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Abstract

Let n € N\ {0,1} and let K and K’ be fields such that K’ is a
quadratic Galois extension of K. Let @~ (2n + 1,K) be a nonsingular
quadric of Witt index n in PG(2n + 1, K) whose associated quadratic
form defines a nonsingular quadric Q" (2n+1,K’) of Witt index n+ 1
in PG(2n + 1,K’). For even n, we define a class of SDPS-sets of the
dual polar space DQ~ (2n+ 1, K) associated to @~ (2n+1,K), and call
its members geometric SDPS-sets. We show that geometric SDPS-sets
of DQ~(2n + 1,K) are unique up to isomorphism and that they all
arise from the spin embedding of DQ ™ (2n+1,K). We will use geomet-
ric SDPS-sets to describe the structure of the natural embedding of
DQ™(2n+1,K) into one of the half-spin geometries for @ (2n+1,K’).

Keywords: dual polar space, half-spin geometry, SDPS-set, spin embedding,
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1 Introduction

Let n € N\ {0, 1}, let K and K’ be fields such that K’ is a quadratic Galois
extension of K and let # denote the unique nontrivial element in Gal(K'/K).
Let @~ (2n+1,K) be a nonsingular quadric of Witt index n in PG(2n+ 1, K)
whose associated quadratic form defines a nonsingular quadric Q1 (2n+1,K’)
of Witt index n + 1 in PG(2n + 1,K’). Let M* and M~ denote the two
systems of generators (= maximal subspaces) of Q@ (2n + 1,K’). Recall that
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two generators belong to the same system if they intersect in a subspace of
even co-dimension. For every € € {+,—}, let HS¢(2n + 1,K’) denote the
point-line geometry whose points are the elements of M€ and whose lines
are the (n — 2)-dimensional subspaces of @ (2n + 1,K’) (natural incidence).
The isomorphic geometries HS*(2n + 1,K’) and HS™(2n + 1,K’) are called
the half-spin geometries for QT (2n + 1,K’). Let DQ~(2n + 1,K) denote the
dual polar space associated to the quadric @~ (2n + 1,K). The map which
associates with every generator of Q= (2n + 1, K) the unique element of M*
containing it, defines a full embedding of DQ~(2n+1, K) into HS¢(2n+1,K’),
see Cooperstein and Shult [6] (for the finite case) and De Bruyn [9] (general
case). This full embedding is called the natural embedding of DQ~(2n+1,K)
into HS¢(2n + 1,K’).

An SDPS-set of a dual polar space A of rank 2n’ is a very nice set of
points of A carrying the structure of a dual polar space of rank n’' (see
Section 2). SDPS-sets of dual polar spaces were introduced by De Bruyn and
Vandecasteele [11] because of their connection with the theory of valuations
of near polygons. From that connection, it follows that the set of points of
A at non-maximal distance from a given SDPS-set X is a hyperplane of A.
We call this hyperplane the hyperplane of A associated to X.

In Section 4, we will construct a certain class of SDPS-sets of DQ~(2n +
1,K), n even. The construction is as follows. Let a be a generator of Q" (2n+
1,K’) which is disjoint from its conjugate o’ (with respect to the quadratic
extension K’ of K). Let H denote the following set of points of a:: a point
x of a belongs to H if and only if z is collinear on Q% (2n + 1,K’) with its
conjugate 2. Then H is a nonsingular Hermitian variety of Witt index 5 of
a.

Theorem 1.1 If 3 is a generator of H, then (3,3°) N PG(2n + 1,K) is a
generator of Q~(2n + 1,K). The set of generators of Q= (2n + 1,K) which
can be obtained in this way is an SDPS-set of DQ~(2n + 1, K).

Any SDPS-set of DQ~(2n+1,K), n even, which can be obtained as described
in Theorem 1.1 is called geometric. We prove the following in Section 4.

Theorem 1.2 Up to isomorphism, there exists a unique geometric SDPS-set
in DQ~(2n+ 1,K), n even and n > 2.

The following theorem provides information regarding the structure of the
natural embedding of DQ~(2n + 1,K) into one of the half-spin geometries
for QT (2n + 1,K’). We will prove it in Section 5.



Theorem 1.3 Consider the natural embedding of A = DQ~(2n+ 1,K) into
HS<(2n + 1,K'), € € {+,—}. Let dc(-,-) and da(-,-) denote the distance
functions in the respective geometries HS*(2n + 1,K’) and A. Then for
every point x of HS(2n + 1,K’), there exists a K € N and a geometric
SDPS-set X in a convexr subspace of diameter 2K of DQ~(2n + 1,K) such

that d.(x,y) = LWJ for every point y of A.

By [6] and [9], the dual polar space DQ~(2n + 1,K) has a nice full embed-
ding e into the projective space PG(2" — 1,K’), called the spin embedding
of DQ~(2n + 1,K). If 7 is a hyperplane of PG(2" — 1,K’), then the set
of all points z of DQ~(2n + 1,K) for which e(z) € = is a hyperplane of
DQ~(2n + 1,K). Hyperplanes of DQ~(2n + 1,K) which can be obtained
in this way are said to arise from e. In Section 5, we will also prove the
following result.

Theorem 1.4 The hyperplanes of DQ~(2n + 1,K), n even, associated to
geometric SDPS-sets arise from the spin embedding of DQ~(2n + 1, K).

Remark. An SDPS-set of DQ~(5,K) is nothing else than an ovoid of the
generalized quadrangle DQ~(5,K). For any field K, there are ovoids in
D@~ (5,K) which do not arise from the spin embedding, see e.g. Payne &
Thas [14, p. 57| for the finite case and De Bruyn & Cardinali [4, Theorem 1.7]
for the infinite case. So, an SDPS-set of DQ~(5,K) is not always geometric.
It is still an open problem whether every SDPS-set of DQ~(4m + 1,K),
m > 2, is geometric.

2 Preliminaries

A near polygon is a partial linear space S = (P,L,1), | C P x L, with
the property that for every point x € P and every line L € L, there exists
a unique point on L nearest to x. Here, distances are measured in the
collinearity graph I' of S. If d is the diameter of I, then the near polygon
is called a near 2d-gon. A near 0-gon is a point and a near 2-gon is a line.
Near quadrangles are usually called generalized quadrangles.

If § = (P,L,1) is a near polygon, then the distance between two points
x and y of S will be denoted by d(x,y). The set of points at distance i € N
from a given point x € P will be denoted by I';(z). If x € P and ) # X C P,
then d(z, X) := min{d(z,y) |y € X}.

A subspace S of a near polygon S is called convez if every point on a
shortest path between two points of S is also contained in S. The points
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and lines contained in a convex subspace of & define a sub-near-polygon of
S. Convex subspaces of diameter d' are therefore also called convexr sub-
2d'-gons. A convex subspace F' of S is called classical in S if for every
point z of S, there exists a necessarily unique point 7g(x) in F' such that
d(z,y) = d(x,7p(z)) + d(7r(x),y) for every point y of F.

A near polygon is called dense if every line is incident with at least
three points and if every two points at distance 2 have at least 2 common
neighbours. If z and y are two points of a dense near 2d-gon at distance
d €40,...,d} from each other, then by Theorem 4 of Brouwer and Wilbrink
[1],  and y are contained in a unique convex subspace (z,y) of diameter d'.
These convex subspaces are called quads if d = 2, hezes if d = 3 and mazes
ifd =d—1.

A function f from the point-set of a dense near 2n-gon S to N is called a
valuation of S if it satisfies the following properties:

(V1) f71(0) # 0
(V2) every line L of & contains a necessarily unique point zj such that
f(z) = f(xr) + 1 for every point x € L\ {z};

(V3) every point z of S is contained in a necessarily unique convex subspace
F, such that the following properties are satisfied for every y € F,: (i)
f(y) < f(x); (ii) if z is a point collinear with y such that f(z) = f(y) — 1,
then z € F.

