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ABSTRACT

We present a novel, model-independent framework for studying the architecture of an exoplanetary system at the system level. This
framework allows us to characterise, quantify, and classify the architecture of an individual planetary system. Our aim in this endeavour
is to generate a systematic method to study the arrangement and distribution of various planetary quantities within a single planetary
system. We propose that the space of planetary system architectures be partitioned into four classes: similar, mixed, anti-ordered, and
ordered. We applied our framework to observed and synthetic multi-planetary systems, thereby studying their architectures of mass,
radius, density, core mass, and the core water mass fraction. We explored the relationships between a system’s (mass) architecture
and other properties. Our work suggests that: (a) similar architectures are the most common outcome of planet formation; (b) internal
structure and composition of planets shows a strong link with their system architecture; (c) most systems inherit their mass architecture
from their core mass architecture; (d) most planets that started inside the ice line and formed in-situ are found in systems with a similar
architecture; and (e) most anti-ordered systems are expected to be rich in wet planets, while most observed mass ordered systems are
expected to have many dry planets. We find, in good agreement with theory, that observations are generally biased towards the discovery
of systems whose density architectures are similar, mixed, or anti-ordered. This study probes novel questions and new parameter spaces
for understanding theory and observations. Future studies may utilise our framework to not only constrain the knowledge of individual
planets, but also the multi-faceted architecture of an entire planetary system. We also speculate on the role of system architectures in
hosting habitable worlds.

Key words. planetary systems – planets and satellites: formation – planets and satellites: dynamical evolution and stability –
planets and satellites: fundamental parameters

1. Introduction

Over the last 25 yr, our knowledge of exoplanetary astrophysics
has improved dramatically. While the first decade was marked
by sensational discoveries of individual exoplanets (e.g. Vidal-
Madjar et al. 2003; Santos et al. 2004; Bouchy et al. 2005; Udry
et al. 2007; Kalas et al. 2008; Charbonneau et al. 2009; Snellen
et al. 2010), we are now in an age of population-level exoplan-
etary statistics (for a recent review, see Zhu & Dong 2021). We
now know that (statistically) almost every star hosts a planet and
one in two Solar-like stars host a rocky planet in their habit-
able zone (Hsu et al. 2019; Bryson et al. 2021). Moreover, many
exoplanet-hosting stars have multiple planets orbiting them.

The arrangement of multiple planets and the collective dis-
tribution of their physical properties around host star(s) char-
acterises the architecture of a planetary system (Mishra et al.
2021). Exoplanets in some multi-planetary systems are thought
to behave like ‘peas in a pod’ (Lissauer et al. 2011; Ciardi et al.
2013; Millholland et al. 2017; Weiss et al. 2018). The peas in a
pod trend consists of the following correlations: size, whereby
adjacent exoplanets are either similar or ordered in size (i.e. the
outer planet is larger); mass, whereby adjacent exoplanets are
⋆ Catalogue of observed planetary systems used in this work (full

Table 1) is only available online at the CDS via anonymous ftp
to cdsarc.cds.unistra.fr (130.79.128.5) or via https://
cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/670/A68

either similar or ordered in mass; spacing, whereby for a sys-
tem with three or more planets, the spacing between an adjacent
pair of exoplanets is similar to the spacing between the next
consecutive pair; packing, whereby smaller planets tend to be
packed together closely and larger planets are in wider orbital
configurations.

While the statistical method used by Weiss et al. (2018) has
been debated (Zhu 2020; Murchikova & Tremaine 2020; Weiss
& Petigura 2020), support for the astrophysical nature of the peas
in a pod correlations (as opposed to emerging from detection
biases) has emerged from theoretical studies and numerical sim-
ulations (Adams 2019; Adams et al. 2020; He et al. 2019, 2021;
Mulders et al. 2020). In particular, Mishra et al. (2021) repro-
duced the observations from Weiss et al. (2018) using a model
of planet formation and evolution (the Bern Model Emsenhuber
et al. 2021a,b) and a model for the detection biases of a Kepler-
like transit survey (using KOBE). We showed that when nature’s
underlying exoplanetary population (consisting of detected and
undetected exoplanets) resembles peas in a pod, then a pop-
ulation of transiting exoplanets will have correlations that are
consistent with those found by Weiss et al. (2018). In addition,
Mishra et al. (2021) suggested that the four trends are not inde-
pendent of each other. The size correlations seem to emerge from
the mass correlations, while the mass and packing trends could
combine to give rise to the spacing trend. The peas in a pod
trends are amenable to a unification.

A68, page 1 of 28
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.

https://www.aanda.org
https://doi.org/10.1051/0004-6361/202243751
https://orcid.org/0000-0002-1256-7261
https://orcid.org/0000-0002-4644-8818
https://orcid.org/0000-0001-7576-6236
https://orcid.org/0000-0002-1013-2811
mailto:exomishra@gmail.com
https://cdsarc.cds.unistra.fr
ftp://130.79.128.5
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/670/A68
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/670/A68
https://www.edpsciences.org/en/
https://creativecommons.org/licenses/by/4.0
https://www.aanda.org/subscribe-to-open-faqs
mailto:subscribers@edpsciences.org


A&A 670, A68 (2023)

Most of the current studies on this topic utilise statistical
correlation coefficients at the population level, that is, the cor-
relation is measured for adjacent planetary pairs from several
planetary systems. While useful in terms of testing the existence
(or otherwise) of architecture trends, these coefficients may have
limited utility for analysing the architecture of a single planetary
system. Being statistical in nature, a reliable estimate of these
coefficients requires large datasets – which seems difficult for a
single system. Although there are some planetary system-level
studies (Kipping 2018; Alibert 2019; Mishra et al. 2019; Gilbert
& Fabrycky 2020; Bashi & Zucker 2021, discussed in Sect. 3.1),
the current literature lacks a prescription for uniformly assessing
the multi-faceted architectures of several quantities (e.g. mass
architecture, radius architecture, or eccentricity architecture) for
a single planetary system.

We seek a framework that allows us to characterise the archi-
tecture of an individual planetary system. Our motivations for
developing such a framework arise from questions related to:
formation, such as the extent to which a system’s architecture is
shaped by initial conditions (i.e. the environment in and around
the star and protoplanetary disk formation regions; Jin & Li
2014; Safsten et al. 2020); evolution, the role of physical pro-
cesses such as orbital migration or giant impacts in shaping the
final architecture of planetary systems (Mulders et al. 2020);
identification, which particular stars host planets that resemble
peas in a pod, and, in particular, whether the planets in systems
like TOI-178 (Leleu et al. 2021), Trappist-1 (Agol et al. 2021),
or 55 Cancri (Bourrier et al. 2018) show mass/size similarities;
other architectures, we know that there are many planetary sys-
tems that do not follow the peas in a pod architecture (e.g. the
Solar System). Overall, it is not obvious how the architecture of
any individual planetary system should be uniformly assessed.

In this series of papers, we propose a framework for exam-
ining the architecture of planetary systems at the system level.
The philosophy behind system level analysis is to consider the
entire planetary system as a single unit of a physical system. This
framework allows us to not only quantify, compare, and inves-
tigate a system’s architecture, but also offers some unexpected
benefits. As it turns out, the framework allows for a conceptu-
ally intuitive partitioning of the space of possible architectures.
We label the four classes of planetary system architectures as:
similar, ordered, anti-ordered, and mixed. In this way, our work
extends the trends initiated by the notion of peas in a pod archi-
tecture. Furthermore, we verify the unification of the peas in a
pod correlations proposed in Mishra et al. (2021). We find that,
Similar architectures are the most common type of planetary sys-
tem architectures and their high occurrence explains why the
intra-system radius uniformity was already observable from the
first four months of Kepler data (Lissauer et al. 2011).

Our framework engenders novel questions. For instance,
if nature produces distinct classes of architecture in multi-
planetary systems, then what is the frequency or occurrence
rates of these architecture classes? How does the occurrence
of an architecture class depend on stellar and protoplanetary
disk environment? How does the architecture of a system evolve
over time? What is the role of stellar evolution, protoplane-
tary disk interactions, and planet formation in shaping the final
architecture? How is a planet’s internal composition related to
the system’s architecture? Or does the ability of a planet to
host life depends on the architecture of the planetary system?
In this series of papers, we explore these questions. Although
the number of multi-planetary systems is low today, this may
change in the next few decades. Thanks to large survey missions
such as PLATO (Rauer et al. 2014), Gaia (Gaia Collaboration

2016), TESS (Ricker et al. 2015), LIFE (Quanz et al. 2022), and
others, the growing number of known multi-planetary systems
will allow for a better understanding to emerge. We hope our
work encourages observers to dedicate more observation time
to detecting planets within a known planetary system, that is, in
finding multi-planetary systems.

The architecture classification scheme proposed in this paper
is a model-independent framework. To demonstrate our clas-
sification framework and explore its consequences, we applied
our framework to simulated planetary systems. To illustrate our
framework on real systems, we also applied our framework
to observed exoplanetary systems. We emphasise that while
the results emerging from the application of our framework
on these datasets may suffer from some limitations (arising
from theoretical modelling or detection biases for observed sys-
tems); however, the concept of our architecture classification
scheme, being model-independent, does not share these limi-
tations. In this paper, we present the catalogues of planetary
systems we apply our framework to in Sect. 2, along with a newly
curated catalogue of observed exoplanetary systems and simu-
lated planetary systems, using the Bern Model. We introduce
our framework in Sect. 3. In Sect. 4, the characteristics of the
architecture classes are discussed. We explore the link between
the internal composition of planets and the system architecture
class in Sect. 5. Then, in Sect. 6, we speculate on how habitabil-
ity could depend on the architecture of planetary systems. Our
conclusions are given in Sect. 7.

In a companion paper, we investigate the formation path-
ways, i.e. the role of initial conditions and physical processes in
shaping the final architecture (Mishra et al. (2023) referred to as
Paper II). Our work demonstrates that the processes of planet
formation and evolution are imprinted on the entire system-
level architecture. We find that protoplanetary disks with low
solid-mass give rise to planetary systems endowed with a mass
similarity. On the other hand, massive disks and high metallic-
ity often lead to mass Ordered, Anti-Ordered, or Mixed system
architectures. Planet-planet and planet-disk interactions play a
decisive role in shaping these three architectures.

2. Catalogues

2.1. Theoretical dataset: Bern Model

In this series of works, we demonstrate our architecture frame-
work by analysing the architecture of synthetic planetary sys-
tems. These systems were numerically computed using the
Generation III Bern Model of planet formation and evolution
(Emsenhuber et al. 2021a,b) that is based on the core-accretion
paradigm of planet formation (Pollack et al. 1996; Alibert et al.
2004, 2005). The model follows the growth of protoplanetary
embryos embedded in a protoplanetary disk of gas and solids
around a solar-type star. A diverse range of physical processes
are simultaneously occurring and coherently computed in this
1D star-disk-embryo system. These include: stellar and disk
physics (evolution of and interaction between star and viscous
disk, condensation of volatile and refractory species, etc.), plan-
etary formation physics (accretion of planetesimals and gases,
internal structure calculations, etc.), and additional physics
(orbital and tidal migration, planet-planet N-body interactions,
planet-disk interactions, atmospheric escape, deuterium fusion,
etc.). We describe these physical processes in Appendix A and
a descriptive summary of these processes is provided in Mishra
et al. (2021, in particular, Fig. 1 and Sect. 2, 3, and Appendix A).
More details can also be found in Emsenhuber et al. (2021a,b).
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Fig. 1. Mass-distance diagram. This figure shows the masses and the
distances of planets in all catalogues used in this study. Shaded regions
show the parameter space spanned by synthetic planets observed via
radial velocity surveys (Bern RV Multis), transit surveys (Bern KOBE
Multis), and ongoing missions (Bern Compact Multis). The parameter
space for Bern KOBE Multis has been mapped from its original radius-
period plane.

We synthesised 1000 planetary systems, each starting with
100 lunar mass protoplanetary embryos, wherein the following
initial conditions were varied: mass of protoplanetary gas disk,
photo-evaporation rate, dust-to-gas ratio, disk inner edge, and the
starting location of embryos. In Fig. 1, we show all synthetic
planets on the mass-distance diagram. For each synthetic plane-
tary system failed embryos, objects with mass less than 0.1 M⊕,
were removed from further analysis1.

Three observationally motivated catalogues were prepared
from the synthetic dataset. This allowed us to facilitate a compar-
ison of the architecture from observed planetary systems with the
synthetic planetary systems and to make predictions. The param-
eter space spanned by the planets in these catalogues is shown in
Fig. 1. These catalogues are as follows:

Bern RV Multis. We assume a radial velocity (RV) survey
which can find planets with periods ≤15 yr and semi-amplitude
KRV ≥ 20 cm s−1. These numbers are motivated by (a) long-
running RV surveys such as the HARPS survey (Mayor et al.
2003, 2011) and the California Legacy Survey (Rosenthal et al.
2021; Fulton et al. 2021); (b) current precision achieved by
ESPRESSO (Lillo-Box et al. 2021; Netto et al. 2021); and (c)
making predictions for future RV surveys. Such RV detectable
synthetic planetary systems with four or more planets form the
Bern RV Multis catalogue, which includes 3828 planets around
565 stars.

1 As long as the mass threshold for failed embryos is kept under
0.1 M⊕, the results presented in this paper are not sensitive to the thresh-
old limit. We removed these small objects since they (a) failed to grow
as massive planets, (b) are insignificant to the dynamical evolution of
the system, and (c) are currently unobservable in exoplanetary systems.
All results arising from the Bern RV Multis, Bern KOBE Multis, and
Bern Compact Multis are insensitive to these failed embryos.

Bern KOBE Multis. We assume a Kepler-like transit survey
which continuously observes 2 × 105 stars for 3.5 yr (Thompson
et al. 2018). A planet which transits three or more times and pro-
duces a transit S/N of 7.1 or more is considered detectable. The
reliability and completeness of such a survey is replicated and
those synthetic planets which would have been vetted as ‘plan-
etary candidates’ by the Kepler Robovetter (Thompson et al.
2018), are kept. Such transiting synthetic planetary systems with
four or more planets form the Bern KOBE Multis catalogue.
KOBE was developed and introduced in Mishra et al. (2021).
There are 6 715 planets around 1283 stars in this catalogue.

Bern Compact Multis. Ongoing transit missions such as
CHEOPS and TESS have been successful in characterising com-
pact multi-planetary systems, such as TOI-178 (Leleu et al.
2021) and TOI-561 (Lacedelli et al. 2021). Inspired by these
discoveries, we investigated the architecture of compact plan-
etary systems simulated by the Bern Model. Our aim is to
understand the architecture and make predictions for such sys-
tems based on the core-accretion paradigm (Pollack et al. 1996;
Alibert et al. 2004, 2005). All planets with periods of ≤100 d and
masses of ≥0.1 M⊕ were retained. Synthetic planetary systems,
in this parameter space, with four or more planets form the Bern
Compact Multis catalogue, with 2412 planets around 400 stars
included.

