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Abstract 

Background  Microbial communities in recirculating aquaculture systems (RAS) play a role in system success, nutrient 
cycling, and water quality. Considering the increasing socio-economic role of fish farming, e.g., regarding food secu‑
rity, an in-depth understanding of aquaculture microbial communities is also relevant from a management perspec‑
tive, especially regarding the growth, development, and welfare of the farmed animal. However, the current data on 
the composition of microbial communities within RAS is patchy, which is partly attributable to diverging method 
choices that render comparative analyses challenging. Therefore, there is a need for accurate, standardized, and user-
friendly methods to study microbial communities in aquaculture systems.

Results  We compared sequencing approach performances (3 types of 16S short amplicon sequencing, PacBio 
long-read amplicon sequencing, and amplification-free shotgun metagenomics) in the characterization of micro‑
bial communities in two commercial RAS fish farms. Results showed that 16S primer choice and amplicon length 
affect some values (e.g., diversity measures, number of assigned taxa or distinguishing ASVs) but have no impact on 
spatio-temporal patterns between sample types, farms and time points. This implies that 16S rRNA approaches are 
adequate for community studies. The long-read amplicons underperformed regarding the quantitative resolution of 
spatio-temporal patterns but were suited to identify functional services, e.g., nitrification cycling and the detection 
of pathogens. Finally, shotgun metagenomics extended the picture to fungi, viruses, and bacteriophages, opening 
avenues for exploring inter-domain interactions. All sequencing datasets agreed on major prokaryotic players, such as 
Actinobacteriota, Bacteroidota, Nitrospirota, and Proteobacteria.

Conclusion  The different sequencing approaches yielded overlapping and highly complementary results, with each 
contributing unique data not obtainable with the other approaches. We conclude that a tiered approach constitutes 
a strategy for obtaining the maximum amount of information on aquaculture microbial communities and can inform 
basic research on community evolution dynamics. For specific and/or applied questions, single-method approaches 
are more practical and cost-effective and could lead to better farm management practices.
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Introduction
Recirculating aquaculture systems (RAS) are a valuable 
alternative to the limited sustainable capacity of capture 
fisheries. They are discussed as a long-term sustainable 
offset for capture fisheries [1] and a means to meet the 
nutritional demand for high-quality animal protein. RAS 
cultivate freshwater species such as rainbow trout (Onco-
rhynchus mykiss), pike-perch (Stizostedion lucioperca), 
Arctic char (Salvelinus alpinus), and sturgeon (order Aci-
penseriformes) [2] and range from small privately-owned 
enterprises to industrial-sized corporations. The indoor, 
closed-circuit design of RAS provides independence 
from seasonal conditions, allows for biosecurity meas-
ures, and reduces the product-to-market distance when 
situated inland [3].

Microbial communities in RAS play a crucial role in 
overall system success, nutrient cycling, water qual-
ity, and animal health [1, 4–12]. These communities are 
often actively maintained in the biofilter section of the 
system, which is designed to maximize the surface area 
with sand, granulated active carbon, or synthetic carrier 
material. Biofilter microbial communities perform vari-
ous services, such as removing toxic metabolic products 
(e.g., ammonia, nitrite, nitrate, sulfide, and sulfate) and 
organic waste. Some prominent representatives of the 
oxidizing ammonia genera found in RAS biofilters are 
Nitrosomonas, Nitrosospharea, and Nitrosospira [13], as 
well as ammonia-oxidizing archaea and Nitrotoga species 
[14, 15].

Conversely, pathogenic components of microbial com-
munities in RAS constitute a significant challenge for 
the fish farm industry. Fish-related disease outbreaks 
threaten the livelihood of farmers and food security [16] 
and incur an estimated $6 billion loss yearly [17] due to 
stock loss. Also, water-associated off-flavoring bacte-
rial groups may adversely impact the quality of the final 
product [13]. Different management approaches, such as 
cleaning and disinfection regimes, aim to reduce oppor-
tunistic pathogen species such as Aeromonas or Fla-
vobacterium [18] but could potentially open niches for 
pathogenic species and promote undifferentiated micro-
bial growth.

Managing microbial communities in RAS is not 
straightforward and poses complex challenges. It has 
been proposed that monitoring and targeted manipu-
lation of RAS microbial communities, based on a thor-
ough characterization of interactions and community 
dynamics, may improve aquaculture management strat-
egies [19–21]. However, RAS microbial research lags 
behind compared to other microbe-dependent indus-
tries, such as wastewater treatment. Furthermore, the 
interactions between different compartments, manage-
ment operations, microbial community structure, and 

how community assemblages differ across facilities are 
only beginning to be understood [1]. Previous microbial 
studies have analyzed the biofilter communities in RAS 
farming lumpfish (Cyclopterus lumpus L.) [8], Atlantic 
salmon (Salmo salar), Pacific white shrimp (Litopenaeus 
vannamei), half-smooth tongue sole (Cynoglossus semi-
laevis) and turbot (Scopthalmus maximus) [22], but have 
not investigated other RAS compartments. Furthermore, 
inter-study comparisons are  problematic because non-
standardized protocols (e.g., DNA extraction, amplifica-
tion, or taxonomic assignment) impact the results and 
conclusion [23–27]. Lastly, global studies are scarce [28], 
so the characterization of RAS microbial community pat-
terns and keystone taxa remains incomplete.

In recent years, next-generation sequencing technology 
has led to various methods by which microbiomes can be 
studied. Three commonly used methods are short- and 
long-read sequencing, targeting the 16S gene, and shot-
gun metagenomics, which targets all sequences within a 
sample. Short-amplicon sequencing requires primers that 
may target one or multiple variable regions of the genes. 
The major drawback of short-amplicon sequencing is 
the lack of resolution required for species identification. 
Also, primer choice can introduce biases for or against 
certain taxonomic groups [9, 23, 29]. Long-amplicon 
sequencing targets all variable regions of the 16S gene, 
thus increasing resolution for species identification and 
eliminating primer choice biases. Unfortunately, both 
short- and long-amplicon 16S sequencing mainly tar-
get bacteria and omit other microbes, such as fungi and 
archaea. Shotgun metagenomics, a primer-free method, 
targets all  sequences within a sample, allowing for the 
identification of all organisms present at a sufficient fre-
quency. However, low signal-to-noise ratios may interfere 
with the species-level differentiation of genetically simi-
lar species. Recent studies have started combining differ-
ent sequencing approaches to reduce sequencing costs, 
increase resolution, and gain broader knowledge than 
any singular method could provide [30, 31].

This study investigates the effect of sampling and anal-
ysis strategies on the inference of microbial community 
composition in RAS. We collected samples from two 
freshwater RAS to compare the ability of four primer sets, 
a primer-free approach, and three sequencing approaches 
(Fig. 1) to identify key microbial dynamics and improve 
future sampling and methods decisions. First, we show 
that primer-specific results at early analysis steps do not 
lead to distinct biological conclusions. Second, we dem-
onstrate that 16S short-read sequencing is sufficient to 
detect spatio-temporal developments and dynamics in 
the context of a RAS system. Finally, we evaluate the abil-
ity of the different sequencing approaches to describe the 
spatio-temporal patterns and identity of microbials in 
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different compartments of RAS, followed by a discussion 
of the distinct value of each sequencing approach for dif-
ferent research questions and farm management.