Valuations of dense near polygons were introduced in De Bruyn and Vande-
casteele [10]. We describe three constructions for obtaining valuations of a
given dense near polygon S = (P, L,1).

(1) For every point = of S, the map f, : P — N;y — d(z,y) is a valuation
of §. We call f, a classical valuation of S.

(2) Suppose O is an ovoid of S, i.e. a set of points of S meeting each line
in a unique point. For every point = of S, we define fo(z) :=0if x € O and
fo(x) := 1 otherwise. Then fo is a valuation of S. We call fo an ovoidal
valuation of S.

(3) Let F = (P’,L',1') be a convex sub-near-polygon of S which is clas-
sical in §. Suppose that f' : P’ — N is a valuation of F'. Then the map
f:P =Nz f(x):=d(z,mp(z)) + f'(mr(z)) is a valuation of S. We call
f the extension of f'. If F =&, then the extension is called trivial.

Valuations can also induce others.

Proposition 2.1 ([10, Proposition 2.12]) Let f be a valuation of a dense
near polygon S, let F' be a convex subspace of S and let m denote the minimal



value attained by f(x) as x ranges over all points of F. For every point x of
F, we define fr(x) := f(x) —m. Then fr is a valuation of F.

The valuation fr defined in Proposition 2.1 is called the valuation of F

induced by f.

We now describe an important class of near polygons. Let II be a nondegen-
erate polar space (Veldkamp [18]; Tits [17, Chapter 7]) of rank n > 2. With
IT there is associated a point-line geometry A whose points are the maxi-
mal singular subspaces of 1I, whose lines are the next-to-maximal singular
subspaces of II and whose incidence relation is reverse containment. The
geometry A is called a dual polar space of rank n and is an example of a near
2n-gon (Cameron [3]). There exists a bijective correspondence between the
nonempty convex subspaces of A and the possibly empty singular subspaces
of II. If « is a singular subspace of II, then the set of all maximal singular
subspaces of II containing « is a convex subspace of A. Conversely, every
convex subspace of A is obtained in this way. Every convex subspace of A
is classical in A. The point-line geometry induced on a convex subspace of
diameter n’ > 2 of A is a dual polar space of rank n’. If oy and ay are two
maximal singular subspaces of II, then the distance between «; and s in
the dual polar space A is equal to n — 1 — dim(a; N ay).

In the present paper, we will meet 3 classes of (dual) polar spaces. Let
n > 2, let K and K’ be two fields such that K’ is a quadratic Galois extension
of K and let 6 be the unique nontrivial element in Gal(K'/K).

(I) We denote by Q~(2n + 1,K) a nonsingular quadric of Witt index n in
PG(2n+1,K) whose associated quadratic form defines a nonsingular quadric
Q7 (2n + 1,K’) of Witt index n + 1 in PG(2n + 1,K’). With respect to a
suitable reference system in PG(2n+1,K), Q™ (2n+1,K) has equation X2+
(6+06N) Xo X1+ X2+ Xo X5+ - -+ X0, Xo, 11 = 0, where § is some element
of K"\ K. We denote by DQ~(2n+1,K) and DQ*(2n+1,K’) the dual polar
spaces associated to Q™ (2n+1,K) and Q" (2n+1,K’), respectively. We will
call (D)Q~(2n+ 1,K) an elliptic (dual) polar space and (D)Q*(2n+1,K’) a
hyperbolic (dual) polar space. (Notice that we have extended this terminology
from the finite case to the infinite case.)

(II) We denote by H(2n,K’,6) a nonsingular #-Hermitian variety of Witt
index n in PG(2n,K’) and by DH (2n,K’, ) the dual polar space associated
to H(2n,K',0). (With 0-Hermitian we mean that the associated involutary
automorphism is equal to #.) With respect to a suitable reference system
in PG(2n,K’), H(2n,K',0) has equation X + (X1 X§ + XoX0) + -+ +
(Xon_1 X0, + Xon X0 ) = 0.



A hyperplane of a partial linear space S = (P, L,I) is a proper subspace
meeting each line. A full (projective) embedding of S is an injective mapping
e from P to the point-set of a projective space X satisfying (i) (e(P)) = X;
(ii) e(L) := {e(z)|z € L} is a line of ¥ for every line L of S. If e is a
full embedding of S and if 7 is a hyperplane of ¥, then e~!(e(P) N 7) is
a hyperplane of S. We say that the hyperplane e~!(e(P) N 7) arises from
the embedding e. Let Q~(2n + 1,K) and Q@ (2n + 1,K’) be the quadrics as
defined above and let HS(2n+1,K’) denote one of the half-spin geometries for
Q1 (2n+1,K’) (as defined in the Introduction). The geometry HS(2n+1,K’)
has a nice full embedding into PG(2"—1, K’), see Chevalley [5] or Buekenhout
and Cameron [2]. We refer to this particular embedding as the spin embedding
of HS(2n+1,K’). Taking in mind the natural embedding of DQ~(2n+1, K)
into HS(2n+1,K’), we see that the spin embedding of HS(2n+1,K’) induces
a full embedding of DQ~(2n + 1,K) into a subspace ¥ of PG(2" — 1,K’).
It can be shown, see Cooperstein and Shult [6] and De Bruyn [9] that ¥ =
PG(2"—1,K’). The induced embedding of DQ~ (2n+1, K) into PG(2"—1,K’)
is called the spin embedding of DQ~(2n + 1,K).

Let A be a thick dual polar space of rank 2n. A set X of points of A is called
an SDPS-set of A if it satisfies the following properties:

(SDPS1) No two points of X are collinear in A.

(SDPS2) If z,y € X such that d(z,y) = 2, then X N (x,y) is an ovoid of
the quad (x,y).

(SDPS3) The point-line geometry A whose points are the elements of X and
whose lines are the quads of A containing at least two points of X (natural
incidence) is a dual polar space of rank n.

(SDPS4) For all z,y € X, d(z,y) = 2-d(z,y), where d(x,y) denotes the
distance between x and y in the dual polar space A.

(SDPS5) If x € X and L is a line of A through z, then L is contained in a
(necessarily unique) quad of A which contains at least two points of X.

SDPS-sets of dual polar spaces were introduced in De Bruyn and Vande-
casteele [11]. The discussion in [11] is however restricted to the finite case.
For a discussion including the infinite case, see De Bruyn [7, Section 5.6.7].
SDPS-sets give rise to valuations:

Proposition 2.2 (Theorem 5.29 of [7]) Let X be an SDPS-set of a thick
dual polar space A of rank 2n. For every point x of A, we define f(z) :=
d(x,X). Then f is a valuation of A whose maximal value is equal to n.



A valuation which can be obtained from an SDPS-set in the way as described
in Proposition 2.2 is called an SDPS-valuation. By Property (V2) in the
definition of valuation, we have

Corollary 2.3 Let X be an SDPS-set of a thick dual polar space of rank 2n.
Let H denote the set of points of A at distance at most n — 1 from X. Then
H is a hyperplane of A (the so-called hyperplane of A associated to X ).

SDPS-valuations can be characterized as follows.

Proposition 2.4 (Theorem 5.32 of [7]) Let A be a thick dual polar space
and let f be a valuation of A with the property that every induced hex val-
uation is either classical or the extension of an ovoidal valuation of a quad.
Then f is the (possibly trivial) extension of an SDPS-valuation of a convex
subpolygon of A.

3 Notations and basic lemmas

Let K and K’ be fields such that K’ is a quadratic Galois extension of K. Let
6 denote the unique nontrivial element in Gal(K'/K) and let n € N\ {0, 1}.

Let V(2n+2,K’) denote a (2n+2)-dimensional vector space over the field
K’ and suppose B* = {€;,€},...,€5,,,} is a basis of V(2n + 2,K’). The set
of all K-linear combinations of elements of B* defines a (2n + 2)-dimensional
vector space V(2n + 2,K) over the field K. If # = 3275 X,e! is a vector of
V(2n +2,K’), then we define 7 = 3" X0e:.