2.2. Observational dataset: A new catalogue

To demonstrate our framework on observed exoplanetary sys-
tems, we have curated a new catalogue of known multi-planetary
systems2. A salient feature of this catalogue (and the philosophy
behind this work) is its focus on considering planetary systems
as a single unit of a physical system. Unlike focussing on indi-
vidual exoplanets or a single detection technique, our aim is to
study the planetary system as a whole. There are two serious
challenges to this endeavour. Firstly, the biases present in detec-
tion methods tend to prevent a complete, reliable picture of an
exoplanetary system from emerging (either via undetected or
mischaracterised planets). Secondly, detecting planets on long
orbital periods requires long-term, repeated observations, which
is considerably challenging. We hope that upcoming missions
and future surveys can mitigate these difficulties.

We included a planetary system in our catalogue if: (a) it
has at least four known planets and (b) masses are available for
at least four planets. For example, Kepler-33, a five planet sys-
tem, is included because mass measurements are available for
four of its planets3. The criterion of requiring minimum four
planets emerges due to (a) the requirement for enough planets
for adequately characterising the architecture and (b) because
for systems with lower number of planets, it is perhaps dif-
ficult to uniformly assess whether the low multiplicity is an
outcome of natural processes or detection biases. To keep the
comparison between observations and theory uniform, all cata-
logues in this series of works only consider planetary systems
with four or more planets. The architecture framework can, how-
ever, handle two- or three-planet systems as well. To make this
catalogue useful to the wider community and enable future stud-
ies, we gathered several key stellar and exoplanetary properties.
For host stars, we report the mass, radius, luminosity, effec-
tive temperature, metallicity, age, and distance, along with their

2 The catalogue was last updated in April 2021.
3 For this study, the distinction between mass and minimum mass is
ignored.
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Table 1. Observed multi-planetary systems: There are 41 planetary systems with 194 planets in this catalogue.

Stellar parameters

Hostname Multiplicity M⋆[M⊙] R⋆[R⊙] L⋆[L⊙] Teff[K] [Fe/H] Age [Gyr] Distance [pc]

Sun 8 1 1 1 5, 772 0 04.6 ± 0.1 0
Trappist-1 7 0.1 ± 0.002 0.1 ± 0.001 5.53e − 04 2, 566 ± 026 +0.04 ± 0.08 07.6 ± 2.2 012.0
TOI-178 6 0.7 ± 0.03 0.7 ± 0.01 0.1 ± 01.08 4, 316 ± 070 −0.23 ± 0.05 07.1 ± 6.1 062.7
HD 10180 6 1.1 ± 0.05 1.1 ± 0.04 1.5 ± 00.02 5, 911 ± 019 +0.08 ± 0.01 04.3 ± 0.5 039.0
HD 219134 6 0.8 ± 0.03 0.8 ± 0.005 0.3 ± 00.01 4, 700 ± 020 +0.11 ± 0.04 11.0 ± 2.2 006.5

Planetary parameters

Hostname Planet Mp[M⊕] Rp[R⊕] ap[AU] e i [◦] min. Mp

Sun
(
j,s,u,n
m,v,e,m,

) 
...

00.815 ± 00.000,
00.055 ± 00.000,




...
0.949 ± 0.000,
0.383 ± 0.000,




...
0.723 ± −,
0.387 ± −,




...
0.01 ± −,
0.21 ± −,




...
3.39 ± −,
7.00 ± −,

 (
F,F,F,F,...

)
Trappist-1

(
f,g,h
b,c,d,e,

) 
...

01.308 ± 00.056,
01.374 ± 00.069,




...
1.097 ± 0.014,
1.116 ± 0.014,




...
0.016 ± 0.000,
0.012 ± 0.000,




...
0.01 ± 0.00,
0.01 ± 0.00,




...
89.78 ± 0.12,
89.73 ± 0.17,

 (
F,F,F,F,...

)
TOI-178

(
e,f,g
b,c,d,

) 
...

04.770 ± 00.680,
01.500 ± 00.440,




...
1.669 ± 0.114,
1.152 ± 0.073,




...
0.037 ± 0.001,
0.026 ± 0.001,




...
− ± −,
− ± −,




...
88.40 ± 1.60,
88.80 ± 1.30,

 (
F,F,F,F,...

)
HD 10180

(
f,g,h
c,d,e,

) 
...

12.014 ± 00.699,
13.222 ± 00.445,




...
− ± −,
− ± −,




...
0.129 ± 0.002,
0.064 ± 0.001,




...
0.13 ± 0.05,
0.07 ± 0.03,




...
− ± −,
− ± −,

 (
T,T,T,T,...

)
HD 219134

(
d,g,h
b,c,f,

) 
...

04.230 ± 00.200,
04.620 ± 00.140,




...
1.458 ± 0.048,
1.544 ± 0.059,




...
0.065 ± −,
0.039 ± −,




...
0.06 ± 0.04,

0.00 ± −,



...

87.38 ± 0.10,
85.19 ± 0.13,

 (
F,F,T,T,...

)
Notes. Only the first five rows are shown here. The entire table is available at the CDS. CDS version includes additional identification columns:
KIC ID, TIC ID, and Gaia ID. Missing information is indicated by ‘–’. References for individual systems are given in Appendix B.

identification numbers (when available) in the Kepler Input Cat-
alogue (KIC), TESS Input Catalogue (TIC), and Gaia ID. For
planets, we report mass or minimum mass, radius, semi-major
axis, eccentricity, and inclination. In a conservative approach,
errors (reported when possible) are the maximum of the upper
and lower error bounds available in the literature. When mul-
tiple publications reported planetary parameters, a more recent
publication was preferred. When a single publication reported
parameters for all planets in a system, then such a consistent set
of solution was given preference (e.g. GJ 676 A or Kepler-11).
For stellar parameters, if a star was included in KIC, then the
values from Berger et al. (2020) are reported. Most other stel-
lar parameters come from the TIC (Stassun et al. 2017) or from
individual publications.

There are 41 planetary systems that meet our criteria and
define our multi-planetary system catalogue (Table 1). With a
total of 194 planets in our catalogue, the number of planetary
systems with four, five, six, seven, and eight planets is 24, 7,
8, 1, and 1. In this paper, we present the observed planetary
systems as they are known today and we do not correct the
observations for any detection biases. Instead, to assist in making
comparisons with the theory, detection biases will be placed on
simulated planetary systems (Sect. 2.1). Figure 1 shows the mass
of observed exoplanets as a function of their semi-major axis.

While our observed multi-planetary systems catalogue
engenders system-level studies, its current form poses several
technical difficulties. Foremost, the number of observations is
only forty-one. Secondly, multiple detection methods, such as
radial velocity or transits (etc.) were employed to observe these
planetary systems. Each observation technique suffers from

certain limitations and detection biases. This implies that the
observed systems in our catalogue do not constitute a homoge-
neous and complete set of observations. These two limitations of
the observations catalogue prohibit us from deducing any statis-
tically strong result. Nevertheless, we used the observed systems
for (a) exemplifying system-level approach to real planetary sys-
tems and (b) using our framework on observations to explore
trends in the architecture of observed systems.

Our results from the observed catalogue may be affected by
another source of difficulty. There are two systems in our cata-
logue that host some planets without known mass measurements
(Kepler-33 b and Kepler-80 f and g). Since these two systems
have at least four planets with known masses, they have been
included in our study. However, this does not impact the results
of the present study in a drastic way. All three planets in these
systems without mass measurements are either the innermost
and/or the outermost planets in their respective systems. There-
fore, the missing measurements do not have a strong influence on
the characterisable mass architecture. The missing measurement
may have a strong effect if any planet with unknown mass was in
between two planets with known masses.

3. Characterizing architecture: A new framework

3.1. Literature review

We review some approaches from other studies that have tried to
capture planetary system-level properties in this section. Kipping
(2018) investigated similarity and ordering (of planetary sizes) at
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the level of an individual system. Using an entropy based frame-
work on Kepler systems, he concludes that initial conditions
are inferable from the present-day architecture. As we go on to
show in this series, our work not only supports this conclusion,
but additionally demonstrates the possible links between initial
conditions and final architecture. Although the above-mentioned
study considers a similar problem to the one we deal with here,
our frameworks differ considerably. Built on step-functions and
combinatorics, the aforementioned framework does not take into
account the magnitude of variation.

Alibert (2019) proposed a concept of distance between two
planetary systems. The Alibert distance captures inter-system
differences, whereas our framework quantifies intra-system sim-
ilarities. The Alibert distance is useful to quantify the similarity
(or dissimilarity) between two planetary systems and in unsuper-
vised machine-learning algorithms to find clusters in the space
of planetary systems. Bashi & Zucker (2021) recently proposed
another concept for distance based on a statistical distance. The
‘weighted’ energy distance is the distance between two plane-
tary systems, with each planet represented on the log-period and
log-radius plane, utilising planetary masses (from a mass-radius
relationship) as weights. As with the Alibert distance, the Bashi-
Zucker distance requires two planetary systems and thus it is
not suitable for characterising the global architecture for a single
planetary system.

Gilbert & Fabrycky (2020) proposed seven parameters for
quantifying the global structure of planetary systems: dynamical
mass (ratio of mass in planets to stellar mass), mass parti-
tioning (normalised mass disequilibrium), mass monotonicity
(weighted Spearman correlation coefficient), characteristic spac-
ing (average mutual Hill radii), gap complexity, flatness, and
multiplicity (n). Of these measurements, mass partitioning and
mass monotonicity have close parallels with our framework. The
input information required to compute mass partitioning, and
monotonicity is exactly the same as the input information for
our architecture framework, namely, a set of planetary masses.
However, we find that the output displays a curious mix of
concepts.

Mass partitioning is zero for a system in which all plan-
ets have the same mass. When one planet has some mass and
all other planets have negligible mass, the mass partitioning
for this system is unity. While this parameter captures the two
extreme cases, it is difficult to interpret and employ this mea-
sure in cases other than these two extremes. Behaving similarly
to a correlation coefficient, mass monotonicity has a range of
[−1,1]. It is defined as the Spearman correlation coefficient
(between mass and distance) multiplied by the mass partition-
ing (which is weighted by n−1). Although the work of Gilbert &
Fabrycky (2020) studies the architecture of planetary systems at
the system-level, we seek a framework which can also be used
with planetary properties other than mass, such as radius, bulk
density, water mass fraction, eccentricities, and so on.

Millholland et al. (2017) and Wang (2017) showed that the
peas in a pod pattern reported by Ciardi et al. (2013); Weiss
et al. (2018) also extends to planetary masses. Millholland et al.
(2017), using planetary masses derived from transit-timing vari-
ations, studied the clustering of planets in the mass-radius plane
and found that the sum of distances (in the log mass-size space)
between adjacent planets of real systems is much smaller than
a bootstrapped randomised population. Based on a set of 29
RV observed systems, Wang (2017) infer two types of planetary
systems. Planetary systems with masses of ≲30 M⊕ show intra-
system mass uniformity, while systems with masses ≳100 M⊕ do
not follow the peas in a pod pattern – indicating that there are
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Fig. 2. Classes of architecture. This schematic diagram shows the four
architecture classes: similar, anti-ordered, mixed, and ordered. Depend-
ing on how a quantity (e.g. mass or size) varies from one planet to
another, the architecture of a system can be identified.

only two possibilities for the architecture structure. As we show
in this series of works, their hypothesis of only two architecture
types is too simple and cannot capture the richness of physics.

3.2. Concept

With our framework, we initially aimed to capture the key aspect
about the peas in a pod architecture trends. These trends are
correlations between adjacent planets or between consecutive
pairs of adjacent planets. We want to capture these ideas at the
level of a single planetary system through a unified framework.
We do this by studying how a quantity, qi, (such as mass, size,
or period ratio) varies for all planets within a system. Here, i
indexes the planets within a system. For all quantities, we adopt
an ‘inside-out’ convention, namely, we start with the innermost
planet (qi = 1) and go to the next adjacent planet (qi = 2), and so
on. By comparing how qi varies for each planet inside-out, we
are actually estimating how qi varies with distance from the host
star.

In comparing a quantity, qi, with distance, four kind of vari-
ations emerge. In one scenario, a quantity could show little
to no variation. In another case, the value of a quantity may
increase with increasing distance or, conversely, the quantity
could decrease from one planet to another. Finally, it is also pos-
sible for a quantity to not have any clear variations from one
planet to another. We identify these four scenarios as the four
classes of architectures that can exist at the level of a single
planetary system. This idea is depicted in Fig. 2.

Mishra et al. (2021) suggested that the mass correlations
could originate from planet-formation physics and the corre-
lations of size and spacing could be derivative. Therefore, we
first apply our framework using planetary masses (except in
Sects. 5 and 6). As depicted in Fig. 2, when the masses of
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all planets within a system are similar to each other, we label
the architecture of such systems as ‘similar’. This architecture
class corresponds to the peas in a pod architecture reported in
observations (Weiss et al. 2018; Millholland et al. 2017). When
the masses of planets tend to increase inside-out, the archi-
tecture of such systems is labelled ‘ordered’. If the planetary
mass tends to decrease from the inner planet to the outer, we
label the architecture of these systems as ‘anti-ordered’. Finally,
if a large increasing and decreasing variation in the planetary
masses is present, we label the architecture of such systems as
‘mixed’. The mixed architecture class is also useful in capturing
all other architecture patterns which do not fall under the other
three architecture classes. Kipping (2018), for example, has anal-
ysed some interesting repeating patterns. By introducing these
architecture classes, our framework organises the possibilities for
system architecture.

One might wonder, at this point, why introduce such a con-
cept and the ensuing mathematical machinery? While part of
this work began as an inspired exploration to categorise our
understanding of system architecture, it turns out that there
are good physical reasons to pursue this process. As is shown
in this and a companion paper, planetary systems that have
the same architecture tend to have a host of other properties
in common, such as internal structures (core-mass, ice-mass)
distributions. Most importantly, systems with a common archi-
tecture tend to have same formation pathways, initial conditions,
and evolutionary histories. Practically, this means that a quick
glance at a system’s architecture may reveal a lot more about its
formation scenario.

Our architecture classification framework utilises two quanti-
ties – the coefficient of similarity and the coefficient of variation,
introduced in Sects. 3.3 and 3.4, respectively. These two coef-
ficients allow us to quantify the conceptual ideas we have
presented above. Together, these coefficients define a new space
of possibilities for system architectures. In Sect. 3.5, we iden-
tify the regions of this architecture space that correspond to the
four architecture classes introduced above. As this framework
deals with the architecture of multi-planetary system, systems
with only one planet are not studied within this framework.

