoidal* valuation of S.

(3) Let $F = (\mathcal{P}', \mathcal{L}', \mathbf{I}')$ be a convex sub-near-polygon of \mathcal{S} which is classical in \mathcal{S} . Suppose that $f' : \mathcal{P}' \to \mathbb{N}$ is a valuation of F. Then the map $f : \mathcal{P} \to \mathbb{N}; x \mapsto f(x) := \mathrm{d}(x, \pi_F(x)) + f'(\pi_F(x))$ is a valuation of \mathcal{S} . We call f the *extension* of f'. If $F = \mathcal{S}$, then the extension is called *trivial*.

Valuations can also induce others.

Proposition 2.1 ([10, Proposition 2.12]) Let f be a valuation of a dense near polygon S, let F be a convex subspace of S and let m denote the minimal value attained by f(x) as x ranges over all points of F. For every point x of F, we define $f_F(x) := f(x) - m$. Then f_F is a valuation of F.

The valuation f_F defined in Proposition 2.1 is called the valuation of F induced by f.

We now describe an important class of near polygons. Let Π be a nondegenerate polar space (Veldkamp [18]; Tits [17, Chapter 7]) of rank n > 2. With Π there is associated a point-line geometry Δ whose points are the maximal singular subspaces of Π , whose lines are the next-to-maximal singular subspaces of Π and whose incidence relation is reverse containment. The geometry Δ is called a *dual polar space of rank n* and is an example of a near 2n-gon (Cameron [3]). There exists a bijective correspondence between the nonempty convex subspaces of Δ and the possibly empty singular subspaces of Π . If α is a singular subspace of Π , then the set of all maximal singular subspaces of Π containing α is a convex subspace of Δ . Conversely, every convex subspace of Δ is obtained in this way. Every convex subspace of Δ is classical in Δ . The point-line geometry induced on a convex subspace of diameter $n' \geq 2$ of Δ is a dual polar space of rank n'. If α_1 and α_2 are two maximal singular subspaces of Π , then the distance between α_1 and α_2 in the dual polar space Δ is equal to $n-1-\dim(\alpha_1 \cap \alpha_2)$.

In the present paper, we will meet 3 classes of (dual) polar spaces. Let $n \geq 2$, let \mathbb{K} and \mathbb{K}' be two fields such that \mathbb{K}' is a quadratic Galois extension of \mathbb{K} and let θ be the unique nontrivial element in $Gal(\mathbb{K}'/\mathbb{K})$.

(I) We denote by $Q^{-}(2n + 1, \mathbb{K})$ a nonsingular quadric of Witt index n in $PG(2n+1, \mathbb{K})$ whose associated quadratic form defines a nonsingular quadric $Q^{+}(2n + 1, \mathbb{K}')$ of Witt index n + 1 in $PG(2n + 1, \mathbb{K}')$. With respect to a suitable reference system in $PG(2n+1, \mathbb{K})$, $Q^{-}(2n+1, \mathbb{K})$ has equation $X_0^2 + (\delta + \delta^{\theta})X_0X_1 + \delta^{\theta+1}X_1^2 + X_2X_3 + \cdots + X_{2n}X_{2n+1} = 0$, where δ is some element of $\mathbb{K}' \setminus \mathbb{K}$. We denote by $DQ^{-}(2n+1, \mathbb{K})$ and $DQ^{+}(2n+1, \mathbb{K}')$ the dual polar spaces associated to $Q^{-}(2n+1, \mathbb{K})$ and $Q^{+}(2n+1, \mathbb{K}')$, respectively. We will call $(D)Q^{-}(2n+1, \mathbb{K})$ an *elliptic (dual) polar space* and $(D)Q^{+}(2n+1, \mathbb{K}')$ a hyperbolic (dual) polar space. (Notice that we have extended this terminology from the finite case to the infinite case.)

(II) We denote by $H(2n, \mathbb{K}', \theta)$ a nonsingular θ -Hermitian variety of Witt index n in $PG(2n, \mathbb{K}')$ and by $DH(2n, \mathbb{K}', \theta)$ the dual polar space associated to $H(2n, \mathbb{K}', \theta)$. (With θ -Hermitian we mean that the associated involutary automorphism is equal to θ .) With respect to a suitable reference system in $PG(2n, \mathbb{K}')$, $H(2n, \mathbb{K}', \theta)$ has equation $X_0^{\theta+1} + (X_1 X_2^{\theta} + X_2 X_1^{\theta}) + \cdots + (X_{2n-1} X_{2n}^{\theta} + X_{2n-1} X_{2n-1}^{\theta}) = 0$. A hyperplane of a partial linear space $\mathcal{S} = (\mathcal{P}, \mathcal{L}, I)$ is a proper subspace meeting each line. A full (projective) embedding of \mathcal{S} is an injective mapping e from \mathcal{P} to the point-set of a projective space Σ satisfying (i) $\langle e(\mathcal{P}) \rangle = \Sigma$; (ii) $e(L) := \{e(x) \mid x \in L\}$ is a line of Σ for every line L of S. If e is a full embedding of \mathcal{S} and if π is a hyperplane of Σ , then $e^{-1}(e(\mathcal{P}) \cap \pi)$ is a hyperplane of \mathcal{S} . We say that the hyperplane $e^{-1}(e(\mathcal{P}) \cap \pi)$ arises from the embedding e. Let $Q^{-}(2n+1,\mathbb{K})$ and $Q^{+}(2n+1,\mathbb{K}')$ be the quadrics as defined above and let $HS(2n+1, \mathbb{K}')$ denote one of the half-spin geometries for $Q^+(2n+1,\mathbb{K}')$ (as defined in the Introduction). The geometry $HS(2n+1,\mathbb{K}')$ has a nice full embedding into $PG(2^n-1, \mathbb{K}')$, see Chevalley [5] or Buekenhout and Cameron [2]. We refer to this particular embedding as the *spin embedding* of $HS(2n+1,\mathbb{K}')$. Taking in mind the natural embedding of $DQ^{-}(2n+1,\mathbb{K})$ into $HS(2n+1, \mathbb{K}')$, we see that the spin embedding of $HS(2n+1, \mathbb{K}')$ induces a full embedding of $DQ^{-}(2n+1,\mathbb{K})$ into a subspace Σ of $PG(2^{n}-1,\mathbb{K}')$. It can be shown, see Cooperstein and Shult [6] and De Bruyn [9] that $\Sigma =$ $PG(2^n-1,\mathbb{K}')$. The induced embedding of $DQ^{-}(2n+1,\mathbb{K})$ into $PG(2^n-1,\mathbb{K}')$ is called the *spin embedding* of $DQ^{-}(2n+1, \mathbb{K})$.

Let Δ be a thick dual polar space of rank 2n. A set X of points of Δ is called an *SDPS-set* of Δ if it satisfies the following properties:

(SDPS1) No two points of X are collinear in Δ .

(SDPS2) If $x, y \in X$ such that d(x, y) = 2, then $X \cap \langle x, y \rangle$ is an ovoid of the quad $\langle x, y \rangle$.

(SDPS3) The point-line geometry Δ whose points are the elements of X and whose lines are the quads of Δ containing at least two points of X (natural incidence) is a dual polar space of rank n.

(SDPS4) For all $x, y \in X$, $d(x, y) = 2 \cdot d(x, y)$, where d(x, y) denotes the distance between x and y in the dual polar space $\widetilde{\Delta}$.

(SDPS5) If $x \in X$ and L is a line of Δ through x, then L is contained in a (necessarily unique) quad of Δ which contains at least two points of X.

SDPS-sets of dual polar spaces were introduced in De Bruyn and Vandecasteele [11]. The discussion in [11] is however restricted to the finite case. For a discussion including the infinite case, see De Bruyn [7, Section 5.6.7]. SDPS-sets give rise to valuations:

Proposition 2.2 (Theorem 5.29 of [7]) Let X be an SDPS-set of a thick dual polar space Δ of rank 2n. For every point x of Δ , we define f(x) := d(x, X). Then f is a valuation of Δ whose maximal value is equal to n.

A valuation which can be obtained from an SDPS-set in the way as described in Proposition 2.2 is called an *SDPS-valuation*. By Property (V2) in the definition of valuation, we have

Corollary 2.3 Let X be an SDPS-set of a thick dual polar space of rank 2n. Let H denote the set of points of Δ at distance at most n-1 from X. Then H is a hyperplane of Δ (the so-called hyperplane of Δ associated to X).

SDPS-valuations can be characterized as follows.

Proposition 2.4 (Theorem 5.32 of [7]) Let Δ be a thick dual polar space and let f be a valuation of Δ with the property that every induced hex valuation is either classical or the extension of an ovoidal valuation of a quad. Then f is the (possibly trivial) extension of an SDPS-valuation of a convex subpolygon of Δ .

3 Notations and basic lemmas

Let \mathbb{K} and \mathbb{K}' be fields such that \mathbb{K}' is a quadratic Galois extension of \mathbb{K} . Let θ denote the unique nontrivial element in $Gal(\mathbb{K}'/\mathbb{K})$ and let $n \in \mathbb{N} \setminus \{0, 1\}$.

Let $V(2n+2, \mathbb{K}')$ denote a (2n+2)-dimensional vector space over the field \mathbb{K}' and suppose $\mathcal{B}^* = \{\bar{e}_0^*, \bar{e}_1^*, \dots, \bar{e}_{2n+1}^*\}$ is a basis of $V(2n+2, \mathbb{K}')$. The set of all \mathbb{K} -linear combinations of elements of \mathcal{B}^* defines a (2n+2)-dimensional vector space $V(2n+2, \mathbb{K})$ over the field \mathbb{K} . If $\bar{x} = \sum_{i=0}^{2n+1} X_i \bar{e}_i^*$ is a vector of $V(2n+2, \mathbb{K}')$, then we define $\bar{x}^{\theta} = \sum_{i=0}^{2n+1} X_i^{\theta} \bar{e}_i^*$.

Let $\operatorname{PG}(2n+1,\mathbb{K}')$ and $\operatorname{PG}(2n+1,\mathbb{K})$ denote the projective spaces associated to $V(2n+2,\mathbb{K}')$ and $V(2n+2,\mathbb{K})$, respectively. An ordered basis $(\bar{e}_0, \bar{e}_1, \ldots, \bar{e}_{2n+1})$ of $V(2n+2,\mathbb{K}')$ is called a *reference system* for $\operatorname{PG}(2n+1,\mathbb{K})$ if $\langle \sum_{i=0}^{2n+1} X_i \bar{e}_i \rangle \in \operatorname{PG}(2n+1,\mathbb{K})$ for all $X_0, X_1, \ldots, X_{2n+1} \in \mathbb{K}$ with $(X_0, X_1, \ldots, X_{2n+1}) \neq (0, 0, \ldots, 0)$. If $p = \langle \sum_{i=0}^{2n+1} X_i \bar{e}_i^* \rangle$ is a point of $\operatorname{PG}(2n+1,\mathbb{K}')$, then we define $p^{\theta} := \langle \sum_{i=0}^{2n+1} X_i^{\theta} \bar{e}_i^* \rangle$. For every subspace α of $\operatorname{PG}(2n+1,\mathbb{K}')$, we define $\alpha^{\theta} := \{p^{\theta} \mid p \in \alpha\}$. Notice that we have given different meanings to the map θ , but from the context it will always be clear what is meant.

There is a natural inclusion of the projective space $PG(2n + 1, \mathbb{K})$ into the projective space $PG(2n + 1, \mathbb{K}')$. In the sequel, we will regard points of $PG(2n+1, \mathbb{K})$ as points of $PG(2n+1, \mathbb{K}')$. Every subspace α of $PG(2n+1, \mathbb{K})$ then generates a subspace α' of $PG(2n + 1, \mathbb{K}')$ of the same dimension as α .