Let PG(2n + 1,K’) and PG(2n + 1,K) denote the projective spaces as-
sociated to V(2n + 2,K’) and V(2n + 2,K), respectively. An ordered basis
(€0, €1,...,E,41) Oof V(2n + 2,K') is called a reference system for PG(2n +
LK) if 07 Xe) € PG(2n + 1,K) for all Xo, X1, .., X1 € K with
(X0, X1, -0y Xopy1) 7 (0,0,...,0). Ifp = (S22 X er) is a point of PG(2n+
1,K’), then we define p := (327" X?&r). For every subspace o of PG(2n +
1,K'), we define o’ := {p’|p € a}. Notice that we have given different
meanings to the map 6, but from the context it will always be clear what is
meant.

There is a natural inclusion of the projective space PG(2n + 1,K) into
the projective space PG(2n + 1,K’). In the sequel, we will regard points of
PG(2n+1,K) as points of PG(2n+1,K’). Every subspace a of PG(2n+1,K)
then generates a subspace o’ of PG(2n + 1,K’) of the same dimension as a.

Lemma 3.1 (Lemma 2.1 of [9]) If« is a subspace of PG(2n+1,K'), then
there exists a unique subspace (3 of PG(2n + 1,K) such that a Na’ = 3.

7



For all 7,5 € {0,...,2n + 1} with ¢ < j, let a;; € K such that

2n+1
=k Pyp—
q< E XZ€Z> = E ainin
1=0 0<i<j<2n+1

is a quadratic form of V(2n +2,K) and V' (2n + 2, K’) defining a nonsingular
quadric @~ (2n + 1,K) of Witt index n in PG(2n + 1,K) and a nonsingular
quadric @*(2n + 1,K’) of Witt index n + 1 in PG(2n + 1,K'). Let B(-,")
denote the bilinear form of V(2n + 2,K’) associated to the quadratic form
q(-), i.e.

B(z1,73) = q(T1+ 22) — q(Z1) — q(T2)
for all Z1,z5 € V(2n + 2,K’). Obviously, we have

(7)) = la(@)]’",
B(z,73) = [B(31,1)]",

for all 7,7, € V(2n + 2,K').
Let M* and M~ denote the two systems of generators of @*(2n+1,K’)
and put M = Mt UM,

Lemma 3.2 (Lemma 2.2 of [9]) We have (MT)? = M~ and (M™)? =
M™*. As a consequence, for every a € M, n — dim(ana?) is odd.

Lemma 3.3 Let k € {—1,0,...,n — 1} such that n — k is odd. Then there
exists an o € M such that dim(aNa?) = k.

Proof. We can choose a reference system (€, €1, . . ., €2,11) for PG(2n+1,K)
and a § € K\ K in such a way that a point (32"¢' X;&;) of PG(2n + 1,K)
belongs to Q@ (2n + 1,K) if and only if

Xo+ (6 + )Xo X, + 8" X+ Xo X5+ - + Xy Xop1 = 0.

Now, let a be the element of M generated by the points (dég — €1), (€4;_2 +

by (1€ {1,..., =Ny (e — tewn) (i € {1,...,2=E)), (Eon_as)
(i € {0,...,k}). Then one readily verifies that a N a? = (€3,_2;|0 < i < k).
Hence, dim(a N a?) = k. ]

Remark. Let 7 be a subspace of dimension k € {—1,0,...,n—3} of Q~(2n+
1,KK). The subspaces of @~ (2n+1,K) through 7 define a polar space P. The
subspaces of Q1 (2n+1,K’) through 7’ define a polar space P’. We can choose
ad € K'\ K and a reference system (éo,é1,...,€2,41) for PG(2n + 1,K)
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such that (i) q(Z?ZOH Xié,) = X2+ (6 + XX, + X2 + Xo X3 +
-+ X9 Xont1, (ii) 7 is the subspace of PG(2n + 1, K) corresponding to the

subspace of V(2n+2, K) generated by €911, €21, - - -, €2p41-2k. Let T denote
the subspace of PG(2n+1,K) defined by the vectors ey, €y, . .., €2,_2k—1. The

quadratic form (7( S Akl Xl-éi> = X2+ (0+ )Xo X, + X2+ Xo X3+

co o+ Xop_op_2Xo,_ok_1 defines a nonsingular quadric @_(2n — 2k —1,K) of
Witt index n — k — 1 in 7 and a nonsingular quadric @+(2n — 2k — 1,K’)
of Witt index n — k in 7’. There exists a natural bijection between the
singular subspaces of P (respectively P’) and the subspaces contained in
the quadric Q~(2n — 2k — 1,K) (respectively Qt(2n — 2k — 1,K')): if o
(respectively ) is a subspace of @~ (2n+ 1,K) (respectively Q*(2n+1,K"))
through 7 (respectively 7’), then a N7 (respectively o/ N 7’) is a subspace
of Q=(2n — 2k — 1,K) (respectively Q*(2n — 2k — 1,K’)). Hence, P =
Q (2n — 2k — 1,K) and P’ = Q*(2n — 2k — 1,K’). Notice also that the
elements of one system of generators of Q" (2n + 1, K’) through " define one
system of generators of P’ = @*(Qn — 2k — 1,K’). We will freely make use
of this remark in the sequel.

4 Geometric SDPS-sets of DQ~(2n + 1,K)

We will continue with the notation introduced in Section 3. In this section
however, we will assume that n is even and that « is an element of M
satisfying N a? = (). By Lemma 3.3 we know that such an « exists. Notice
that also o’ € M and aNPG(2n+1,K) = () since every point of «NPG(2n+
1,K) is contained in o N .

Lemma 4.1 For every subspace 3 of o, v = (3,3%) N PG(2n + 1,K) is a
subspace of PG(2n+1,K) of dimension 2-dim(3)+1. Moreover, v = (3, 3°).

Proof. Since 8 C «a and 3 C of are disjoint, (3,3?) has dimension 2 -
dim(3) + 1. Now, by Lemma 3.1, there exists a subspace 7; of PG(2n +
1,K) such that v, = (3,8% n (5,5 = (3,3’). Obviously, dim(y,) =
dim((3,3%)) = 2-dim(3) + 1 and v, = (8, 5%) NPG(2n + 1,K). .

Now, let H denote the set of all points (Z) of « for which h(z) := B(z,z%) = 0.
Obviously, H is a #-Hermitian variety of a. We observe the following for two
points (z), (y) of a

(I) (z) and () are collinear on the quadric Q*(2n + 1,K’) if and only if
B(z,y%) = 0;



(I1) if (z) € H and (y) # (z), then B(Z,7’) = 0 if and only if the line of
« through () and (y) is either contained in H or intersects H in the
point (Z).

By (I), a point p € a belongs to H if and only if p is collinear on Q*(2n+1,K’)
with p?.

Lemma 4.2 H is nonsingular.

Proof. Suppose () is a singular point of H. Then by (II) above, B(z,3°) =
0 for all g € V(2n + 2,K’) such that (y) is a point of a. Hence, by (I) above,
(z) is collinear on Q*(2n + 1,K’) with every point of a’. This is impossible
since af is a generator of Q*(2n + 1,K’) and (z) & o’. .

Lemma 4.3 If 3 is a subspace of o contained in H, then (3, 3°) NPG(2n +
1,K) is a subspace of @~ (2n + 1,K) of dimension 2 - dim(5) + 1.

Proof. Put k := dim(5) + 1 and let {p1,p2,...,pr} be an independent gen-
erating set of points for the subspace 3. Then {pi,pa,...,pr, 05,05, ..., 0%}
is an independent generating set of points for the subspace (3, 3%). Now, by
(I) and (IT) above, {p1, P2, - - -, Pk, PI, 05, - ., pL} is a set of mutually collinear
points of the quadric @*(2n + 1,K’). By Lemma 4.1, it now follows that
(8,8) NPG(2n + 1,K) is a subspace of dimension 2-dim(3) + 1 of Q= (2n +
1,K). .

