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Abstract: The determination of the protein’s intracellular localization is essential for understanding
its biological function. Protein localization studies are mainly performed on primary and secondary
vertebrate cell lines for which most protocols have been optimized. In spite of experimental difficulties,
studies on invertebrate cells, including basal Metazoa, have greatly advanced. In recent years, the
interest in studying human diseases from an evolutionary perspective has significantly increased.
Sponges, placed at the base of the animal tree, are simple animals without true tissues and organs
but with a complex genome containing many genes whose human homologs have been implicated
in human diseases, including cancer. Therefore, sponges are an innovative model for elucidating
the fundamental role of the proteins involved in cancer. In this study, we overexpressed human
cancer-related proteins and their sponge homologs in human cancer cells, human fibroblasts, and
sponge cells. We demonstrated that human and sponge MYC proteins localize in the nucleus, the
RRAS2 in the plasma membrane, the membranes of the endolysosomal vesicles, and the DRG1 in the
cell’s cytosol. Despite the very low transfection efficiency of sponge cells, we observed an identical
localization of human proteins and their sponge homologs, indicating their similar cellular functions.

Keywords: Porifera; transfection; DRG1; MYC; RRAS2; primary sponge cells; intracellular localization

1. Introduction

Transfection is a procedure that introduces foreign nucleic acids into eukaryotic cells,
modifying them genetically. Since the 1980s, transfection has been an important method
in basic scientific research, the pharmaceutical industry, and medical uses, including the
production of mRNAs, recombinant proteins in mammalian cells, and biopharmaceutical
products (e.g., vaccines). It is one of the most important procedures for molecular cloning,
gene manipulation, and gene expression and regulation, as well as protein function and reg-
ulation studies. Transfection can be performed biologically (using a viral vector, and then it
is called transduction), physically/mechanically (e.g., gene gun, particle bombardment,
microinjection, and laser-based transfection), chemically (e.g., calcium phosphate precipita-
tion, cationic polymers, and lipid-based transfection, known as lipofection), or combined
(e.g., electroporation) [1,2]. Although there is constant development and progress in trans-
fection techniques, each method has its own advantages and disadvantages, depending
on the experimental goal, cell, or tissue type. Herein, we will focus only on the methods
used in this study—lipofection and electroporation. Liposome-mediated transfection (lipo-
fection) was first reported by Felgner et al. [3]. The method is based on the formation
of liposome complexes that sequester DNA with 100% efficiency [4,5] and is an efficient
method for gene transfer both in vivo and in vitro. The lipofection method involves three
steps: (1) the formation of complexes between the positively charged cationic liposomes
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and the negatively charged DNA molecule containing the gene to be inserted; (2) the fusion
of the lipid/vector complex with the cell membrane by which the vector is delivered into
the cell; (3) the migration of the vector through the cytoplasm and its transport through
the nuclear membrane into the nucleus, where it is transcribed with the rest of the cellular
DNA [6,7]. The lipid/vector complex is able to enhance gene delivery in different cell
types, tissues, and even in combination with viral particles. In addition, lipofection has
been used to deliver genes into various tissues in vivo, including lung, endothelium, and
muscle, as well as for drug and vaccine delivery. However, precise optimization is required
for optimal results, depending on the cell type (adherent cells vs. cells in suspension) or
the individual cell line. For example, the presence or absence of serum in the cell culture
medium and the ratio of liposome-to-DNA to avoid toxicity are important factors that need
to be tested and evaluated before the actual experiment [6]. Electroporation induces the
formation of nanometer-size reparative pores in cell membranes by exposing cells to a brief
high-voltage electric field and introducing nucleic acids into cells through these pores [1].
Although this method might alter the cell phenotype, it is useful for transfecting a large
number of cells at once and often results in higher transfection efficiency and lower cell
death, especially within cells that are generally resistant to other transfection methods [4,8].