3.3. Coefficient of similarity

The term ‘coefficient of similarity’ is commonly used in the
fields studying statistics of ecology and genetics (Gower 1971;
Dalirsefat et al. 2009). We borrow the term but develop our
own concept and definition.Let q be a planetary quantity such as
mass, size, period ratios of adjacent planets, bulk density, eccen-
tricity, and so on4. The value of this quantity for the ith planet
in a system is denoted by qi. The coefficient of similarity, CS ,
measures how q changes from one planet to another, inside-out.
For a system with n planets, it is defined as:

CS (q) =
1

n − 1

i=n−1∑
i=1

(
log

qi+1

qi

)
. (1)

There is a clear physical interpretation for CS (q): the coefficient
of similarity measures the average order of magnitude variation
in the quantity q from one planet to another. The definition of
the coefficient of similarity allows us to map the architecture of

4 For quantities which admit zero as a possible value, the coefficient of
similarity may become ill-defined. This is a coordinate singularity and
can be dealt with an appropriate treatment (see Eq. (4) Sect. 5.4).

a planetary system on a one dimensional axis. When CS (q) ≈
0, then the system’s architecture could imply a similarity in q.
When CS (q) is positive, then planets within a system are ordered
in q. Conversely, CS (q) being negative, implies that the planets
are anti-ordered.

We have developed a mathematical formalism to study the
sensitivity of the coefficient of similarity. In Appendix C, we
derive the limiting values of the coefficient of similarity and
present the results here. For example, when the qi values for all
planets in a system are within 10% of each other, then the maxi-
mum possible value of CS (q) is 0.09 (see Eq. (C.10)). For maxi-
mum tolerances of 20, 40, 60, and 80%, the maximum possible
value of CS (q) are 0.18, 0.37, 0.60, and 0.95 respectively. In
Fig. C.1, we show the dependence of the max CS (q) on t.

The coefficient of similarity cannot distinguish between two
classes of architecture: similar and mixed. Systems which show
similarity will have CS (q) ≈ 0. However, system with mixed
architecture have large increasing and decreasing variations,
such that the log of ratios qi+1

qi
cancels itself out. Such systems

will also have CS (q) ≈ 0. We propose the coefficient of varia-
tion to distinguish these two architecture classes. The coefficient
of similarity depends on the actual order in which planets exist
(inside-out) in a system. As we go on to show, the coefficient of
variation does not depend on the ordering of planets in a system.

3.4. Coefficient of variation

The coefficient of variation, CV , is a standard descriptive statistic
used to measure the magnitude of variation in a set of numbers
(Katsnelson & Kotz 1957; Sharma et al. 2010; Abdi 2010). It is
defined as the ratio of the standard deviation with the mean:

CV (q) =
σ(q)

q̄
. (2)

The coefficient of variation is a positive quantity. When all
qi have the same value then CV (q) = 0. Planetary systems con-
sisting of planets that have a small (or large) variability in their
qi values will have a small (or large) value of the coefficient of
variation. Now, the distinction between systems showing simi-
larity and mixed architecture is clear. While similar systems will
have a low value of the coefficient of variation, mixed systems
will have a high value of coefficient of variation.

Since this coefficient is a well known statistical measure,
there are some derivations for its limit. A classical result from
Katsnelson & Kotz (1957) shows that, for a set of n numbers,
the maximum value of the coefficient of variation is

√
n − 1.

However, this result is only a particular case in our setup. In
Appendix C, we develop a mathematical formalism to under-
stand the limits of the coefficient of variation and present the
results here. When the qi values for all planets in a system are
within 10, 30, 50, 70, and 90% of each other, the absolute the-
oretical upper limit of CV (q) is 0.10, 0.31, 0.58, 0.98, and 2.06
respectively. Figure C.1 shows how this upper limit varies with
the maximum tolerance, t, for a system.

3.5. Classifying the architectures of planetary systems

We are interested in obtaining a mapping from the scale-
invariant coefficients to an architecture class. In Appendix D,
we present some considerations that motivate the selection of
boundaries between the four classes. The selected boundaries
were additionally tested on thousands of mock planetary systems
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Fig. 3. New parameter space: architectures of planetary systems. Both panels shows the coefficient of similarity (mass) as a function of the
coefficient of variation (mass). The shaded regions show the allowed parameter space for planetary systems. The white gaps (between two shaded
regions) mark the mathematically forbidden regions of this architecture space. Different parts of this parameter space are identified with four
architecture classes, in accordance with Eq. (3). Each point corresponds to an individual planetary system. For visual clarity, the shaded and
unshaded regions are drawn only for systems hosting up to fifteen planets. Left: planetary systems from the Bern model and observations. Right:
synthetically observed systems depicting the detection biases of radial velocity and transit surveys.

to check their ability to correctly classify the four architecture
classes. We propose the following boundaries for identifying the
architecture class based on planetary masses.

Architecture class Condition
Anti-ordered CS (M) < −0.2
Ordered CS (M) > +0.2

Similar |CS (M)| ≤ 0.2 and CV (M) ≤

√
n − 1
2

Mixed |CS (M)| ≤ 0.2 and CV (M) >

√
n − 1
2

(3)

A natural (and welcome) outcome of these criteria is that a
two-planet system can never have a mixed class architecture. The
boundary between similar and mixed class is half the maximum
possible value of the coefficient of variation. For the solar sys-
tem, CS (M) = 0.36 and CV (M) = 1.85. This framework robustly
identifies the architecture of the solar system as ordered5. This
classification is in line with the historic understanding of the
solar system architecture: small rocky planets on the inside and
giant planets on the outside. If, however, Neptune were replaced
with an Earth-like planet, the architecture of the solar system
would be classified as mixed. Considering only the inner four
planets of the solar system, CS (M) = 0.10 and CV (M) = 0.85,
would make the architecture of the inner solar system belong to
the similar class. The architecture of the outer four giants in the
solar system is anti-ordered and we have CS (M) = −0.42 and
CV (M) = 1.11.

Figure 3 shows the CS (M) versus CV (M) space for plane-
tary systems from several catalogues. The Bern model planetary
5 Even if the masses of each solar system planet were randomly varied
within 85% of their original values, the emerging architecture is still
ordered. With 1M trials, varying the masses randomly within 90% of
their original values lead to ordered (for ≈99.45% trials), mixed (for
≈0.55% trials), and similar (for ≈0.001% trials) architectures.

systems occupy all four regions of this architecture space.
Observed planetary systems, however, span only a limited
region of this parameter space, given the low multiplicity of
observed planetary systems. The architecture space spanned by
the observed planetary systems (shaded contour) is in agreement
with the synthetically observed planetary systems from Bern
Compact Multis, Bern KOBE Multis, and Bern RV Multis.

The architecture for the systems in the synthetically observed
catalogue was calculated based only on the planets that were
detected (for RV/KOBE) or included (for Bern Compact Mul-
tis) in the above-mentioned catalogue. It is theoretically possible
for a single Bern model system to exhibit different architec-
tures depending on the planets which are detected or included.
The reverse is also true – the architecture of an observed
planetary system may change if new planets are discovered
or old controversial candidates are rejected. While the ground
truth architecture for observations seems elusive, a compari-
son with synthetic observations can bring forth patterns which
are unexpected. With this in mind, we consider the following
example.

Detection biases, in both radial velocities and transits, gen-
erally disfavour the discovery of less-massive and small planets
at larger distances. This implies that anti-ordered architectures
are difficult to detect. In fact, we have no known example of a
planetary system showing anti-ordered architecture in our obser-
vations catalogue. This is surprising for two major reasons:
(a) theory suggests their existence: there are several synthetic
planetary systems from the Bern Model whose architecture
is anti-ordered; (b) theory suggests their discovery: all three
synthetically observed catalogues contain some (albeit few) anti-
ordered planetary systems. Since the number of systems in our
catalogue is too low, we refrain from making any conclusions
and, instead, we await the discovery of anti-ordered architectures
in the future. However, if such architectures are not found despite
considerable efforts, this result will become a strong indicator for
shaping our understanding of planet formation.
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Another aspect of this new architecture space is the underly-
ing mathematical structure6. In Fig. 3, the shaded areas shown
regions where a planetary system, with n ∈ [2, 15] planets, is
allowed. A system with two planets, for example, can only
occupy the shaded region labelled ‘n = 2’. All non-shaded
regions (in white – except the shaded regions for 16 or more plan-
ets which is not drawn), on this architecture space, is mathemat-
ically forbidden. These are parts of the architecture parameter
space that no planetary system, irrespective of its configura-
tion, can occupy. This strong result stems from the mathematical
limits that were derived for this work (see Sects. 3.3, 3.4, and
Appendix C).

For clarity and future convenience, we introduced some ter-
minology to the method. When the architecture framework (i.e.
CS and CV ) is applied on planetary bulk masses, the resulting
information tells us the mass architecture of a system, namely,
the arrangement and distribution of masses in said system. Sim-
ilarly, when this framework is applied on radii, it gives us the
radius architecture (arrangement and distribution of radii) for
the system (Sect. 5.1). Similarly, we can obtain the bulk-density
architecture (Sect. 5.2), core-mass architecture (Sect. 5.3), water
mass fraction architecture (Sect. 5.4), period-ratio or spacing
architecture, eccentricity-architecture, and so on. In this series
of papers, we identify a system’s architecture based on its bulk
mass architecture. Thus, when a system is said to be similar, we
are referring to the similarity in terms of the mass architecture.

4. Characteristics of architecture classes

4.1. General comments

In earlier studies on the peas in a pod architecture, the strength of
population-level (i.e. across many planetary systems) trends was
quantified using Pearson correlations coefficient (Weiss et al.
2018; Zhu 2020; Chevance et al. 2021; Millholland & Winn
2021; Mishra et al. 2021). The correlation coefficients were cal-
culated using planetary quantities in the log space (i.e. by first
taking the log10 of all quantities). This resulted in higher values
of the correlation coefficient since quantities have limited range
to perambulate in the log space. Consider planetary masses. We
calculated the correlation coefficient between the mass of adja-
cent inner and outer planets in the Bern model population (see
Fig. 7 in Mishra et al. 2021). The value of the coefficient is 0.66
in the log space and 0.16 in the linear space. This highlights that
the planetary masses are more closely clustered in log than in
linear space.

We tested the same correlation for all systems in each archi-
tecture class. We expect planetary masses in mixed, ordered,
and anti-ordered systems should (by definition) have low cor-
relations. On the other hand, similar class architecture should
exhibit a strong correlation. Surprisingly, in log space all archi-
tecture classes show strong correlations. The coefficient value is
0.67 for similar class, 0.69 for mixed class, 0.50 for ordered class,
and 0.58 for anti-ordered class architectures. However, in the lin-
ear space the coefficient values reflects our expectation: 0.61 for
the similar class, 0.20 for the mixed class, 0.16 for ordered class,

6 Visualizing this structure is easy (not shown). (a) Construct mock
planetary systems with masses, for each mock planet, randomly drawn
from a uniform distribution with suitable limits. (b) It is suggested to
vary the number of planets in these mock systems randomly. (c) Calcu-
late the CS (M) and the CV (M) using Eqs. (1) and (2). (d) Plot CS (M)
versus CV (M) for this mock population. For large number of systems
the plot should be symmetric about CS (M) = 0.

Table 2. Architecture type of known multi-planetary systems (see
Table 1 for catalogue and Fig. 6 for architecture plot).

Hostname Multiplicity CS (M) CV (M) Architecture class

Solar System 8 +0.36 1.85 Ordered
Trappist-1 7 −0.10 0.45 Similar
TOI-178 6 +0.08 0.46 Similar
HD 10180 6 +0.14 0.66 Similar
HD 219134 6 +0.27 1.49 Ordered
HD 34445 6 +0.17 0.84 Similar
Kepler-11 6 +0.22 1.03 Ordered
Kepler-20 6 +0.00 0.44 Similar
Kepler-80 6 −0.00 0.19 Similar
K2-138 6 +0.03 0.61 Similar
55 Cnc 5 +0.52 1.37 Ordered
GJ 667 C 5 −0.02 0.29 Similar
HD 158259 5 +0.11 0.29 Similar
HD 40307 5 +0.07 0.33 Similar
Kepler-102 5 +0.02 0.41 Similar
Kepler-33 5 +0.46 0.67 Ordered
Kepler-62 5 +0.15 0.68 Similar
HD 20781 4 +0.29 0.59 Ordered
TOI-561 4 +0.33 0.64 Ordered
DMPP-1 4 +0.29 0.81 Ordered
GJ 3293 4 +0.27 0.62 Ordered
GJ 676 A 4 +0.90 0.99 Ordered
GJ 876 4 +0.12 1.20 Mixed
HD 141399 4 +0.06 0.40 Similar
HD 160691 4 +0.63 0.82 Ordered
HD 20794 4 +0.08 0.25 Similar
HD 215152 4 +0.07 0.23 Similar
HR 8799 4 −0.07 0.17 Similar
K2-266 4 +0.03 0.60 Similar
K2-285 4 +0.01 0.31 Similar
Kepler-89 4 +0.17 0.91 Mixed
Kepler-106 4 +0.11 0.26 Similar
Kepler-107 4 +0.13 0.42 Similar
Kepler-223 4 −0.06 0.22 Similar
Kepler-411 4 −0.08 0.34 Similar
Kepler-48 4 +0.74 1.64 Ordered
Kepler-65 4 +0.68 1.63 Ordered
Kepler-79 4 −0.10 0.24 Similar
WASP-47 4 +0.59 0.95 Ordered
tau Cet 4 +0.12 0.37 Similar
HD 164922 4 +0.49 1.29 Ordered

and 0.05 for anti-ordered class. This underscores that strong cor-
relations in the log space may not be indicative of substantive
architecture trends. It also shows that our framework is capable
of identifying systems in which the ’peas in a pod’ architecture
is discernible even in the linear space.

Figure 4 shows the coefficient of similarity of masses as a
function of the total planetary mass in a system for all synthetic
planetary systems from the Bern model. This figure shows sev-
eral key aspects. Firstly, it illustrates the four architecture classes
as separate clouds of scattered points strengthening the pro-
posed four classes of planetary system architecture. Secondly,
it shows that the architecture framework is scale-invariant, that
is, the system architecture is sensitive only to the relative distri-
bution of a quantity – and not its absolute value. For example,
while most similar system have ⪅100 M⊕ mass in their planets
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Fig. 4. Four classes of system architecture. The diagram shows the coef-
ficient of similarity for a system as a function of the sum of mass of each
planet in a system. Dashed horizontal lines correspond to CS = ±0.2.
This diagram emphasises the four classes of planetary system architec-
ture, namely: anti-ordered, similar, mixed, and ordered. It also shows
that the coefficient of similarity can not distinguish between similar and
mixed architectures.