Lemma 3.1 (Lemma 2.1 of [9]) If α is a subspace of $PG(2n+1, \mathbb{K}')$, then there exists a unique subspace β of $PG(2n+1, \mathbb{K})$ such that $\alpha \cap \alpha^{\theta} = \beta'$. For all $i, j \in \{0, \ldots, 2n+1\}$ with $i \leq j$, let $a_{ij} \in \mathbb{K}$ such that

$$q\left(\sum_{i=0}^{2n+1} X_i \bar{e}_i^*\right) := \sum_{0 \le i \le j \le 2n+1} a_{ij} X_i X_j$$

is a quadratic form of $V(2n+2, \mathbb{K})$ and $V(2n+2, \mathbb{K}')$ defining a nonsingular quadric $Q^{-}(2n+1, \mathbb{K})$ of Witt index n in $PG(2n+1, \mathbb{K})$ and a nonsingular quadric $Q^{+}(2n+1, \mathbb{K}')$ of Witt index n+1 in $PG(2n+1, \mathbb{K}')$. Let $B(\cdot, \cdot)$ denote the bilinear form of $V(2n+2, \mathbb{K}')$ associated to the quadratic form $q(\cdot)$, i.e.

$$B(\bar{x}_1, \bar{x}_2) = q(\bar{x}_1 + \bar{x}_2) - q(\bar{x}_1) - q(\bar{x}_2)$$

for all $\bar{x}_1, \bar{x}_2 \in V(2n+2, \mathbb{K}')$. Obviously, we have

$$q(\bar{x}_{1}^{\theta}) = [q(\bar{x}_{1})]^{\theta}, B(\bar{x}_{1}^{\theta}, \bar{x}_{2}^{\theta}) = [B(\bar{x}_{1}, \bar{x}_{2})]^{\theta},$$

for all $\bar{x}_1, \bar{x}_2 \in V(2n+2, \mathbb{K}')$.

Let \mathcal{M}^+ and \mathcal{M}^- denote the two systems of generators of $Q^+(2n+1, \mathbb{K}')$ and put $\mathcal{M} = \mathcal{M}^+ \cup \mathcal{M}^-$.

Lemma 3.2 (Lemma 2.2 of [9]) We have $(\mathcal{M}^+)^{\theta} = \mathcal{M}^-$ and $(\mathcal{M}^-)^{\theta} = \mathcal{M}^+$. As a consequence, for every $\alpha \in \mathcal{M}$, $n - \dim(\alpha \cap \alpha^{\theta})$ is odd.

Lemma 3.3 Let $k \in \{-1, 0, ..., n-1\}$ such that n-k is odd. Then there exists an $\alpha \in \mathcal{M}$ such that $\dim(\alpha \cap \alpha^{\theta}) = k$.

Proof. We can choose a reference system $(\bar{e}_0, \bar{e}_1, \ldots, \bar{e}_{2n+1})$ for $\operatorname{PG}(2n+1, \mathbb{K})$ and a $\delta \in \mathbb{K}' \setminus \mathbb{K}$ in such a way that a point $\langle \sum_{i=0}^{2n+1} X_i \bar{e}_i \rangle$ of $\operatorname{PG}(2n+1, \mathbb{K})$ belongs to $Q^-(2n+1, \mathbb{K})$ if and only if

$$X_0^2 + (\delta + \delta^{\theta})X_0X_1 + \delta^{\theta + 1}X_1^2 + X_2X_3 + \dots + X_{2n}X_{2n+1} = 0.$$

Now, let α be the element of \mathcal{M} generated by the points $\langle \delta \bar{e}_0 - \bar{e}_1 \rangle$, $\langle \bar{e}_{4i-2} + \delta \bar{e}_{4i} \rangle$ $(i \in \{1, \ldots, \frac{n-k-1}{2}\})$, $\langle \bar{e}_{4i-1} - \frac{1}{\delta} \bar{e}_{4i+1} \rangle$ $(i \in \{1, \ldots, \frac{n-k-1}{2}\})$, $\langle \bar{e}_{2n-2i} \rangle$ $(i \in \{0, \ldots, k\})$. Then one readily verifies that $\alpha \cap \alpha^{\theta} = \langle \bar{e}_{2n-2i} | 0 \leq i \leq k \rangle$. Hence, dim $(\alpha \cap \alpha^{\theta}) = k$.

Remark. Let π be a subspace of dimension $k \in \{-1, 0, \ldots, n-3\}$ of $Q^{-}(2n+1, \mathbb{K})$. The subspaces of $Q^{-}(2n+1, \mathbb{K})$ through π define a polar space P. The subspaces of $Q^{+}(2n+1, \mathbb{K}')$ through π' define a polar space P'. We can choose a $\delta \in \mathbb{K}' \setminus \mathbb{K}$ and a reference system $(\bar{e}_0, \bar{e}_1, \ldots, \bar{e}_{2n+1})$ for $\mathrm{PG}(2n+1, \mathbb{K})$

such that (i) $q\left(\sum_{i=0}^{2n+1} X_i \bar{e}_i\right) = X_0^2 + (\delta + \delta^\theta) X_0 X_1 + \delta^{\theta+1} X_1^2 + X_2 X_3 + \cdots + X_{2n} X_{2n+1}$, (ii) π is the subspace of $PG(2n+1, \mathbb{K})$ corresponding to the subspace of $V(2n+2, \mathbb{K})$ generated by $\bar{e}_{2n+1}, \bar{e}_{2n-1}, \ldots, \bar{e}_{2n+1-2k}$. Let $\tilde{\pi}$ denote the subspace of $PG(2n+1, \mathbb{K})$ defined by the vectors $\bar{e}_0, \bar{e}_1, \ldots, \bar{e}_{2n-2k-1}$. The quadratic form $\tilde{q}\left(\sum_{i=0}^{2n-2k-1} X_i \bar{e}_i\right) = X_0^2 + (\delta + \delta^\theta) X_0 X_1 + \delta^{\theta+1} X_1^2 + X_2 X_3 + \delta^{\theta+1} X_1^2 +$ $\cdots + X_{2n-2k-2}X_{2n-2k-1}$ defines a nonsingular quadric $\widetilde{Q}^{-}(2n-2k-1,\mathbb{K})$ of Witt index n-k-1 in $\tilde{\pi}$ and a nonsingular quadric $Q^+(2n-2k-1,\mathbb{K}')$ of Witt index n - k in $\tilde{\pi}'$. There exists a natural bijection between the singular subspaces of P (respectively P') and the subspaces contained in the quadric $\tilde{Q}^{-}(2n-2k-1,\mathbb{K})$ (respectively $\tilde{Q}^{+}(2n-2k-1,\mathbb{K}')$): if α (respectively α') is a subspace of $Q^{-}(2n+1,\mathbb{K})$ (respectively $Q^{+}(2n+1,\mathbb{K}')$) through π (respectively π'), then $\alpha \cap \widetilde{\pi}$ (respectively $\alpha' \cap \widetilde{\pi}'$) is a subspace of $\widetilde{Q}^{-}(2n-2k-1,\mathbb{K})$ (respectively $\widetilde{Q}^{+}(2n-2k-1,\mathbb{K}')$). Hence, $P \cong$ $Q^{-}(2n-2k-1,\mathbb{K})$ and $P' \cong Q^{+}(2n-2k-1,\mathbb{K}')$. Notice also that the elements of one system of generators of $Q^+(2n+1,\mathbb{K}')$ through π' define one system of generators of $P' \cong Q^+(2n-2k-1,\mathbb{K}')$. We will freely make use of this remark in the sequel.

4 Geometric SDPS-sets of $DQ^{-}(2n+1, \mathbb{K})$

We will continue with the notation introduced in Section 3. In this section however, we will assume that n is even and that α is an element of \mathcal{M} satisfying $\alpha \cap \alpha^{\theta} = \emptyset$. By Lemma 3.3 we know that such an α exists. Notice that also $\alpha^{\theta} \in \mathcal{M}$ and $\alpha \cap \operatorname{PG}(2n+1, \mathbb{K}) = \emptyset$ since every point of $\alpha \cap \operatorname{PG}(2n+1, \mathbb{K})$ is contained in $\alpha \cap \alpha^{\theta}$.

Lemma 4.1 For every subspace β of α , $\gamma = \langle \beta, \beta^{\theta} \rangle \cap PG(2n + 1, \mathbb{K})$ is a subspace of $PG(2n+1, \mathbb{K})$ of dimension $2 \cdot \dim(\beta) + 1$. Moreover, $\gamma' = \langle \beta, \beta^{\theta} \rangle$.

Proof. Since $\beta \subseteq \alpha$ and $\beta^{\theta} \subseteq \alpha^{\theta}$ are disjoint, $\langle \beta, \beta^{\theta} \rangle$ has dimension $2 \cdot \dim(\beta) + 1$. Now, by Lemma 3.1, there exists a subspace γ_1 of $\operatorname{PG}(2n + 1, \mathbb{K})$ such that $\gamma'_1 = \langle \beta, \beta^{\theta} \rangle \cap \langle \beta, \beta^{\theta} \rangle^{\theta} = \langle \beta, \beta^{\theta} \rangle$. Obviously, $\dim(\gamma_1) = \dim(\langle \beta, \beta^{\theta} \rangle) = 2 \cdot \dim(\beta) + 1$ and $\gamma_1 = \langle \beta, \beta^{\theta} \rangle \cap \operatorname{PG}(2n + 1, \mathbb{K})$.

Now, let H denote the set of all points $\langle \bar{x} \rangle$ of α for which $h(\bar{x}) := B(\bar{x}, \bar{x}^{\theta}) = 0$. Obviously, H is a θ -Hermitian variety of α . We observe the following for two points $\langle \bar{x} \rangle$, $\langle \bar{y} \rangle$ of α :

(I) $\langle \bar{x} \rangle$ and $\langle \bar{y}^{\theta} \rangle$ are collinear on the quadric $Q^+(2n+1, \mathbb{K}')$ if and only if $B(\bar{x}, \bar{y}^{\theta}) = 0$;

(II) if $\langle \bar{x} \rangle \in H$ and $\langle \bar{y} \rangle \neq \langle \bar{x} \rangle$, then $B(\bar{x}, \bar{y}^{\theta}) = 0$ if and only if the line of α through $\langle \bar{x} \rangle$ and $\langle \bar{y} \rangle$ is either contained in H or intersects H in the point $\langle \bar{x} \rangle$.

By (I), a point $p \in \alpha$ belongs to H if and only if p is collinear on $Q^+(2n+1, \mathbb{K}')$ with p^{θ} .

Lemma 4.2 *H* is nonsingular.

Proof. Suppose $\langle \bar{x} \rangle$ is a singular point of H. Then by (II) above, $B(\bar{x}, \bar{y}^{\theta}) = 0$ for all $\bar{y} \in V(2n+2, \mathbb{K}')$ such that $\langle \bar{y} \rangle$ is a point of α . Hence, by (I) above, $\langle \bar{x} \rangle$ is collinear on $Q^+(2n+1, \mathbb{K}')$ with every point of α^{θ} . This is impossible since α^{θ} is a generator of $Q^+(2n+1, \mathbb{K}')$ and $\langle \bar{x} \rangle \notin \alpha^{\theta}$.

Lemma 4.3 If β is a subspace of α contained in H, then $\langle \beta, \beta^{\theta} \rangle \cap PG(2n + 1, \mathbb{K})$ is a subspace of $Q^{-}(2n + 1, \mathbb{K})$ of dimension $2 \cdot \dim(\beta) + 1$.

Proof. Put $k := \dim(\beta) + 1$ and let $\{p_1, p_2, \ldots, p_k\}$ be an independent generating set of points for the subspace β . Then $\{p_1, p_2, \ldots, p_k, p_1^{\theta}, p_2^{\theta}, \ldots, p_k^{\theta}\}$ is an independent generating set of points for the subspace $\langle \beta, \beta^{\theta} \rangle$. Now, by (I) and (II) above, $\{p_1, p_2, \ldots, p_k, p_1^{\theta}, p_2^{\theta}, \ldots, p_k^{\theta}\}$ is a set of mutually collinear points of the quadric $Q^+(2n+1, \mathbb{K}')$. By Lemma 4.1, it now follows that $\langle \beta, \beta^{\theta} \rangle \cap \operatorname{PG}(2n+1, \mathbb{K})$ is a subspace of dimension $2 \cdot \dim(\beta) + 1$ of $Q^-(2n+1, \mathbb{K})$.