Lemma 4.4 Let x be a point of PG(2n + 1,K). Then there exists a unique
line L, in PG(2n + 1,K') through x which meets a and o’ in points. More-
over, (L,Na)? = L,Na’ and L,NPG(2n+1,K) is a line of PG(2n +1,K).
Ifx € Q@ (2n+1,K), then L, C Q" (2n + 1,K') and L, NPG(2n + 1,K) is
a line of Q= (2n + 1,K).

Proof. Clearly, there is a unique line L, through z meeting o and of in
points, namely the line through the points (a, x)Na’ and (a?, r)Na. Since L,
meets « and o and contains the point z, also LY meets a and o and contains
the point 2% = . Hence, L? = L,. This implies that (L, N )’ = L, Na’.
By Lemma 4.1, L, N PG(2n + 1,K) is a line of PG(2n + 1,K).

Suppose now that x € @~ (2n + 1,K). Then the line L, contains three
points of @ (2n+1,K’), namely the point z and the unique points in L, N«
and L, Na’. Hence, L, C Q" (2n+1,K’). It follows that L, NPG(2n+ 1,K)
is a line of @~ (2n + 1,K). n

Lemma 4.5 Let 3 be a subspace of a contained in H and let v be the
subspace (3,3°) N PG(2n + 1,K) of Q= (2n + 1,K). Let x be a point of
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Q™ (2n+ 1,K) \ v which is collinear on Q~(2n + 1,K) with every point of v,
and let L, denote the unique line of PG(2n+1,K') through x which meets «
and of in the respective points v and v?. Then

(i) L, and {3, 3%) are disjoint;

(1) the subspace ((3,v) of v is contained in H.

Proof. (i) Since z & v, also x & (83, 3%). Suppose L, N {3, 3%) is a singleton
{y}. By Lemma 4.4, L, is generated by a line of PG(2n + 1,K) which is
contained in Q™ (2n +1,K). Since both L, and (3, 3°) = 4/ are generated by
subspaces of PG(2n+1,K), the point y must belong to PG(2n+ 1, K). Since
y € (3,3°)\ (BU B3%), there exists a unique line through y meeting 3 and 3%
and this line necessarily coincides with the unique line through y meeting «
and of. It follows that L, meets 3 and 3?, contradicting the fact that L,
is not contained in (3, 3?) (recall = ¢ (3,3%)). Hence, L, and (3, 3%) are
disjoint.

(ii) We have 8 C H. Since L, € QT (2n + 1,K’), v and v’ are collinear
on QT (2n+1,K'), i.e. v € H. In order to show that (3,v) C H, we need to
prove that every point u of (3 is collinear on H with v, or equivalently, that
every point u of 3 is collinear with v? on the quadric Q*(2n + 1,K’) (see (I)
and (II) above).

Since x is collinear on @~ (2n + 1, K) with every point of v, it is collinear
on Q*(2n+1,K’) with every point of v/ = (3, 3%). In particular, x is collinear
on Q1(2n+1,K’) with u. Now, since u is collinear on Q*(2n + 1, K’) with v
and z, it is also collinear on Q*(2n + 1,K’) with v?. This is precisely what
we needed to show. n

Proposition 4.6 H is a nonsingular 0-Hermitian variety of (mazximal) Witt
indexr 3 in «.

Proof. In view of Lemma 4.2, we need to show that there exists an (§ —1)-
dimensional subspace on H.

We prove by induction on k& € {0,..., 5} that there exists a subspace
0O of dimension k& — 1 on H. Obviously, this claim holds if £ = 0. So,
suppose k > 1. By the induction hypothesis, there exists a subspace [;_; of
dimension k —2 on H. Put vx_1 := (31,87 ) NPG(2n +1,K). By Lemma
4.3, k-1 is a subspace of dimension 2k — 3 of Q~(2n + 1,K). Since k < F,
there exists a point u; € Q@ (2n + 1, K) which is collinear on @~ (2n + 1,K)
with every point of 7;_;. Let L,, denote the unique line through wu; meeting
a and of in the respective points vy and v;,? (see Lemma 4.4). By Lemma
4.5, ﬁk = <ﬁk_1,vk> - H and dlm(ﬁk) =k—1. u
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Proposition 4.7 Let X be the set of generators of Q= (2n + 1,K) of the
form (B3, 3°) N PG(2n + 1,K), where 3 is some generator of H. Then X is
an SDPS-set of the dual polar space DQ~(2n + 1,K). Moreover, the dual
polar space defined on the set X by the quads of DQ~(2n + 1,K) containing

at least two points of X s isomorphic to the dual polar space associated to
H.

Proof. Let d(-,-) denote the distance function in the dual polar space
DQ~(2n+1,K). Let DH(n,K’, §) denote the dual polar space associated to
H = H(n,K',0) and let d'(-,-) denote the distance function in DH (n,K’,0).
For every subspace v of H, we define 7¢ := (v,7%) N PG(2n + 1,K). By
Lemma 4.3, 7% is a subspace of Q(2n + 1,K) of dimension 2 - dim(v) + 1.
So, if v is a point of DH (n,K’, ), then 4 is a point of DQ~(2n+1,K). If
and ~y, are two distinct subspaces on H, then v N5 = (y1,77) N (72,75) N
PG(2n + 1,K) = (1 N2, (11 N12)?) NPG(2n + 1,K) = (71 N2)?. Hence,

d(87,85) =2 d'(B1, Bo) (1)

for any two points 31 and 35 of DH(n,K’, 6). This proves property (SDPS1).
It is also obvious that ¢ defines a bijection between the set of lines of
DH(n,K',0) and the set of quads of DQ~(2n + 1,KK) which contain at least
two points of X. As a consequence, the partial linear space A whose points
are the elements of X and whose lines are the quads of DQ~(2n + 1,K)
containing at least two points of X (natural incidence) is isomorphic to
DH(n,K',0), proving property (SDPS3). Property (SDPS4) now imme-
diately follows from equation (1).

We now prove property (SDPS2). Let ) be a line of DH(n,K’,0) and
put 71 := (31, ) NPG(2n + 1,K) C Q@ (2n + 1,K). Let v, be an arbitrary
subspace of dimension n—2 of @~ (2n+1,K) containing ;. We need to prove
that there exists a unique generator (2 of H(n,K’ @) through /3 such that
Yo C (B, B)NPG(2n+1,K). Let  be an arbitrary point of v\ y; and let L,
denote the unique line through z meeting o and o in the respective points v
and v?. By Lemma 4.5, L, N {31, 3¢) = 0 and v is collinear on the Hermitian
variety H with every point of §;. If we put §* := ((;,v), then §* is a
generator of H(n,K', §) through 3 satisfying v, C (3*, (8*))NPG(2n+1, K).
Conversely, suppose that (35 is a generator of H(n,K’, #) through 3; such that
Yo C (B2, 39) NPG(2n + 1,K). Since z € (B, 89) \ (B2 U 39), there exists a
unique line through x meeting 3, and 3. This line necessarily coincides with
L,. Hence, v € By and [ = (f1,v) = B*. Property (SDPS2) immediately
follows.

We now prove property (SDPS5). Let v; be a generator of @~ (2n+1,K)
corresponding to a point of X and let 75 be an arbitrary hyperplane of ~;.
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There exists a unique generator 3; of H such that (3, 8) NPG(2n+1,K) =
71. Now, 74 is a hyperplane of +, = (£, 3?) and hence intersects §; in
either 3 or a hyperplane of 3. Suppose 31 C 5. Then 3¢ C 759 = 74 and
hence (31, 3Y) C ~4, a contradiction. Hence, ~} intersects 3; in a hyperplane
By of By. Since By C 74, we have 8 C 4% = ~4, (B2, 35) C ~4 and hence
(B2, B5)NPG(2n+1,K) C ¥,NPG(2n+1,K) = 2. So, the (n—3)-dimensional
subspace (32, 35) NPG(2n+ 1,K) of Q~(2n +1,K) corresponds to a quad of
D@~ (2n+ 1,K) which contains the line of DQ~(2n + 1, K) corresponding to
72. This proves property (SDPS5). u

SDPS-sets of the dual polar space DQ~(2n + 1,K) which can be obtained
as described in Proposition 4.7 are called geometric SDPS-sets of DQ~ (2n +
1,K). A certain class of SDPS-sets of DQ~(2n + 1,K) has already been
described in De Bruyn & Vandecasteele [11] and Pralle & Shpectorov [15].
All these SDPS-sets are geometric. We will prove this in the appendix of this
paper using the description of [11].