Materials and methods
Sampling sites
The study includes two commercial-size Swiss RAS 
farms (A and B) with distinct ownership and opera-
tional management procedures. Farm A breeds perch 
(Perca fluviatilis), raising offspring from egg to approx-
imately 15  g and features several life-stage-specific 
circuits with independent filtration systems. Fish are 
moved to the next circuit when they reach a certain 
cutoff weight. Fish of approximately 10–15 g are raised 
in 13.2 m3 tanks at a stocking density of around 30 kg/
m3. After each batch, a stringent disinfection regimen 
is applied. First, the biofilter is disconnected from the 
circuit to protect the microbial community from disin-
fection solutions. Next, the tanks are emptied, followed 
by a four-step cleaning regimen, (1) a high-power jet 
wash with hot water, (2) brushing down the tank walls 
and floor with soap, (3) a static acid–base treatment of 
the tanks and pipes with neutralizing steps in between, 
and (4) spraying the tanks with alcohol. Finally, the 

tanks are dried entirely before refilling and restocking 
the next batch of fish. Farm A uses multiple feed brands 
depending on the life stage of the fish (Bernaqua, Bio-
Mar, and Alltech Coppens).

Farm B is situated > 100  km from Farm A in a differ-
ent catchment. Farm B raises two fish species: perch, 
obtained from Farm A at around 15  g, and pike-perch 
(Sander lucioperca), obtained at the fingerling stage from 
another provider. Both species are raised to slaughter 
weight within a single circuit in concrete tanks (120 m3). 
The stocking density varies between 30 and 60  kg/
m3 based on the size of the fish. Cleaning regimens are 
applied once a tank is emptied. However, there is no 
strict cleaning disinfection timeline because of grad-
ing and moving the fish into new tanks, which might 
already be occupied. The disinfection protocol consists 
of (1) washing the  empty tank with high-pressure hot 
water  and (2)  spraying Virkon S as a disinfection solu-
tion, followed by  refilling with water and stocking with 
the next batch of fish. Farm B feeds with Alltech Coppens 
Supreme  pellets of varying sizes according to fish size. 
Both farms use agitated biofilters with floating plastic 
biofilter carriers to supply the necessary surface area to 
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Fig. 1  Study design and experimental steps. A Three types of samples were taken. Tank biofilm was collected by rubbing a foam swab against 
the sidewall of a tank. Tank and biofilter water was collected by filtering 120 ml of water through a 0.22 um cellulose filter. B Samples were taken 
at two farms, A and B. In farm A, all three sample types were collected. In farm B, sampling focused on tank biofilm. C Three DNA extraction 
methods were compared. The Purelink Microbiome Kit outperformed other DNA extraction methods in quality, quantity, and consistent yield. D 
Two amplicon approaches (short and long reads) and an amplification-free shotgun approach were used. E Short amplicons were sequenced 
on an Illumina MiSeq with a v3 2 × 300PE kit. Long amplicons were sequenced with the PacBio Shoreline StrainID kit, producing an average read 
length of 2500 bp. Shotgun sequencing was performed with a 2 × 150PE Illumina kit. F Illumina MiSeq sequencing data were processed with the 
DADA2 pipeline, and ASVs were blasted against the SILVA v138 database for taxonomic assignment. PacBio long-read data was processed with the 
SBAnalyzer program and taxonomically assigned using Athena. Shotgun metagenomics sequencing data were processed with an in-house pipeline 
that uses the Kraken-Bracken method
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foster microbial communities. Farm identities and loca-
tions are confidential.

Sample types
Three sample types were collected: tank biofilm, tank 
water, and biofilter water (Fig.  1A). First, biofilm sam-
ples were collected with a sterile, single-use foam swab 
(Merck—product was discontinued) by rubbing one 
side of the swab back and forth approximately ten times 
across a ~ 10 × 10  cm area of the tank wall about 6  cm 
below surface water level and repeating the procedure 
on the same area with the other side of the swab. After 
swabbing, the swab was placed into a 2  ml Eppendorf 
tube, the stick was broken off, and the closed 2 ml tube 
was stored on ice. Biofilm replicates were taken with an 
approximately 2  cm gap between them. Next, using a 
sterile 500  ml plastic beaker, 500  ml of water were col-
lected from the same tank as the tank biofilm sample, fol-
lowed by on-site filtering of 120 ml of water using a 60 ml 
sterile, single-use syringe (Faust) and a 0.22  um mixed 
cellulose filter (Millipore, Merck) contained in a What-
man 47  mm plastic filter holder (Whatman, Merck). 
Replicates were taken from the same beaker, thoroughly 
mixing the water before the replicate was sampled. After 
filtration, the filters were placed in a 2 ml Eppendorf tube 
and stored on ice. Finally, biofilter water samples were 
collected, with a new sterile beaker, in the same way and 
from the same circuit as tank water and biofilm sam-
ples. All samples were transported back to the Institute 
for Fish and Wildlife Health, University Bern, on ice and 
stored at − 80 °C until further processing.

Sampling scheme
The sampling scheme aimed to maximize insights into 
differences and similarities between replicates, sample 
types, time points, analysis methods, within-farm com-
partments, and farms. In Farm A, two sampling events 
on different dates occurred in the circuit that houses 
12–15  g perch. The first sampling event took place on 
June 25th, 2020 and consisted of collecting tank wall bio-
film (samples 4–6), tank water from the same tank as the 
biofilm (samples 7–9), and biofilter water from the same 
circuit (samples 10–12). The sampling took place less 
than a week after the last tank cleaning. A second sam-
pling took place on November 4th, 2020 and involved the 
collection of tank wall biofilm (samples 1–3), from a sec-
ond tank within the same circuit, several weeks after the 
last cleaning of the tank. In farm B, sampling took place 
on November 23rd, 2020, that consisted of collecting 
tank wall biofilm from two tanks (samples 13–15 (tank 1) 
and 16–18 (tank 2)). Negative control samples were col-
lected for the June 25th, 2020, sampling event but were 
not sequenced. The negative water control was filtered 

the same way as the on-site water samples, using distilled 
water instead of system water. The negative swab sample 
consisted of unpacking a swab on-site and placing it into 
a 2 ml tube without swabbing a surface. An overview of 
all samples is provided in Additional file 1.

DNA extraction
Three DNA extraction methods were tested on pre-trial 
water and swab samples for optimal and consistent DNA 
yield and quality (Fig. 1C) because suboptimal lysis con-
ditions can introduce stochastic bias against gram-posi-
tive bacteria, which have a thick, difficult-to-lysis outer 
wall. Tests included (1) the Purelink Microbiome DNA 
Purification Kit (Thermofisher), which is optimized for 
microorganism lysis, (2) the DNeasy PowerWater Kit 
(Qiagen), which is optimized for the isolation of genomic 
DNA from filtered water samples, and (3) phenol–chlo-
roform extraction, which has been shown to produce 
high DNA yield from environmental samples [32]. The 
PowerWater kit produced inconsistent yields (results not 
shown), whereas the Phenol–Chloroform approach pro-
duced higher DNA yield but was contaminated by phe-
nol carry-over, resulting in low DNA purity. The Purelink 
Microbiome kit consistently produced the highest quality 
and yield and was subsequently used for the study. Before 
extraction, frozen filters were crushed in a 2 ml Eppen-
dorf tube with sterile 1000  ml pipette tips, increasing 
exposure to the lysis buffer. Bead-beating was performed 
in a TissueLyser set to full speed for 10 min per the man-
ufacturer’s instructions.