Lemma 4.4 Let x be a point of $PG(2n + 1, \mathbb{K})$. Then there exists a unique line L_x in $PG(2n + 1, \mathbb{K}')$ through x which meets α and α^{θ} in points. Moreover, $(L_x \cap \alpha)^{\theta} = L_x \cap \alpha^{\theta}$ and $L_x \cap PG(2n + 1, \mathbb{K})$ is a line of $PG(2n + 1, \mathbb{K})$. If $x \in Q^-(2n + 1, \mathbb{K})$, then $L_x \subseteq Q^+(2n + 1, \mathbb{K}')$ and $L_x \cap PG(2n + 1, \mathbb{K})$ is a line of $Q^-(2n + 1, \mathbb{K})$.

Proof. Clearly, there is a unique line L_x through x meeting α and α^{θ} in points, namely the line through the points $\langle \alpha, x \rangle \cap \alpha^{\theta}$ and $\langle \alpha^{\theta}, x \rangle \cap \alpha$. Since L_x meets α and α^{θ} and contains the point x, also L_x^{θ} meets α and α^{θ} and contains the point x, also L_x^{θ} meets α and α^{θ} and contains the point x, also L_x^{θ} meets α and α^{θ} and contains the point x, also L_x^{θ} meets α and α^{θ} and contains the point $x^{\theta} = x$. Hence, $L_x^{\theta} = L_x$. This implies that $(L_x \cap \alpha)^{\theta} = L_x \cap \alpha^{\theta}$. By Lemma 4.1, $L_x \cap PG(2n+1,\mathbb{K})$ is a line of $PG(2n+1,\mathbb{K})$.

Suppose now that $x \in Q^-(2n+1, \mathbb{K})$. Then the line L_x contains three points of $Q^+(2n+1, \mathbb{K}')$, namely the point x and the unique points in $L_x \cap \alpha$ and $L_x \cap \alpha^{\theta}$. Hence, $L_x \subseteq Q^+(2n+1, \mathbb{K}')$. It follows that $L_x \cap \mathrm{PG}(2n+1, \mathbb{K})$ is a line of $Q^-(2n+1, \mathbb{K})$.

Lemma 4.5 Let β be a subspace of α contained in H and let γ be the subspace $\langle \beta, \beta^{\theta} \rangle \cap \operatorname{PG}(2n+1, \mathbb{K})$ of $Q^{-}(2n+1, \mathbb{K})$. Let x be a point of

 $Q^{-}(2n+1,\mathbb{K}) \setminus \gamma$ which is collinear on $Q^{-}(2n+1,\mathbb{K})$ with every point of γ , and let L_x denote the unique line of $PG(2n+1,\mathbb{K}')$ through x which meets α and α^{θ} in the respective points v and v^{θ} . Then

- (i) L_x and $\langle \beta, \beta^{\theta} \rangle$ are disjoint;
- (ii) the subspace $\langle \beta, v \rangle$ of α is contained in H.

Proof. (i) Since $x \notin \gamma$, also $x \notin \langle \beta, \beta^{\theta} \rangle$. Suppose $L_x \cap \langle \beta, \beta^{\theta} \rangle$ is a singleton $\{y\}$. By Lemma 4.4, L_x is generated by a line of $\operatorname{PG}(2n + 1, \mathbb{K})$ which is contained in $Q^-(2n+1, \mathbb{K})$. Since both L_x and $\langle \beta, \beta^{\theta} \rangle = \gamma'$ are generated by subspaces of $\operatorname{PG}(2n+1, \mathbb{K})$, the point y must belong to $\operatorname{PG}(2n+1, \mathbb{K})$. Since $y \in \langle \beta, \beta^{\theta} \rangle \setminus (\beta \cup \beta^{\theta})$, there exists a unique line through y meeting β and β^{θ} and this line necessarily coincides with the unique line through y meeting α and α^{θ} . It follows that L_x meets β and β^{θ} , contradicting the fact that L_x is not contained in $\langle \beta, \beta^{\theta} \rangle$ (recall $x \notin \langle \beta, \beta^{\theta} \rangle$). Hence, L_x and $\langle \beta, \beta^{\theta} \rangle$ are disjoint.

(ii) We have $\beta \subseteq H$. Since $L_x \subseteq Q^+(2n+1, \mathbb{K}')$, v and v^{θ} are collinear on $Q^+(2n+1, \mathbb{K}')$, i.e. $v \in H$. In order to show that $\langle \beta, v \rangle \subseteq H$, we need to prove that every point u of β is collinear on H with v, or equivalently, that every point u of β is collinear with v^{θ} on the quadric $Q^+(2n+1, \mathbb{K}')$ (see (I) and (II) above).

Since x is collinear on $Q^{-}(2n+1, \mathbb{K})$ with every point of γ , it is collinear on $Q^{+}(2n+1, \mathbb{K}')$ with every point of $\gamma' = \langle \beta, \beta^{\theta} \rangle$. In particular, x is collinear on $Q^{+}(2n+1, \mathbb{K}')$ with u. Now, since u is collinear on $Q^{+}(2n+1, \mathbb{K}')$ with v and x, it is also collinear on $Q^{+}(2n+1, \mathbb{K}')$ with v^{θ} . This is precisely what we needed to show.

Proposition 4.6 *H* is a nonsingular θ -Hermitian variety of (maximal) Witt index $\frac{n}{2}$ in α .

Proof. In view of Lemma 4.2, we need to show that there exists an $(\frac{n}{2}-1)$ -dimensional subspace on H.

We prove by induction on $k \in \{0, \ldots, \frac{n}{2}\}$ that there exists a subspace β_k of dimension k-1 on H. Obviously, this claim holds if k = 0. So, suppose $k \ge 1$. By the induction hypothesis, there exists a subspace β_{k-1} of dimension k-2 on H. Put $\gamma_{k-1} := \langle \beta_{k-1}, \beta_{k-1}^{\theta} \rangle \cap \operatorname{PG}(2n+1, \mathbb{K})$. By Lemma 4.3, γ_{k-1} is a subspace of dimension 2k-3 of $Q^-(2n+1, \mathbb{K})$. Since $k \le \frac{n}{2}$, there exists a point $u_k \in Q^-(2n+1, \mathbb{K})$ which is collinear on $Q^-(2n+1, \mathbb{K})$ with every point of γ_{k-1} . Let L_{u_k} denote the unique line through u_k meeting α and α^{θ} in the respective points v_k and v_k^{θ} (see Lemma 4.4). By Lemma 4.5, $\beta_k := \langle \beta_{k-1}, v_k \rangle \subseteq H$ and $\dim(\beta_k) = k-1$.

Proposition 4.7 Let X be the set of generators of $Q^{-}(2n + 1, \mathbb{K})$ of the form $\langle \beta, \beta^{\theta} \rangle \cap PG(2n + 1, \mathbb{K})$, where β is some generator of H. Then X is an SDPS-set of the dual polar space $DQ^{-}(2n + 1, \mathbb{K})$. Moreover, the dual polar space defined on the set X by the quads of $DQ^{-}(2n + 1, \mathbb{K})$ containing at least two points of X is isomorphic to the dual polar space associated to H.

Proof. Let $d(\cdot, \cdot)$ denote the distance function in the dual polar space $DQ^{-}(2n+1, \mathbb{K})$. Let $DH(n, \mathbb{K}', \theta)$ denote the dual polar space associated to $H = H(n, \mathbb{K}', \theta)$ and let $d'(\cdot, \cdot)$ denote the distance function in $DH(n, \mathbb{K}', \theta)$.

For every subspace γ of H, we define $\gamma^{\phi} := \langle \gamma, \gamma^{\theta} \rangle \cap \operatorname{PG}(2n+1, \mathbb{K})$. By Lemma 4.3, γ^{ϕ} is a subspace of $Q^{-}(2n+1, \mathbb{K})$ of dimension $2 \cdot \operatorname{dim}(\gamma) + 1$. So, if γ is a point of $DH(n, \mathbb{K}', \theta)$, then γ^{ϕ} is a point of $DQ^{-}(2n+1, \mathbb{K})$. If γ_1 and γ_2 are two distinct subspaces on H, then $\gamma_1^{\phi} \cap \gamma_2^{\phi} = \langle \gamma_1, \gamma_1^{\phi} \rangle \cap \langle \gamma_2, \gamma_2^{\phi} \rangle \cap$ $\operatorname{PG}(2n+1, \mathbb{K}) = \langle \gamma_1 \cap \gamma_2, (\gamma_1 \cap \gamma_2)^{\theta} \rangle \cap \operatorname{PG}(2n+1, \mathbb{K}) = (\gamma_1 \cap \gamma_2)^{\phi}$. Hence,

$$d(\beta_1^{\phi}, \beta_2^{\phi}) = 2 \cdot d'(\beta_1, \beta_2) \tag{1}$$

for any two points β_1 and β_2 of $DH(n, \mathbb{K}', \theta)$. This proves property **(SDPS1)**. It is also obvious that ϕ defines a bijection between the set of lines of $DH(n, \mathbb{K}', \theta)$ and the set of quads of $DQ^-(2n + 1, \mathbb{K})$ which contain at least two points of X. As a consequence, the partial linear space $\widetilde{\Delta}$ whose points are the elements of X and whose lines are the quads of $DQ^-(2n + 1, \mathbb{K})$ containing at least two points of X (natural incidence) is isomorphic to $DH(n, \mathbb{K}', \theta)$, proving property **(SDPS3)**. Property **(SDPS4)** now immediately follows from equation (1).

We now prove property **(SDPS2)**. Let β_1 be a line of $DH(n, \mathbb{K}', \theta)$ and put $\gamma_1 := \langle \beta_1, \beta_1^{\theta} \rangle \cap \operatorname{PG}(2n+1, \mathbb{K}) \subseteq Q^-(2n+1, \mathbb{K})$. Let γ_2 be an arbitrary subspace of dimension n-2 of $Q^-(2n+1, \mathbb{K})$ containing γ_1 . We need to prove that there exists a unique generator β_2 of $H(n, \mathbb{K}', \theta)$ through β_1 such that $\gamma_2 \subseteq \langle \beta_2, \beta_2^{\theta} \rangle \cap \operatorname{PG}(2n+1, \mathbb{K})$. Let x be an arbitrary point of $\gamma_2 \setminus \gamma_1$ and let L_x denote the unique line through x meeting α and α^{θ} in the respective points vand v^{θ} . By Lemma 4.5, $L_x \cap \langle \beta_1, \beta_1^{\theta} \rangle = \emptyset$ and v is collinear on the Hermitian variety H with every point of β_1 . If we put $\beta^* := \langle \beta_1, v \rangle$, then β^* is a generator of $H(n, \mathbb{K}', \theta)$ through β_1 satisfying $\gamma_2 \subseteq \langle \beta^*, (\beta^*)^{\theta} \rangle \cap \operatorname{PG}(2n+1, \mathbb{K})$. Conversely, suppose that β_2 is a generator of $H(n, \mathbb{K}', \theta)$ through β_1 such that $\gamma_2 \subseteq \langle \beta_2, \beta_2^{\theta} \rangle \cap \operatorname{PG}(2n+1, \mathbb{K})$. Since $x \in \langle \beta_2, \beta_2^{\theta} \rangle \setminus (\beta_2 \cup \beta_2^{\theta})$, there exists a unique line through x meeting β_2 and β_2^{θ} . This line necessarily coincides with L_x . Hence, $v \in \beta_2$ and $\beta_2 = \langle \beta_1, v \rangle = \beta^*$. Property **(SDPS2)** immediately follows.