Definition. Again, suppose that n is even and consider the inclusion PG(n—
1,K) ¢ PG(n—1,K’). We denote by # here the conjugation in PG(n—1,K’)
with respect to the field extension K'/K. There exists an (5 —1)-dimensional
subspace 8 of PG(n — 1,K’) such that 3N 3% = (). For every point x € (3,
L, = 22’ NPG(n—1,K) is a line of PG(n —1,K). The set S = {L, |z € 3}
is a spread of PG(n —1,K), i.e. a set of lines of PG(n — 1, K) partitioning the
point-set of PG(n—1,K). Any spread of PG(n—1,K) which can be obtained
in this way is called a regular spread. For a discussion of regular spreads in
the finite case, see Hirschfeld [12, Chapter 4] and [13, Chapter 17].

Let X be as defined in Proposition 4.7 and let z be a point of X. The convex
subspaces of DQ~(2n+ 1, K) containing the point x define a projective space
L, isomorphic to PG(n —1,K). The quads through x containing at least two
points of X define a spread S, of £, by property (SDPS5).

Proposition 4.8 For every point x of X, the spread S, of L, is reqular.

Proof. Let v be the generator of @~ (2n + 1,K) corresponding to x. Then
there exists a generator 3 of H such that v = (3, 3%) N PG(2n + 1,K). The
lines of the spread S, of £, correspond to the subspaces (n,7?) N PG(2n +
LK) = (n,8%Ynn’, By NPG(2n + 1,K), where 7 is some hyperplane of 3. In
this way, we obtain a regular spread in the dual projective space associated
to . This proves the proposition. "

The following proposition is precisely Theorem 1.2.
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Proposition 4.9 Any two geometric SDPS-sets of DQ~(2n+ 1,K) are iso-
morphic.

Proof. Let V be the subspace of V(2n + 2,K’) whose nonzero elements
consist of all vectors Z for which (Z) € . For all vectors  and y of V', we
define H(z,3) := B(Z,%°). Then H(-,-) is a Hermitian form on V and H is
the Hermitian variety of « associated to it. Let § be an element of K’ such
that 6% ¢ {6, —0}. [If char(K) = 2, then § is an arbitrary element of K’ \ K.
If char(K) # 2, then for an arbitrary 4 € K’ \ K, 6 can be chosen in the
set {u, pu+ 1}.] Now, we can always choose a k € K\ {0} and vectors fy, fi
(Ged{l,....5}), g (ze {1,...,5}) in V such that

o a=(fo,fiseeos J 011 G2),

H(fo, fo) = —k(d — &),

H(fo,ﬁ):H(ﬁ),gi):(}forallie{1,...,%},

H(f;,fj):H(f]i,gj):()foralli,j6{1,...,%},
H(f;,q) = 5foreveryz€{1 R

e H(f;,g;)=0foralli,je{l,... 2} withi#j.

[If 51 and [35 are two disjoint generators of H and p = (/3 ﬁgf, where ( is the

Hermitian polarity of o associated to H, then we can choose fo, f1,..., f2,G1,..., g2
in such a way that p= <f0>7 61 = <f17 . 7f%> and 62 = <g17 ce- 7.@%)] NOW7
put B -
__fo—fo N [
€0 = 5 €1 = )
5 — ¢ 60—
and _ _ _ _
_ &’ fi —off . =1
Ciicg = —fg——~, 4 = :
e 30— S
s Y- "Gl —g)
4i—1 69 _ 5 9 4Z+1 (59 _ 6 )

for every i € {1,...,5}. Then €y, é,,...,e:m+1 € V(2n + 2,K). Moreover,
these 2n + 2 vectors are linearly independent since oo N o = (. Hence,

(€0, €1, ..., E2,11) i a reference system for PG(2n + 1, K). Suppose
2n+1
i=0 0<i<j<2n+1
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Let i € {1,...,%}. Since (f;) € H, (f;) and (f) are collinear points on
QT (2n + 1,K’). Hence, (é4;—2), (é4;) € @~ (2n + 1,K). In a similar way, one
can prove that <é4i_1> <64Z+1> € Q@ (2n+1,K). We can conclude that a; = 0
for every i € {2,...,2n+ 1}.

Notice that since a is a generator of QT (2n+1,K'), B(z,y) = H(z,§’) =

0 for all Z,7 € {fo, f1, . .. f2 Giysgnt
We calculate

apy = B(éo,él)

R~ o 670,

B —s ~w=s ) o o
5'B(fgafg)—50'3(fgyfo)—5'B(f0,fg)+59'3(f07f0)'

oy
Now. BUfo o) = 0, BELJE) = (B o) = 0and BUE ) = B ) =
H(fo, fo) = —k(6 — §%)2. Tt follows that

agr = k(6 +0%).
After some straightforward calculations, one finds in a similar way that
e ap; =ay; =0forallie {2 ...,2n+ 1},
® a0y =k forallie{l,...,n}

e aj ;, =0forall ji,jo €{2,...,2n+ 1} with j; < jo and (j1, j2) not of
the form (24,2 + 1) for some i € {1,...,n}.
Now, since (fo) = (déy — &1) € a and (ff) = (6% — &1) € af are points of
Qt(2n + 1,K’), we have

Qoo * 52 + k(5 + (50)(—(5) + ar = 07
ago - (6°)> + k(64 6%) (=) +ain = 0.

Hence, agy = k and a;; = k6%*!. So, with respect to the reference system
(€0, €1, ..., E11) of PG(2n + 1,K), @~ (2n + 1,K) has equation
2 + (6 + 60)X0X1 + 69+1X12 + X2X3 + -+ X2nX2n+1 - 0

Now, suppose al is another generator of Q*(2n + 1,K’') such that (a')? N
af = (. Then construct in the same way as above a reference system
(&.el, ... ean) for PG(2n + 1,K) associated to suitable vectors fi, f;

(i e{L,...,5}), gl (i € {1,...,%}). With respect to the reference system
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@, el,...,eh, 1) of PG(2n 4+ 1,K), Q™ (2n + 1,K) has also equation X2 +
(64+09) X0 X1+ 0 X2+ Xp X5+ -+ -+ X5, X0, 11 = 0. It is now clear that the
linear map """ Xie; — S0 Xqel of V(2n + 2,K’) induces an automor-
phism of PG(2n + 1,K’) fixing PG(2n + 1,K) and @~ (2n + 1, K) setwise and
rnapping Q= <f07fla s 7f%>.§_717' - 7§%> to aT = <f(;r?f1Ta ce 7](%7.?71[7' e 7§T%>
Hence, the geometric SDPS-sets of DQ~(2n + 1,K) associated to o and af
are isomorphic. "

5 The natural embedding of DQ (2n + 1,K)
into the half-spin geometry for Q*(2n+1, K')

We will continue with the notation introduced in Section 3. For every o € M
and every generator v of Q~(2n + 1,K), we define

fa(y) == M —dim(y Na),
where
M = max{dim(n’' Na)|n is a generator of @~ (2n + 1,K)}.

Proposition 5.1 For every a € M, f, is a valuation of the dual polar space
DQ~(2n + 1,K) associated to Q= (2n + 1,K).

Proof. By definition, the minimal value attained by f, is equal to 0. So,
property (V1) is satisfied.