(suggesting a lack of giant planets), there are some similar
systems with mass values of ≈2000 M⊕ for their planets and
host giant planets. Likewise, most ordered systems host giant
planets and have ⪆2000M⊕ mass in their planets, there is an
ordered systems without any giant planets. Also, it illustrates
that the coefficient of similarity partitions planetary systems into
three groups: anti-ordered, similar and mixed in one group, and
ordered. This demonstrates that the coefficient of variation is
necessary to distinguish between the similar and mixed systems.
Finally, the diagram shows that the architecture class of a system
has strong links with the total mass of planets in the system. This
hints that there must be general patterns in the formation path-
ways of systems of the same architecture. This topic is discussed
in Paper II, from this series.

For all 41 observed planetary systems in our catalogue, we
report their architecture classes in Table 2. The frequency of
each architecture class across all catalogues is shown in Fig. 5.
Figure 6 shows the architecture of all observed multi-planetary
systems in our catalogue. The systems are sorted by their coeffi-
cient of similarity values. The figure also shows the four classes
of architecture for a few randomly selected synthetic planetary
systems. To understand the characteristics of the different archi-
tectures, we study the distribution of planetary masses, radii,
and semi-major axes as well as the multiplicity distributions. For
planetary systems across all catalogues, this is shown in Fig. 7.
We describe the characteristics of different architectures in the
following subsections. The discussion in the next subsection
involves results derived from both observed and synthetic plan-
etary systems. In addition, we present a gallery of mass-distance
diagrams showing the four architecture classes in Appendix E.

4.2. Frequency of architecture

Similar systems are the most common architecture classes
emerging from simulations, with a frequency of ≈80.2%. About
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Fig. 5. Frequency diagram for the architecture classes. Currently, there
are no known examples of observed planetary systems with anti-ordered
architecture. The length of error bars visualises the total number of sys-
tems in each bin as: 100/

√
bin counts.

≈8% of synthetic systems show mixed and anti-ordered archi-
tectures. Ordered architecture is a rare outcome in simulations
(≈1.5%). In observations, similar class is the most common
architecture (≈59%). Fifteen observed exoplanetary systems (out
of forty-one) are part of the ordered architecture class (≈37%).
About ≈5% of observed planetary systems show mixed archi-
tecture. There are no known examples of observed system with
anti-ordered architecture.

Comparing the frequency of architecture classes for observed
systems with synthetically observed systems brings out some
peculiar features. Firstly, theoretical catalogues seem to suggest
that observations should find more similar systems and fewer
ordered systems. The frequency of similar (ordered) systems in
our observed catalogue is significantly lower (higher). Secondly,
while the frequency of mixed systems seems to be in agreement
with synthetic observations, this agreement is not statistically
significant.

These discrepancies probably arise from the incomplete-
ness prevalent in our observations catalogue. Transit surveys are
conducted in a manner which allows the completeness and reli-
ability of these survey to be estimated. The completeness of RV
surveys, on the other hand, is very difficult to estimate. Fur-
ther, the observation techniques used to find the exoplanets in
our observations catalogue are heterogeneous, consisting of RV,
transits, transit-timing variations, and direct imaging; this com-
plicates the estimation of completeness. The PLATO mission is
an upcoming space mission that is equipped to allow for statis-
tical estimates of cosmic occurrence rates of planetary system
architecture in our galaxy (Rauer et al. 2014). If more exoplan-
etary systems are uniformly detected and characterised, then it
would be possible to estimate the occurrence rate of the dif-
ferent classes of system architecture. While such a result would
constitute an important knowledge about our Universe, it could
also become an excellent way of constraining our knowledge of
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initial conditions for planetary formation and the physical pro-
cesses which shape the system architecture. The frequency of
architecture class in simulations is a direct consequence of the
initial conditions and the physical processes modelled in the
Bern model.

4.3. Architecture class: similar

Planetary systems have a similar architecture when all planets in
the system have masses that are approximately similar to each
other. These planetary systems are the archetypical examples of
the peas in a pod trend. There are several well-known planetary
systems exhibiting similar architecture, such as Trappist-1 (Agol
et al. 2021), TOI-178 (Leleu et al. 2021), Kepler-20 (Buchhave
et al. 2016), and so on. This architecture is the most common
outcome of planetary formation and is also the most frequent
architecture class in our observed catalogue.

Similar systems in the Bern model are composed of several
low-mass planets. They tend to have limited diversity in plan-
etary masses when compared with the observed systems. The
mass distribution, for similar systems in the Bern model, shows
that there are many low-mass (<1 M⊕) planets in these systems.
This peak is missing in observations as well as synthetic observa-
tions as low mass exoplanets are difficult to observe. This could,
however, be remedied in future as current radial velocity spectro-
graphs reach the ≈20 cm s−1 precision necessary for discovering
exoplanets in the super-Earths and Earths mass range (Lillo-Box
et al. 2021; Netto et al. 2021). The radius distribution of similar
systems implies that these systems are prominently composed of
rocky planets, super-Earths and sub-Neptunes7.

The Bern RV Multis show a bimodal planetary distance dis-
tribution for similar systems (as well as for mixed and ordered).
The approximate location of the gap is 0.28 au or 55 d (for a
solar mass star). This bi-modality is not visible in our observed
catalogue. Planets in similar and mixed systems in the Bern
Model also show a dip around this location. In the Bern Model,
inwardly migrating giant planets (≳100 M⊕) tend to stop around
0.4 au or 100 d. Inside this region, low-mass planets are popu-
lous. We attribute this bi-modality to these two populations of
planets. This bi-modality probably arises because planets switch
their orbital migration from type I to type II depending on their
masses (Emsenhuber et al. 2021a). This bi-modality cannot be
seen in Bern Compact Multis because we only include planets
with periods less than 100d. For Bern KOBE Multis, the com-
pleteness of the Kepler mission for large distant planets is poor
(see Fig. C.2 in Mishra et al. 2021). However, a dip at this loca-
tion in Bern KOBE Multis is visible. It would be interesting to
see if such a bi-modality is also present in the Kepler catalogue.
We tested the significance of this bi-modality with Hartigan’s
dip test (Hartigan & Hartigan 1985). The dip test is suggestive of
the bi-modality for the Bern RV Multis and Bern KOBE Multis
(p-value <0.05) and insignificant for the other catalogues.

A system’s architecture is sensitive only to the relative distri-
bution of a quantity (such as mass) amongst its planets and not
the absolute distribution. HR 8799 offers an example (Marois
et al. 2008) as a relatively young system with four directly
imaged giant planets. Our framework identifies the architecture
of this systems as similar. Most observed similar systems are
composed of low-mass planets (≲100 M⊕), making HR 8799 a

7 Throughout this paper, we use planetary classes (e.g. rocky, super-
Earths, etc.) from the radius based classification of Kopparapu et al.
(2018).

unique exception. This shows that the architecture framework is
sensitive only to the relative variations in the mass. Addition-
ally, there are only two systems (out of 1000) in our simulated
catalogue where a similar architecture arises from only giant
planets. Even then, these two synthetic systems have only two
giant planets much closer to the star than the HR 8799 planets.
The Bern Model does not produce many HR 8799-like systems.
This suggests that a system with similar architecture made up of
only giant planets is probably rare. One possibility could be that
systems (e.g. HR 8799) with such architecture are probably dif-
ficult to form via core accretion pathway (Konopacky & Barman
2018). Such systems may require additional formation mecha-
nisms such as protoplanetary disk instabilities (Schib et al. 2021;
Boley et al. 2010; Kratter et al. 2010).

4.4. Architecture class: mixed

Planetary systems where the planetary masses (inside-out) show
broad increasing and decreasing variations have mixed archi-
tecture. GJ 876 and Kepler-89 host planetary systems with a
mixed class architecture. GJ 876 is an M dwarf low lumi-
nous (≈0.01 L⊙) star hosting four planets with masses between
8−888 M⊕. The outer three planets are in a Laplace mean-motion
resonance (Millholland et al. 2018). Kepler-89, on the other
hand, is an early F, highly luminous (≈3.5 L⊙) star. It hosts a
compact four planet system with masses between 10−100 M⊕.
Despite the starkly different stellar properties, the architecture
of these two systems is analogous: CS (M) = 0.12 and 0.17,
CV (M) = 1.2 and 0.9, respectively. While the coefficient of sim-
ilarity is low for both systems, the coefficient of variation is
larger than

√
3/2, which helps us identify the architecture of

these systems as mixed class. Indeed, Fig. 6 indicates that this
identification is correct.

The frequency of this architecture class in the Bern model
is ≈8.2%. The Bern model’s synthetic mixed architecture plan-
etary systems (Fig. 6 right) tend to have numerous Earth-mass
planets outside 10 au. This parameter space (mass-distance
plane, Fig. 1), however, remains inaccessible to most exoplanet
detection techniques. These systems are also composed of super-
Earths, sub-Neptunes, Neptunes, and Jovian planets. The bi-
modality in distance distribution (discussed before) is prominent
for these architectures in Bern RV Multis. We found a Harigan’s
dip statistic of 0.03 and p-value of ∼0.2 (Hartigan & Hartigan
1985).

4.5. Architecture class: anti-ordered

Planetary systems where the planetary mass shows an overall
decrease with distance have an anti-ordered architecture. There
are no observed examples of this architecture class in our cat-
alogue. The frequency of this architecture class in the Bern
model is ≈8.4%. About ≈4% of systems in Bern KOBE Mul-
tis, ≈3.2% of systems in Bern Compact Multis, and ≈1.2% of
systems in Bern RV Multis have this architecture. This shows
that it is an observationally challenging system architecture to
detect. However, even if 1% of observed exoplanetary systems
are Anti-Ordered we should already have found about 30–40
such systems. More work is necessary to identify the hand-
ful of these systems from the already observed systems. Many
currently known single hot Jupiter systems may host additional
small, distant, and as yet undetected planets – revealing these
potentially anti-ordered systems.
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Fig. 6. Architecture plot showing the architecture of observed (left) and randomly selected synthetic planetary systems (right). Each row is for one
planetary system and the circles in that row represent planets. The area of the circle encodes planetary mass, and the colour shows the equilibrium
temperature. The coefficient of similarity for each system is shown on the right y-axis. The x-axis shows the semi-major axis, which is different for
the two panels.

Anti-ordered systems in the Bern Model are mostly com-
posed of low mass planets ≲5 M⊕ and giants ≳100 M⊕. In the
Bern Model, the radius distribution of this architecture class
peaks for Rocky and Super-Earths planets. It decreases for sub-
Neptunes and Neptunes and then increases again for Jovian plan-
ets. Many of the low-mass planets that make up this architecture
class are outside 10 au, making their detection very challenging.

The multiplicity distribution shows that these systems tend to
have fewer planets than similar or mixed architecture. This is
an indication that the formation pathway of these architectures
differs considerably from the other two types of architecture.
Planets from anti-ordered architectures show a weak distance
bi-modality feature (discussed earlier in this work). This is
understandable since these architectures consist of massive
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Fig. 7. Characteristics of the architecture classes. These plots show the distribution of various quantities (columns) as function of different cata-
logues (rows). Left to right: distributions of mass, radius, distance, and multiplicity in the following catalogues (top to bottom): Bern model, Bern
RV Multis, Bern KOBE Multis, Bern Compact Multis, and observations. All catalogues are described in Sect. 2. Some notable features from these
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planets in the inner parts and less massive planets in the outer
parts of the system. The distance bi-modality seems to arise
from low mass planets (migrating via type I) inside 0.28 au or
55 days and giant planets (migrating via type II) outside 0.28 au
or 55 days. This adds further strength in attributing the distance
bi-modality to planetary migration.

4.6. Architecture class: ordered

Planetary systems where the planetary masses shows an overall
increase with distance have an ordered architecture. The increas-
ing mass may be monotonic (e.g. TOI-561, HD 20781, DMPP-
1,HD 160691, HD 164922) or non-monotonic (e.g. the Solar
System, Kepler-11, 55 Cnc, Kepler-48, Kepler-65). Ordered
architecture is a rare outcome for the Bern model. Observations
are generally biased against discovering small and less mas-
sive planets which are farther away from their host star. Such
biases, however, make ordered systems the second most common
architecture class. Fifteen systems in our catalogue exhibit this
architecture. Unsurprisingly, the most notable known example of
this architecture class is the Solar System.

The mass and radius distributions of ordered architecture
in the Bern Model shows considerable difference from other
architecture. The mass distribution peaks around 1000 M⊕. Most
of the Bern model’s ordered systems tend to have at least one
giant planet. These systems are also composed of sub-Neptunes,
Neptunes, and Jovian planets.

5. Internal composition across architecture classes

So far we have seen the new architecture framework (Sect. 3) and
some characteristics of the four classes of architecture (Sect. 4).
In this section, we study the connection between the bulk mass
architecture classes and the internal composition of the planets.
This section demonstrates that the same architecture framework
can be used to study the multi-faceted nature of planetary system
architecture – from bulk mass architecture to density architec-
ture. We study several different aspects of the planetary internal
composition: (a) radius architecture (Sect. 5.1); (b) bulk den-
sity architecture (Sect. 5.2); (c) Core/Envelope mass architecture
(Sect. 5.3); and (d) fraction of volatiles and water ice in core
architecture (Sect. 5.4). We explore these connections for plan-
etary systems in the simulated (Bern model) and synthetically
observed catalogues (Bern RV Multis, Bern KOBE Multis, Bern
Compact Multis). All results in this section are derived from
synthetic planetary systems only.

5.1. Radius architecture

Weiss et al. (2018) showed that the size of adjacent exoplanets
were similar – coining the phrase ‘peas in a pod’ to describe
this architecture. Millholland et al. (2017); Wang (2017) extended
these ideas to planetary masses, showing that the masses of
adjacent planets are also correlated. In Mishra et al. (2021), we
suggested that the peas in a pod trends in terms of size effec-
tively emerge from the mass trends. Here, we attempt to set our
assumption on firmer ground.

Figure 8 (top) shows the coefficient of similarity for radii as
a function of the coefficient of similarity of masses, for systems
with two or more planets. This allows us to compare the system-
level radius architecture with the system-level mass architecture.
We easily see that most systems seem to follow a linear rela-
tionship. The Pearson correlation coefficient is 0.89, indicating a
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Fig. 8. Radii architecture. Top: the diagram shows the coefficient of
similarity of radii as a function of the coefficient of similarity of
masses, for synthetic and observed planetary systems. The dashed line
shows the corresponding linear fit. Bottom: radius architecture of syn-
thetic planetary systems contrasted with the mass architecture. In the
bottom panel, the marker colour and shape indicates the bulk mass
architecture of a system and its position on the diagram suggests its
radii architecture.

strong positive correlation between the mass and radius architec-
ture. The coefficient value increases to 0.96, when systems with
only three or more planets are considered. Since the mass-radius
relation is not a bijective function (i.e. one-to-one correspon-
dence), there are some systems that show a strong deviation from
the linear relation.
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Fig. 9. Density architecture. Left: bulk density of simulated and few observed planets as a function of their mass and starting locations (for synthetic
planets). The marker indicates the mass architecture of the system to which a synthetic planet belongs to. Middle: density architecture, of synthetic
planetary systems, as seen through the coefficient of similarity versus the coefficient of variation plot. The marker shape and colour indicates their
host system mass architecture and the system’s Aryabhata’s number (see Paper II), respectively. Right: density architecture of planetary systems
from the simulated observed catalogue and few observed planetary systems.