Sequencing
Short amplicon
The performance of four amplicon-based 16S-target-
ing approaches was compared regarding amplification, 
read quality, and taxonomic and biological conclusions 
(Fig.  1D). Three amplicons designed for short-read Illu-
mina sequencing included 16S variable regions V4 (prim-
ers 515F + 806R, hereafter referenced as "Earth"; [33]), 
V3-4 (primers 341F + 805R, hereafter referenced as 
"Miseq"; [34], and V1-3 (primers 27F [35] + 534R [36]; 
hereafter referenced as "27F_534R"; Table 1). One ampli-
con designed for long-read PacBio sequencing with the 
Shoreline StrainID kit included 16S, ITS, and 600  bp 
of the 23S gene [37]; Table  1). The Shoreline Complete 
StrainID kit uses a patented StrainID primer set.

Optimal amplification conditions suitable for all 
three short amplicons were determined by gradient 
PCR and reducing cycle number as much as possi-
ble. The PCR included 12.5 µl of KAPA HiFi HotStart 
Ready Mix (Roche, Switzerland), 5  µl of each primer 
(0.2  µM stock concentration), and 12.5  ng of DNA 
plus water to a total volume of 25 ul. PCR cycling 
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numbers (14, 16, 18, 20, 22, and 25) were tested at 
annealing temperatures between 54 and 58  °C for all 
three primer pairs. Based on agarose gel electropho-
resis evaluations of amplification success, the follow-
ing protocol was derived: initial denaturation at 95  °C 
for 3  min, 20 cycles (denaturation at 95  °C for 30  s, 
annealing at 55 °C for 30 s, and extension at 72 °C for 
20 s), and final elongation at 72 °C for 5 min. In addi-
tion to all samples, four positive controls (Zymobiom-
ics microbial community standard (Zymo Research)) 
were amplified with this protocol. In addition, samples 
19–21 were introduced at this step and are technical 
PCR-level replicates of sample 2 amplified with Earth 
primers. Notably, sample 19 yielded no sequencing 
data.

The preparation of 16S rRNA gene amplicons for the 
Illumina MiSeq System was designed and performed 
at the Next Generation Sequencing Platform, Uni-
versity of Bern, according to the "16S Metagenomic 
Sequencing Library Preparation" protocol (Illumina, 
art #15,044,223 Rev. B). The quantity and quality of the 
cleaned amplicons were assessed using a Thermo Fisher 
Scientific Qubit 4.0 fluorometer with the Qubit dsDNA 
HS Assay Kit (Thermo Fisher Scientific, Q32854) and 
an Agilent Fragment Analyzer (Agilent) with an HS 
NGS Fragment Kit (Agilent, DNF-474), respectively. 
Next, the index PCR step was performed as in the 
protocol except using IDT for Illumina DNA/RNA 
UD Indexes Set A (Illumina, 20,027,213), MyFi Mix 
(BIOLINE, BIO-25050) and the inclusion of a no tem-
plate control (NTC). Then the amplicon libraries were 
assessed for quantity and quality, as described above, 
using fluorometry and capillary electrophoresis. The 
remainder of the protocol was followed, except that 
the library pool was spiked with 10% PhiX Control v3 
(Illumina, FC-110-3001) to compensate for reduced 
sequence diversity. Finally, the library was sequenced 
at 2 × 300 bp using a MiSeq Reagent Kit v3, 600 cycles 
(Illumina, MS-102-3003) on the MiSeq sequenc-
ing instrument. The run was assessed using Illumina 
Sequencing Analysis Viewer 2.4.7. We used Illumina 
bcl2fastq conversion software v2.20 to demultiplex the 
library samples and convert generated base call files 
into FASTQ files. Short-read sequencing, before filter-
ing, resulted in a total of 4,808,910 (27F_534R, samples 
only), 4,816,559 (Earth, samples only), and 5,149,263 
(MiSeq, samples only) reads. Read numbers at all filter-
ing steps are available in Additional file 1.

Raw data from Illumina amplicon sequencing were 
uploaded to the SRA NBI databank. Project ID and 
accession codes are documented in the “Availability of 
data and material” section.

Long amplicon
Long amplicon PacBio sequencing was performed at 
the Next Generation Sequencing Platform, University 
of Bern. The quantity and quality of the extracted DNA 
were assessed using a Thermo Fisher Scientific Qubit 
4.0 fluorometer with the Qubit dsDNA HS Assay Kit 
(Thermo Fisher Scientific, Q32854) and an Agilent Femto 
Pulse system with an Ultra Sensitivity NGS kit (Agilent, 
FP‑1101), respectively. The DNA was then amplified 
using dual-unique barcoded primers targeting 16S-ITS-
23S, using the StrainID kit from Shoreline Biome using 
strain ID Set Z, Barcodes T1-T16 (Shoreline Biome, 
STRAIN-Z-SLB). This approach involves a single-step 
PCR, consisting of primers containing the barcode and 
target-specific primer, generating amplicons ready for 
SMRTbell template prep and subsequent sequencing 
on the PacBio Sequel System. The protocol from input 
DNA to SMRT sequencing was followed according to 
the Shoreline Wave for PacBio Technical Manual, follow-
ing all parameters for the Strain ID workflow. As well as 
the input DNA of interest, a no template control (NTC), 
and two community controls (ZymoBIOMICS Microbial 
Community DNA Standard and ZymoBIOMICS Micro-
bial Community DNA Standard II (Log Distribution) 
(Zymo Research, D6305 and D6311, respectively) were 
included. The generated library was SMRT sequenced 
using a Sequel binding plate 3.0 and a sequel sequenc-
ing plate 3.0 with a 10 h movie time on a PacBio Sequel 
system on their own SMRT cell 1 M v3. The library was 
loaded at 9  pM and generated 15  Gb and 284,296 HiFi 
reads.

Raw data from PacBio amplicon sequencing were 
uploaded to the SRA NBI databank.

Shotgun metagenomics
Illumina shotgun metagenomics sequencing was per-
formed at the Next Generation Sequencing Platform, 
University of Bern. The extracted DNA was assessed 
for quantity, purity, and length using a Thermo Fisher 
Scientific Qubit 4.0 fluorometer with the Qubit dsDNA 
HS Assay Kit (Thermo Fisher Scientific, Q32854), a 
DeNovix DS-11 FX spectrophotometer, and an Agilent 
FEMTO Pulse System with a Genomic DNA 165 kb Kit 
(Agilent, FP-1002-0275), respectively. Sequencing librar-
ies were made using an Illumina DNA Prep Library Kit 
(Illumina, 20,018,705) in combination with IDT for Illu-
mina DNA/RNA UD Indexes Set B, Tagmentation (Illu-
mina, 20,027,214) according to the Illumina DNA Prep 
Reference Guide (Illumina, 10,000,000,254 16v09). Six 
PCR cycles were employed to amplify 30  ng of tage-
mented DNA. Pooled DNA libraries were sequenced 
paired-end on a NovaSeq 6000 SP Reagent Kit v1.5 (300 
cycles; Illumina, 20,028,400) on an Illumina NovaSeq 
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6000 instrument. The run produced, on average, 159 
million reads/sample. The quality of the sequencing run 
was assessed using Illumina Sequencing Analysis Viewer 
(Illumina version 2.4.7) and all base call files were demul-
tiplexed and converted into FASTQ files using Illumina 
bcl2fastq conversion software v2.20.