We now prove property **(SDPS5)**. Let γ_1 be a generator of $Q^-(2n+1, \mathbb{K})$ corresponding to a point of X and let γ_2 be an arbitrary hyperplane of γ_1 .

There exists a unique generator β_1 of H such that $\langle \beta_1, \beta_1^{\theta} \rangle \cap PG(2n+1, \mathbb{K}) = \gamma_1$. Now, γ'_2 is a hyperplane of $\gamma'_1 = \langle \beta_1, \beta_1^{\theta} \rangle$ and hence intersects β_1 in either β_1 or a hyperplane of β_1 . Suppose $\beta_1 \subseteq \gamma'_2$. Then $\beta_1^{\theta} \subseteq \gamma'_2^{\theta} = \gamma'_2$ and hence $\langle \beta_1, \beta_1^{\theta} \rangle \subseteq \gamma'_2$, a contradiction. Hence, γ'_2 intersects β_1 in a hyperplane β_2 of β_1 . Since $\beta_2 \subseteq \gamma'_2$, we have $\beta_2^{\theta} \subseteq \gamma'_2^{\theta} = \gamma'_2$, $\langle \beta_2, \beta_2^{\theta} \rangle \subseteq \gamma'_2$ and hence $\langle \beta_2, \beta_2^{\theta} \rangle \cap PG(2n+1, \mathbb{K}) \subseteq \gamma'_2 \cap PG(2n+1, \mathbb{K}) = \gamma_2$. So, the (n-3)-dimensional subspace $\langle \beta_2, \beta_2^{\theta} \rangle \cap PG(2n+1, \mathbb{K})$ of $Q^-(2n+1, \mathbb{K})$ corresponds to a quad of $DQ^-(2n+1, \mathbb{K})$ which contains the line of $DQ^-(2n+1, \mathbb{K})$ corresponding to γ_2 . This proves property (SDPS5).

SDPS-sets of the dual polar space $DQ^{-}(2n + 1, \mathbb{K})$ which can be obtained as described in Proposition 4.7 are called *geometric SDPS-sets* of $DQ^{-}(2n + 1, \mathbb{K})$. A certain class of SDPS-sets of $DQ^{-}(2n + 1, \mathbb{K})$ has already been described in De Bruyn & Vandecasteele [11] and Pralle & Shpectorov [15]. All these SDPS-sets are geometric. We will prove this in the appendix of this paper using the description of [11].

Definition. Again, suppose that n is even and consider the inclusion $PG(n-1, \mathbb{K}) \subset PG(n-1, \mathbb{K}')$. We denote by θ here the conjugation in $PG(n-1, \mathbb{K}')$ with respect to the field extension \mathbb{K}'/\mathbb{K} . There exists an $(\frac{n}{2}-1)$ -dimensional subspace β of $PG(n-1, \mathbb{K}')$ such that $\beta \cap \beta^{\theta} = \emptyset$. For every point $x \in \beta$, $L_x := xx^{\theta} \cap PG(n-1, \mathbb{K})$ is a line of $PG(n-1, \mathbb{K})$. The set $S = \{L_x \mid x \in \beta\}$ is a *spread* of $PG(n-1, \mathbb{K})$, i.e. a set of lines of $PG(n-1, \mathbb{K})$ partitioning the point-set of $PG(n-1, \mathbb{K})$. Any spread of $PG(n-1, \mathbb{K})$ which can be obtained in this way is called a *regular spread*. For a discussion of regular spreads in the finite case, see Hirschfeld [12, Chapter 4] and [13, Chapter 17].

Let X be as defined in Proposition 4.7 and let x be a point of X. The convex subspaces of $DQ^{-}(2n+1, \mathbb{K})$ containing the point x define a projective space \mathcal{L}_x isomorphic to $PG(n-1, \mathbb{K})$. The quads through x containing at least two points of X define a spread S_x of \mathcal{L}_x by property (**SDPS5**).

Proposition 4.8 For every point x of X, the spread S_x of \mathcal{L}_x is regular.

Proof. Let γ be the generator of $Q^{-}(2n + 1, \mathbb{K})$ corresponding to x. Then there exists a generator β of H such that $\gamma = \langle \beta, \beta^{\theta} \rangle \cap \operatorname{PG}(2n + 1, \mathbb{K})$. The lines of the spread S_x of \mathcal{L}_x correspond to the subspaces $\langle \eta, \eta^{\theta} \rangle \cap \operatorname{PG}(2n + 1, \mathbb{K}) = \langle \eta, \beta^{\theta} \rangle \cap \langle \eta^{\theta}, \beta \rangle \cap \operatorname{PG}(2n + 1, \mathbb{K})$, where η is some hyperplane of β . In this way, we obtain a regular spread in the dual projective space associated to γ . This proves the proposition.

The following proposition is precisely Theorem 1.2.

Proposition 4.9 Any two geometric SDPS-sets of $DQ^{-}(2n+1, \mathbb{K})$ are isomorphic.

Proof. Let V be the subspace of $V(2n + 2, \mathbb{K}')$ whose nonzero elements consist of all vectors \bar{x} for which $\langle \bar{x} \rangle \in \alpha$. For all vectors \bar{x} and \bar{y} of V, we define $H(\bar{x}, \bar{y}) := B(\bar{x}, \bar{y}^{\theta})$. Then $H(\cdot, \cdot)$ is a Hermitian form on V and H is the Hermitian variety of α associated to it. Let δ be an element of \mathbb{K}' such that $\delta^{\theta} \notin \{\delta, -\delta\}$. [If $char(\mathbb{K}) = 2$, then δ is an arbitrary element of $\mathbb{K}' \setminus \mathbb{K}$. If $char(\mathbb{K}) \neq 2$, then for an arbitrary $\mu \in \mathbb{K}' \setminus \mathbb{K}$, δ can be chosen in the set $\{\mu, \mu + 1\}$.] Now, we can always choose a $k \in \mathbb{K} \setminus \{0\}$ and vectors \bar{f}_0, \bar{f}_i $(i \in \{1, \ldots, \frac{n}{2}\}), \bar{g}_i \ (i \in \{1, \ldots, \frac{n}{2}\})$ in V such that

- $\alpha = \langle \bar{f}_0, \bar{f}_1, \dots, \bar{f}_{\frac{n}{2}}, \bar{g}_1, \dots, \bar{g}_{\frac{n}{2}} \rangle,$
- $H(\bar{f}_0, \bar{f}_0) = -k(\delta \delta^{\theta})^2$,
- $H(\bar{f}_0, \bar{f}_i) = H(\bar{f}_0, \bar{g}_i) = 0$ for all $i \in \{1, \dots, \frac{n}{2}\},\$
- $H(\bar{f}_i, \bar{f}_j) = H(\bar{g}_i, \bar{g}_j) = 0$ for all $i, j \in \{1, \dots, \frac{n}{2}\},\$
- $H(\bar{f}_i, \bar{g}_i) = k \cdot \frac{\delta^{\theta} \delta}{\delta^{\theta}}$ for every $i \in \{1, \dots, \frac{n}{2}\},\$
- $H(\bar{f}_i, \bar{g}_j) = 0$ for all $i, j \in \{1, \dots, \frac{n}{2}\}$ with $i \neq j$.

[If β_1 and β_2 are two disjoint generators of H and $p = \langle \beta_1, \beta_2 \rangle^{\zeta}$, where ζ is the Hermitian polarity of α associated to H, then we can choose $\bar{f}_0, \bar{f}_1, \ldots, \bar{f}_{\frac{n}{2}}, \bar{g}_1, \ldots, \bar{g}_{\frac{n}{2}}$ in such a way that $p = \langle \bar{f}_0 \rangle$, $\beta_1 = \langle \bar{f}_1, \ldots, \bar{f}_{\frac{n}{2}} \rangle$ and $\beta_2 = \langle \bar{g}_1, \ldots, \bar{g}_{\frac{n}{2}} \rangle$.] Now, put

$$\bar{e}_0 = \frac{\bar{f}_0^{\theta} - \bar{f}_0}{\delta^{\theta} - \delta}, \qquad \bar{e}_1 = \frac{\delta \bar{f}_0^{\theta} - \delta^{\theta} \bar{f}_0}{\delta^{\theta} - \delta},$$

and

$$\bar{e}_{4i-2} = \frac{\delta^{\theta}\bar{f}_i - \delta\bar{f}_i^{\theta}}{\delta^{\theta} - \delta}, \quad \bar{e}_{4i} = \frac{\bar{f}_i^{\theta} - \bar{f}_i}{\delta^{\theta} - \delta},$$
$$\bar{e}_{4i-1} = \frac{\delta^{\theta}\bar{g}_i^{\theta} - \delta\bar{g}_i}{\delta^{\theta} - \delta}, \quad \bar{e}_{4i+1} = \frac{\delta^{\theta+1}(\bar{g}_i^{\theta} - \bar{g}_i)}{\delta^{\theta} - \delta}$$

for every $i \in \{1, \ldots, \frac{n}{2}\}$. Then $\bar{e}_0, \bar{e}_1, \ldots, \bar{e}_{2n+1} \in V(2n+2, \mathbb{K})$. Moreover, these 2n + 2 vectors are linearly independent since $\alpha \cap \alpha^{\theta} = \emptyset$. Hence, $(\bar{e}_0, \bar{e}_1, \ldots, \bar{e}_{2n+1})$ is a reference system for $PG(2n+1, \mathbb{K})$. Suppose

$$q(\sum_{i=0}^{2n+1} X_i \bar{e}_i) = \sum_{0 \le i \le j \le 2n+1} a_{ij} X_i X_j.$$

Let $i \in \{1, \ldots, \frac{n}{2}\}$. Since $\langle \bar{f}_i \rangle \in H$, $\langle \bar{f}_i \rangle$ and $\langle \bar{f}_i^{\theta} \rangle$ are collinear points on $Q^+(2n+1, \mathbb{K}')$. Hence, $\langle \bar{e}_{4i-2} \rangle$, $\langle \bar{e}_{4i} \rangle \in Q^-(2n+1, \mathbb{K})$. In a similar way, one can prove that $\langle \bar{e}_{4i-1} \rangle$, $\langle \bar{e}_{4i+1} \rangle \in Q^-(2n+1, \mathbb{K})$. We can conclude that $a_{ii} = 0$ for every $i \in \{2, \ldots, 2n+1\}$.

Notice that since α is a generator of $Q^+(2n+1, \mathbb{K}')$, $B(\bar{x}, \bar{y}) = H(\bar{x}, \bar{y}^{\theta}) = 0$ for all $\bar{x}, \bar{y} \in \{\bar{f}_0, \bar{f}_1, \dots, \bar{f}_{\frac{n}{2}}, \bar{g}_1, \dots, \bar{g}_{\frac{n}{2}}\}.$

We calculate

$$a_{01} = B(\bar{e}_{0}, \bar{e}_{1})$$

$$= B(\frac{\bar{f}_{0}^{\theta} - \bar{f}_{0}}{\delta^{\theta} - \delta}, \frac{\delta \bar{f}_{0}^{\theta} - \delta^{\theta} \bar{f}_{0}}{\delta^{\theta} - \delta})$$

$$= \frac{\delta \cdot B(\bar{f}_{0}^{\theta}, \bar{f}_{0}^{\theta}) - \delta^{\theta} \cdot B(\bar{f}_{0}^{\theta}, \bar{f}_{0}) - \delta \cdot B(\bar{f}_{0}, \bar{f}_{0}^{\theta}) + \delta^{\theta} \cdot B(\bar{f}_{0}, \bar{f}_{0})}{(\delta^{\theta} - \delta)^{2}}.$$

Now, $B(\bar{f}_0, \bar{f}_0) = 0$, $B(\bar{f}_0^{\theta}, \bar{f}_0^{\theta}) = (B(\bar{f}_0, \bar{f}_0))^{\theta} = 0$ and $B(\bar{f}_0^{\theta}, \bar{f}_0) = B(\bar{f}_0, \bar{f}_0^{\theta}) = H(\bar{f}_0, \bar{f}_0) = -k(\delta - \delta^{\theta})^2$. It follows that

$$a_{01} = k(\delta + \delta^{\theta}).$$

After some straightforward calculations, one finds in a similar way that

- $a_{0i} = a_{1i} = 0$ for all $i \in \{2, \dots, 2n+1\},\$
- $a_{2i,2i+1} = k$ for all $i \in \{1, \ldots, n\}$,
- $a_{j_1,j_2} = 0$ for all $j_1, j_2 \in \{2, \dots, 2n+1\}$ with $j_1 < j_2$ and (j_1, j_2) not of the form (2i, 2i+1) for some $i \in \{1, \dots, n\}$.