Figure 8 (bottom) shows the radii architecture for the syn-
thetic planetary systems8. This shows that most systems that
are ordered (or anti-ordered) in mass are also ordered (or anti-
ordered) in terms of radius. The figure also shows that systems
which are similar or mixed in mass architecture have CS (R) ≈ 0.
Systems with mass similarity have lower CV (R) compared to
systems with mass mixture, suggesting that for most systems,
the radius architecture closely follows the mass architecture. At
the planetary level the radius of a planet is correlated with its
mass via the planet’s chemical composition (Lopez & Fortney
2014). Our architecture framework shows that such relationships
also exist at the system level. A few mass-ordered systems show
similarities in radius. These few systems have the following com-
mon features: two mass-ordered giant planets with similar sizes
(masses ∼ several MJ’s, and radius ≈1 RJ). This illustrates that
while mass architecture and radius architecture are related, they
are not always identical.

We conclude that the peas in a pod radius correlations gener-
ally arise from the underlying mass architecture. We consider the
mass architecture primal because planets, foremost, accrete mass
from the protoplanetary disk and, consequently, are characterised
by a size that is in accordance with their internal structure.

5.2. Density architecture

Bulk density (or simply density) is a directly measurable quantity
which is sensitive to the internal structure of a planet. This makes
density an important characteristic for understanding planetary
structure. The density of a planet depends on many parame-
ters and many physical processes. For example, a planet’s mass
may depend on its accretion history, starting location, amount
of material in disk, competition with other planets, and so on.
Giant impacts may also affect a planet’s density, as explained
in Bonomo et al. (2019). In this section, westudy the arrange-

8 A future study could investigate the boundaries for robust architec-
ture identification, as in Eq. (3), but based on radius instead of mass.
Such a classification is readily applicable since radius measurements
tend to be uniformly available and are better agreed upon amongst sev-
eral observers. Data-driven approaches such as machine learning could
be useful in such an endeavour.

ment and distribution of planetary density around their host star,
namely, the density architecture of a system.

Figure 9 (left) shows the density of a planet, simulated via
the Bern model, as a function of its mass and starting loca-
tion. The figure also shows the density of solar system planets
and few observed exoplanets (from our catalogue). The plot can
be roughly divided into two halves: (a) planets with a mass of
<100 M⊕ and (b) planets with a mass of >100 M⊕. In our simula-
tions, most planets which started inside the ice line tend to have
terrestrial Earth-like densities. These planets are 0.5−3 R⊕ and
⪅10 M⊕. Planets starting around or outside the ice line generally
accrete more volatile rich material and H/He gas. These planets
have lower densities due to their larger sizes. Planet which started
outside the ice line (3–10 au) show a broad diversity in their
densities. As they accrete more gases, their density decreases fur-
ther. These planets are roughly 2−10 R⊕ and are characterised by
masses that vary by four orders of magnitude. Planets more mas-
sive than 100 M⊕ seem to lie on a single curve. Since the size
of these planets remains the same (≈1 RJ or 11 R⊕,), their densi-
ties increases linearly with their masses. Planets that started in
the outer regions (30–40 au) cluster on the density-mass plane.
These planets have low densities (<2g cm−3) and low masses
(⪅1 M⊕).

The density architecture for simulated systems in the Bern
Model is shown in Fig. 9 (middle). An important relation
between mass architecture and density architecture is seen. Some
systems which are ordered (or anti-ordered) in mass are also
ordered (or anti-ordered) in density, that is, these systems have
large positive (or negative) CS (ρ). In other words, simulations
suggest that planetary systems can also be ordered or anti-
ordered in density. A system is ordered in density when the inner
planets have small densities and the outer planets have larger
densities – and vice-versa for density anti-ordered systems. Sys-
tems with mass architectures of similar and mixed are strongly
clustered around CS (ρ) ≈ 0 and CV (ρ) < 1. The inset shows that
similar mass systems tend to have small CV (ρ),while mixed mass
systems have larger CV (ρ). This implies that some systems that
are similar (or mixed) in mass show some similarity (or mix-
ture) in density. A system with a similar density architecture will
host planets that have approximately similar densities. However,
the region CS (ρ) ≈ CV (ρ) ≈ 0 is empty, indicating the absence
of planetary systems where the density of planets (inside out)
is approximately the same. While there are exceptions, overall,
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Fig. 10. Mass architecture as a function of core-mass architecture. Panels compare the mass architecture with the core-mass architecture via the
coefficient of similarity (left) and coefficient of variation (middle). In the left panel, the points corresponding to similar systems are very tightly
clustered on the y = x line and are not visible due to over-plotting of points from other architectures. This signifies the core-mass architecture is
very strongly correlated with the mass architecture for similar systems. The sum of mass in the envelope of each planet in a system is indicated in
colour. The right panel plots the coefficient of similarity for masses and core masses for systems in the synthetically observed catalogues.

for many systems, the density architecture seems to follow their
mass architecture.

This approximate link between the mass and density archi-
tecture stems from massive planets (>100 M⊕) whose densities
increase with their mass (see Fig. 9 (left)). Systems which do
not host any massive planet are mostly similar in their mass
architecture and have CS (ρ) ≈ 0. The inset shows that the
Aryabhata’s number increases as a system approaches the
CS (ρ) ≈ CV (ρ) ≈ 0 region (see Paper II for the definition of
Aryabhata’s number). If a system has more surviving planets
that started from inside the ice line, then the densities of these
planets will be more similar to each other. This means that the
density architecture of a system shows some dependence on the
starting location of a planet.

We also investigated if the relation between the mass and
density architectures is observable. Figure 9 (right) shows the
density architecture for systems from our synthetically observed
catalogues. Also shown is the density architecture of some
observed exoplanetary systems for which the mass and radius
measurements were available. The density architecture of syn-
thetically observed catalogues shows a trend which is quite
unlike Fig. 9 (middle). There is an unexpectedly good agreement
between the synthetically observed systems and the observed
planetary systems. We attribute the peculiar shape of this plot
to the difficulty of detecting distant planets. Transit and RV
observations favour the detection of planets within ∼1 au. Many
close-in planets tend to have Earth-like densities, while planets
farther out have lower densities (due to either their volatile rich
or gaseous composition). Overall, this would lead to an observed
density architecture where inner planets have higher densities
and outer planets have lower densities. A situation such as this
will be characterised by negative CS (ρ), which is readily seen
from Fig. 9 (right).

In summary, many synthetic systems show a relationship
between their mass architectures and their density architectures.
Bern model systems that are ordered or anti-ordered in their
mass also tend to be ordered or anti-ordered in their densities.
The dispersion of planetary bulk densities in similar class sys-
tems is lower than mixed class systems. This relation seems to
emerge from massive planets whose densities increases linearly
with their masses (since they cannot grow their sizes any more).
These relations can be considered as a prediction from this work.
As future observations probe the outer parts of an exoplanetary

system, we may anticipate the discovery of several systems
whose mass and density architectures are closely linked.

5.3. Core and envelope mass architecture

In this section, we show that (a) most simulated planetary sys-
tems inherit their architecture from the underlying core mass
architecture; (b) the accretion of gases tends to accentuate the
underlying core mass architecture, and (c) the observed mass
architecture of a planetary system is a gateway to studying the
core mass architecture of the system, since the two are strongly
correlated. Exceptions to the first two statements tend to arise for
those systems undergoing strong, multi-body dynamical effects
such as planet-planet scattering.

The fraction of mass which is partitioned into a planet’s core
and its envelope is governed by planetary formation physics. The
end result is dictated by an interplay of several concurrent pro-
cesses (see Emsenhuber et al. 2021a; Mordasini et al. 2012b,
for discussion). In the core-accretion scenario, giant planets are
formed when planetary cores can undergo run-away gas accre-
tion (Pollack et al. 1996; Alibert et al. 2004, 2005). Proto-planets
that have failed to trigger runaway gas accretion comprise a
diverse group of planets: Earths, Super-Earths, mini-Neptunes,
and Neptunes.

The bifurcation of a planet’s mass into its core and its
envelope can probe the formation history. For example, in our
simulations, most giant planets (⪆1 MJ) have about 1% of their
mass in their cores and the rest is in their gassy envelope. On
the other hand, low mass planets (⪅10 M⊕) hardly accrete any
gaseous envelope. However, the mass in a planet’s core and enve-
lope is not an observable. Even for the solar system planets,
internal structure models guide our knowledge of core and enve-
lope masses (see Helled et al. 2020, for a review on Uranus and
Neptune).

As giant planets dominated by their H/He envelopes are rare,
we expect a strong correlation between the mass architecture (i.e.
the arrangement and distribution of planetary masses) and the
core-mass architecture (i.e. the arrangement and distribution of
core-masses) to exist also at the system level. In Fig. 10, we show
the coefficient of similarity and the coefficient of variation of
planetary mass as a function of the coefficient of similarity and
the coefficient of variation of core mass. The colour indicates the
total mass of envelope accreted by all planets in a system.
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Fig. 11. Role of starting location. Plot shows the planetary core mass (left) and final distance (right) versus the starting distance. The marker style
indicates the architecture of the system to which the planet belongs. The vertical grey shaded region indicates the evolving locations of the ice line
(Burn et al. 2019). The dotted line in the right panel shows the y = x line.

Comparing the coefficient of similarity for planetary masses
and core masses (Fig. 10, left panel), we observe that a large
fraction of systems (>90%) follow the y = x line. This implies
that for most planetary systems, the arrangement and distribu-
tion of core masses is imprinted on the mass architecture of the
system. Systems which show large deviations from the y = x
line have generally accreted a large amount of gaseous envelope.
This suggests that the formation of one or more giant planet is
partly responsible for the deviations. We also observe another
important feature. Planetary systems that are ordered in mass
are also often ordered in their core-masses. Conversely, mass
anti-ordered systems tend to be anti-ordered in their core masses
as well. In addition, ordered systems are either on or above the
y = x line, whereas anti-ordered systems are either on or below
this line. This suggests that the accretion of gases generally
accentuates the underlying core mass architecture.

Considering the coefficient of variation for masses and core
masses (Fig. 10, middle), we see that most of the planetary sys-
tems lie either on or above the y = x line. The CV value measures
the amount of variation in a set of numbers. This suggests that
the variation in total masses, for most systems, is either similar or
larger than the variation in the core masses. This is understand-
able, since the amount of gas accreted by a planet shows a strong
correlation with the mass of the planet’s core. However, there
are a handful of systems where the variation in total mass is less
than the variation in core masses. Systems that are similar in the
mass architecture are strongly clustered over the y = x line. This
stems from the low amount of gas (0−20M⊕) accreted by plan-
ets in these systems. Figure 10 (middle) shows that mixed class
systems, as opposed to similar systems, form a separate cluster.
Physically, this difference is arising from the larger amount of
gas (50−5000 M⊕) accreted by planets in these systems.

Here, the question arises as to whether the strong corre-
lation between mass architecture and core-mass architecture
is observable. In Fig. 10 (right), we show CS (M) as function
of CS (Mcore) for the three synthetically observed catalogues.

All three catalogues probe the inner regions of a planetary
system. The figure shows that the correlation between mass
architecture and core mass architecture is strong in all three
catalogues. This suggests that the observed mass architecture
of a planetary system can be used to study the underlying
core-mass architecture of the system. This is potentially useful
to distinguish among competing models of planet formation.

Role of embryo starting location. We have seen that the
core mass architecture of a system strongly governs the over-
all architecture of the system. The arrangement of planets in
a system also reflects the final distances of these planets. It
is, therefore, instructive to understand some key aspects which
shape these two important properties. The core mass and the
final distance of a planet are strongly influenced by, among other
effects, the distance at which an embryo starts in our simulations.
Figure 11 shows the core mass (left) and the final distance (right)
as a function of the starting distance. In the Bern model, lunar
mass (0.01 M⊕) protoplanetary embryos are initialised with a
random starting location between the inner edge of the disk and
40 au. We also recall that failed embryos (objects with a total
masses <0.1 M⊕) are removed from our analysis.

Emsenhuber et al. (2021a); Burn et al. (2021) analysed the
nature of planetary migration using migration maps. Both stud-
ies show the existence of so-called convergence zones. Within
these zones, planets can migrate outwards. However, outside this
zone inward migration is prevalent. The existence of such con-
vergence zones suggests that there ought to be regions of planet
over-densities; this are essentially regions where planets are radi-
ally ‘stuck.’ These studies attribute the presence of these zones
to dust opacity transitions and disc structures, finding that these
zones evolve with the disc. For a 0.01 M⊙ disc, around a solar
mass star at 1Myr, these zones are: (a) for low-intermediate
mass planets (⪅1 M⊕) extending from disk inner edge to
about 1au and (b) for intermediate mass planets (1−10 M⊕)
around 2–3 au.
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Fig. 12. Planetary core water-ice mass fraction. Left: core water mass fraction of a planet as a function of its starting location. The architecture of
the system to which a planet belongs to is shown by marker characteristics. The vertical shaded regions shows the location of the ice line. Middle:
water mass fraction architecture seen through the coefficient of similarity versus the coefficient of variation plot. The shape of the marker shows a
system’s mass architecture, and the colour depicts its Aryabhata’s number (see Paper II for definition). Right: distribution of fice across architecture
classes. Depending on fice, planets are labelled as ‘dry’, ‘moist’, or ‘wet’.

Figure 11 (left) shows that even for embryos that start at
the same initial distance, the mass accreted by a planetary
core can differ by two to three orders of magnitude. These
differences arise from (a) varying solid disc masses; (b) com-
petition for accretion in the feeding zone (Alibert et al. 2013); (c)
dynamical state of solids in the disc resulting from planetesimal-
planetesimal, planetesimal-protoplanet, planetesimal-gas disc
interactions, and so on. Nevertheless, the starting distance seems
to play a significant role in this scenario. The ice line seems to
divide the parameter space into two regions: fewer planets inside
the ice line have low mass cores (⪅1 M⊕), while many planets
outside the ice line have low-mass cores.

Inside the ice line, most planets have cores of 1−10 M⊕. Plan-
ets that start very close to the star (⪅0.1 au) are unable to accrete
a lot of material owing to their small Hill spheres. This explains
their small cores masses. Inside the ice line, planets belonging to
systems of mixed, anti-ordered, and ordered architecture tend to
have more massive cores than planets belonging to similar sys-
tems. Around the ice line, planets show a large variety of core
masses ranging from 0.1 M⊕ to 100 M⊕. Outside the ice line we
see the same trend as before: planets that are in similar systems,
for the same starting location, usually have less massive cores
than planets which belong to systems of other architectures.