Raw data from Illumina shotgun metagenomics 
sequencing were uploaded to the SRA NBI databank.

Read processing
Short amplicon
Illumina short-reads were processed with the DADA2 v. 
1.14.1 (Divisive Amplicon Denoising Algorithm  2) [38] 
pipeline. The DADA2 pipeline includes the inspection 
of read quality, quality filtering and trimming of reads, 
dereplication and error rate learning, sample inference 
for the determination of true sequence variants, merg-
ing of reads, construction of sequence table, removal of 
chimeric reads, and taxonomic assignment. Each primer 
dataset (Earth, MiSeq, 27F_534R) was first run indepen-
dently through the DADA2 pipeline, then the Earth and 
MiSeq fastq files were combined into one file, which was 
processed with DADA2 (“Combined dataset”). Primers 
were removed with the DADA2 trimLeft function: trim-
Left = c(19, 20) for Earth primers, trimLeft = c(17, 21) 
for MiSeq primers, and trimLeft = c(20, 17) for primer 
pair 27F_534R. Base pairs with a quality score below 30 
at the end of the read were removed using the DADA2 
trimRight function: trimRight = c(10, 90) for Earth and 
MiSeq primers and trimRight = c(30, 100) for primer 
pair 27F_534R, based on visual inspection of the quality 
plots (Additional file 1). All other filterAndTrim param-
eters were set at the default values. The DADA2 function 
mergePairs was applied in the individual and combined 
datasets to align the denoised forward reads with the 
reverse complement of the corresponding denoised 
reverse reads, producing a merged "contig" sequence. By 
DADA2 defaults, merged sequenced are only output if 
the forward and reverse reads overlap by at least 12  bp 
and are identical in the overlapped region. Unfortunately, 
for primer pair 27F_534R, after the removal of bp with 
a quality score less than 30 merging the noised forward 
reads and the reverse complement of the corresponding 
denoised reverse read was not possible as too many base-
pairs were removed. For the remove bimera denova step, 
the minfoldParentOverAbundance parameter was set to 
5 for individual datasets and 8 for the combined data-
set. The naïve Bayesian classifier method was used for all 
datasets, with the default minboot = 50 (bootstrap confi-
dence values: Additional file 2).

After DADA2 filtering, the datasets retained the fol-
lowing amount of reads 3,195,326 (66.4% average) for 
the 27F_534R dataset, 4,044,627 (average 83.8%) for the 

Earth dataset, 4,212,750 (81.7%) for the MiSeq dataset, 
and 8,344,294 (81.5%) (per primer: Earth: 4,128,007 and 
MiSeq: 4,216,287) for the Combined dataset (Additional 
file 1). Reads from the technical samples (20 and 21) and 
mock communities were removed from the total amount 
of reads reported above.

Individual datasets were used to quantify individual 
primer pair read quality, while the Combined dataset was 
used to quantify alpha and beta diversity, technical repli-
cation reproducibility, MDS analysis, and enriched ASVs. 
Sequencing quality was analyzed using the percentage 
of reads with a Phred score equal to or larger than 30 
for each sample type and primer. Microbial taxonomic 
alpha-diversity (intra-sample) was calculated using Rich-
ness and Shannon indices as implemented in the R pack-
age phylsoseq [39]. Species beta-diversity (inter-sample) 
was estimated using the Bray–Curtis dissimilarity met-
ric, while the dissimilarity between groups was visually 
assessed with multidimensional scaling (MDS) plots.

Long amplicon
PacBio Shoreline long reads were demultiplexed without 
primer trimming, palindromes were removed, and reads 
with lengths smaller than 200 base pairs were filtered out 
using the SBAnalyzer software (Shoreline Biome).

Shotgun metagenomics
Illumina shotgun metagenomics reads were high quality, 
requiring no filtering.

Taxonomic assignment
Short amplicon
Short-read data was assigned to taxonomic units with 
the SILVA v.138 gene reference database. After DADA2 
processing, the Earth dataset contained 10,941 ASVs, 
with 196 ASVs assigned to the mock community sample 
and 3 ASVs assigned to both the mock community and 
samples. Of the 10,742 ASVs found within the samples, 
10,501 were assigned to Bacteria, 14 to Archaea, 57 to 
Eukaryota, and 170 could not be assigned. For the MiSeq 
dataset, 6102 ASVs remained, with 20 ASVs assigned 
to the mock community and 2 ASVs assigned to both 
the mock community and samples. Of the 6080 ASVs 
found within samples, 6095 were assigned Bacteria, 2 to 
Archaea, 2 to Eukaryota, and 3 could not be assigned. 
For the combined dataset, 18,072 ASVs remained, with 
236 ASVs assigned to the mock community and 3 ASVs 
assigned to both the mock community sample and sam-
ples. Of the 17,833 ASVs found within the sample, 17,822 
were assigned to Bacteria, 16 to Archaea, 61 to Eukary-
ota, and 173 could not be assigned (Additional file 2).
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Sample data were managed using the R package phy-
loseq (v1.30.0) (McMurdie and Holmes, 2013), and plots 
were generated using the R package ggplot2 (v.2.2.1) [40].

Long amplicon
Long read data were taxonomically assigned with the 
Athena database v2.2, resulting in 99.3% of reads suc-
cessfully classified (196,749 reads). An abundance table, a 
taxonomic classification list for each species, and a list of 
samples assigned to each read were created (Additional 
file 3). The initial goal was to compare output after run-
ning short- and long-reads through the DADA2 pipeline. 
However, the low read depths of the samples due to the 
mock community sample vastly outnumbering the sam-
ples during sequencing made this approach no longer 
possible. Therefore, the abundance table was analyzed 
manually for the spatial distribution of species.

Shotgun metagenomics
The raw reads of the metagenomics samples were classi-
fied according to their taxonomy using kraken2 [41]. This 
software classifies reads according to their best match-
ing location in the taxonomic tree. Bracken was used 
to estimate the species abundance [42], using the tax-
onomy labels assigned by kraken2 to estimate the num-
ber of reads originating from each species present in the 
sample.

Data analysis
Short amplicon
Read quality was assessed based on the percentage of 
reads with a Phred score greater than 30 for each primer.

Microbial taxonomic alpha-diversity (intra-sample) 
was evaluated with the Richness and Shannon indices 
implemented in the microbiome R package [43]. Spe-
cies beta-diversity (inter-sample) was estimated with 
Bray–Curtis distances, using the ordinate function in the 
phyloseq package, to understand similarities and differ-
ences in community composition independent of primer 
choice, within-farm compartments, farm identity, and 
time point in the production cycle. The dissimilarity 
between samples was assessed by multidimensional scal-
ing (MDS).