Now, since $\langle \bar{f}_0 \rangle = \langle \delta \bar{e}_0 - \bar{e}_1 \rangle \in \alpha$ and $\langle \bar{f}_0^{\theta} \rangle = \langle \delta^{\theta} \bar{e}_0 - \bar{e}_1 \rangle \in \alpha^{\theta}$ are points of $Q^+(2n+1, \mathbb{K}')$, we have

$$\begin{cases} a_{00} \cdot \delta^2 + k(\delta + \delta^\theta)(-\delta) + a_{11} &= 0, \\ a_{00} \cdot (\delta^\theta)^2 + k(\delta + \delta^\theta)(-\delta^\theta) + a_{11} &= 0. \end{cases}$$

Hence, $a_{00} = k$ and $a_{11} = k\delta^{\theta+1}$. So, with respect to the reference system $(\bar{e}_0, \bar{e}_1, \dots, \bar{e}_{2n+1})$ of $PG(2n+1, \mathbb{K}), Q^-(2n+1, \mathbb{K})$ has equation

$$X_0^2 + (\delta + \delta^{\theta})X_0X_1 + \delta^{\theta + 1}X_1^2 + X_2X_3 + \dots + X_{2n}X_{2n+1} = 0.$$

Now, suppose α^{\dagger} is another generator of $Q^{+}(2n+1,\mathbb{K}')$ such that $(\alpha^{\dagger})^{\theta} \cap \alpha^{\dagger} = \emptyset$. Then construct in the same way as above a reference system $(\bar{e}_{0}^{\dagger}, \bar{e}_{1}^{\dagger}, \dots, \bar{e}_{2n+1}^{\dagger})$ for $\mathrm{PG}(2n+1,\mathbb{K})$ associated to suitable vectors $\bar{f}_{0}^{\dagger}, \bar{f}_{i}^{\dagger}$ $(i \in \{1, \dots, \frac{n}{2}\}), \bar{g}_{i}^{\dagger}$ $(i \in \{1, \dots, \frac{n}{2}\})$. With respect to the reference system

 $\begin{array}{l} (\bar{e}_{0}^{\dagger},\bar{e}_{1}^{\dagger},\ldots,\bar{e}_{2n+1}^{\dagger}) \text{ of } \mathrm{PG}(2n+1,\mathbb{K}), \ Q^{-}(2n+1,\mathbb{K}) \text{ has also equation } X_{0}^{2} + \\ (\delta+\delta^{\theta})X_{0}X_{1}+\delta^{\theta+1}X_{1}^{2}+X_{2}X_{3}+\cdots+X_{2n}X_{2n+1}=0. \text{ It is now clear that the linear map } \sum_{i=0}^{2n+1}X_{i}\bar{e}_{i} \mapsto \sum_{i=0}^{2n+1}X_{i}\bar{e}_{i}^{\dagger} \text{ of } V(2n+2,\mathbb{K}') \text{ induces an automorphism of } \mathrm{PG}(2n+1,\mathbb{K}') \text{ fixing } \mathrm{PG}(2n+1,\mathbb{K}) \text{ and } Q^{-}(2n+1,\mathbb{K}) \text{ setwise and mapping } \alpha = \langle \bar{f}_{0}, \bar{f}_{1},\ldots,\bar{f}_{2}^{n}, \bar{g}_{1},\ldots,\bar{g}_{2}^{n} \rangle \text{ to } \alpha^{\dagger} = \langle \bar{f}_{0}^{\dagger}, \bar{f}_{1}^{\dagger},\ldots,\bar{f}_{2}^{n}, \bar{g}_{1}^{\dagger},\ldots,\bar{g}_{2}^{n} \rangle \\ \text{Hence, the geometric SDPS-sets of } DQ^{-}(2n+1,\mathbb{K}) \text{ associated to } \alpha \text{ and } \alpha^{\dagger} \text{ are isomorphic.} \end{array}$

5 The natural embedding of $DQ^{-}(2n + 1, \mathbb{K})$ into the half-spin geometry for $Q^{+}(2n+1, \mathbb{K}')$

We will continue with the notation introduced in Section 3. For every $\alpha \in \mathcal{M}$ and every generator γ of $Q^{-}(2n+1,\mathbb{K})$, we define

$$f_{\alpha}(\gamma) := M - \dim(\gamma' \cap \alpha),$$

where

$$M := \max\{\dim(\eta' \cap \alpha) \mid \eta \text{ is a generator of } Q^{-}(2n+1,\mathbb{K})\}.$$

Proposition 5.1 For every $\alpha \in \mathcal{M}$, f_{α} is a valuation of the dual polar space $DQ^{-}(2n+1,\mathbb{K})$ associated to $Q^{-}(2n+1,\mathbb{K})$.

Proof. By definition, the minimal value attained by f_{α} is equal to 0. So, property **(V1)** is satisfied.

Let β be an arbitrary (n-2)-dimensional subspace of $Q^-(2n+1,\mathbb{K})$. Then there exists a unique generator η of $Q^+(2n+1,\mathbb{K}')$ through β' for which $\dim(\alpha \cap \eta) = \dim(\alpha \cap \beta') + 2$. Let γ be the unique subspace of $PG(2n+1,\mathbb{K})$ such that $\gamma' = \eta \cap \eta^{\theta}$ (see Lemma 3.1). Then $\gamma \subseteq Q^-(2n+1,\mathbb{K})$ and $\beta' \subseteq \gamma' \subseteq \eta$. By Lemma 3.2, $\dim(\gamma') = n - 1$. So, γ is a generator of $Q^-(2n+1,\mathbb{K})$ through β . Since $\beta' \subset \gamma' \subset \eta$ and $\dim(\alpha \cap \eta) = \dim(\alpha \cap \beta') + 2$, $\dim(\alpha \cap \gamma') = \dim(\alpha \cap \beta') + 1$. Conversely, suppose that κ is a generator of $Q^-(2n+1,\mathbb{K})$ through β such that $\dim(\alpha \cap \kappa') = \dim(\alpha \cap \beta') + 1$. Then κ' is necessarily contained in η . Then $\kappa' = \kappa'^{\theta} \subseteq \eta^{\theta}$ and $\kappa' \subseteq \eta \cap \eta^{\theta} = \gamma'$. Since κ' and γ' have the same dimension, we have $\kappa = \gamma$. It follows that the line of $DQ^-(2n+1,\mathbb{K})$ corresponding to β has a unique point with smallest f_{α} -value, namely the point corresponding to γ , and that all the remaining points of that line have value $f_{\alpha}(\gamma) + 1$. This proves that property (V2) is satisfied.

Now, let β be an arbitrary generator of $Q^{-}(2n+1,\mathbb{K})$. By Lemma 3.1, there exists a subspace γ of $PG(2n+1,\mathbb{K})$ such that $\gamma' = \langle \alpha \cap \beta', \alpha^{\theta} \cap \beta' \rangle \cap$

 $\langle \alpha \cap \beta', \alpha^{\theta} \cap \beta' \rangle^{\theta} = \langle \alpha \cap \beta', \alpha^{\theta} \cap \beta' \rangle \subseteq \beta'$. Let F_{β} denote the convex subspace of $DQ^{-}(2n+1, \mathbb{K})$ corresponding to the subspace γ of $Q^{-}(2n+1, \mathbb{K})$. Obviously, the point of $DQ^{-}(2n+1, \mathbb{K})$ corresponding to β belongs to F_{β} .

We will now prove that property (V3) is satisfied with respect to the convex subspace F_{β} . Let η be a generator of $Q^{-}(2n+1,\mathbb{K})$ through γ . Then η' contains $\gamma' = \langle \alpha \cap \beta', \alpha^{\theta} \cap \beta' \rangle$ and hence $\dim(\eta' \cap \alpha) \geq \dim(\alpha \cap \beta')$, i.e. $f_{\alpha}(\eta) \leq f_{\alpha}(\beta)$. Now, let κ be an arbitrary generator of $Q^{-}(2n+1,\mathbb{K})$ such that $f_{\alpha}(\kappa) = f_{\alpha}(\eta) - 1$ and $\dim(\eta \cap \kappa) = n - 2$. So, $\dim(\alpha \cap \kappa') = \dim(\alpha \cap \eta') + 1$ and $\dim(\kappa' \cap \eta') = n - 2$. Let p be an arbitrary point of $(\alpha \cap \kappa') \setminus (\alpha \cap \eta')$. Then $\kappa' \cap \eta'$ is the set of points of η' collinear with p on $Q^{+}(2n+1,\mathbb{K}')$. Since every point of $\alpha \cap \eta'$ is collinear on $Q^{+}(2n+1,\mathbb{K}')$ with $p \in \alpha, \alpha \cap \eta' \subseteq \eta' \cap \kappa'$, i.e. $\alpha \cap \eta' \subseteq \kappa'$. Hence, also $\alpha^{\theta} \cap \eta' \subseteq \kappa'$. Since $\alpha \cap \beta' \subseteq \alpha \cap \eta'$ (recall $\eta' \supseteq \gamma' = \langle \alpha \cap \beta', \alpha^{\theta} \cap \beta' \rangle$) and $\alpha^{\theta} \cap \beta' \subseteq \alpha^{\theta} \cap \eta'$, $\gamma' = \langle \alpha \cap \beta', \alpha^{\theta} \cap \beta' \rangle \subseteq \langle \alpha \cap \eta', \alpha^{\theta} \cap \eta' \rangle \subseteq \kappa'$, i.e. $\gamma \subseteq \kappa$. So, f_{α} satisfies property (V3).

Proposition 5.2 Suppose there exists a generator β of $Q^{-}(2n + 1, \mathbb{K})$ such that $\beta' \subseteq \alpha$. Then f_{α} is a classical valuation of $DQ^{-}(2n + 1, \mathbb{K})$, namely, for every generator γ of $Q^{-}(2n + 1, \mathbb{K})$, $f_{\alpha}(\gamma)$ equals the distance $d(\beta, \gamma)$ between β and γ in the dual polar space $DQ^{-}(2n + 1, \mathbb{K})$.

Proof. From $\beta' \subseteq \alpha$, it follows $\beta' = {\beta'}^{\theta} \subseteq \alpha^{\theta}$ and hence $\beta' = \alpha \cap \alpha^{\theta}$ (recall Lemma 3.2). Let γ be an arbitrary generator of $Q^-(2n+1,\mathbb{K})$. Suppose γ' contains a point x of $\alpha \setminus \beta'$. Since $x, x^{\theta} \in \gamma' \subseteq Q^+(2n+1,\mathbb{K}')$, $xx^{\theta} \subseteq Q^+(2n+1,\mathbb{K}')$ and $\langle \alpha, \alpha^{\theta} \rangle \subseteq Q^+(2n+1,\mathbb{K}')$. This is impossible since α and α^{θ} are generators of $Q^+(2n+1,\mathbb{K}')$. Hence, $\gamma' \cap \alpha \subseteq \beta'$, i.e. $\gamma' \cap \alpha = \gamma' \cap \beta'$. Hence, $f_{\alpha}(\gamma) = M - \dim(\gamma' \cap \alpha) = M - \dim(\gamma' \cap \beta') = M - \dim(\gamma \cap \beta)$, where $M = \max\{\dim(\eta' \cap \alpha) \mid \ldots\} = \max\{\dim(\eta' \cap \beta') \mid \ldots\} = \max\{\dim(\eta \cap \beta) \mid \ldots\} = n-1$. So, $f_{\alpha}(\gamma)$ equals the distance between β and γ in the dual polar space $DQ^-(2n+1,\mathbb{K})$.