Let 3 be an arbitrary (n — 2)-dimensional subspace of Q~(2n + 1,K).
Then there exists a unique generator n of @ (2n + 1,K’) through 3" for
which dim(a N'n) = dim(a N §') + 2. Let v be the unique subspace of
PG(2n+1,K) such that v = nNn? (see Lemma 3.1). Then v C Q~(2n+1,K)
and ' C 4 C 5. By Lemma 3.2, dim(y’) = n — 1. So, 7 is a generator of
@~ (2n+1,K) through 3. Since #’ C 4" C n and dim(ann) = dim(aNpf’)+2,
dim(aeNv’) = dim(a N f') + 1. Conversely, suppose that x is a generator of
Q~(2n + 1,K) through 3 such that dim(a N k') = dim(a N F’) + 1. Then
k' is necessarily contained in 1. Then &' = & C 79 and ¥ C nNy? = .
Since k" and «' have the same dimension, we have k = ~. It follows that the
line of DQ~(2n + 1, K) corresponding to # has a unique point with smallest
fa-value, namely the point corresponding to 7, and that all the remaining
points of that line have value f,(v) 4+ 1. This proves that property (V2) is
satisfied.

Now, let 3 be an arbitrary generator of @~ (2n + 1,K). By Lemma 3.1,
there exists a subspace v of PG(2n + 1,K) such that v/ = (aN 3,2’ N YN
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(anf,a’nB)l = (anF,a’NP’y C 3. Let Fj denote the convex subspace of
DQ~(2n+1,K) corresponding to the subspace v of @~ (2n+1, K). Obviously,
the point of DQ™(2n + 1,K) corresponding to 3 belongs to Fj.

We will now prove that property (V3) is satisfied with respect to the
convex subspace Fj. Let n be a generator of Q~(2n+ 1, K) through . Then
7 contains 7 = (a N B,a’ N F) and hence dim(n’' N a) > dim(a N F),
ie. fa(n) < fo(B). Now, let k be an arbitrary generator of @~ (2n + 1,K)
such that f,(k) = fo(n) — 1 and dim(np N k) = n — 2. So, dim(a N k') =
dim(a N7n’) + 1 and dim(x' N 7') = n — 2. Let p be an arbitrary point of
(ank)\ (enn’). Then ' N7 is the set of points of 7" collinear with p on
Q1 (2n + 1,K’). Since every point of a N7’ is collinear on Q@ (2n + 1,K’)
with p € o, a Ny’ C ' Nk, ie. ann C «'. Hence, also o’ N7’ C x/. Since
anB Canny (recally Do = (anp,a?NF)) and o’ N B C o Ny,
Y ={anp,a’N@)Cany, o’ Ny) C K, ie v C k. So, f, satisfies
property (V3). n

Proposition 5.2 Suppose there exists a generator 3 of Q@ (2n + 1,K) such
that 3" C a.. Then f, is a classical valuation of DQ~(2n+ 1,K), namely, for
every generator v of @~ (2n+1,K), f.(v) equals the distance d(3,) between
B and ~ in the dual polar space DQ~(2n + 1,K).

Proof. From (' C a, it follows 3 = 3" C o’ and hence 3 = a N o’ (recall
Lemma 3.2). Let v be an arbitrary generator of @~ (2n + 1,K). Suppose
7' contains a point x of a \ 4. Since z,2Y € v C Q*(2n + 1,K’), xz? C
QT(2n+1,K') and (o, a’) C QT (2n +1,K’). This is impossible since o and
af are generators of Q*(2n +1,K’'). Hence, ¥ Na C ', ie. ¥ Na=+"N43.
Hence, fo(v7) = M —dim(y Na) = M —dim(y' N JF') = M — dim(y N 3),
where M = max{dim(n’'Na)| ...} = max{dim(n’'NF")| ...} = max{dim(nN
B)| ...} =n—1. So, fu(7) equals the distance between [ and + in the dual
polar space DQ~(2n + 1, K). .

Lemma 5.3 Let x be a point of aNa®NPG(2n+1,K), let 3 be a generator of
Q™ (2n+1,K) not containing x and let v be the unique generator of Q~ (2n+
1,K) containing = intersecting 3 in a subspace of dimension n — 2. Then
dim(y' Na) =dim(f Na) + 1.

Proof. Since x € v\ ', 3 # . So, ' N+ is a hyperplane of both [’
and 7" and dim(y' Na) < dim(f Ny Na)+1 < dim(F Na) + 1. We will
now prove that dim(f’' Na) +1 < dim(y Na). If z € Q= (2n + 1,K) were
collinear on Q*(2n + 1,K’) with every point of ', then z would also be
collinear on @~ (2n + 1, K) with every point of 3, contradicting the fact that
r € Q (2n+ 1,K)\ § and 3 is a generator of @~ (2n + 1,K). Hence, the
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points of 3’ collinear on Q" (2n+ 1,K’) with x form a hyperplane of 5" which
necessarily coincides with (G N+)’. Since every point of 3’ N« is collinear on
Qt(2n+1,K') with z € a, ' N C (BN7y) = N~ Hence, 3 Na C v Na.
Now, since x € (v Na) \ (' Na), we have dim(y' Na) > dim(F' Na)+ 1. =

Suppose z is a point of aNa? NPG(2n + 1,K), where n > 3. The subspaces
of Q7 (2n+1,K) (respectively Q*(2n+1,K’)) through z define a polar space
Q (2n — 1,K) (respectively @ (2n — 1,K’)). The maximal subspaces of
Q™ (2n+1,K) through x form a max M = DQ~(2n—1,K) of DQ™~ (2n+1,K).
Since « is a maximal subspace of Q7 (2n—1,K’), we can define a valuation fM
of M, similarly as we could define the valuation f, of DQ~(2n + 1,K) from
the maximal subspace @ of @ (2n+1,K’). From Lemma 5.3, we immediately
obtain:

Proposition 5.4 Let fM be as defined before this proposition. Then the
valuation f, of DQ~(2n + 1,K) is the extension of the valuation fM of M.

Proposition 5.5 (i) If n =2, then f, is a classical or ovoidal valuation of
DQ~(5,K).

(13) If n = 3, then the valuation f, of DQ~(7,K) is either a classical
valuation or the extension of an ovoidal valuation of a quad of DQ~(7,K).

Proof. (i) If n = 2, then « is a generator of @*(5,K’). Since a and of belong
to different systems of generators of Q*(5,K’), a N a? is either a line or the
empty set. If @ Na? is a line, then f, is a classical valuation of DQ~(5,K)
by Lemma 3.1 and Proposition 5.2. Suppose therefore that aNa? = (). Then
dim (8’ N ) < 0 for every generator (= line) 3 of Q= (5,K). It follows that
fo can only attain the values 0 and 1. This implies that f, is an ovoidal
valuation of DQ~ (5, K).

(ii) If n = 3, then since a and af belong to different systems of generators
of QT(7,K'), dim(a N a?) € {0,2}. By Lemma 3.1, there exists a point
r € aNa?NPG(2n+1,K). Claim (ii) follows from Claim (i) and Proposition
5.4. (Notice that extensions of classical valuations are again classical.) n

Proposition 5.6 The valuation f, is the possibly trivial extension of an
SDPS-valuation of a convexr subspace of DQ~(2n + 1,K).

Proof. Let DQ"(2n + 1,K’) denote the dual polar space associated to
QT (2n+1,K’) and let d* (-, -) denote the distance function in DQ*(2n+1,K’).

By Proposition 5.5, the proposition holds if n < 3. So, suppose n > 4.
Let U denote an arbitrary hex of DQ~(2n+1, K) corresponding to an (n—4)-
dimensional subspace 3 of @~ (2n+ 1,K). The subspace ' of QT (2n+1,K’)
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corresponds to a convex subspace F' of diameter 4 of DQT(2n + 1,K’). Let
a denote the unique point of F' nearest to «. For every generator v of
@~ (2n + 1,K) through 3, put

—~

falv) = M—dim(y na),
where
M = max{dim(n’ N @) |7 is a generator of @~ (2n + 1,K) through £}.

Then ﬁ; is a valuation of U, which by Proposition 5.5 is either a classical
valuation or the extension of an ovoidal valuation of a quad of U.