The final distance of a planet depends on several factors such
as: (a) migration type (type I or type II), (b) planet’s mass, (c)
local disc properties, and (d) multi-body effects such as N-body
scattering. The joint distribution of a planet’s final and starting
locations shows an intriguing trend. Generally, for many planets,
the final distance strongly correlates with their starting loca-
tion. Orbital migration allows planets to move (mostly) inwards
– positioning many planets below the y = x line. N-body effects
(such as planet-planet scattering or outward migration) may scat-
ter some planets further away from their host star. These planets
are located above the y = x line. Curiously, many planets which
end up farther away than their starting location were initialised
around the ice line and are mostly low massive (⪅20 M⊕). We
attribute this over-density to the outward migration convergence
zone around the ice line discussed above.

Another important finding is that planets inside the ice line in
similar systems probably formed in situ. Figure 11 (right) shows
that most planets, inside the ice line, which did not migrate

inwards are part of similar architecture systems. Conversely,
most of the planets which have migrated inwards seem to belong
to systems that have mixed, anti-ordered, and ordered architec-
tures. Outside the ice line, many planets have migrated inwards.
Most planets starting around 20 au (or more) accrete little mass
in their cores and show little radial displacement (Hansen &
Murray 2012; Chiang & Laughlin 2013). The properties of these
embryos may draw some influence from our modelling choice
as well. The N-body integrator in this model is used for 20 Myr.
Longer integration times may allow some embryos to have more
massive cores via giant impacts.

5.4. Core water-ice mass fraction architecture

Our model calculates the internal structure of a planetary core
(for details see Emsenhuber et al. 2021a; Mordasini et al. 2012a).
We solved 1D differential equations demanding mass conser-
vation and hydrostatic equilibrium, with a modified polytrope
equation serving as the equation of state (Seager et al. 2007). The
chemical composition of each planetary core is also tracked. This
is accomplished by tracking the chemical makeup of the accreted
planetesimals and other colliding planets. The underlying chem-
ical models have thirty-two refractory and eight volatile species
(Thiabaud et al. 2014; Marboeuf et al. 2014a,b). These different
chemical species are grouped into three different materials which
make the planet’s core, in our model: (a) iron, (b) silicates, and
(c) ice. All refractory species (except iron) make up the silicate
mantle and all volatile species contribute to ice. Since H2O con-
stitutes 60% of all ice by mass, we label this latter component as
water ice. The water mass fraction ( fice) of each planetary core
is computed.

We assume that inside the H2O ice line, only refractory ele-
ments contribute to the solid phase of a planetesimal. Outside
this evolving ice line, due to their condensation, volatile elements
also contribute to the solid phase of a planetesimal. Figure 12
(left) shows the water mass fraction of a planet’s core as a func-
tion of its initial location. Most planets which start inside the ice
line have little to no volatiles in their cores. A jump in fice is
seen around the ice line. Outside the ice line, most planets have
at-least 40% fice in their cores. This suggests that the history of
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Fig. 13. Frequency of planets. This diagram shows the average planet per star for dry, wet, and moist planets in several catalogues (rows), across
several architecture classes (columns), and around low (left) and high (right) metallicity stars. The planet per star is simply the total number of
planets divided by the total number of stars, after appropriate filters for metallicity, catalogue, or architecture.

formation and evolution of a planet is imprinted on its water mass
fraction.

We are interested in studying the ice mass fraction architec-
ture of a planetary system. However, we cannot directly apply
our framework (Eqs. (1) and (2)) because the water mass frac-
tion is a quantity that admits 0 as a value. While this can lead
to ill-defined numbers, this issue has a simple remedy. For quan-
tities that can be 0, we propose the following modification to
Eq. (1):

CS (q) = lim
ϵ→0

1
n − 1

i=n−1∑
i=1

(
log

qi+1 + ϵ

qi + ϵ

)
. (4)

Numerically, we calculated the coefficient of similarity with
ϵ = 10−10. We verified this step by calculating the coefficient
of similarity for quantities which do not admit zero (such as
masses). In a bootstrapped numerical experiment of 10,000 tri-
als, the coefficient of similarity for mass was calculated using
both Eq. (1) and (4). The relative difference between the two
outcomes ranged between 10−12 and 10−10.

The ice mass fraction architecture of Bern Model systems
is shown in Fig. 12 (middle). A prominent feature from this
figure is that most systems have CS ( fice) either close to 0 or
positive. A system with CS ( fice) ≈ 0 and low CV ( fice) will be
composed of planets whose core water mass fraction is similar
to one another. A system with positive CS ( fice) will be com-
posed of planets whose core water mass fraction increases inside
out. Figure 11 (right) tells us that many planets that started out-
side the ice line, and are water rich have not suffered any major
radial displacement. Thus, a positive CS ( fice) should be a default
scenario for most planetary systems. About 74% systems in the
Bern model have CS ( fice) > 0.1. Almost 97% of systems have
CS ( fice) > 0. We propose the ‘Aryabhata formation scenario’ to
explain the ‘non-default’ systems. This scenario and the related
quantity ‘Aryabhata’s Number’ are described in Paper II.

5.5. Frequency of dry, moist, and wet planets

We are interested in exploring the link between the water mass
fraction architecture and the mass architecture of a system. To
this end, we divide planets into three categories based on their
water mass fraction. A planet is called ‘dry’ if fice ≤ 1%, ‘moist’
if fice ∈ (1, 40]%, and ‘wet’ if fice > 40%. These labels serve
to simplify our analysis and allows us to see general trends
between system architecture and planetary composition. The
distribution of water mass fraction across systems of different
architecture classes is shown in Fig. 12 (right). While all three
planet classes are present in all four architecture classes, there
are some observable trends.

Figure 12 (right) shows that similar architectures host many
of the dry planets produced in the Bern model and anti-ordered
architectures are mostly composed of wet planets. This tells us
that many of the planets that start inside the ice line become
part of similar architecture systems. Conversely, systems with
anti-ordered architecture are mostly composed of planets that
started outside the ice line. Mixed architecture systems are gen-
erally composed of more planets that started outside the ice
line than inside, as compared to similar architecture systems.
Moist planets are present in all architecture classes. We quan-
tify the frequency of dry, moist, and wet planets as a function of
mass architecture class (similar, mixed, ordered, or anti-ordered),
metallicity (low or high), and source catalogues (Bern model,
Bern Compact Multis, Bern KOBE Multis, and Bern RV Mul-
tis). Figure 13 shows the planets per star (i.e. the number of each
planet type divided by the number of stars) across these forty
sub-categories.

Overall, compared to synthetically observed catalogues,
Bern model simulations demonstrate more wet planets. This
is understandable since we are looking at the entire underly-
ing population, which includes planets from the outer parts
of these systems. Likewise, synthetically observed catalogues
tend to have more dry planets. Systems around low-metallicity
stars (regardless of the catalogue) generally tend to have a
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higher frequency of dry planets as opposed to systems around
high-metallicity stars. The frequency of wet planets shows a
noticeable increase for systems around high-metallicity stars.
Amongst the different catalogues, Bern Compact Multis have
the highest frequency of dry planets, followed by Bern KOBE
Multis, and Bern RV Multis. Low-metallicity environments have
a slightly higher average planet per star (8835/541 ≈ 16.3) than
high-metallicity environments (6722/455 ≈ 14.8).

Similar systems. Systems in the underlying Bern model
that are characterised by a similar architecture tend to have
many wet planets (∼10 per star) and few dry or moist plan-
ets (∼3−4 per star). However, synthetically observed catalogues
seem to have a bias against the discovery of many wet plan-
ets. For the similar class of compact multi-planetary systems,
dry planets are more common around a low-metallicity star.
However, for a high-metallicity star, the frequency of dry and
wet planets is roughly the same. For transiting systems, in the
Bern KOBE Multis, low-metallicity environments favour more
dry planets and equal proportions of wet and moist planets.
Conversely, in high-metallicity environments, wet planets occur
more frequently than dry or moist planets. For RV systems,
the frequency of each planet class is approximately the same
in a low-metallicity environment. High-metallicity environments
almost double the frequency of wet planets. The average planet
per star is similar around both low metallic (≈16.8) and high
metallic environments (≈17.3).

Mixed systems. Mixed class systems generally have many
wet planets. It is only for compact systems around high-
metallicity stars, the frequency of dry planets is higher than wet
planets. In all other cases, the frequency of wet planets is greater
than the frequency for dry or moist planets. The average planet
per star is similar around both low-metallicity (≈15.2) and high
metallicity environments (≈15.3).

Anti-Ordered systems. Systems with anti-ordered architec-
ture have a distinct core water mass fraction architecture. These
systems are rich in wet planets. In fact, about 80% of these
systems follow the Aryabhata formation scenario described in
Paper II. Compact anti-ordered systems may have some dry plan-
ets. For transit and RV surveys, the frequency of dry planets is
zero in our simulations. The total number of planets per star
in anti-ordered systems is slightly higher around low metallic-
ity stars (159/19 ≈ 8.4), as compared to high metallicity stars
(504/65 ≈ 7.8). In the future, if an anti-ordered architecture
planetary system is to be discovered, it would be interesting to
study its core water mass fraction architecture as well. The cur-
rent work suggests that the Aryabhata’s number for these systems
should be close to 0 and, irrespective of the detection technique,
the system should would be expected to have many wet planets
(see Paper II); this is one of the main predictions arising from
this work.

Ordered systems. Juxtaposed directly to the anti-ordered
systems, ordered systems in synthetically observed catalogues
tend to be rich in dry planets. These systems are distinct not
only because of their frequent dry planets, but also due to
a low frequency of wet planets. For all synthetic catalogues,
moist planets occur more frequency than wet planets, which is
a unique distinguishing feature for these systems. For the Bern
model, these systems have low average planets per star: 5 around
low-metallicity stars and 3.1 around high-metallicity stars.

In summary, we note some salient features of these sys-
tem architectures. Generally, wet planets survive more frequently

around high-metallicity stars. One detection technique that
favours the discovery of close-in planets also favours the detec-
tion of dry planets. The comparative frequency of planet (dry,
wet, or moist) per star seems to be intimately connected with
the mass architecture of the system. Similar and mixed systems
can host lots of dry or wet planets, depending on the metallicity
of the systems and detection technique. Anti-ordered systems,
forming prominently via the Aryabhata formation scenario, are
rich in wet planets. Ordered systems, in simulated observations,
are rich in dry planets and have more moist planets than wet plan-
ets. The physical connection between the average planet per star
and the star’s metallicity is sensitive to the formation pathways
that a system undergoes.

6. Habitability as a function of system architecture

In this paper thus far, we have described a new framework for
studying the architecture of planetary systems (Sect. 3), the char-
acteristics of the four classes of system architecture (Sect. 4),
and the relation between the mass architecture of a system and
its internal structure and composition architecture (Sect. 5). In
this section, we speculate on the idea of studying habitability as
a function of system-level architecture.

Mankind has pondered the existence of other biotic life-
forms beyond Earth, as well as outside our own Solar System.
Our current understanding of habitability stems from and is
focused at an individual planetary level. We consider whether
habitability could be correlated with other properties of a plan-
etary system, namely, whether habitability could be a system-
level phenomenon. In this section, we speculate on the role of
planetary-system level information on the existence of habit-
able worlds in such systems. The framework we present here
for studying the system-level architecture of a planetary system
brings to light several novel questions, probing the dependence
of habitability and occurrence of habitable worlds (and related
concepts) on the architecture of a said system. For example,
we wonder how the occurrence rate of habitable planets in
the galaxy depends on the occurrence of the four architecture
classes.

In this section, we address this question on three levels:
system, planet, and planet ratio. We use the concept of empir-
ical Habitable zone (EHZ) planets from Quanz et al. (2022);
Kopparapu et al. (2014). Planets with masses between [0.1, 5]M⊕
and stellar insolation within [1.776, 0.32]S ⊕ are considered to
be inside the EHZ. The stellar flux limits correspond to ‘recent
Venus’ and ‘early Mars’ scenarios and include the luminosity
evolution for a 1 M⊙ Solar-twin. At the system level, we note
the frequency of systems of a particular architecture to host at
least one planet in the EHZ. At the planet level, we count the
frequency of planets in the EHZ across each system architecture
class. At the planet ratio level, we show the fraction of all EHZ
planets across their architecture class. Figure 14 shows the fre-
quency of EHZ planets, at all three levels, as a function of their
system architecture for both synthetic and observed exoplanetary
systems.

Out of all synthetic systems with a similar class architec-
ture, ≈77% host at least one EHZ planet. This is remarkably
higher than any other architecture class. ≈10% of systems with
mixed architecture host at least one EHZ planet. The frequency
drops to ≈1% for anti-ordered architecture systems and ≈0% for
ordered systems. One way to interpret these numbers could be
to look at the multiplicity distribution across each architecture
class in Fig. 7. The frequency of at least one EHZ planets across
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of the error bars represents the number of planetary systems (left-most panel) and the number of planets (two middle panels) which are inside the
bin. Large error bars in the leftmost panel, for example for anti-ordered architecture emerges from their low count (see Fig. 5). The Gaussian kernel
is estimated using Scott’s rule (Scott 2015).

architecture class seems to follow the multiplicity trends. Sim-
ilar and mixed architectures have comparably high number of
planets. The distribution of the Aryabhata’s number shows that
similar systems usually have higher Aryabhata’s number than
mixed systems, implying that similar systems tend to host more
planets which started from inside the ice line (see Paper II for
Aryabhata’s number). This may account for the large frequency
of similar systems which host at least one EHZ planet. The mul-
tiplicity distribution shows that anti-ordered systems often host
less planets than similar and mixed class systems, while ordered
systems have the lowest multiplicities. We see in Sect. 4.2 that
the similar class architecture is perhaps the most common archi-
tecture for planetary systems in our galaxy. These results from
the Bern model simulations suggest that observation campaigns
to detect habitable planets will find more EHZ planets in similar
class architectures.

For the observed multi-planetary systems in our catalogue,
about ≈13% of similar class systems have at least one EHZ
planet. About 7% of ordered class exoplanetary systems in our
catalogue host at least one EHZ planet. In the mixed class
observed systems in our catalogue, none of them have EHZ plan-
ets and there are no known anti-ordered class systems in our
catalogue. These frequencies are quite different from their the-
oretical counterparts. While the lack of a complete and reliable
observations catalogue may explain the discrepancy for similar
class systems – it does not completely explain the discrepancy
for ordered systems. Our own planet resides in the ordered class
system of the Solar System, which is not supposed to be influ-
enced by issues such as completeness or detection biases. This
reflects the inability of Bern models to simulate a Solar Sys-
tem analogue – pointing to a gap in our understanding of the
physics that goes into planetary formation and evolution. In addi-
tion, many observed ordered class systems may have a different
architecture when more planets in these systems are detected.