Community composition was analyzed between prim-
ers, replicates, sample types, and farms by comparing 
the relative abundance of the top 9 phyla, all other phyla 
(Other), and not assigned (NA).

ASV enrichments were analyzed with a PERMANOVA 
non-parametric multivariate test using the adonis func-
tion in the R package vegan (v.2.5.7) [44] to deter-
mine which ASVs were significantly enriched between 
tank samples of farm A and between farms. The top 20 
enriched ASVs coefficients were plotted.

All analyses were completed in RStudio 1.4.1717 [45].

Long amplicon
The ten most abundant species were identified for each 
sample type per farm based on the total number of reads 
after both replicate reads were summed together. Abun-
dance was compiled and plotted for these species to 
understand spatial and abundance distribution across 
sample types and farms. Markedly, some replicates 
have less than ten dots because the top species was only 
detected in one replicate.

Shotgun metagenomics
Phyla with at least 0.5% or more of the total reads were 
retained to analyze the overall community composition. 
A Sankey plot using the R network3D v.0.4 package [46] 
was plotted to compare the community composition 
across the domains. In addition, relative abundance bar 
graphs were plotted to quantify community composition 
variance at the replicate, sample type, and within-farm 
compartments.

All figures were prepared for publication using Adobe 
Illustrator 2021.

Results
We used a tiered sequencing approach to analyze RAS 
microbial communities. Therefore, the results obtained 
from each sequencing dataset cannot be compared 
directly but complimentarily. Combining the datasets 
offers a more profound knowledge of the RAS than any 
one sequence approach could accomplish.

Short amplicon
Read quality
The overall read quality was satisfactory, with Earth, 
MiSeq, and 27F_534R primers producing Phred scores 
≥ 30 for 89.3%, 86.6%, and 78.5% of reads, respectively 
(Fig. 2A). However, the lower read quality and the longer 
amplicon length of primer pair 27F_534R led to diffi-
culties merging the forward and reverse reads using the 
merge function. Therefore, we decided to remove this 
primer from downstream analyses as it could not be pro-
cessed in the same fashion as the other two primers.

Taxonomic assignment
Regarding taxonomic assignment, Earth and MiSeq 
amplicons performed similarly at a higher-level classifi-
cation (e.g., phylum, order) but diverged at a lower-level 
classification (e.g., ASV). The Earth dataset identified 
37 phyla, whereas the MiSeq dataset identified 34 phyla. 
However, the MiSeq dataset assigned 99 more genera 
at the genus level than the Earth dataset (470 vs. 371, 
respectively) (Additional file  2). Although the MiSeq 
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primers could identify more taxa, Earth primers resulted 
in higher alpha diversity, both for richness (Earth: ranged: 
1070–2240 compared to MiSeq: ranged 441–1962) and 
Shannon diversity (Earth: ranged: 6.12–7.32 compared 
to MiSeq: ranged 3.83–6.18) (Fig. 2C; Additional file 3). 
Within farm A, alpha richness was highest in biofilter 
water (Earth average: 2166 and MiSeq average: 1504), 
followed by tank water (Earth average: 1934 and MiSeq 
average: 1477) and tank biofilm, which was influenced 
by the age of the biofilm (Earth average: young 1135 vs. 
mature 1497 and MiSeq average: young 465 vs. mature 
829). Within farm B, the tank biofilm average richness 
was similar between the two tanks (Earth: tank1 1793 
vs. tank2 1805, MiSeq: tank1 1665 vs. tank2 1815). The 
Shannon diversity between sample types within farm 
A mirrored the pattern of richness, with biofilter water 
having the highest average diversity (Earth: 7.28, MiSeq: 

5.88), followed by tank water (Earth: 7.07, MiSeq: 5.42), 
and the different aged biofilm samples (Earth: young 
6.21 vs. mature 6.72, MiSeq: young 3.98 vs. mature 4.83). 
Farm B’s tank biofilm samples had similar average Shan-
non diversity values (Earth: tank1 6.91 vs. tank2 7.10, 
MiSeq: tank1 5.59 vs. tank2 6.08) (Additional file 3).

Community patterns
Amplicon choice did not affect the composition of the 
microbial community at higher taxonomic levels. Com-
munity composition for distinct sample types, replicates, 
and the derived spatio-temporal patterns were very 
similar between the two amplicons (Figs.  2D and 3A, 
B). Subtle biases for/against specific phyla (e.g., Chloro-
flexi, favored by Earth; Myxococcota and Plantomycetota, 
favored by MiSeq; Fig.  2D) did not affect the inferred 
overall community structure, which was virtually 
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identical for both amplicons according to MDS analyses 
(Fig. 3A and B).

As revealed by the MDS analysis, multiple factors influ-
ence the community patterns, with environmental farm 
conditions being the primary driver (Fig.  3C), followed 
by sample type (Fig.  3A and B). Sample types featured 
distinct community compositions, but the same sample 

types did not necessarily cluster together (e.g., tank and 
biofilter water vs. biofilm). For example, farm B’s tank 
biofilm was more similar to farm A’s biofilter water than 
farm A’s tank biofilm samples. Biofilm age also drove dif-
ferences between community richness and dominating 
genera (Figs. 2D and 3D), with the young vs. mature bio-
film consisting of 108 vs. 152 genera (Earth) or 126 vs. 
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190 genera (MiSeq), respectively. Upon further inspec-
tion, farm B’s tank biofilm included 288 and 356 genera, 
whereas farm A’s tank biofilm included 166 and 462 gen-
era for Earth and MiSeq, respectively (Additional file 4).

Enriched ASVs
The differential enrichment of specific ASVs further 
drove the differences between communities and ampli-
cons. Both primers agreed on differential enrichment of   
Chryseobacterium and Hydrogenophaga in Farm A tank 
water,  but they disagreed regarding  the biofilm sam-
ples,  with differential enrichment of Rhizobiaceae and 
Ideonella (MiSeq) vs. Comamonadaceae and Sphaero-
tilus (Earth) (Fig. 4). Considering the close clustering of 
these samples in morphospace (Fig. 3) these results could 
explain the taxa driving this separation. When compar-
ing biofilm from farm A and farm B, ASVs differentially 
enriched in farm A were affiliated with Rhizobiaceae 
and Ideonella (MiSeq) and Rhizobiales and Sphaero-
tilus (Earth), while ASVs affiliated with members of 
Aeromonas and Flectobacillus (MiSeq and Earth) were 
differentially enriched in farm B (Fig. 4). Notably, Earth 
and MiSeq datasets agreed about the presence of taxo-
nomic groups harboring pathogens, e.g., Chryseobac-
terium, Flavobacterium, and Aeromonas. These results 
show that at the level of ASVs, biases are introduced by 
primer choice.

Long amplicon
The low number of reads obtained from the long-read 
amplicon approach (a consequence of harsh lysis con-
ditions and over-sequencing of the mock commu-
nity standard) prohibited overall community statistics 
approaches. Nevertheless, taxonomic conclusions of bio-
logical interest could be derived from the 10,041 reads 
obtained, which resulted in the identification of 204 spe-
cies (Additional file 5).