Transfection by plasmid DNA can be performed in different cell types, including nor-
mal mammalian and cancer cells. However, the transfection efficiency varies significantly
among cell lines used in experimental research, and some cell lines are not suitable for these
types of experiments due to their low transfection efficiency [9]. Fibroblasts are quite diffi-
cult to transfect and require significant optimization of the transfection protocol to achieve
high cell viability and transfection efficiency. Since dermal human fibroblasts can be easily
isolated from the skin or foreskin and easily maintained in cell cultures, they are often used
in a variety of biological and medical research, including gene therapy, hereditary diseases,
carcinogenesis, and senescence. The optimization of cultivation conditions includes cell
density, viability, and appropriate population doublings prior to transfection, as well as the
choice of the appropriate transfection method. Lipid-based transfection reagents are com-
monly used for the transfection of human fibroblast but with different efficiency depending
on the reagent used [10]. Another method commonly used for the transfection of “difficult
to transfect” cell types, including fibroblasts, is electroporation [8,10]. Standardized cell
lines derived from human or nonhuman species (e.g., the Chinese hamster ovary (CHO),
HeLa, and human umbilical vein endothelial cells (HUVEC)) are thoroughly characterized
and easier to set up for transfection [11]. HeLa cells are the first and probably the most often
used cell line. They are extremely malignant, even when compared to other cancer cells
from malignant sources. HeLa cells are considered immortal and do not experience cell
death after a set number of cell divisions. Importantly, the HeLa cell line is easy to transfect
by any method [12]. In addition to many human cell lines, there are numerous commonly
used cell lines from other vertebrates, mostly mammals. Transfection is also efficient in
other vertebrate cell lines and cells, for example, by the microinjection of foreign DNA
into Xenopus laevis oocytes [13,14]. In addition, an efficient transfection protocol was devel-
oped for the zebrafish cell lines, Pac2, ZF4, and ZFL, by chemical transfection [15–20] or
cassette-based transfection [21]. Although there are fewer cell lines derived from different
invertebrate taxa than vertebrates, there are more than 500 cell lines derived from insects.
Hence, most data on the transfection of invertebrates come from insect cells. For Drosophila
melanogaster, a transfection system that allows the selection of cells with a single-copy
transgene inserted at a specific genomic site in S2 cell lines [22] or chemical transfection
using either lipofection [23] or calcium phosphate was developed [24–26]. In addition,
electroporation has been used for the transfection of the corn earworm (Helicoverpa zea)
and fly (Musca sp.) embryos [27] and in the fall armyworm (Spodoptera frugiperda) cell line.
Lipofection was used for the transfection of the domestic silk moth (Bombyx mori), Bm5,
fall armyworm (S. frugiperda), Sf21, and the spongy moth (Lymantria dispar), IPLB LdEp,
IPLB-LdEIta, and IPLB-Ld652Y, cell lines [4,5,28–30], while calcium phosphate was used
for transfection of corn earworm (H. zea) cell lines [31,32].
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This rapid growth in the number of cell lines produced by terrestrial invertebrates
does not reflect the current situation with marine invertebrates. Marine invertebrate
primary cell cultures have been used to assess disease in important aquaculture taxa
(e.g., crustaceans and bivalves), explore diverse and/or novel cell types, and understand
symbioses [33–37]. Despite their obvious value in unraveling complex cellular phenomena,
cell lines from most invertebrate taxa are lacking or remain understudied. Significant
improvement is needed in the development of invertebrate cell lines, especially in marine
invertebrates [38,39]. Successful transfection of crayfish hematopoietic tissue (Hpt) primary
cell cultures by electroporation and the efficient expression of foreign genes have been
shown [40]. Furthermore, Crassostrea virginica hemocytes were chemically transfected
using dendrimers, albeit with low transfection efficiency [41]. Moreover, efforts are also
underway to develop transfection in basal Metazoa. Previously, the primary cells of Hydra
have been successfully transfected using electroporation [42–45] or a particle gun [46].
Transfection has already been successfully developed in some of the closest unicellular
relatives to animals: choanoflagellates, the ichthyosporean Creolimax fragrantissima [47], and
filasterean Capsaspora owczarzaki [48], as well as in amoeba Dictyostelium discoideum, by the
calcium phosphate method [49,50]. Previously, efforts have been made to develop cell lines
from sponges and optimize protocols for the transfection of sponge cells, but with limited
success. To date, studies have reported transfection in marine demosponge species [51–54]
or in the homoscleromorph sponge, Oscarella lobularis [55]. Unfortunately, the transfections
either failed or their efficiency was too low. The major difficulty probably lies in the fact that
most marine sponges tolerate only small changes in salinity [55]. However, transfection in
the freshwater demosponge species, Spongilla lacustris [56] and Ephydatia muelleri, also did
not show the necessary efficiency and reproducibility [57].