Lemma 5.3 Let x be a point of $\alpha \cap \alpha^{\theta} \cap PG(2n+1, \mathbb{K})$, let β be a generator of $Q^{-}(2n+1, \mathbb{K})$ not containing x and let γ be the unique generator of $Q^{-}(2n+1, \mathbb{K})$ containing x intersecting β in a subspace of dimension n-2. Then $\dim(\gamma' \cap \alpha) = \dim(\beta' \cap \alpha) + 1$.

Proof. Since $x \in \gamma' \setminus \beta'$, $\beta' \neq \gamma'$. So, $\beta' \cap \gamma'$ is a hyperplane of both β' and γ' and $\dim(\gamma' \cap \alpha) \leq \dim(\beta' \cap \gamma' \cap \alpha) + 1 \leq \dim(\beta' \cap \alpha) + 1$. We will now prove that $\dim(\beta' \cap \alpha) + 1 \leq \dim(\gamma' \cap \alpha)$. If $x \in Q^-(2n+1,\mathbb{K})$ were collinear on $Q^+(2n+1,\mathbb{K}')$ with every point of β' , then x would also be collinear on $Q^-(2n+1,\mathbb{K})$ with every point of β , contradicting the fact that $x \in Q^-(2n+1,\mathbb{K}) \setminus \beta$ and β is a generator of $Q^-(2n+1,\mathbb{K})$. Hence, the points of β' collinear on $Q^+(2n+1, \mathbb{K}')$ with x form a hyperplane of β' which necessarily coincides with $(\beta \cap \gamma)'$. Since every point of $\beta' \cap \alpha$ is collinear on $Q^+(2n+1, \mathbb{K}')$ with $x \in \alpha, \beta' \cap \alpha \subseteq (\beta \cap \gamma)' = \beta' \cap \gamma'$. Hence, $\beta' \cap \alpha \subseteq \gamma' \cap \alpha$. Now, since $x \in (\gamma' \cap \alpha) \setminus (\beta' \cap \alpha)$, we have $\dim(\gamma' \cap \alpha) \ge \dim(\beta' \cap \alpha) + 1$.

Suppose x is a point of $\alpha \cap \alpha^{\theta} \cap \operatorname{PG}(2n+1,\mathbb{K})$, where $n \geq 3$. The subspaces of $Q^{-}(2n+1,\mathbb{K})$ (respectively $Q^{+}(2n+1,\mathbb{K}')$) through x define a polar space $Q^{-}(2n-1,\mathbb{K})$ (respectively $Q^{+}(2n-1,\mathbb{K}')$). The maximal subspaces of $Q^{-}(2n+1,\mathbb{K})$ through x form a max $M \cong DQ^{-}(2n-1,\mathbb{K})$ of $DQ^{-}(2n+1,\mathbb{K})$. Since α is a maximal subspace of $Q^{+}(2n-1,\mathbb{K}')$, we can define a valuation f_{α}^{M} of M, similarly as we could define the valuation f_{α} of $DQ^{-}(2n+1,\mathbb{K})$ from the maximal subspace α of $Q^{+}(2n+1,\mathbb{K}')$. From Lemma 5.3, we immediately obtain:

Proposition 5.4 Let f_{α}^{M} be as defined before this proposition. Then the valuation f_{α} of $DQ^{-}(2n+1,\mathbb{K})$ is the extension of the valuation f_{α}^{M} of M.

Proposition 5.5 (i) If n = 2, then f_{α} is a classical or ovoidal valuation of $DQ^{-}(5, \mathbb{K})$.

(ii) If n = 3, then the valuation f_{α} of $DQ^{-}(7, \mathbb{K})$ is either a classical valuation or the extension of an ovoidal valuation of a quad of $DQ^{-}(7, \mathbb{K})$.

Proof. (i) If n = 2, then α is a generator of $Q^+(5, \mathbb{K}')$. Since α and α^{θ} belong to different systems of generators of $Q^+(5, \mathbb{K}')$, $\alpha \cap \alpha^{\theta}$ is either a line or the empty set. If $\alpha \cap \alpha^{\theta}$ is a line, then f_{α} is a classical valuation of $DQ^-(5, \mathbb{K})$ by Lemma 3.1 and Proposition 5.2. Suppose therefore that $\alpha \cap \alpha^{\theta} = \emptyset$. Then $\dim(\beta' \cap \alpha) \leq 0$ for every generator (= line) β of $Q^-(5, \mathbb{K})$. It follows that f_{α} can only attain the values 0 and 1. This implies that f_{α} is an ovoidal valuation of $DQ^-(5, \mathbb{K})$.

(ii) If n = 3, then since α and α^{θ} belong to different systems of generators of $Q^+(7, \mathbb{K}')$, dim $(\alpha \cap \alpha^{\theta}) \in \{0, 2\}$. By Lemma 3.1, there exists a point $x \in \alpha \cap \alpha^{\theta} \cap \mathrm{PG}(2n+1, \mathbb{K})$. Claim (ii) follows from Claim (i) and Proposition 5.4. (Notice that extensions of classical valuations are again classical.)

Proposition 5.6 The valuation f_{α} is the possibly trivial extension of an SDPS-valuation of a convex subspace of $DQ^{-}(2n+1,\mathbb{K})$.

Proof. Let $DQ^+(2n + 1, \mathbb{K}')$ denote the dual polar space associated to $Q^+(2n+1, \mathbb{K}')$ and let $d^+(\cdot, \cdot)$ denote the distance function in $DQ^+(2n+1, \mathbb{K}')$.

By Proposition 5.5, the proposition holds if $n \leq 3$. So, suppose $n \geq 4$. Let U denote an arbitrary hex of $DQ^{-}(2n+1,\mathbb{K})$ corresponding to an (n-4)dimensional subspace β of $Q^{-}(2n+1,\mathbb{K})$. The subspace β' of $Q^{+}(2n+1,\mathbb{K}')$ corresponds to a convex subspace F of diameter 4 of $DQ^+(2n+1, \mathbb{K}')$. Let $\tilde{\alpha}$ denote the unique point of F nearest to α . For every generator γ of $Q^-(2n+1, \mathbb{K})$ through β , put

$$\widetilde{f}_{\widetilde{\alpha}}(\gamma) = \widetilde{M} - \dim(\gamma' \cap \widetilde{\alpha}),$$

where

 $\widetilde{M} := \max\{\dim(\eta' \cap \widetilde{\alpha}) \mid \eta \text{ is a generator of } Q^{-}(2n+1, \mathbb{K}) \text{ through } \beta\}.$

Then $\tilde{f}_{\tilde{\alpha}}$ is a valuation of U, which by Proposition 5.5 is either a classical valuation or the extension of an ovoidal valuation of a quad of U.

Now, for every generator γ of $Q^{-}(2n+1,\mathbb{K})$ through β , $n-1-\dim(\gamma'\cap\alpha)$ is equal to the distance $d^{+}(\gamma', \alpha)$ between the line γ' of $DQ^{+}(2n+1,\mathbb{K}')$ and the point α of $DQ^{+}(2n+1,\mathbb{K}')$. Since F is classical in $DQ^{+}(2n+1,\mathbb{K}')$, $d^{+}(\gamma', \alpha) = d^{+}(\gamma', \widetilde{\alpha}) + d^{+}(\widetilde{\alpha}, \alpha)$ and hence $\dim(\gamma'\cap\alpha) = n-1-d^{+}(\gamma', \alpha) = n-1-d^{+}(\gamma', \alpha) = \dim(\gamma'\cap\widetilde{\alpha}) - d^{+}(\widetilde{\alpha}, \alpha) - d^{+}(\widetilde{\alpha}, \alpha) - d^{+}(\widetilde{\alpha}, \alpha) - M + f_{\widetilde{\alpha}}(\gamma)$. It follows that $\widetilde{f_{\alpha}}$ is the valuation of U induced by f_{α} . Since U was arbitrary, every induced hex-valuation is either classical or the extension of an ovoidal valuation of a quad. By Proposition 2.4, it now follows that f_{α} is the possibly trivial extension of an SDPS-valuation of a convex subspace of $DQ^{-}(2n+1,\mathbb{K})$.

Definition. Let F_{α} denote the convex subspace of $DQ^{-}(2n+1, \mathbb{K})$ such that f_{α} is the extension of an SDPS-valuation of F_{α} . Let X_{α} denote the SDPS-set of F_{α} corresponding to the SDPS-valuation of F_{α} giving rise to f_{α} . The set X_{α} consists of those points of $DQ^{-}(2n+1,\mathbb{K})$ whose f_{α} -value is equal to 0, or equivalently, consists of those generators γ of $Q^{-}(2n+1,\mathbb{K})$ for which $\dim(\gamma' \cap \alpha)$ attains its maximal value M.

Proposition 5.7 F_{α} is the convex subspace of $DQ^{-}(2n+1, \mathbb{K})$ corresponding to the subspace $(\alpha \cap \alpha^{\theta}) \cap PG(2n+1, \mathbb{K})$ of $Q^{-}(2n+1, \mathbb{K})$ and X_{α} is a geometric SDPS-set in F_{α} .

Proof. (i) Suppose first that $\alpha \cap \alpha^{\theta} = \emptyset$. Then *n* is even by Lemma 3.2. Recall that *M* is the maximal value of dim $(\gamma' \cap \alpha)$, where γ ranges over all generators of $Q^{-}(2n + 1, \mathbb{K})$. Let *H* denote the set of points *x* of α which are collinear on $Q^{+}(2n + 1, \mathbb{K}')$ with x^{θ} . Then by Proposition 4.6, *H* is a nonsingular θ -Hermitian variety of Witt index $\frac{n}{2}$ in α . The set *X* of generators of $Q^{-}(2n + 1, \mathbb{K})$ of the form $\langle \beta, \beta^{\theta} \rangle \cap \operatorname{PG}(2n + 1, \mathbb{K})$ where β is some generator of *H* is a (geometric) SDPS-set of $DQ^{-}(2n + 1, \mathbb{K})$. If γ is a generator of $Q^{-}(2n+1,\mathbb{K})$, then $\gamma' \cap \alpha$ and $(\gamma' \cap \alpha)^{\theta} = \gamma' \cap \alpha^{\theta}$ are disjoint subspaces of γ' . Since dim $(\gamma') = n - 1$, we necessarily have dim $(\gamma' \cap \alpha) \leq \frac{n}{2} - 1$. Hence, $M \leq \frac{n}{2} - 1$.

If β is a generator of H, then $\gamma = \langle \beta, \beta^{\theta} \rangle \cap \mathrm{PG}(2n+1, \mathbb{K})$ is a generator of $Q^{-}(2n+1, \mathbb{K})$. Moreover, $\gamma' \cap \alpha = \langle \beta, \beta^{\theta} \rangle \cap \alpha = \beta$ has dimension $\frac{n}{2} - 1$.

So, we can conclude that $M = \frac{n}{2} - 1$. It is clear from the above that the generators γ of $Q^{-}(2n+1,\mathbb{K})$ for which $\dim(\gamma' \cap \alpha) = \frac{n}{2} - 1$ are precisely those generators of $Q^{-}(2n+1,\mathbb{K})$ which are of the form $\langle \beta, \beta^{\theta} \rangle \cap \operatorname{PG}(2n+1,\mathbb{K})$ for some generator β of H. So, $X_{\alpha} = X$ is a geometric SDPS-set of $DQ^{-}(2n+1,\mathbb{K})$. Since $DQ^{-}(2n+1,\mathbb{K})$ is the convex subspace of $DQ^{-}(2n+1,\mathbb{K})$ corresponding to the subspace $\emptyset = \alpha \cap \alpha^{\theta} \cap \operatorname{PG}(2n+1,\mathbb{K})$ of $Q^{-}(2n+1,\mathbb{K})$, we have proved our claim.