Similar to the short-read data, species-level data 
obtained with long-reads emphasize the unique features 
of farms and, to a lesser extent, compartments (Fig.  5). 
Seventeen of the top enriched species were affiliated 
with biofilm samples. However, only five were shared 
between farms, including Sphaerotilus natans, a bacte-
rium responsible for bulking, Streptococcus thermophiles, 

a commonly used probiotic bacterium, and Nitrospira 
defluvii, a bacterium that aids nitrification. Twelve spe-
cies were exclusively detected in farm A, and four were 
specific to farm B. Within farm A, many of the species 
were detected in at least two compartments, except 
Thermomonas sp. SY21 and Haliscomenobacter hydro-
sissis that were detected in all compartments. However, 
Lysobacter tolerans and Paracoccus aminovorans were 
found explicitly in farm A’s biofilm. The two water-type 
samples (biofilter and tank) from the same circuit fea-
tured similarities and differences when inspecting the 
top enriched species, with Flavobacterium aquatile, Pro-
pionibacterium freudenreichii, and Limnohabitans sp. 
63ED37-2 detected in tank water, and Corynebacterium 
casei, C. variable, Nitrospira defluvii, and Brevibacterium 
yomogidense detected in biofilter water. Finally, in farm 
B’s biofilm, Aeromonas hydrophila, a common secondary 
invader known to cause a broad spectrum of infections, 
was also differentially enriched.

Shotgun metagenomics
The shotgun metagenomics data corroborated ampli-
con findings and extended the picture beyond prokary-
otes (75.55%) and included eukaryotes (23.97%), archaea 
(0.24%), and viruses (0.24%) (Additional file  6). Focus-
ing on phyla with at least 0.5% or more of the total 
reads, a dataset comprising 96.34% of all reads identified 
ten phyla. Three-fourths (75.26%) of these reads were 
assigned to prokaryotic phyla, indicating that competi-
tion with eukaryotic reads was not an issue (Fig.  6A). 
Shotgun sequencing agreed with the patterns detected 
by amplicon sequencing. The top phyla were Proteo-
bacteria (54.72% of total reads), Actinobacteria (9.47% 
of total reads), and Bacteroidetes (8.05% of total reads) 
(Fig.  6A) for all samples (Fig.  6B). The eukaryote phyla 
comprised Arthropoda (10.29%), with fish  food and spi-
der colonies as the most likely source; Chordata (8.04%), 
with the farmed European perch (Perca flavescens) as the 
source;  and Ascomycota (sac fungi); and Streptophyta 
(green algae and plants) (Additional file 6).

Among lower abundance phyla (0.50–0.08% of reads), 
16 additional taxa, from a virus group to eukaryotic 
groups, were detected. The virus group was Uroviricota, 

(See figure on next page.)
Fig. 4  Taxonomic units unique for specific primers and/or compartmens according to 16S sequencing. Permanova coefficients indicate which ASVs 
are most characteristic for (but not necessarily most abundant in) a particular compartment. Uppercase captions indicate the lowest classified order 
(O = Order, F = Family, G = Genus). Taxonomic units containing aquaculture pathogens are marked with an asterisk. Primer pair differences (different 
emerge at the ASV level. We found that water and biofilm samples from the same farm and circuit differ in differentially enriched ASVs, which is 
vital for understanding taxa diversity and functional services within different sample types. Notably, both primers could identify pathogenic groups 
within the farms, e.g., Chryseobacterium, Flavobacterium, and Aeromonas
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a dsDNA-tailed bacteriophages virus. Four out of the 
six low-abundance  bacteria phyla were also detected in 
other platform datasets. For instance, Verrucomicro-
biota, Acidobacteriota, and Chloroflexi were detected in 
the MiSeq and PacBio datasets, and Gemmatimonadota 
was detected only in the PacBio dataset (Additional File 
6). In addition, Euryarchaeota, a methane-producing 
archaean, was detected. The eukaryotes included inverte-
brates such as Mollusca (mollusks), Echinodermata (star-
fish, sea cucumber and urchins, etc.), Cnidaria (jellyfish, 
sea anemones, etc.), Nematoda (roundworms), and Plat-
yhelminthes (flatworms). Additionally, Basidiomycota 
(fungus), Chlorophyta (green algae), and Apicomplexa 
(protozoan) were detected (Additional file 6).

As expected, pathogenic species were detected at 
even lower read abundance levels. The ten most abun-
dant  pathogenic bacteria included Flavobacterium psy-
chrophilum (0.071%), Aeromonas veronii (0.031%), A. 
hydrophila (0.029%), F. branchiophilum (0.026%), F. 
columnare (0.015%), A. caviae (0.014%), A. salmonicida 
(0.005%), Vibrio vulnificus (0.004%), V. parahaemolyticus 
(0.004%), and A. jandaei (0.003%) (Additional file 6). The 

PacBio data for farm A’s tank water samples also identi-
fied A. hydrophila, A. salmonicida, and A. veronii.

Discussion
Microbial communities are the drivers and determinants 
of a successful RAS, but their composition, interactions, 
and spatio-temporal dynamics are often unknown. Tar-
geted research in RAS is required to shed light on how 
these communities form, interact and provide services. 
On the one hand, such knowledge will lead to better 
management, innovative RAS design, and procedures 
to manipulate communities. On the other hand, such 
research will extend our understanding of the rules gov-
erning community ecology and evolution beyond con-
trolled lab systems. In this paper, we compare the distinct 
layers and types of information obtained by distinct 
methodological approaches from short-read to shotgun 
metagenomics. We demonstrate that each method can 
present a cost-effective technique to monitor particular 
aspects of microbial communities within RAS.
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Primers, pipelines, and platforms
Variations in protocols concerning primers and amplifi-
cation, sequencing platforms, quality filtering, and clus-
tering parameters affect conclusions in microbial ecology. 
For example, primer bias will occur in any study that 
includes an amplification step. Understanding how these 
biases affect biological conclusions is essential, especially 
in a dynamic field such as aquaculture, where no con-
sensus has been reached concerning methods. However, 
aquaculture microbiome research widely employs 16S 
rRNA sequencing as a cost-effective method for survey-
ing microbial communities [1, 7, 10, 47, 48]. Primer selec-
tion for short-read sequencing is potentially the most 
influential step during aquaculture microbial community 
analysis, as primers directly select for or against specific 
groups based on the targeted 16S v-region [23, 27, 29, 49, 
50].

In our study, primer pair 27F_534R underperformed, 
an unexpected result as this primer pair was success-
fully used with active sludge collected from a wastewater 
treatment plant [23]. We attribute this to our approach 
of co-sequencing all amplicons. Shorter fragments 
sequence more efficiently, and 27F_534R amplicons were 
likely out-competed by the shorter MiSeq and Earth 

amplicons [51]. This would explain the decrease in both 
read numbers and read quality with increasing amplicon 
size (Earth > MiSeq > 27F_534R; Fig.  2A). Therefore, the 
27F_534R amplicon, which in theory would offer higher 
taxonomic resolution due to its increased length [9, 
52], could still be adequate for future RAS samples, but 
should not be combined with shorter fragments during 
sequencing.