Now, for every generator v of @~ (2n+1, K) through 4, n—1—dim(y'Na)
is equal to the distance d* (7/, &) between the line 7/ of DQ*(2n +1,K’) and
the point @ of DQ*(2n + 1,K’). Since F is classical in DQ*(2n + 1,K'),
d* (v, a) =d*(v,a) +d* (@, a) and hence dim(y'Na) =n—1—-d" (v, a) =
n—1—d*(v,a)—d*(a,a) = dim(y'Na)—d* (a, a). So, fu(y) = M—dim(y'N
a) = M+d*(@,a)—dim(yNa) = M +d* (&, a)— M+ fz(y). Tt follows that
ﬁ; is the valuation of U induced by f,. Since U was arbitrary, every induced
hex-valuation is either classical or the extension of an ovoidal valuation of
a quad. By Proposition 2.4, it now follows that f, is the possibly trivial
extension of an SDPS-valuation of a convex subspace of DQ~(2n + 1,K). =

Definition. Let F, denote the convex subspace of DQ~(2n+ 1, K) such that
fa is the extension of an SDPS-valuation of F,,. Let X, denote the SDPS-set
of F,, corresponding to the SDPS-valuation of F, giving rise to f,. The set
X, consists of those points of DQ~(2n + 1,K) whose f,-value is equal to
0, or equivalently, consists of those generators v of @~ (2n + 1,K) for which
dim(7' N «) attains its maximal value M.

Proposition 5.7 F, is the convez subspace of DQ~(2n+1,K) corresponding
to the subspace (aNa®)NPG(2n+1,K) of Q~ (2n+1,K) and X, is a geometric
SDPS-set in F,.

Proof. (i) Suppose first that a N a’ = (). Then n is even by Lemma 3.2.
Recall that M is the maximal value of dim(4' N «), where v ranges over
all generators of @ (2n + 1,K). Let H denote the set of points = of «
which are collinear on Q% (2n + 1,K’) with 2. Then by Proposition 4.6, H
is a nonsingular ¢-Hermitian variety of Witt index § in a. The set X of
generators of Q~(2n + 1,K) of the form (3, 3%) N PG(2n + 1,K) where 3 is

some generator of H is a (geometric) SDPS-set of DQ~(2n + 1, K).
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If v is a generator of @~ (2n + 1,K), then v/ N« and (v Na)? =~ Na’
are disjoint subspaces of /. Since dim(y') = n — 1, we necessarily have
dim(y’ Na) < § — 1. Hence, M < § — 1.

If 3 is a generator of H, then v = (3, 3%) N PG(2n + 1,K) is a generator
of Q™ (2n+ 1,K). Moreover, v Na = (3, %) N a = § has dimension 2 — 1.

So, we can conclude that M = 3 — 1. It is clear from the above that the
generators 7 of @~ (2n+1, K) for which dim(y'Na) = §—1 are precisely those
generators of Q~(2n+ 1, K) which are of the form (3, 3%) "PG(2n +1,K) for
some generator 3 of H. So, X, = X is a geometric SDPS-set of DQ~(2n +
1,K). Since DQ~(2n + 1,K) is the convex subspace of DQ~(2n + 1,K)
corresponding to the subspace ) = aNa? NPG(2n+1,K) of Q~(2n + 1,K),
we have proved our claim.

(ii) Suppose 3 := anNa’ NPG(2n + 1,K) # (. Let F denote the convex
subspace of DQ~(2n + 1,K) corresponding to 3. By successive application
of Proposition 5.4, we see that f,, is the extension of a valuation f of F. So,
X, must be a set of points of F'. Now, taking the quotient polar spaces P and
P’ obtained by considering all subspaces of @~ (2n+1,K) and Q*(2n+1,K’)
through § and [, respectively, and applying (i), we see that X, must be a
geometric SDPS-set in F'. "

Now, put

n —1—dim(ana?)
2

Then K € N by Lemma 3.2. More precisely, we have 0 < K < [§]. By
Proposition 5.7, the diameter diam(F,,) of F,, is equal to (n — 1) — dim(a N
af) = 2K. So, the maximal value of an SDPS-valuation of F, is equal to K.
It follows that the maximal value of f, is equal to

K =

K + diam(DQ™ (2n + 1,K)) — diam(F,) = n — K.

In the following proposition, we determine the precise value of the parameter
M = max{dim(n’ N«) |7 is a generator of @~ (2n + 1,K)}.

Proposition 5.8 We have M =n — K — 1.

Proof. We have dim(aNaf) =n — (2K + 1). Let 7 be the (n — 2K — 1)-
dimensional subspace of PG(2n + 1,K) such that 7’ = a N a?. Taking the
quotient of @ (2n 4+ 1,K) and Q1 (2n + 1,K’) over the respective subspaces
7 and 7 = aNa’, we obtain polar spaces isomorphic to Q~ (4K + 1,K) and
Q1 (4K + 1,K’). By successive application of Lemma 5.3, we see that M =
dim(7’) + 1 + dimension of a generator of H(2K,K',0) = n— K —1. (Recall
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that by the proof of Proposition 5.7, M equals the dimension of a generator
of Hifana?=10.) .

Corollary 5.9 There exists a generatorn of @~ (2n+1,K) such that ' Na =
0.

Proof. For every generator n of @~ (2n+1, K), we have f,(n) = M —dim(n'N
a) =n— K —1—dim(n’Na). The claim now follows from the fact that the
maximal value of f,(n) is equal to n — K. n

Now, let € € {+,—} such that & € M¢°. Recall that HS(2n + 1,K’) de-
notes the half-spin geometry for Q*(2n + 1,K’) defined on the set M°€. Let
de(+,-) denote the distance function in HS(2n + 1,K’). For any two ele-
ments aj,ay € M€, we have d.(ag,ay) = w. The diameter of
HS(2n +1,K') is equal to [ 2],

For every generator vy of Q™ (2n + 1,K), let v¢ denote the unique element
of M€ through +’. Then ¢ defines a full embedding of A = DQ~(2n +
1,K) into HS(2n + 1,K’) (the natural embedding of DQ~(2n + 1,K) into
HS¢(2n+1,K")). Since v¢ and « belong to the same system of generators of
QT (2n+1,K'), n—dim(anv?) is even. Obviously, dim(aNvy?)—dim(any’) €
{0,1}. Hence, n — dim(arNA®) = 2+ [ 2=0mem) | 15 0

n — dim(a N~')

dlay?) = |P=

I.

Since the maximal value of dim(a N 7'), where n ranges over all generators
of @~ (2n + 1,K), is equal to n — K — 1, we have

d(a, A%) = L% I.

Now, for every generator v of @~ (2n + 1, K),
n — dim(a N°')
5 ]
n— M+ M —dim(a Nv')
2
K+ 1+ fu(7)
5 ]
K+1+ dA(’Y7XOc)
2

de(a,0”) = |
= |
= |
= |

]

I.

This proves Theorem 1.3.
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Remark. Since the maximal value of f,(7) = da(7y, Xa) is equal to n —
K, the maximal value of de(c,7?) is equal to |3+ ] which is precisely the
diameter of HS(2n + 1,K’).

We will now prove Theorem 1.4. We will need the following lemma, which is
easy to prove, see e.g. [9, Lemma 2.5].

Lemma 5.10 (i) Ifn is odd, then the set of elements of M€ meeting a given
element of M€ is a hyperplane of HS*(2n + 1,K’).

(13) If n is even, then the set of elements of M meeting a given element
of M~ is a hyperplane of HS(2n + 1,K').

Now, suppose that n is even, that a € M€ and that a N a? = . Then
by Lemma 5.10 (ii) and Lemma 3.2, the set of elements of M€¢ meeting af
defines a hyperplane H, of HS(2n + 1,K’).