Sponges are ancient animals and possibly the earliest branching animal phylum that
has changed little over the last 800 million years [58]. Therefore, they provide important
insights into the genomic and proteomic features of the last common ancestor of meta-
zoans [59–61]. Despite their simple morphology, sponges have complex genomes [60]
with many genes very similar to their vertebrate homologs [59]. Many of these homologs
have been linked to human diseases, including cancer and autoimmune diseases [62].
Because no systematic studies have been conducted to clarify the occurrence of tumors in
invertebrates, current knowledge about cancer and cancer-related genes in invertebrates
is scarce. Based on the available data, we can only speculate about the possible role of
cancer-related genes during early animal evolution. A major obstacle to isolating and pro-
ducing novel compounds from sponges and using sponges to elucidate the physiological
roles of genes/proteins involved in human disease is the lack of a large, reliable source of
sponge material [51]. The broader interest behind our work is defining characteristics and
functions of evolutionarily conserved sponge genes/proteins, with a focus on homologs
related to human diseases, particularly cancer. Previous research has shown that these
proteins display a high similarity to homologs in “higher” metazoans, not only in primary
but also in predicted secondary and tertiary structures, suggesting similar or identical
biochemical and biological functions [59,63–69]. Although we have some insights into the
biological function of sponge proteins, the evolutionary conservation of their function in
sponges and humans is still poorly understood [70–73]. Due to the compartmentalization
of the eukaryotic cell, the determination of the protein’s intracellular localization is the
first step for the understanding of its activation state, interaction partners, correct chemical
environment (e.g. a low pH in lysosomes), and finally, biological function [74]. Moreover,
in order to regulate protein activity, many biological processes involve changes in the
protein’s subcellular localization [75]. All this highlights the importance of studying the
development of sponge cell cultures and/or methods for the introduction of DNA into
sponge cells in order to study the function of proteins and compounds of interest.

In this study, our first aim was to increase the transfection efficiency of sponge cells
from Eunapius subterraneus. However, our main focus was to compare the protein local-
ization in the sponge cells with their localization in normal and tumor human cells, a
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feature that represents the first step in elucidating the function of the protein of interest.
Because the focus of our research is to study genes associated with cancer from an evolu-
tionary perspective, we used various methods of DNA transfection to be able to deliver the
cDNA coding for sponge and human protein homologs MYC, RRAS2, and DRG1, which
are known to be localized to specific compartments (the nucleus, membranes, or cytosol,
respectively) and associated with cancer.

2. Results

To analyze the localization of sponge proteins and for comparing it with the local-
ization of human homologs in tumor and normal human cells, as well as in sponge cells,
cDNAs of the genes of interest were cloned into commercially available vectors. Besides
the routinely used cancer cell line, HeLa, and the human fibroblast cell line, a primary cell
culture of the sponge E. subterraneus was also transfected with the same vectors (Figure 1).
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Figure 1. Heterogenous cell culture prepared from the sponge, Eunapius subterraneus. The nuclei
were counterstained with Hoechst.

2.1. Nuclear Protein Localization

The myc oncogene (mostly referred to as c-myc) was first discovered through its
homology with the highly oncogenic retroviral transforming gene (v-myc). The protein
product of c-myc is a transcription factor primarily localized in the cell nucleus regulating
fundamental cellular processes, including growth, proliferation, and apoptosis [76,77].
The expression of c-myc is tightly regulated in normal conditions, while its dysregulation
leads to enhanced levels of MYC, which contribute to tumorigenesis [78]. Members of the
MYC family consist of six conserved boxes (MB0, MBI, MBII, MBIIIa, MBIIIb, and MBIV),
named Myc homology boxes, the nuclear localization sequence (NLS), and the C-terminal
bHLH-Zip domain (helix-loop-helix, leucine zipper) [77,79,80].

We have identified MYC homologs from the sponges E. subterraneus (accession num-
ber OQ148362) and Amphimedon queenslandica (accession number XP_003390966.1). An
analysis of the protein sequence identity/similarity among the homologs from the sponges
A. queenslandica or E. subterraneus and human (accession number NP_002458.2) revealed
that the MYC protein sequence is not highly conserved (Figure 2). The homologs from
A. queenslandica and E. subterraneus showed a 43.2% and 42.1% similarity with the human
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MYC. The highest homology was found in the bHLH-Zip domain responsible for sequence-
specific DNA binding and dimerization, with its binding partner Max, which indicates
that the last common ancestor of humans and sponges had a bHLH-Zip domain with basic
biochemical properties.
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Figure 2. Sequence alignment of sponge and human MYC homologs. The amino acid sequences
were aligned using ClustalX 2.0 [81] and visualized using ESPript 3.0 [82]. Conserved domains are
marked above the alignment as follows: Six MB boxes are indicated in black, the nuclear localization
sequence in green, and the bHLH-Zip domain in purple. Blue frames indicate conserved residues,
and white letters in red boxes represent a strict sequence identity.