Minor differences in ASV richness between Earth and 
MiSeq primers did not impact the spatio-temporal pat-
terns and biological conclusion, even though primer 
bias was detectable at higher taxonomic resolution 
(Fig. 4). This implies that community studies can poten-
tially  be compared at higher taxonomic levels even 
when different 16S rRNA primers were used. However, 
the significance of biases at high taxonomic resolution 
is somewhat uncertain, particularly since previous find-
ings with the same primers differ at the family level. For 
example, Earth primers have been reported to under-
estimate the abundance of Chloroflexi and Actinobacte-
ria in active sludge [23], while in our study, Chloroflexi 
appeared to be overrepresented with the Earth primers, 
while Actinobacteria was similarly represented by both 
primers (Fig. 2D).
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In summary,  our results suggest that short-read 
sequencing is adequate for exploring the spatio-temporal 
dynamics and community composition at higher taxo-
nomic levels. Because of its low cost, ease of implemen-
tation and the availability of well-validated pipelines, 16S 
rRNA sequencing remains a powerful approach. It has 
the potential as a monitoring tool in larger-scale RAS 
farms that incorporate research and design projects into 
their annual budgets.

Long-read sequencing approaches are recommended 
to improve taxonomic resolution [53–56] and are desir-
able in a context where species-specific pathogen identi-
fication is relevant. A current drawback is that long-read 
methods require a large amount of high-quality starting 
material, thus making them unsuitable for environmen-
tal studies that often have low DNA yield [57] and high 
levels of amplification inhibitors. Also, including a mock 
community, as recommended for normalization [25], 
can compromise sequencing depth. The methodologi-
cal requirements associated with environmental samples 
containing gram-positive bacteria, i.e., harsh lysis con-
ditions, compromised our long-read approach that was 
further impaired when paired with high-quality com-
munity standards during sequencing. When aiming for 
high-quality long DNA fragments for long-read sequenc-
ing, lysis methods and the inclusion  of mock standards 
require thorough  optimization. We conclude that the 
taxonomic resolution of the PacBio approach is beneficial 
in exploring functional services and species identifica-
tion, especially pathogenic ones. However, the approach 
might not be optimal for a large-scale spatio-temporal 
study that requires quantitative results and may suffer 
from challenges in DNA quantity or quality.

In contrast to the aforementioned short- and long-read 
approaches, amplification-free shotgun metagenomics 
are not impeded by primer bias. In addition, genome-
wide information, read count and genome size can be 
used to calculate biogenomic mass—a proxy for biomass 
[58]. Species-independent functional profiling based 
on the presence or absence of genes is another benefit 
of metagenome data. Finally, shotgun metagenomics 
sequences all genetic information rather than just one 
taxon. RAS microbial ecosystems also harbor archaea 
[18], fungi [59, 60], and viruses [61], which all interact, 
compete for resources, and aid or deleteriously impact 
the system. Therefore, shotgun metagenomics represents 
the most thorough approach for characterizing RAS 
microbial communities.

In our study, most reads obtained by shotgun metagen-
omics were of microbial identity, but additional rel-
evant taxa (especially viruses, archaea, and fungi) were 
detected (Additional file  6), confirming the effective-
ness of the approach to provide a wholistic picture. 

Importantly, the metagenomics data mirrored the ampli-
con data, confirming the validity of the three sequenc-
ing approaches to reach relevant biological conclusions 
at higher taxonomic levels. The similarity in community 
patterns also supports our previous conclusion that the 
impact of primer bias in amplicon approaches is neg-
ligible at higher taxonomic levels of analysis. Shotgun 
approaches are, therefore, highly promising and could 
be further functionalized by stepping toward an RNA-
focused metatranscriptomic approach [62, 63].

The selection of a suited bioinformatics pipeline for 
analyzing sequencing data is a critical step in microbial 
studies. Currently, six bioinformatics pipelines are com-
monly used for 16S rRNA gene amplicon data analy-
sis [64], and all have the potential to introduce bias 
through sequencing errors [65]. DADA2 is an increas-
ingly used pipeline that shows high sensitivity, can differ-
entiate sequences at single-base resolution, and clusters 
sequences into ASVs [64]. ASVs are advantageous over 
OTUs because they represent true sample sequence 
variants, unlike OTUs that are derived from traditional 
clustering, which can be prone to sequencing errors and 
biases based on the algorithm used or the fixed identity 
threshold value. A large body of literature on aquaculture 
microbiomes works with operational taxonomic units 
(OTUs). However, aquaculture studies using ASVs are on 
the rise, including studies on host-microbiome interac-
tions [66], microbial dynamics in RAS [10], and micro-
bial dysbiosis during a Tenacibaculosis outbreak [67] that 
could provide relevant data for meta-analysis studies.

Our results support several conclusions on method 
choice with transfer potential to other studies. First, 
primer bias does not compromise higher-level spatio-
temporal conclusions of 16S approaches as long as a 
sufficient number of high-quality reads are obtained. 
Importantly, relative differences in community compo-
sition between data obtained with different primers can 
safely be compared, whereas we recommend avoiding 
comparing absolute statistics of microbial communi-
ties analyzed with different primers or lower taxonomic 
levels. Second, the requirements and challenges of long-
read approaches complicate quantitative spatio-temporal 
community analyses but have value in species-level iden-
tification. Lastly, our results agree with other studies on 
the benefits of hybrid sequencing approaches [68–71]. 
The combination of three different sequencing methods 
yielded an in-depth overview of spatio-temporal dynam-
ics and species-level information that would otherwise 
have been difficult to obtain.

Community composition
Combining three different sequencing approaches allows 
for an in-depth assessment of microbial communities, 
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including potential functional aspects. The dominating 
phyla in both the short-read amplicon (Fig. 2D) and the 
shotgun approach (Fig.  6) were Bacteroidetes and Pro-
teobacteria, which agrees with previous short-read RAS 
studies (marine RAS: [7, 10, 12, 72]; freshwater RAS: 
[47]). Bacteroidetes contain species that are specialized 
in the degradation of complex polymers and the cycling 
of carbon and protein-rich substance [73, 74] and tend to 
be attached to particles or surfaces [7]. For example, Fla-
vobacteria, a class in Bacteroidetes, were recently discov-
ered to play a major role in nitrous oxidation–reduction, 
the final step of denitrification [75]. Proteobacteria are 
a diverse phylum containing nitrifying and denitrifying 
genera [18], which play a major role in nutrient recycling 
and remineralization of organic matter [76–78], essential 
steps for the operation of RAS.