(ii) Suppose $\beta := \alpha \cap \alpha^{\theta} \cap \operatorname{PG}(2n+1, \mathbb{K}) \neq \emptyset$. Let F denote the convex subspace of $DQ^{-}(2n+1, \mathbb{K})$ corresponding to β . By successive application of Proposition 5.4, we see that f_{α} is the extension of a valuation f_{α}^{F} of F. So, X_{α} must be a set of points of F. Now, taking the quotient polar spaces P and P' obtained by considering all subspaces of $Q^{-}(2n+1, \mathbb{K})$ and $Q^{+}(2n+1, \mathbb{K}')$ through β and β' , respectively, and applying (i), we see that X_{α} must be a geometric SDPS-set in F.

Now, put

$$K := \frac{n - 1 - \dim(\alpha \cap \alpha^{\theta})}{2}$$

Then $K \in \mathbb{N}$ by Lemma 3.2. More precisely, we have $0 \leq K \leq \lfloor \frac{n}{2} \rfloor$. By Proposition 5.7, the diameter diam (F_{α}) of F_{α} is equal to $(n-1) - \dim(\alpha \cap \alpha^{\theta}) = 2K$. So, the maximal value of an SDPS-valuation of F_{α} is equal to K. It follows that the maximal value of f_{α} is equal to

$$K + \operatorname{diam}(DQ^{-}(2n+1,\mathbb{K})) - \operatorname{diam}(F_{\alpha}) = n - K.$$

In the following proposition, we determine the precise value of the parameter $M = \max\{\dim(\eta' \cap \alpha) \mid \eta \text{ is a generator of } Q^-(2n+1,\mathbb{K})\}.$

Proposition 5.8 We have M = n - K - 1.

Proof. We have $\dim(\alpha \cap \alpha^{\theta}) = n - (2K + 1)$. Let π be the (n - 2K - 1)dimensional subspace of $\operatorname{PG}(2n + 1, \mathbb{K})$ such that $\pi' = \alpha \cap \alpha^{\theta}$. Taking the quotient of $Q^{-}(2n + 1, \mathbb{K})$ and $Q^{+}(2n + 1, \mathbb{K}')$ over the respective subspaces π and $\pi' = \alpha \cap \alpha^{\theta}$, we obtain polar spaces isomorphic to $Q^{-}(4K + 1, \mathbb{K})$ and $Q^{+}(4K + 1, \mathbb{K}')$. By successive application of Lemma 5.3, we see that $M = \dim(\pi') + 1$ + dimension of a generator of $H(2K, \mathbb{K}', \theta) = n - K - 1$. (Recall that by the proof of Proposition 5.7, M equals the dimension of a generator of H if $\alpha \cap \alpha^{\theta} = \emptyset$.)

Corollary 5.9 There exists a generator η of $Q^-(2n+1, \mathbb{K})$ such that $\eta' \cap \alpha = \emptyset$.

Proof. For every generator η of $Q^{-}(2n+1, \mathbb{K})$, we have $f_{\alpha}(\eta) = M - \dim(\eta' \cap \alpha) = n - K - 1 - \dim(\eta' \cap \alpha)$. The claim now follows from the fact that the maximal value of $f_{\alpha}(\eta)$ is equal to n - K.

Now, let $\epsilon \in \{+, -\}$ such that $\alpha \in \mathcal{M}^{\epsilon}$. Recall that $HS^{\epsilon}(2n + 1, \mathbb{K}')$ denotes the half-spin geometry for $Q^+(2n + 1, \mathbb{K}')$ defined on the set \mathcal{M}^{ϵ} . Let $d_{\epsilon}(\cdot, \cdot)$ denote the distance function in $HS^{\epsilon}(2n + 1, \mathbb{K}')$. For any two elements $\alpha_1, \alpha_2 \in \mathcal{M}^{\epsilon}$, we have $d_{\epsilon}(\alpha_1, \alpha_2) = \frac{n - \dim(\alpha_1 \cap \alpha_2)}{2}$. The diameter of $HS^{\epsilon}(2n + 1, \mathbb{K}')$ is equal to $\lfloor \frac{n+1}{2} \rfloor$. For every generator γ of $Q^-(2n + 1, \mathbb{K})$, let γ^{ϕ} denote the unique element

For every generator γ of $Q^{-}(2n+1,\mathbb{K})$, let γ^{ϕ} denote the unique element of \mathcal{M}^{ϵ} through γ' . Then ϕ defines a full embedding of $\Delta = DQ^{-}(2n + 1,\mathbb{K})$ into $HS^{\epsilon}(2n+1,\mathbb{K}')$ (the natural embedding of $DQ^{-}(2n+1,\mathbb{K})$ into $HS^{\epsilon}(2n+1,\mathbb{K}')$). Since γ^{ϕ} and α belong to the same system of generators of $Q^{+}(2n+1,\mathbb{K}')$, $n-\dim(\alpha\cap\gamma^{\phi})$ is even. Obviously, $\dim(\alpha\cap\gamma^{\phi})-\dim(\alpha\cap\gamma') \in$ $\{0,1\}$. Hence, $n-\dim(\alpha\cap\gamma^{\phi})=2\cdot\lfloor\frac{n-\dim(\alpha\cap\gamma')}{2}\rfloor$, i.e.

$$d_{\epsilon}(\alpha, \gamma^{\phi}) = \lfloor \frac{n - \dim(\alpha \cap \gamma')}{2} \rfloor.$$

Since the maximal value of dim $(\alpha \cap \eta')$, where η ranges over all generators of $Q^{-}(2n+1,\mathbb{K})$, is equal to n-K-1, we have

$$\mathbf{d}_{\epsilon}(\alpha, \Delta^{\phi}) = \lfloor \frac{K+1}{2} \rfloor.$$

Now, for every generator γ of $Q^{-}(2n+1,\mathbb{K})$,

$$d_{\epsilon}(\alpha, \gamma^{\phi}) = \lfloor \frac{n - \dim(\alpha \cap \gamma')}{2} \rfloor$$
$$= \lfloor \frac{n - M + M - \dim(\alpha \cap \gamma')}{2} \rfloor$$
$$= \lfloor \frac{K + 1 + f_{\alpha}(\gamma)}{2} \rfloor$$
$$= \lfloor \frac{K + 1 + d_{\Delta}(\gamma, X_{\alpha})}{2} \rfloor.$$

This proves Theorem 1.3.

Remark. Since the maximal value of $f_{\alpha}(\gamma) = d_{\Delta}(\gamma, X_{\alpha})$ is equal to n - K, the maximal value of $d_{\epsilon}(\alpha, \gamma^{\phi})$ is equal to $\lfloor \frac{n+1}{2} \rfloor$ which is precisely the diameter of $HS^{\epsilon}(2n+1, \mathbb{K}')$.

We will now prove Theorem 1.4. We will need the following lemma, which is easy to prove, see e.g. [9, Lemma 2.5].

Lemma 5.10 (i) If n is odd, then the set of elements of \mathcal{M}^{ϵ} meeting a given element of \mathcal{M}^{ϵ} is a hyperplane of $HS^{\epsilon}(2n+1,\mathbb{K}')$.

(ii) If n is even, then the set of elements of \mathcal{M}^{ϵ} meeting a given element of $\mathcal{M}^{-\epsilon}$ is a hyperplane of $HS^{\epsilon}(2n+1, \mathbb{K}')$.

Now, suppose that n is even, that $\alpha \in \mathcal{M}^{\epsilon}$ and that $\alpha \cap \alpha^{\theta} = \emptyset$. Then by Lemma 5.10 (ii) and Lemma 3.2, the set of elements of \mathcal{M}^{ϵ} meeting α^{θ} defines a hyperplane H_{α} of $HS^{\epsilon}(2n+1, \mathbb{K}')$.

Let γ be an arbitrary generator of $Q^{-}(2n+1,\mathbb{K})$. Then $\gamma^{\phi} \in H_{\alpha}$ if and only if $\dim(\alpha^{\theta} \cap \gamma^{\phi}) \geq 0$. Now, $\dim(\alpha^{\theta} \cap \gamma^{\phi}) - \dim(\alpha^{\theta} \cap \gamma') \in \{0,1\}$ and $\dim(\alpha^{\theta} \cap \gamma^{\phi})$ is odd since α^{θ} and γ^{ϕ} belong to different systems of generators. It follows that $\gamma^{\phi} \in H_{\alpha}$ if and only if $\dim(\alpha^{\theta} \cap \gamma') \geq 0$. Now,

$$\dim(\alpha^{\theta} \cap \gamma') = \dim(\alpha \cap \gamma')$$

= $M - f_{\alpha}(\gamma)$
= $n - K - 1 - f_{\alpha}(\gamma).$

So, $\gamma^{\phi} \in H_{\alpha}$ if and only if $f_{\alpha}(\gamma) \leq n - K - 1$. Now, the maximal value of the valuation f_{α} is equal to n - K. So, $\gamma^{\phi} \in H_{\alpha}$ if and only if γ belongs to the hyperplane of $DQ^{-}(2n + 1, \mathbb{K})$ associated to the SDPS-set X_{α} . Now, let e denote the spin embedding of $HS^{\epsilon}(2n + 1, \mathbb{K}')$. Then by the main result of Shult [16] (see also Corollary 1.3 of [8] for an alternative proof) every hyperplane of $HS^{\epsilon}(2n + 1, \mathbb{K}')$ arises from e. In particular, H_{α} arises from e. Now, the map $e \circ \phi$ defines a full embedding e' of $DQ^{-}(2n + 1, \mathbb{K})$ which is isomorphic to the spin embedding of $DQ^{-}(2n + 1, \mathbb{K})$. Since H_{α} arises from e, the hyperplane of $DQ^{-}(2n + 1, \mathbb{K})$ associated to the SDPS-set X_{α} arises from e'. This proves Theorem 1.4.

6 Appendix: An alternative construction for the unique geometric SDPS-set of DQ⁻(2n+ 1, K)

In De Bruyn and Vandecasteele [11] a construction was given to obtain SDPSsets of the dual polar space $DQ^{-}(2n + 1, q)$. We recall this construction. Consider the finite field \mathbb{F}_{q^2} with q^2 elements and let \mathbb{F}_q denote the subfield of order q of \mathbb{F}_{q^2} . Let δ denote an arbitrary element of $\mathbb{F}_{q^2} \setminus \mathbb{F}_q$. Consider the following bijection ϕ between the vector spaces \mathbb{F}_q^{4n+2} and $\mathbb{F}_{q^2}^{2n+1}$:

$$\phi(X_1, X_2, \dots, X_{4n+2}) = (X_1 + \delta X_2, \dots, X_{4n+1} + \delta X_{4n+2}).$$

Let $\langle \cdot, \cdot \rangle$ be a nondegenerate Hermitian form of $\mathbb{F}_{q^2}^{2n+1}$. For every $\bar{x} \in \mathbb{F}_{q^2}^{2n+1}$, we define $h(\bar{x}) := \langle \bar{x}, \bar{x} \rangle$ and for every $\bar{x} \in \mathbb{F}_q^{4n+2}$, we define $q(\bar{x}) := \langle \phi(\bar{x}), \phi(\bar{x}) \rangle$. The equation $h(\bar{x}) = 0$, respectively $q(\bar{x}) = 0$, defines a nonsingular Hermitian variety $H(2n, q^2)$ in PG $(2n, q^2)$, respectively a nonsingular elliptic quadric $Q^-(4n+1,q)$ in PG(4n+1,q). With every generator of $H(2n, q^2)$, there corresponds (via the map ϕ^{-1}) a generator of $Q^-(4n+1,q)$. The set of generators of $Q^-(4n+1,q)$ which arise in this way is an SDPS-set of $DQ^-(4n+1,q)$.