At the planet level in our simulations, out of all synthetic
planets that exist in similar class systems, about 10% are inside
the EHZ. This frequency is, again, remarkably higher for any
other architecture class. About 1% of all simulated planets in a
mixed system are inside the EHZ. Close to 0% of all planets in
anti-ordered and ordered class architectures are inside the EHZ.
From our observational catalogue, while 5% of observed exo-
planets in similar class systems are inside the EHZ. About 3% of
observed exoplanets in ordered class systems are inside the EHZ.

The planet ratio level shows the fraction of all EHZ planet
that belong to a particular architecture class. In the Bern model,
we see that out of all EHZ planets, about 99% are in the similar
class. The share of EHZ planets by other architecture classes
is negligible. Amongst the observations, three-quarters of EHZ
planets are in similar class and the remaining are in ordered
class. The observations and theory are quite misaligned in this
scenario. We attribute this discrepancy to the absence of a
complete and reliable catalogue of observations.

Our observations catalogue has only 41 multi-planetary sys-
tems, of which only four host planets inside the EHZ. These
systems are Trappist-1 (three planets in EHZ), GJ 667 C (two
planets in EHZ), Solar System (two planets in EHZ), and Tau
Ceti (one planet in EHZ). The occurrence of architecture classes
and the frequency with which they host EHZ planets might be
better constrained with future observations. This may allow us
to have a better estimate of the occurrence rate of EHZ planets
as a function of architecture class.

Simulations suggest that ordered architecture is a rare out-
come of planet formation (about 1.5% of systems out of 1000
were deemed to be ordered) and yet, we live in an ordered sys-
tem. These two statements can shed new light on the rarity of life
in the galaxy. We foresee that the famous Drake equation may be
suitably modified to take into account the occurrence rate of dif-
ferent architectures and thereby set more optimal constraints on
η⊕ (Sarkar 2022).

Since water plays a fundamental role for life forms on Earth,
it is interesting to probe the core water-ice fraction for the EHZ
planets. Figure 14 also shows the fice distribution for EHZ planets
in the Bern model. As we see before, most of the EHZ plan-
ets are in the similar class and ≈1% of EHZ planets are in the
mixed class. EHZ planets in similar systems are ‘dry’, ’‘moist’,
and ‘wet’. In stark contrast, EHZ planets in mixed class are only
‘wet’ planets. We hope these results may be useful in guiding
future missions in finding EHZ planets that have the potential to
harbour life.

7. Summary, conclusions, and future work

In this paper, we introduce and explore a new framework for
studying the architecture of planetary systems. Our new frame-
work allows us to study, quantify, classify, the global architecture
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of an entire planetary system at the system-level; and compare
the architecture of one planetary system with another. In Sect. 3,
we detailed the new architecture framework and presented an in-
depth discussion comparing our framework with other works in
the literature. We present the coefficient of similarity and the
coefficient of variation as two quantities that quantify our con-
ceptual ideas. Our framework gives rise to a new parameter space
(the CS versus CV plane) in which individual planetary systems
can be compared with one another. Throughout this paper, we
applied this framework to study the distribution and arrangement
of several planetary quantities within a planetary system, thereby
understanding the system architecture for that quantity. In this
manner, we studied the mass architecture, the radius architecture,
the core mass architecture, the core water mass fraction archi-
tecture, and the density architecture of synthetic and observed
planetary systems.

To study some consequences of this framework, we applied
our method to several catalogues of planetary systems (intro-
duced in Sect. 2). We curated, especially for the purposes of this
study, a catalogue of observed multi-planetary systems that have
four or more planets and include mass measurements for at least
four planets. For engendering further studies, additional stellar
and planetary properties were collected and presented in Table 1.
We also used synthetic planetary systems simulated via the Bern
model. To facilitate a comparison of theory with observations,
we prepared three synthetic observed catalogues by applying the
detection biases on the simulated planetary systems. This led to
the Bern RV Multis, Bern KOBE Multis, and the Bern Compact
Multis catalogue. We note that there are caveats present in the
datasets we used. The model-dependent results we present here
may be improved upon in future studies using better theoretical
models and a more complete observational catalogues (e.g. from
PLATO).

Summary of architecture framework:
1. The architecture framework is model-independent and there-

fore does not suffer from any caveats emerging from planet
formation theory or observations.

2. The same architecture framework can be used to study the
multi-faceted aspects of planetary system architecture. When
the framework is applied to study planetary masses, the
framework informs us of the mass architecture of the sys-
tem, namely, the arrangement and distribution of masses in
the planetary system. In this way, we can use this framework
to study the mass architecture, radii architecture, eccentricity
architecture, and so on for the same system. In this series of
work, we identified the architecture of a system with its bulk
mass architecture.

3. Planetary system architecture can be one of four classes that
are derived from our framework: similar, mixed, ordered,
and anti-ordered.

4. A planetary system’s architecture is of similar class when the
masses of all the planets within such a system are similar to
each other. This architecture class corresponds to the ‘peas
in a pod’ architecture trend reported in the literature.

5. The architecture class of a planetary system is ordered (or
anti-ordered) when the planetary masses in such systems
tend to increase or decrease from inside-out.

6. Planetary systems of mixed class architecture host plan-
ets whose masses show broad increasing and decreasing
variations.

Our key model-dependent findings are as follows:
1. Frequency of architecture class: systems with similar

bulk mass architecture are the most common outcome of

simulations, followed by the other three architecture classes.
Our model suggests that similar architecture should be
the most common exoplanetary system architecture in our
Galaxy and beyond. This explains why radius similarity in
exoplanets was already detected from the first four months
of Kepler data (Lissauer et al. 2011).

2. Distance bi-modality: we found hints of a bi-modality in
the exoplanetary distance distribution arising from the two
different modes of orbital migrations. This bi-modality is
readily visible (see Fig. 7) for similar and mixed mass
architecture exoplanetary systems observed via RV.

3. Core mass architectures: we found that for most systems, the
bulk mass architecture is inherited from the core mass archi-
tecture. In addition, the accretion of gases tends to highlight
the underlying core mass architecture by amplifying it. In
this way, the observed mass architecture of a system could
serve as a gateway for studying the distribution and arrange-
ment of the planetary core masses, which tends to be simpler
for theoretical modelling.

4. In situ formation: we found that most planets belonging to
the similar bulk mass architecture class form in situ inside
the ice line. In contrast, planets inside the ice line belong-
ing to mixed, anti-ordered, and ordered show large inward
migrations.

5. Core water-ice mass fraction architectures: synthetic plane-
tary systems were found to have two scenarios for their core
water mass fraction architecture. The default scenario con-
sists of relatively more dry planets in the inner parts of a
system and more wet planets in the outer parts of the sys-
tem. This is probably a direct consequence of the starting
location of planets: planets starting inside (or outside) the
ice line tend to be dry (or wet). About one-fifths of simulates
systems do not follow the default scenario described above.
We propose the ‘Aryabhata formation scenario’ to explain
their core-water mass fraction architecture (see Paper II).

6. Linking architecture and internal composition: we found
that wet planets are more likely to survive around high-
metallicity stars. Among other predictions, we showed that
anti-ordered observed systems should be rich in wet worlds,
while ordered observed systems are expected to have many
dry planets (based on the core-accretion planet formation
paradigm).

7. Density architectures: synthetic systems that are ordered
(or anti-ordered) in mass tend to also be ordered (or anti-
ordered) in their bulk densities. Some mass similar systems
may also have low dispersion in their planetary bulk densi-
ties. The density architecture is sensitive to the Aryabhata’s
number (i.e. the starting location of various surviving plan-
ets; see Paper II). The density architecture of observed
systems is in good agreement with the density architecture of
synthetically observed simulated systems. Detection biases
seem to favour the discovery of planetary systems where the
densities show anti-ordering, mixing, or similarity.

8. Radius architectures: the radius architecture of most plane-
tary systems closely follows their mass architecture. There-
fore, most mass similar systems also show similarity in
radius (also for mass mixed, ordered, or anti-ordered sys-
tems). However, this is not always true. Future studies can
calibrate a classification scheme based on planetary radii.

9. Habitability as a system-level phenomenon: we reflected
on the prospect of studying habitability as a function of
system-level properties such as system architecture. Simi-
lar architecture systems represent an excellent observation
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target for finding life outside the solar systems because these
systems tend to host many more planets inside the empirical
habitable zone that other architecture classes.

10. The current version of the Bern model seems to have dif-
ficulty in producing planets inside the EHZ of an ordered
architecture system. Nevertheless, more data is required to
conclude whether the existence of Earth, an inhabited planet
in an ordered system, is an exception or whether there are
additional gaps in our understanding of planet formation.

This paper is the first in a series. The current work presents a
new testing ground, the architecture space, for theoretical mod-
els and for comparing observations with theory. We can now
constrain our understanding of planet formation not only on the
level of an individual planet – but at the global systemic level.
This is a multi-faceted approach, since the system architecture
of several quantities can now be uniformly assessed and com-
pared with observations. In our next paper (Paper II), we show
another important aspect emerging from this architecture frame-
work which asserts that systems with comparable architecture
often have the same formation pathways. We present ideas to
further the nature versus nurture debate around planet forma-
tion. While similar architectures are usually a product of their
starting conditions, stochastic multi-body effects are responsible
for shaping the other three architecture classes. This work leads
to several future studies which will be presented in other papers
in this series. Davoult et al. (in prep.) explore how the present
architecture framework can be employed for an efficient usage of
telescope time to hunt for habitable worlds. Other possible explo-
rations that emerge from this work include: (a) a data-driven
approach to classifying planetary architecture based on radii and
(b) a suitable modification to Drake’s equation that accounts for
the empirical occurrence rate of system architectures.
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Appendix A: Bern Model: Additional details

In this section, we provide some additional details on the physics
included in the Bern model and how it is utilised to simulate
synthetic planetary systems. Finally, we give an overview on
comparisons between the output of the Bern Model and observed
planetary systems. For the historic development, we refer to
Alibert et al. (2004, 2005); Mordasini et al. (2009); Alibert et al.
(2011); Mordasini et al. (2012a,b); Alibert et al. (2013); Fortier
et al. (2013); Marboeuf et al. (2014b); Thiabaud et al. (2014);
Dittkrist et al. (2014); Jin et al. (2014) and reviews in Benz et al.
(2014); Mordasini (2018).

The Bern model is based on the core accretion paradigm of
planetary formation (Pollack et al. 1996). The model includes
stellar evolution for a solar-mass star, using evolution tracks from
Baraffe et al. (2015). The star interacts with the protoplanetary
disk and influences its thermodynamical properties. The proto-
planetary disk has two phases: gas and solid. We model this disk
using the approaches of viscous angular momentum transport
(Lynden-Bell & Pringle 1974; Veras & Armitage 2004; Hueso
& Guillot 2005). Turbulence is characterised by the Shakura &
Sunyaev (1973) approach, with α = 2 × 10−3. Gas from the disk
is accreted by planets, host star, and lost via photo-evaporation.
The 1D geometrically thin disk evolution is studied up to 1000
au. The initial mass of this gas disk and its lifetime are randomly
drawn for each run of the simulation. The solid phase of the
disk is composed of a swarm of planetesimals. The solid disk
is modelled as a fluid which evolves via (a) accretion by grow-
ing planets; (b) interaction with the gaseous disk; (c) dynamical
stirring from planets and other planetesimals; and so on (Fortier
et al. 2013). The initial mass of the solid disk depends on the
metallicity of the star and also on the condensation state of
the molecules in the disk (Thiabaud et al. 2014). The host star
metallicity is randomly drawn for each run of the simulation.

We added 100 protoplanetary embryos to the protoplanetary
disk. The initial location of each embryo was varied from one
simulation to another. It was also ensured that no two embryos
start within 10 hill radii of each other (Kokubo & Ida 1998,
2002). Embryos accrete from their feeding zones and any over-
lap may lead to competition (Alibert et al. 2013). The accretion
rate depends on the collision probability between a protoplanet
and a planetesimal, which in turn is influenced by the dynamical
state of the solid disk.

Gas accretion occurs in several phases (Mordasini et al.
2012b). Initially, the gas disk smoothly transitions as a gaseous
envelope around all planets – the attached phase. For planets
that are massive enough to undergo runaway gas accretion, the
rate of gas supply from the disk may not be enough. In these
scenarios, the planet detaches from the gas disk and rapidly con-
tracts to RJ . After the gas disk dissipates, all planets are in the
isolated phase. Gas accretion from the disk is no longer possi-
ble and in this phase, the planets contract and cool. For all the
planets, their internal structure is modelled at each time step.
We assume planets are spherically symmetric and composed of
accreted materials that arranges itself in layers: iron code, silicate
mantle, water ice, and H/He gaseous envelope (if accreted).

Next, we use these recipes to simulate several thousands
of planetary systems in an approach called population synthe-
sis (Emsenhuber et al. 2021b). We start 1000 star-disk-embryo
systems with some fixed as well as some randomly drawn prop-
erties. The initial properties are inspired by observations of disks
Tychoniec et al. (2018). We, then, numerically modelled these
systems, endowing them with additional physics at the same
time. Numerically, we incorporated multi-body dynamical inter-
actions via N-body simulations. Planet-disk interactions leading

to orbital migration and eccentricity and inclination damping
were also incorporated in the N-body Coleman & Nelson (2014);
Paardekooper et al. (2011); Dittkrist et al. (2014). We followed
these numerically intensive steps for 20 Myrs and then stopped
the N-body calculations. The model then continued to evaluate
the internal structure of all planets in the system for 10 Gyrs.

The recent version of these simulations has been published
in the New Generation Planetary Population Synthesis (NGPPS)
series of papers (Emsenhuber et al. 2021a,b; Schlecker et al.
2021a,b; Burn et al. 2021; Mishra et al. 2021). The output of
these models have been compared with observations in several
works. Drazkowska et al. (2022) compares the occurrence rates
of synthetic systems with observations. Schlecker et al. (2021a)
studies the warm Super Earth and cold Jupiter correlation in the
synthetic systems. Mishra et al. (2021) analyse the ’peas in a pod’
architecture and compare synthetic systems with observations
from Weiss et al. (2018). Mulders et al. (2018) present a detailed
comparison of the synthetic models with Kepler observations.