To analyze MYC protein localization, we cloned cDNA for the sponge and human
homolog into a GFP-tagged vector. The analysis of the intracellular localization of the MYC
homologs in HeLa cells showed the complete colocalization of the sponge (Figure 3A) and
the human MYC protein (Figure 3B) with the Hoechst dye depicting the cell nucleus. Our
results confirm the localization of the sponge and human proteins in the nucleus of the
HeLa cells but not in the cytosol (Figure 3). Additionally, we analyzed the localization of
the sponge and human MYC homologs in the fibroblasts, where we also observed their
localization in the nucleus (Figure 4A,B).
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Figure 4. Both sponge and human MYC homologs are localized in the nucleus of human fibroblasts,
MJ90. (A) Sponge and (B) human MYC were labeled with GFP. Cell nuclei were stained with Hoechst
dye. Abbreviations: Esu, sponge E. subterraneus; Hsa, human.

The localization analysis of the human and sponge MYC proteins revealed that both
colocalize with the Hoechst, indicating the nuclear localization of both proteins within the
sponge cell (Figure 5A,B). These results demonstrate the identical localization of sponge and
human MYC proteins in the nucleus of the sponge and both normal and tumor human cells.
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Figure 5. Human and sponge MYC homologs localize in the nuclei of sponge cells. (A) Sponge and
(B) human MYC are labeled with GFP. Cell nuclei were marked with Hoechst dye. Abbreviations:
Esu, sponge E. subterraneus; Hsa, human.
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2.2. Membrane Protein Localization

RRAS2 (TC21), a member of the Ras family of proteins, is a small GTPase with an
important role in signal transduction that controls multiple cellular processes [83]. The
functional dysregulation of RRAS2 has been shown to contribute to oncogenesis, as it
triggers critical biological processes in cancer cells, including proliferation [84,85], migra-
tion, the epithelial–mesenchymal transition [86], and resistance to chemotherapy [87,88].
RRAS2 is mostly localized in the plasma membrane but also in the Golgi apparatus in
HE393T cells [89,90]. We aligned the RRAS2 homologs from sponges A. queenslandica
(accession number XP_003385162.1), E. subterraneus (accession number OQ148363), Oopsacas
minuta (accession number KAI6654197.1), S. domuncula (accession number CAA77070.1),
and human (accession number NP_036382.2) in order to analyze the protein sequence
identity/similarity (Figure 6). The RRAS2 proteins from the sponges displayed a high ho-
mology (a 75–78.4% similarity) with their human homolog. We observed high conservation
of the Ras domains (five G-motifs and two switch regions) important for GTPase activity
among the sponge and human homologs.
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Figure 6. Sequence alignment of sponge and human RRAS2 homologs. The amino acid sequences
were aligned using ClustalX 2.0 [81] and visualized using ESPript 3.0 [82]. Conserved domains are
marked as follows: Five G-motifs are indicated in black above the alignment, and two switch regions
are in light blue under the alignment. Blue frames indicate conserved residues, whereas white letters
in red boxes represent a strict sequence identity.

To determine the RRAS2 protein localization, sponge RRAS2 cDNA was cloned into a
GFP-tagged and human RRAS2 cDNA into a CHERRY-tagged vector. We observed that the
sponge (Figure 7A) and the human (Figure 7B) homolog localize in the cytosol of the HeLa
cells but not in the nucleus. In addition, the punctuate staining of the sponge and human
RRAS2 indicate their localization in the plasma membrane and vesicular membranes,
presumably the endocytic vesicles (Figure 7). Similarly, the sponge (Figure 8A) and human
RRAS2 (Figure 8B) proteins were localized in the plasma membrane and membranes of the
cytosolic vesicles in the fibroblasts (Figure 8).
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The sponge (Figure 9A) and human (Figure 9B) RRAS2 proteins did not colocalize
with the Hoechst stain, implying that RRAS2 does not enter the sponge cell’s nucleus.
Although we were not able to distinguish whether the RRAS2 proteins are localized in the
cytosol or membranes due to the non-uniformity of the GFP and CHERRY signal intensity,
we assumed that the RRAS2 proteins might also be localized in the cytosolic vesicles and
not dispersed in the cytosol, per se (Figure 9). These results indicate a similar localization
pattern of sponge and human RRAS2 proteins in the sponge and human cells.
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2.3. Cytoplasmic Protein Localization