Let v be an arbitrary generator of Q~(2n + 1,K). Then v* € H,, if and
only if dim(a? N+?) > 0. Now, dim(a? N~?) — dim(a? N+') € {0,1} and
dim(a? Nv?) is odd since a? and v? belong to different systems of generators.
It follows that v* € H,, if and only if dim(a? N+’) > 0. Now,

dim(a’ N4) = dim(anv)
M — fa(7)
= n—K—-1-— f,(v)
So, v € H, if and only if f,(7) < n — K — 1. Now, the maximal value of

the valuation f, is equal to n — K. So, v¢ € H, if and only if v belongs to
the hyperplane of DQ~(2n + 1, K) associated to the SDPS-set X,. Now, let
e denote the spin embedding of HS¢(2n + 1,K’). Then by the main result
of Shult [16] (see also Corollary 1.3 of [8] for an alternative proof) every
hyperplane of HS¢(2n + 1,K’) arises from e. In particular, H, arises from e.
Now, the map e o ¢ defines a full embedding ¢’ of DQ~(2n + 1,K) which is
isomorphic to the spin embedding of DQ~(2n + 1,K). Since H, arises from
e, the hyperplane of DQ~(2n + 1,K) associated to the SDPS-set X, arises

from ¢’. This proves Theorem 1.4.

6 Appendix: An alternative construction for
the unique geometric SDPS-set of DQ~ (2n+
1, K)

In De Bruyn and Vandecasteele [11] a construction was given to obtain SDPS-
sets of the dual polar space DQ~(2n + 1, q). We recall this construction.
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Consider the finite field F 2 with ¢? elements and let F,, denote the subfield
of order q of F2. Let § denote an arbitrary element of F 2 \ F,. Consider the
following bijection ¢ between the vector spaces ]Fg"+2 and Fi?“:

qb(Xl, X27 N ,X4n+2) - (Xl + 5X2, e ,X4n+1 + (5X4n+2).

Let (-,-) be a nondegenerate Hermitian form of Fjg“. For every T € Fg?“,
we define h(Z) := (z, T) and for every T € F;"+?, we define ¢(Z) := (¢(Z), ¢(Z)).
The equation h(z) = 0, respectively ¢(Z) = 0, defines a nonsingular Her-
mitian variety H(2n,q*) in PG(2n,¢?), respectively a nonsingular elliptic
quadric Q™ (4n + 1,q) in PG(4n + 1,q). With every generator of H(2n,¢?),
there corresponds (via the map ¢~1) a generator of Q= (4n + 1,q). The set
of generators of Q~(4n + 1,q) which arise in this way is an SDPS-set of
DQ ™ (4n+1,q).

We will now show that the SDPS-sets which arise in this way are geo-
metric. In order to facilitate the proof, we will give a slightly different but
equivalent construction (which is presented here for possibly infinite fields).

Let K, K', 0, n, V(2n+2,K), V(2n +2,K'), PG(2n+ 1,K) and PG(2n +
1,K’) be as in Section 3 and suppose that n is even. Let V be an (n +
1)-dimensional subspace of V(2n + 2,K’) such that V? NV = {6}. Let
{€o,€1,...,€,} be a basis of V and let a be the subspace of PG(2n + 1,K’)

corresponding to V. For every i € {0,...,n}, we define
fi = e+é,
G o= 0-aitd &,

where § is some given element of K'\K. Then {fo, f1,. .-, fn, G0, G1s- - > Jn} 1S
a basis of V' (2n+2,K). Define the following bijection ¢ between V' (2n+2, K)
and V:

n n

¢<Z(Xiﬁ+yz‘§i)> = ) (X +0Y)e.

=0 i=0
The following claim is obvious:

Claim I: For every vector T # o of V(2n + 2,K), the point (Z) of PG(2n +

1,K') is contained on the line connecting the points (¢(Z)) € a and (p(z)?) €
0

al.

Now, let < -,- > be a nondegenerate -Hermitian form of V' of maximal Witt

index %. For every vector Z of V/(2n + 2,KK), we define



Claim II: ¢ is a nondegenerate quadratic form of Witt index n of V(2n +
2,K).

Proor. For every 7 € V(2n + 2,K) and every k € K, we have ¢(kZ) =
k*q(z). Now, for all Z;,7s € V(2n + 2,K), we put B(Z1,Zz) := ¢(T1 + To) —
q(Z1) = q(Z2) = (9(Z1), ¢(Z2)) + (#(Z2), 9(Z1)). Obviously, B is a symmetric
K-bilinear form on V(2n + 2,K). We prove that B is nondegenerate. If
B were degenerate, then there exists an z* € V(2n + 2,K) \ {0} such that
k(Y) == (o(z*), ) + (g, ¢(z*)) = 0 for all g € V. From k(y) = k(6y) = 0, it
then follows that (¢(z*),y) = 0 for all y € V. This contradicts the fact that
(-, ) is nondegenerate.

If U is a subspace of vector dimension  of V' which is totally isotropic
with respect to (-,-), then ¢(z) = 0 for every z € ¢~'(U). Hence, the Witt
index of ¢ is at least n. Suppose the Witt index of ¢ is bigger than n.
Then there exists a vector z* € V(2n + 2,KK) not belonging to ¢! (U) such
that ¢(z) = 0 for every vector Z belonging to the subspace of V' (2n + 2,K)
generated by 7* and ¢~ (U). This implies that x(y) := (#(Z*), ) + (y, ¢(Z*))
for any y € U. From k(y) = x(dy) = 0, it then follows that (¢(z*),y) =0
for any y € U. Since also (¢(z*), p(z*)) = q(z*) = 0 and ¢(z*) ¢ U, this
contradicts the fact that U is a maximal totally isotropic subspace of V.

So, ¢ is a nondegenerate quadratic form of Witt index n in V' (2n + 2, K).

So, with ¢ there is associated a nonsingular quadric @ of Witt index n in
PG(2n + 1,K) and a quadric @ in PG(2n + 1,K’). Since the bilinear form
associated to ¢ is nondegenerate, @ is a nonsingular quadric of Witt index
n' € {n,n+ 1} in PG(2n + 1,K’). Let H be the #-Hermitian variety of «
associated to (-,-) and let ¢ denote the Hermitian polarity of o associated to
(-,+). We will prove that oo C Q. Let p = (g) be an arbitrary point of .

(a) Suppose first that p € H. By Claim I, for every point (z) € pp’ N
PG(2n + 1,K), ¢(Z) is a multiple of 4. Hence, the line pp’ N PG(2n + 1,K)
of PG(2n + 1,K) is completely contained in Q~(2n + 1,K). So, pp? C Q. In
particular, p € @ _ B

(b) Suppose p € a \ H. Clearly, there exists a point » € H \ p*. For
such a point r, rpN H is a Baer subline of rp. Since each of the |[K| +1 >3
points of rp N [z are contained in @, the whole line rp is contained in @ In
particular, p € Q.

__ Since @ contains subspaces of projective dimension n, the Witt index of
() must be equal to n + 1. In the sequel, we will denote @ by Q~(2n + 1, K)
and Q by Q*(2n + 1,K’). Now, let H denote the set of all points p of «
which are collinear on Q*(2n + 1,K’) with p?. Clearly, p € H if and only
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if every point of pp’ N PG(2n + 1,K) belongs to Q= (2n + 1,K). Now, a
point (z) € pp’ N PG(2n + 1,K) belongs to Q~(2n + 1,K) if and only if
p = (¢(z)) € H. It follows that H = H. Hence, the geometric SDPS-set of
DQ~(2n + 1,K) associated to « coincides with the set of all generators (U)
of @~ (2n+1,K) for which ¢(U) is a maximal totally isotropic subspace of V'
with respect to the Hermitian form (-,-). This is precisely what we needed
to prove.

Remark. Although both constructions give rise to isomorphic SDPS-sets,
there is an important difference between them. The construction described
in this paper allows to obtain many (geometric) SDPS-sets in a given dual
polar space isomorphic to DQ~(2n+ 1,K). The other construction allows to
obtain an SDPS-set in some dual polar space isomorphic to DQ~(2n+ 1, K).
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