Appendix B: Stellar and planetary data references

1. Sun: Archinal et al. (2018); Standish (1992); Wang et al.
(2018); Helffrich (2017); Jacobson et al. (2006); Jacobson
(2014, 2009)

2. Trappist-1: Agol et al. (2021); Gillon et al. (2017); Burgasser
& Mamajek (2017); Grimm et al. (2018)

3. TOI-178: Leleu et al. (2021)
4. HD 10180: Lovis et al. (2011); Kane & Gelino (2014)
5. HD 219134: Seager et al. (2021); Bonfanti & Gillon (2020);

Vogt et al. (2015)
6. HD 34445: Vogt et al. (2017)
7. Kepler-11: Berger et al. (2020); Lissauer et al. (2013)
8. Kepler-20: Fressin et al. (2011); Buchhave et al. (2016)
9. Kepler-80: MacDonald et al. (2016); Shallue & Vanderburg

(2018)
10. K2-138: Lopez et al. (2019)
11. 55 Cnc: Bourrier et al. (2018)
12. GJ 667 C: Anglada-Escudé et al. (2013)
13. HD 158259: Hara et al. (2020); Gáspár et al. (2016)
14. HD 40307: Díaz et al. (2016); Stassun et al. (2019)
15. Kepler-102: Berger et al. (2020); Marcy et al. (2014)
16. Kepler-33: Berger et al. (2020); Lissauer et al. (2012);

Hadden & Lithwick (2017)
17. Kepler-62: Berger et al. (2020); Borucki et al. (2013)
18. HD 20781: Udry et al. (2019)
19. TOI-561: Lacedelli et al. (2021); Weiss et al. (2021)
20. DMPP-1: Staab et al. (2020)
21. GJ 3293: Astudillo-Defru et al. (2017)
22. GJ 676 A: Sahlmann et al. (2016); Stassun et al. (2017)
23. GJ 876: Trifonov et al. (2018); Rojas-Ayala et al. (2012)
24. HD 141399: Hébrard et al. (2016)
25. HD 160691: Goździewski et al. (2007); Pepe et al. (2007)
26. HD 20794: Goździewski et al. (2007); Pepe et al. (2007)
27. HD 215152: Goździewski et al. (2007); Pepe et al. (2007)
28. HR 8799: Marois et al. (2008); Gravity Collaboration

(2019); Swastik et al. (2021)
29. K2-266: Rodriguez et al. (2018)
30. K2-285: Rodriguez et al. (2018)
31. Kepler-89: Berger et al. (2020); Weiss et al. (2013)
32. Kepler-106: Berger et al. (2020); Marcy et al. (2014)
33. Kepler-107: Berger et al. (2020); Bonomo et al. (2019)
34. Kepler-223: Berger et al. (2020); Mills et al. (2016)
35. Kepler-411: Berger et al. (2020); Sun et al. (2019)
36. Kepler-48: Berger et al. (2020); Marcy et al. (2014)
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37. Kepler-65: Berger et al. (2020); Mills et al. (2019)
38. Kepler-79: Berger et al. (2020); Yoffe et al. (2021)
39. WASP-47: Vanderburg et al. (2017)
40. tau Cet: Vanderburg et al. (2017)
41. HD 164922: Benatti et al. (2020); Rosenthal et al. (2021)
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Fig. C.1. Maximum value of the coefficient of similarity (blue) and the
theoretical maximum value of the coefficient of variation (orange) is
plotted against the maximum tolerance, t.

Appendix C: Derivation of limits

We consider a set Q of quantities q, namely, Q = {qi} where qi
could be the mass, radius or other parameter of a planet, and
the index, i ∈ [1, n], identifies a planet (with 1 being the inner-
most planet). We assume that all qi ≥ 0. The quantities qi are
expressed as:

qi = q′ (1 ± ti). (C.1)

The quantities, qi, are decomposed around some value q′ such
that all ti are minimised; ti is a measurement of the fractional
difference (or tolerance) between q′ and qi. Since all individual
tolerances are a positive quantity, they will satisfy the following
relation:

0 ≤ ti ≤ t. (C.2)

Appendix C.1. Mean

Let us consider the mean of the quantities, q̄i:

q̄i =
Q
n
=

∑
i qi

n

=
q′

n
(
n ± t1 ± t2 ± · · · ± tn

)
.

(C.3)

The mean takes its maximum value only when all individual ti
values take their maximum and are added up. This gives:

max q̄i = q′
(
1 + t

)
. (C.4)

Similarly, the minimum value of the mean is:

min q̄i = q′
(
1 − t

)
. (C.5)

The extreme value of the mean occurs when all the individ-
ual quantities are extremised. However, in this scenario, since all
quantities are equal, the coefficient of variation is identically 0.

Appendix C.2. Coefficient of similarity

We start with the definition of the coefficient of similarity,

CS (q) =
1

n − 1

i=n−1∑
i=1

(
log

qi+1

qi

)
. (C.6)

Inserting Eq. C.1, in the definition, we get:

CS (q) =
1

n − 1

i=n−1∑
i=1

(
log

1 ± ti+1

1 ± ti

)
. (C.7)

This formulation shows that the coefficient of similarity depends
only on the fractional differences (tolerances) between qi values
– and not on their actual values. This is a desirable property.

Next, we evaluate the max CS as,

max CS (q) = max
[

1
n − 1

i=n−1∑
i=1

(
log

1 ± ti+1

1 ± ti

)]
,

=
1

n − 1
max

[ i=n−1∑
i=1

(
log

1 ± ti+1

1 ± ti

)]
,

=
1

n − 1

i=n−1∑
i=1

log max
[
1 ± ti+1

1 ± ti

]
.

(C.8)

In the first step, we commuted the max operator with the frac-
tion (n − 1)−1 because we are interested in the maximum for a
constant n. Next, knowing that the maximum of a sum occurs at
the sum of maximum summands and that log is a monotonically
increasing function, we further commute the max operator.

We observe the following:

max
[
1 ± ti+1

1 ± ti

]
when

{
±ti+1 → +t
±ti → −t

}
. (C.9)

This implies that

max CS (q) = log
1 + t
1 − t
,

min CS (q) = −max CS = log
1 − t
1 + t
,

(C.10)

where the second equality can be similarly derived. Fig. C.1
shows the variation of max CS as a function of tolerance t. We
note that the limits of the coefficient of similarity do not depend
on n, and we verified our results with numerical simulations. ■

Appendix C.3. Coefficient of Variation

We start with the definition of the coefficient of variation,

CV (q) =
σ(q)

q̄
, (C.11)

and we note that the minimum value of the coefficient of vari-
ation is zero and it occurs when all qi values are equal, thereby
giving no variance.

In the literature, we can find some derivations for the max-
imum value of the coefficient of variation (Katsnelson & Kotz
1957; Sharma et al. 2010). Katsnelson & Kotz (1957) show that
the upper limit of the coefficient of variation is

√
n − 1 when all

but one qi is zero. However, this limit is only a particular case
of our formulation (specifically, q1 = q′ and qi,1 = 0). Here, we
derive the limits for a more general scenario.
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We consider that:

C2
V =

1
n

i=n∑
i=1

(
1 −

qi

q̄︸ ︷︷ ︸
=A

)2
. (C.12)

Here, we have squared the definition of CV and used the def-
inition of the standard deviation σ(q). As an aside, we note
that the equation above shows that the coefficient of variation
is zero when all qi = q̄, as noted before. We note that the max-
imum value of C2

V occurs when the term A (in parenthesis) is
maximised. Denoting

∑
i=1 qi by Q, we consider the term in the

parenthesis,

A = 1 −
nqi

Q
=

Q − nqi

Q
. (C.13)

The condition for the general maxima of the coefficient of
variation, in our formulation, is when one of the quantity (say q1
takes the largest possible value, while all others take the smallest
possible value):

q1 = q′ (1 + t)
qi,1 = q′ (1 − t).

(C.14)

The mean in this scenario becomes (marked with ′′):

q̄′′ =
q′(1 + t) + (n − 1) × q(1 − t)

n
=

q′

n

[
n(1 − t) + 2t

]
. (C.15)

The variance in this scenario becomes (marked with ′′):

σ′′2(q) =
1
n

{[
q′(1 + t) − q̄′′︸           ︷︷           ︸
= 2q′t

(
n−1

n

)
]2
+ (n − 1)

[
q′(1 − t) − q̄′′︸           ︷︷           ︸

=
−2q′ t

n

]2}
.

(C.16)

This gives:

σ′′(q) =
(2q′t

n

)√
n − 1. (C.17)

Finally, the general expression for the maximum value of the
coefficient of variation becomes:

max CV (q) =
σ′′(q)

q̄′′
=

2t
√

n − 1
n(1 − t) + 2t

. (C.18)

This expression recovers the particular case derived in liter-
ature when we set t = 1. From this expression, we note that the
upper limit of the coefficient of variation does not depend on the
actual values of the quantities, but it depends on the number of
quantities in the set, Q, and the maximum tolerance, t. This new
formulation allows us to extract the upper limit of the coefficient
of variation for any set whose maximum tolerance, t, is known.
Interestingly, the above expression gives appropriate result when
absurd inputs are considered. For example, when there are no
planets in a system, max CV

∣∣∣
n=0 =

√
−1, and when there is only

one planet in a system, max CV

∣∣∣
n=1 = 0. For a system of two

planets, the upper limit is exactly the fractional difference (or
tolerance), that is, max CV

∣∣∣
n=2 = t.

Furthermore, varying over n, and assuming t ∈ [0, 1), allows
us to derive the theoretical maximum possible value for the
coefficient of variation. This occurs at n = 2

1−t and gives:

max CV (q)
∣∣∣∣∣
n= 2

1−t

(q) =
t

√
1 − t2

. (C.19)

Figure C.1 shows the variation of the theoretical max, CV , as a
function of tolerance t.■

Appendix D: Classification boundaries for
architectures classes

In this section, we present some considerations that motivate
the boundaries between the four architecture classes for plane-
tary masses. In the current formulation (Eq. 3), there are two
boundaries that need to be identified. We deal with the distinc-
tion between similar and mixed class first, and then distinguish
ordered/anti-ordered architecture classes.

Appendix D.1. Similar versus mixed

We saw in Sect. 3.2, it is difficult to distinguish between mixed
and similar architecture classes using the coefficient of similar-
ity alone. Mixed systems are characterised by large increasing
or decreasing variations, which may cancel each other out and
lead to small values of CS (M). Nevertheless, the coefficient of
variation can distinguish between large variations in values. Fig-
ure D.1 shows the CV (M) as a function of the number of planets
in a planetary system. The left panel shows all synthetic sys-
tems from the Bern model, while we only show systems with
|CS (M)| ≤ 0.2 in the right panel.

Clearly, there are two clusters of planetary systems. The
cluster on the lower right-hand side corresponds to similar
class systems. Mixed systems, having large values of CV (M),
are spread over the top left region. It is clear that the bound-
ary between similar and mixed classes depends on the number
of planets. The black line (corresponding to y =

√
n−1
2 ) neatly

separates the two clusters. We have chosen this equation to disen-
tangle similar architectures from the mixed class. This equation
has, incidentally, two key properties: 1) it ensures that no two
planet system can be of mixed architecture and 2) it happens to
be exactly half of the maximum possible value of the coefficient
of variation.

Appendix D.2. Ordered and anti-ordered

Having motivated the boundary between similar and mixed
class, we are now left with three groupings of architecture
classes. These three groupings correspond to CS (M) << 0
(anti-ordered), CS (M) ∼ 0 (similar/mixed), and CS (M) >> 0
(ordered). This suggests that we require two boundaries to distin-
guish these three groups. However, we posit that the boundaries
between ordered and anti-ordered should be symmetric around
0. Thus, we are left with only one boundary.

ordered (or anti-ordered) systems differ in their architec-
ture from similar/mixed classes in that the quantity (mass here)
continues to show an increasing (or decreasing) trend with dis-
tance. For all planetary systems in the Bern model, we measure
the Spearman correlation coefficient, R, between the planetary
masses and their distance from the host star. The Spearman R,
measuring the monotonicity between two datasets, varies from
-1 to +1, with 0 indicating no correlation. A positive correlation
implies that as x increases, so does y. Negative correlations imply
that as x increases, y decreases.

Figure D.1 shows the CS (M) of synthetic systems as func-
tion of their Spearman correlation R (mass and distance). We
note that there is a large cluster of points towards CS (M) ∼ 0.
This group corresponds to the similar and mixed architecture
classes. There are some points to the top right (including those
with R = +1 – corresponding to planetary systems in which plan-
etary masses are monotonically increasing with distance). There
is a scatter of points towards the bottom-left (including some
systems with R = −1).
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Fig. D.1. Classification boundaries for architecture classes. Left: Boundary between similar and mixed class. The panel show the coefficient of
variation for synthetic planetary systems as a function of the number of planets in a system for systems with |CS (M)| ≤ 0.2. Two clusters are clearly
distinguishable, allowing us to fix the boundary between the similar and mixed architecture classes. Right: Boundary between ordered and anti-
ordered. This plot shows the coefficient of similarity of synthetic planetary systems as a function of the Spearman correlation coefficient between
the planetary masses and distances of that system. Thick horizontal lines correspond to potential boundaries.

First, we note that the comparison of the coefficient of sim-
ilarity with Spearman R fulfils some expectation. For example,
there are no points in bottom-right or top-left sections of this
plot. Second, our objective is to isolate the central cluster of
points from all other scattered points. We note that |CS (M)| = 0.1
fails as a boundary, since it does not include the full central clus-
ter. Both |CS (M)| = 0.2 and 0.3 could succeed. Going beyond, a
value of 0.3 would add many unnecessary points to the central
cluster.

To further motivate our choice of boundary, namely,
|CS (M)| = 0.2, we show the mass-distance diagram of 12 ran-
domly selected systems with −0.3 < CS (M) < −0.2 (out of 19)
in Fig. D.2. We note that all systems show the qualitative fea-
tures of an anti-ordered system, namely, massive planets in the
inner region and small planets in the outer region. Since all of
these planets have their CS (M) < −0.2, we use |CS (M)| = 0.2
as a boundary between ordered, anti-ordered, and similar+mixed
architecture classes. Future works may explore improvements to
our selected boundaries using additional ideas from K-means or
hierarchical clusterings.

Appendix E: A gallery of architecture types:
Mass-distance diagrams

Fig. D.2. Mass-distance diagram. This plot shows the planetary masses
as a function of distance for some planetary systems with −0.3 <
CS (M) < −0.2. The dashed line connects that planets in the system and
serves to highlight the arrangement and distribution of masses. The size
of each circle corresponds to the planet’s radius and the colour of each
planet also shows its core water mass fraction.
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Fig. E.1. A gallery of planetary system architectures. These plots show the mass-distance diagram for similar (left) and mixed (right) planetary
systems from the Bern Model. Each circle represents a planet, its size corresponds to the planetary radius, and its colour represents the fraction of
ice in the planetary core. Each panel shows the CS (M) as well as the CV (M) of the system.

Fig. E.2. A gallery of planetary system architectures. These plots show the mass-distance diagram for anti-ordered (left) and ordered (right)
planetary systems from the Bern Model. Each circle represents a planet, its size corresponds to the planetary radius, and its colour represents the
fraction of ice in the planetary core. Each panel shows the CS (M) as well as the CV (M) of the system.
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