The developmentally regulated GTP-binding protein (DRG) subfamily consists of
two paralogs, DRG1 and DRG2. Both are involved in protein translation [91], microtubule
regulation [92], and cell proliferation [73,93]. DRG1 is an evolutionary conserved GTPase
that has been implicated in various tumors, but its role in cancer is not yet fully understood.
Our study [73], as well as other studies, confirmed the localization of DRG1 in the cytosol
of various cell lines (MCF-7 and HeLa human cancer cell lines, mouse 3T3 cells, and
Drosophila melanogaster cells) [94–96].

The expression of the human DRG1 protein requires the DFRP1 protein for its
stabilization and localization in the cytosol of human cancer cells MCF-7 and HeLa [73,92].
Therefore, to determine the localization of the DRG1 protein, cDNAs for the sponge
and human proteins were cloned into a vector containing the GFP marker, while the
sponge and human DFRP1 were cloned into a vector containing the CHERRY reporter.
We noticed the complete colocalization of the sponge DRG1 with the corresponding DFRP1
(Figure 10A) and the human DRG1 with the human DFRP1 in the cytosolic area (Figure 10B),
without any obvious staining of the nucleus of MJ90 human fibroblast cells (Figure 10).
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Figure 10. The (A) sponge and (B) human DRG1 homologs localize in the cytosol of human fibroblasts,
MJ90. (A) Sponge and (B) human DRG1 were labeled with GFP and (A) sponge and (B) human
DFRP1 with CHERRY. Colocalization of DRG1 with DFRP1 is visible in yellow. Cell nuclei were
stained with the Hoechst. Abbreviations: Esu, sponge E. subterraneus; Hsa, human.

To determine the DRG1 protein localization in sponge cells, the sponge and human
cDNAs were cloned into a vector with GFP. However, due to the high red autofluorescence
of sponge cells, we cloned the sponge and human DFRP1 cDNAs into a vector containing
the MYC tag (not shown). We observed that the DRG1 protein localizes outside the nucleus.
The morphology of the fluorescent signal suggests the localization of the exogenous sponge
protein DRG1 in the sponge cell granules (Figure 11A). Similar results were obtained with
the human DRG1 in the sponge cells (Figure 11B).
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3. Discussion

To the best of our knowledge, currently, there is no optimized protocol for the transfec-
tion of cultured sponge cells or tissue. Since there are no commercially available sponge
cell lines, the first choice when studying the exogenous protein expression in sponges is
the transfection of the primary suspension cell culture or tissue. Dissociated sponge cells
have the tendency to reaggregate and form a functional sponge again [97]. Primmorphs,
reaggregates of dissociated cells, have been described for S. domuncula. However, these
structures do not show the typical morphology of an adult specimen [98], limiting the
extent of biological features that can be studied. To date, transfections of Haliclona prim-
morphs [51] and S. domuncula slice explants [52] have been described. Pfannkuchen and
Brummer (2009) [56] transfected the gemmules of the sponge S. lacustris, while Rocher
et al. transfected the buds of O. lobularis [55]. Sponge cell transfection has the largest
chance of success if performed on dividing and metabolically active cells [99]. Therefore,
we chose to perform our localization studies on freshly dissociated cells before their reag-
gregation into primmorphs and similar to a previously published study on the primary
cell cultures of Axinella corrugata [99]. While Pfannkuchen and Brümmer (2009) [56] used
particle bombardment to deliver the foreign plasmid DNA, Grasela et al. (2012), Schippers
(2013), and Rocher et al. (2020) [51,55,99] used different lipid-based chemicals [100], and
Revilla-i-Domingo et al. [52] used linear polyethyleneimine (jetPEI) for the introduction of
foreign DNA into the sponges.

In this study, we have used several commercially available transfection reagents for
the transfection of the sponge cells: Lipofectamine 2000 and Lipofectamine 3000, TurboFect,
TurboFect in vivo, and DharmaFECT, as well as calcium chloride or saponin. Similar to
previous transfection attempts on sponges, our experiments showed that the choice of
transfection reagent does not affect the transfection efficiency. In the lipofection experiments,
we replaced the Opti-MEM™ medium with fresh cave water, as we noticed that Opti-
MEM™ is toxic to sponge cells, as already shown for sponge buds [55].