We will now show that the SDPS-sets which arise in this way are geometric. In order to facilitate the proof, we will give a slightly different but equivalent construction (which is presented here for possibly infinite fields).

Let \mathbb{K} , \mathbb{K}' , θ , n, $V(2n+2,\mathbb{K})$, $V(2n+2,\mathbb{K}')$, $PG(2n+1,\mathbb{K})$ and $PG(2n+1,\mathbb{K}')$ be as in Section 3 and suppose that n is even. Let V be an (n+1)-dimensional subspace of $V(2n+2,\mathbb{K}')$ such that $V^{\theta} \cap V = \{\bar{o}\}$. Let $\{\bar{e}_0, \bar{e}_1, \ldots, \bar{e}_n\}$ be a basis of V and let α be the subspace of $PG(2n+1,\mathbb{K}')$ corresponding to V. For every $i \in \{0, \ldots, n\}$, we define

$$\begin{aligned} \bar{f}_i &:= \bar{e}_i + \bar{e}_i^{\theta}, \\ \bar{g}_i &:= \delta \cdot \bar{e}_i + \delta^{\theta} \cdot \bar{e}_i^{\theta}, \end{aligned}$$

where δ is some given element of $\mathbb{K}' \setminus \mathbb{K}$. Then $\{\bar{f}_0, \bar{f}_1, \ldots, \bar{f}_n, \bar{g}_0, \bar{g}_1, \ldots, \bar{g}_n\}$ is a basis of $V(2n+2, \mathbb{K})$. Define the following bijection ϕ between $V(2n+2, \mathbb{K})$ and V:

$$\phi\Big(\sum_{i=0}^n (X_i\bar{f}_i + Y_i\bar{g}_i)\Big) := \sum_{i=0}^n (X_i + \delta Y_i)\bar{e}_i.$$

The following claim is obvious:

Claim I: For every vector $\bar{x} \neq \bar{o}$ of $V(2n+2,\mathbb{K})$, the point $\langle \bar{x} \rangle$ of $PG(2n+1,\mathbb{K}')$ is contained on the line connecting the points $\langle \phi(\bar{x}) \rangle \in \alpha$ and $\langle \phi(\bar{x})^{\theta} \rangle \in \alpha^{\theta}$.

Now, let $\langle \cdot, \cdot \rangle$ be a nondegenerate θ -Hermitian form of V of maximal Witt index $\frac{n}{2}$. For every vector \bar{x} of $V(2n+2,\mathbb{K})$, we define

$$q(\bar{x}) := \langle \phi(\bar{x}), \phi(\bar{x}) \rangle$$

Claim II: q is a nondegenerate quadratic form of Witt index n of $V(2n + 2, \mathbb{K})$.

PROOF. For every $\bar{x} \in V(2n+2,\mathbb{K})$ and every $k \in \mathbb{K}$, we have $q(k\bar{x}) = k^2q(\bar{x})$. Now, for all $\bar{x}_1, \bar{x}_2 \in V(2n+2,\mathbb{K})$, we put $B(\bar{x}_1, \bar{x}_2) := q(\bar{x}_1 + \bar{x}_2) - q(\bar{x}_1) - q(\bar{x}_2) = \langle \phi(\bar{x}_1), \phi(\bar{x}_2) \rangle + \langle \phi(\bar{x}_2), \phi(\bar{x}_1) \rangle$. Obviously, B is a symmetric \mathbb{K} -bilinear form on $V(2n+2,\mathbb{K})$. We prove that B is nondegenerate. If B were degenerate, then there exists an $\bar{x}^* \in V(2n+2,\mathbb{K}) \setminus \{\bar{0}\}$ such that $\kappa(\bar{y}) := \langle \phi(\bar{x}^*), \bar{y} \rangle + \langle \bar{y}, \phi(\bar{x}^*) \rangle = 0$ for all $\bar{y} \in V$. From $\kappa(\bar{y}) = \kappa(\delta\bar{y}) = 0$, it then follows that $\langle \phi(\bar{x}^*), \bar{y} \rangle = 0$ for all $\bar{y} \in V$. This contradicts the fact that $\langle \cdot, \cdot \rangle$ is nondegenerate.

If U is a subspace of vector dimension $\frac{n}{2}$ of V which is totally isotropic with respect to $\langle \cdot, \cdot \rangle$, then $q(\bar{x}) = 0$ for every $\bar{x} \in \phi^{-1}(U)$. Hence, the Witt index of q is at least n. Suppose the Witt index of q is bigger than n. Then there exists a vector $\bar{x}^* \in V(2n+2,\mathbb{K})$ not belonging to $\phi^{-1}(U)$ such that $q(\bar{x}) = 0$ for every vector \bar{x} belonging to the subspace of $V(2n+2,\mathbb{K})$ generated by \bar{x}^* and $\phi^{-1}(U)$. This implies that $\kappa(\bar{y}) := \langle \phi(\bar{x}^*), \bar{y} \rangle + \langle \bar{y}, \phi(\bar{x}^*) \rangle$ for any $\bar{y} \in U$. From $\kappa(\bar{y}) = \kappa(\delta \bar{y}) = 0$, it then follows that $\langle \phi(\bar{x}^*), \bar{y} \rangle = 0$ for any $\bar{y} \in U$. Since also $\langle \phi(\bar{x}^*), \phi(\bar{x}^*) \rangle = q(\bar{x}^*) = 0$ and $\phi(\bar{x}^*) \notin U$, this contradicts the fact that U is a maximal totally isotropic subspace of V.

So, q is a nondegenerate quadratic form of Witt index n in $V(2n+2, \mathbb{K})$.

So, with q there is associated a nonsingular quadric Q of Witt index n in $\operatorname{PG}(2n+1,\mathbb{K})$ and a quadric \widetilde{Q} in $\operatorname{PG}(2n+1,\mathbb{K}')$. Since the bilinear form associated to q is nondegenerate, \widetilde{Q} is a nonsingular quadric of Witt index $n' \in \{n, n+1\}$ in $\operatorname{PG}(2n+1,\mathbb{K}')$. Let \widetilde{H} be the θ -Hermitian variety of α associated to $\langle \cdot, \cdot \rangle$ and let ζ denote the Hermitian polarity of α associated to $\langle \cdot, \cdot \rangle$. We will prove that $\alpha \subseteq \widetilde{Q}$. Let $p = \langle \overline{y} \rangle$ be an arbitrary point of α .

(a) Suppose first that $p \in \tilde{H}$. By Claim I, for every point $\langle \bar{x} \rangle \in pp^{\theta} \cap PG(2n+1,\mathbb{K}), \phi(\bar{x})$ is a multiple of \bar{y} . Hence, the line $pp^{\theta} \cap PG(2n+1,\mathbb{K})$ of $PG(2n+1,\mathbb{K})$ is completely contained in $Q^{-}(2n+1,\mathbb{K})$. So, $pp^{\theta} \subseteq \tilde{Q}$. In particular, $p \in \tilde{Q}$.

(b) Suppose $p \in \alpha \setminus \widetilde{H}$. Clearly, there exists a point $r \in \widetilde{H} \setminus p^{\zeta}$. For such a point $r, rp \cap \widetilde{H}$ is a Baer subline of rp. Since each of the $|\mathbb{K}| + 1 \geq 3$ points of $rp \cap \widetilde{H}$ are contained in \widetilde{Q} , the whole line rp is contained in \widetilde{Q} . In particular, $p \in \widetilde{Q}$.

Since Q contains subspaces of projective dimension n, the Witt index of \widetilde{Q} must be equal to n + 1. In the sequel, we will denote Q by $Q^{-}(2n + 1, \mathbb{K})$ and \widetilde{Q} by $Q^{+}(2n + 1, \mathbb{K}')$. Now, let H denote the set of all points p of α which are collinear on $Q^{+}(2n + 1, \mathbb{K}')$ with p^{θ} . Clearly, $p \in H$ if and only

if every point of $pp^{\theta} \cap \operatorname{PG}(2n+1,\mathbb{K})$ belongs to $Q^{-}(2n+1,\mathbb{K})$. Now, a point $\langle \bar{x} \rangle \in pp^{\theta} \cap \operatorname{PG}(2n+1,\mathbb{K})$ belongs to $Q^{-}(2n+1,\mathbb{K})$ if and only if $p = \langle \phi(\bar{x}) \rangle \in \tilde{H}$. It follows that $H = \tilde{H}$. Hence, the geometric SDPS-set of $DQ^{-}(2n+1,\mathbb{K})$ associated to α coincides with the set of all generators $\langle U \rangle$ of $Q^{-}(2n+1,\mathbb{K})$ for which $\phi(U)$ is a maximal totally isotropic subspace of Vwith respect to the Hermitian form $\langle \cdot, \cdot \rangle$. This is precisely what we needed to prove.

Remark. Although both constructions give rise to isomorphic SDPS-sets, there is an important difference between them. The construction described in this paper allows to obtain many (geometric) SDPS-sets in a given dual polar space isomorphic to $DQ^{-}(2n+1,\mathbb{K})$. The other construction allows to obtain an SDPS-set in some dual polar space isomorphic to $DQ^{-}(2n+1,\mathbb{K})$.

References

- [1] A. E. Brouwer and H. A. Wilbrink. The structure of near polygons with quads. *Geom. Dedicata* 14 (1983), 145-176.
- [2] F. Buekenhout and P. J. Cameron. Projective and affine geometry over division rings. *Handbook of Incidence Geometry*, 27–62, North-Holland, Amsterdam, 1995.
- [3] P. J. Cameron. Dual polar spaces. Geom. Dedicata 12 (1982), 75–85.
- [4] I. Cardinali and B. De Bruyn. The structure of full polarized embeddings of symplectic and Hermitian dual polar spaces. Adv. Geom. 8 (2008), 111–137.
- [5] C. C. Chevalley. *The algebraic theory of spinors*. Columbia University Press, New York, 1954.
- [6] B. N. Cooperstein and E. E. Shult. A note on embedding and generating dual polar spaces. Adv. Geom. 1 (2001), 37–48.
- [7] B. De Bruyn. *Near polygons*. Frontiers in Mathematics. Birkhäuser, Basel, 2006.
- [8] B. De Bruyn. On the hyperplanes of the half-spin geometries and the dual polar spaces $DQ(2n, \mathbb{K})$. J. Combin. Theory Ser. A 114 (2007), 979–992.

- [9] B. De Bruyn. A note on the spin-embedding of the dual polar space $DQ^{-}(2n+1,\mathbb{K})$. Ars Combin., to appear.
- [10] B. De Bruyn and P. Vandecasteele. Valuations of near polygons. *Glasgow Math. J.* 47 (2005), 347–361.
- [11] B. De Bruyn and P. Vandecasteele. Valuations and hyperplanes of dual polar spaces. J. Combin. Theory Ser. A 112 (2005), 194–211.
- [12] J. W. P. Hirschfeld. Projective geometries over finite fields. Oxford University Press, New York, 1979.
- [13] J. W. P. Hirschfeld. Finite projective spaces of three dimensions. Oxford University Press, New York, 1985.
- [14] S. E. Payne and J. A. Thas. *Finite Generalized Quadrangles*. Research Notes in Mathematics 110. Pitman, Boston, 1984.
- [15] H. Pralle and S. Shpectorov. The ovoidal hyperplanes of a dual polar space of rank 4. Adv. Geom. 7 (2007), 1–17.
- [16] E. E. Shult. Geometric hyperplanes of the half-spin geometries arise from embeddings. Bull. Belg. Math. Soc. Simon Stevin 1 (1994), 439–453.
- [17] J. Tits. Buildings of Spherical Type and Finite BN-pairs. Lecture Notes in Mathematics 386. Springer, Berlin, 1974.
- [18] F. D. Veldkamp. Polar Geometry I-IV, V. Indag. Math. 21 and 22 (1959), 512–551 and 207–212.