In order to achieve the attachment and adhesion of sponge cells that normally grow in
suspension, we used several compounds for coating the bottom of the Petri dish—poly-L-
lysine, laminin, and fibronectin. We also tried to fix the sponge cells with the most com-
monly used fixation reagent (paraformaldehyde or a paraformaldehyde/glutaraldehyde).
However, we were not able to induce the sponge cells to adhere to the coated Petri dishes.

One of the important decisions while establishing a transfection protocol is the choice
of a promotor. Previous studies indicate that the CMV (cytomegalovirus) promoter, which
is widely used in mammalian cells, is also functional in the freshwater sponges E. fluvi-
atilis [99] and S. lacustris [56], while the MPSV (myeloproliferative sarcoma virus) promoter
is effective in the marine sponge A. corrugata [99]. Based on this, we did not additionally
test the efficacy of different promotors. Furthermore, for our transfection and localization
studies, we have used a reporter gene that encodes for a green fluorescent protein (GFP)
used in Hydra [101] and in similar studies [52].

In our previous studies, we chose sponge and human cancer-related homologs with
an already determined localization in human cancer cells, namely NME1 [70,102,103])
and NME6 [104–106]. The human NME1 is found in the cytosol and in the nucleus of
HeLa cells [103,106], similar to our previous study of its homolog from the marine sponge
S. domuncula [70]. NME6 is a ubiquitously expressed protein localized in the mitochondrial
matrix, possibly associated with the mitochondrial inner membrane of human cells [104].
Interestingly, our studies [105] showed that the NME6 homolog from the sponge S. do-
muncula does not localize in the mitochondria of human cells but colocalizes with early,
late, and recycling endosomes in human HeLa cells. To study the localization of these
proteins in sponge cells, we attempted to introduce cDNAs from the marine sponge
S. domuncula’s NME1 and NME6 into the dissociated sponge cells. However, we could
not obtain a single viable S. domuncula cell expressing NME1 or NME6 after transfection.
Therefore, we attempted to transfect the cells of another sponge species, E. subterraneus,
with the same constructs, and we succeeded in obtaining a fluorescent signal (Appendix A,
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Figures A1 and A2). The sponge NME1 localizes outside the nucleus, presumably in the
sponge granules (Figure A1). The sponge NME6 also localizes outside the nucleus. The
dense fluorescent signal indicates its localization in one of the organelles, possibly in the mi-
tochondria (Figure A2). Based on these preliminary results, we continued the experiments
presented herein using cDNA from E. subterraneus, and all subsequent transfections were
performed on this sponge species. Although we encountered the expected difficulties in
determining the protein localization due to low transfection efficiency, our results show that
it is possible to transfect sponge cells in cultures. We were able to determine the localization
of the proteins in the nuclei, cytosols, and possibly the membranes of the transfected sponge
cells. Also, we showed that the localization of the sponge and human homologs in human
tumor and normal cells is identical to their localization in the sponge cells. For example,
sponge and human MYC localize in the nucleus, while DRG1 is localized outside the nu-
cleus, i.e., in the cytosol. The evolutionary conservation of the intracellular localization of
proteins from the sponge to humans points to the conservation of their biological function.

Furthermore, it is known that simple non-bilaterians, especially sponges, produce
bioactive compounds, some of which have antibiotic, antiviral, anti-inflammatory, and
antitumor activity [107,108]. A major obstacle to isolating and producing novel compounds
is the limited availability of sponge material for preclinical and clinical testing [51,109,110].
Previous attempts to establish an immortalized, continuously dividing sponge cell line in
cultures were hampered by numerous experimental problems [54,111]. Therefore, more
effort is needed to develop sponge cell cultures, as well as transfection protocols, for
sponges. Many issues need to be resolved to achieve higher expression levels of exogenous
proteins and reproducible experiments and studies. This includes substantial improvements
in sponge cell adhesion and fixation methodology, the discovery and application of specific
sponge promoters, and advances in transfection reagents/buffers/media, appropriate both
for sponge growth and transfection conditions.

4. Materials and Methods
4.1. Sequence Analysis

Homologs of human MYC and RRAS2 were found in our unpublished transcriptome
of sponge E. subterraneus and identified in other sponge genomes at the Nacional Center
for Biotechnology Information database (NCBI) using the blastp algorithm [112]. Pro-
tein sequences from sponge and human homologs were aligned using ClustalX 2.0 [81].
Aligned sequences were visualized using ESPript 3.0 [82], with indicated conserved do-
mains adapted from the Conserved Domain database (NCBI) and additionally confirmed
by the literature.

4.2. Cell Culture

Human cervical cancer cells, HeLa (ATCC cat. no. CCL-2), were maintained in Dul-
becco’s Modified Eagle Medium with high glucose (DMEM, Sigma-Aldrich, St. Louis,
MI, USA) supplemented with 10% fetal bovine serum (FBS, Capricorn Scientific, Ebs-
dorfergrund, Germany), 1% nonessential amino acids (Sigma-Aldrich), and a 1% antibi-
otic/antimycotic solution (Capricorn Scientific) in the humidified chamber at 37 ◦C and
supplied with 5% CO2.

The normal neonatal human diploid fibroblast strain MJ90 was kindly provided by
Dr. Olivia M. Pereira-Smith (the University of Texas, Health Science Center, San Antonio,
TX, USA). MJ90 cells were cultured in high glucose DMEM (Sigma-Aldrich) supplemented
with heat-inactivated 10% fetal bovine serum (FBS, Capricorn Scientific) and a 1% antibi-
otic/antimycotic solution (Capricorn Scientific) at 37 ◦C with 5% CO2.

The Ogulin cave sponge, Eunapius subterraneus, was collected from the Tounjčica cave
at the Tounj location near Ogulin, Croatia. The sponge was maintained in cave water,
transported to the laboratory, and placed in an incubator at 8 ◦C with occasional aeration.
Sponge cell cultures were prepared by the adapted method for mechanical cell dissocia-
tion [113]. Briefly, the sponge was cleaned and homogenized using a manual homogenizer,
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followed by the separation of sponge cells through 200 µm, 100 µm, and 40 µm of mesh
nylon to eliminate spicules and pieces of skeleton. The mesh was additionally washed with
filtered cave water, and the filtered cells were allowed to settle at the bottom of the Falcon
50 mL tube for about 30 min at 4 ◦C. After the cells settled, the turbid supernatant was
carefully removed, and new sterile cave water was added. The procedure was repeated
until the complete clearance of the supernatant. Finally, the supernatant was removed with
a pipette, and the precipitate containing the cells was transferred to a sterile tube. The cells
were diluted in 500 µL of fresh cave water, and 1 × 106 cells were seeded in Petri dishes
divided into 4 wells with a coverslip on the bottom (4-chamber 35 mm glass bottom dish
with a 20 mm microwell, Cellvis, D35C4-20-1.5-N).

4.3. Plasmids

For transfection experiments, our unpublished transcriptome of E. subterraneus was
searched for homologs of human MYC and RRAS2. Identified sponge sequences were
used to design primers for the amplification of the sponge MYC (EsuMYC) and RRAS2
(EsuRRAS2) from the cDNA library. EsuMYC and EsuRRAS2 were amplified, sequenced,
and cloned into pEGFP-N1 and pEGFP-C1 vectors, respectively. The cDNA sequences of
the human MYC (HsaMYC) and RRAS2 (HsaRRAS2) from commercially available plasmids
were cloned into pEGFP-N1 and pmCherry-C1 vectors, respectively. Primers and restriction
enzymes used for the cloning of EsuMYC, HsaMYC, EsuRRAS2, and HsaRRAS2 are listed
in Table 1. The resulting constructs for the analysis of MYC and RRAS2 intracellular
localization are GFP- or CHERRY-tagged. Other plasmids (EsuDRG1-GFP, HsaDRG1-GFP,
EsuDFRP1-CHERRY, HsaDFRP1-CHERRY, EsuDFRP1-MYC, and HsaDFRP1-MYC) were
already published [73].

Table 1. List of primers and constructs used in the study.

Construct
Name/Organism Origin Cloned In Primers/Restriction Site

EsuMYC-GFP
E. subterraneus Esu cDNA pEGFP-N1 XhoI 5′-GTCTAGCTCGAGATGGCGTCGTTGGTAGAGTTC-3′

BamHI 5′-CTAGACGAATTCCGGGAAAAACTTTGCAGAAACTTC-3′

HsaMYC-GFP
H. sapiens

HG11346-UT
SinoBiological pEGFP-N1 NdeI 5′-GTCTAGGAATTCATGCCCCTCAACGTTAGC-3′

BamHI 5′-CTAGACGGATCCGCGGACGCACAAGAGTTCCG-3′

EsuRRAS-GFP
E. subterraneus Esu cDNA pEGFP-C1 XhoI 5′-GTCTAGCTCGAGGCATGGCGGCCAACAAAGAC-3′

BamHI 5′-CTAGACGGATCCTCACAGAATTACACATTTCTTC-3′

HsaRRAS2-CHERRY
H. sapiens

RC204591
OriGene pmCherry-C1 XhoI 5′-GTCTAGCTCGAGGCATGGCCGCGGCCGGCTGGCG-3′

BamHI 5′-CTAGACGGATCCTTAGAAAATGACACAATGGCAG-3′

4.4. Transfection

Chemical transfection: For lipid-based transfection (lipofection), HeLa cells
(2 × 104 cells/well) and MJ90 cells (7.5–9 × 104 cells/well) were seeded on a sterile glass
coverslip in a 24-well plate to achieve ~80–90% confluence. After 24 h, cells were transfected
with plasmids of interest using Lipofectamine 3000 (Thermo Fisher Scientific, Waltham, MA,
USA) according to the manufacturer’s protocol and incubated at 37 ◦C for an additional
24 h. Turbofect in vivo (Thermo Fisher Scientific, R0533) was used for sponge cell transfection
according to the manufacturer’s instructions for in vivo transfections. Sponge cells were
transfected with selected vectors, after which they were incubated for 24 h at 8 ◦C.

Electroporation: MJ90 cells were passaged 1 day before transfection to achieve 50–70%
confluency on the day of the experiment. Before electroporation, cells were washed with
a PBS and counted. A total of 1 × 107 cells were resuspended in 0.4 mL Opti-MEM
(Invitrogen), and 20 µg of plasmid DNA was added to the cells and gently mixed. The
cell/DNA mixture was transferred to a 0.4 mm gap cold electroporation cuvette and
electroporated under the following conditions: 220 V, 950 µF, and 30 msec. About 1 × 105

of the electroporated cells were transferred into 24-well tissue culture plates with coverslips
and incubated in supplemented growth media for 24 h at 37 ◦C.
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4.5. Detection of Fluorescent Proteins and Confocal Microscopy

Immunocytochemistry on HeLa and MJ90 cells was performed as previously de-
scribed [114]. In short, the cells grown on coverslips were washed three times in the PBS
and fixed with 4% sucrose/paraformaldehyde for 15 min. Sponge cells were not fixed.
Hoechst (Sigma-Aldrich) was used to counterstain nuclei. The staining conditions were as
follows: HeLa and MJ90, 1 mg/mL for 10 min in the PBS at RT, and for the sponge cells,
35 µg/mL for 30 min in fresh cave water at 8 ◦C. Confocal images were acquired using a
laser scanning confocal microscope, Leica TCS SP8 (Leica Microsystems, Wetzlar, Germany).
Additional image processing was performed by ImageJ software (National Institutes of
Health, Bethesda, MD, USA) and Adobe Photoshop 2020 (Adobe Systems Incorporated,
Mountain View, CA, USA).

5. Conclusions

Sponges and their symbionts are often studied as a source of bioactive compounds with
therapeutic potential. However, due to their position on the phylogenetic tree, they can also
provide fundamental insights into the origin of animals and their diseases. Many human
diseases, including cancer, have a genetic background. We now know that numerous
disease-related genes were already present in the earliest animals and have homologs
in sponges. Studying these genes from an evolutionary perspective is a novel approach
that can offer additional insight into the disease-related gene properties, functions, and
their roles in disease development. Herein, we show that the subcellular localization of
the studied proteins is conserved from sponges to humans. In order to study protein
localization, we developed a transfection protocol for sponge cells. Further improvements
in transfection and other cell and molecular biology techniques applied to sponge cells
are needed to achieve higher expression levels of exogenous proteins, more reproducible
studies, and the sustainable use of sponges in biotechnology.

Author Contributions: Conceptualization: H.Ć.; Methodology: H.Ć., M.H.B., K.D. and M.R.;
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the published version of the manuscript.

Funding: This work was supported by the Croatian Science Foundation under the project number
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Figure A1. The sponge NME1 localizes outside the nuclei of the sponge cell. The sponge NME1 was
labeled with GFP. Cell nuclei were stained with Hoechst.
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