A key finding of this study is the strong impact of the 
sample site and sample type on results and conclusions, 
as seen across the different datasets. Differences between 
biofilm and water samples have been reported before, 
e.g., for a sole RAS [10], a flow-through lumpfish farm 
[8], and an Atlantic salmon RAS [6], albeit only at higher 
taxonomic resolution. We show that overall community 
composition and species presence/absence differ not only 
between biofilm and water, but also between different 
compartments of the  same circuit and between  biofilm 
successional stages. Within the MiSeq data, differentially 
enriched ASVs were detected between the tank water 
and biofilm. The tank water differentially enriched ASVs 
belong to the genera Chryseobacterium, Flavobacterium, 
and Hydrogenophaga. Chryseobacterium [79] and Fla-
vobacterium [81, 82] include opportunistic pathogens 
that impact fish health, resulting in devastating losses 
in wild and farmed fish stock worldwide. Furthermore, 
Chryseobacterium species are suspected of playing a 
role in spoilage [82] and being multidrug-resistant [83], 
which is a danger to both animals and humans. Differ-
entially enriched ASVs in tank biofilm were Rhizobiales, 
Ideonella, Comamonada, and Sphaerotilus, which are 
involved in nutrient recycling processes or water qual-
ity. Notably is Ideonella, a small genus group composed 
of four species, with one species, Ideonella sakaien-
sis, capable of degrading PET, a polymer widely used in 
food containers, bottles, and synthetic fibers [84]. Since 
plastics are used in RAS for biofilter media (e.g., biofil-
ter carriers), the presence of a potentially plastic-degrad-
ing species has implications for replacement and repair 
costs. The PacBio data showed that certain species were 
compartment-specific. For example, Lysobacter toler-
ans only occurred in the tank biofilm samples. They are 
capable of producing peptides that can damage the cell 
walls or membranes of other microbes and are regarded 

as an untapped source for producing novel antibiotics 
[85]. Species only found in the tank water included Fla-
vobacterium aquatile, a species typically found in waters 
containing a high percentage of calcium carbonate—a 
characteristic of many Swiss waterways [86]—and Pro-
pionibacterium freudenreichii, an essential bacteria in 
the production of Emmental cheese, a Swiss cheese [87]. 
This type of information is essential for managers when 
choosing the type of sample to take for monitoring and 
diagnostic purposes and at the same time is promising 
regarding the use of RAS as models for spatiotemporal 
community dynamics.

Another key result is the major impact of community 
maturation state on biofilm community results. The bio-
film succession process entails a non-random process 
controlled by attachment events, movement, and cel-
lular interactions that induce the non-random spatial 
organization of biofilms [88]. As biofilms develop, they 
increase in volume and surface area, creating gradients 
of conditions that open niches, e.g., for anaerobic species 
[89]. This additional habitat  complexity increases spe-
cies richness and functional services, such as degrading 
organic compounds, cycling of nutrients, or preventing 
the establishment of pathogenic species through niche 
exclusion. At the same time, biofilms may act as a patho-
gen haven and/or reservoir [90]. For example, Aeromonas 
hydrophila (found in farm B, Additional files 5 and 6) 
can form thick layers that allow them to evade disinfec-
tion or antibiotic treatments [82, 91] while enabling the 
spread of antimicrobial resistance genes [92]—an area we 
are excited to explore with future shotgun metagenomics 
data.

In aquaculture management, biofilms are regularly 
removed during cleaning procedures, leaving them in a 
continuous state of recolonization. The impact of the 
removal and the resulting successional processes on eco-
logical functions and animal health in RAS is unknown, 
but frequent disruption may potentially open up niches 
to pathogenic species while preventing the establishment 
of beneficial slow colonizers. A study by Rampadarath 
et al. [93] showed that within the first 24 h of biofilm for-
mation, Proteobacteria microbials were the most domi-
nant, followed by Firmicutes, Bacteroidetes, Chloroflexi, 
Actinobacteria, and Verrucomicrobia. Some of the most 
prominent bacterial fish pathogens are distributed across 
the phyla Proteobacteria and Bacteroidetes, which are 
early colonizers. In our data, we find the beneficial Nitro-
spira defluvii only in mature samples (farm A: biofilter 
water and farm B: tank biofilm), suggesting that these 
species are late colonizers and that frequent biofilm 
removal could prevent their establishment and negatively 
impact denitrification.
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We look forward to further disentangling the impact of 
frequent disruption and recolonization processes on bio-
film communities and identifying factors promoting the 
establishment of healthy communities after a disruption. 
Identifying key steps towards colonization with beneficial 
communities could reduce start-up and operation costs 
[1], prevent the establishment of pathogens [94], and lead 
to healthier stock [95].

Finally, community patterns between farms are sug-
gestive of an "island-biogeography" effect, where distinct 
communities develop in largely isolated habitats. Other 
aquaculture facilities studies have reported such effects 
[1, 96]. The long-read data clearly distinguishes farm 
communities (Fig.  5), with Haliscomenobacter hydrossis 
(i.e., causes bulking) [97] and Streptococcus thermophiles 
only being present in farm A. Furthermore, the between-
farm biofilm communities only had three species in com-
mon: Sphaerotilus natans, another bulking species [98], 
Streptococcus thermophilus, and Flavobacterium terri-
gena. In the present case, the conclusion is that farm con-
ditions such as design, management styles, source water, 
environmental parameters (e.g., temperature, salinity 
[99], pH) in addition to farmed species, fish feed, and 
nutrient concentrations [10, 103], combined with sto-
chastic assembly processes of dispersal and colonization 
[100], supersede the continued exchange of microbial 
communities through the regular delivery of juveniles 
from farm A to farm B.

Disease and health
Understanding the potential pathogenic risks within a 
RAS is vital from the perspective of economic success but 
also to preserve animal health and wellbeing. The emer-
gence and spread of pathogens accompany the current 
growth and rapid progress of aquaculture. Aquaculture 
disease outbreaks can be catastrophic to the industry, 
causing an estimated worldwide loss of more than US$6.0 
billion per annum [101].

The shotgun metagenomics approach detected vari-
ous pathogenic species in farm A that pose a risk to fish 
health and can ultimately result in disease outbreaks 
(Additional files 5 and 6). Flavobacterium psychrophilum 
(0.09% of total reads), the causative agent for bacterial 
coldwater disease, and Aeromonas veronii (0.04% of total 
reads), causing freshwater fish sepsis and ulcer syndrome, 
were the most abundant pathogens detected. Interest-
ingly, these species are not typically associated with 
perch but with freshwater salmonid fish, such as rainbow 
trout (Oncorhynchus mykiss). However, a potential risk in 
animal farming is the emergence of spillovers and strains 
with altered host specificities. In addition, ubiquitous 

pathogens known to infect a wide range of freshwater 
fish, including perch, were detected across both systems 
at lower abundances and predominantly in tank water, 
including Flavobacterium branchiophilum, the causative 
agent of bacterial gill disease; Aeromonas hydrophila, the 
causative agent of motile aeromonas septicaemia; and 
Flavobacterium columnare, the causative agent of colum-
naris disease.

The development of nonpharmaceutical controls for 
pathogens in animal farming is vital for animal and pub-
lic health. Antibiotic resistance poses one of the greatest 
human health and sustainability challenges of the 21st 
century [102]. Antibiotics have fostered the emergence 
of resistance genes and the promotion of horizontal gene 
transfer and mutagenesis in aquatic bacteria [103]. One 
proposed alternative method is bacteriophage therapy, 
which uses naturally-occurring bacteriophages to tar-
get specific bacteria species or strains of bacteria, such 
as Ackermannviridiae sp. or Myoviridae sp. Both phage 
groups were present in the studied farms (Additional 
file 6). However, phage therapy is still in its infancy, with 
only a handful of successful phage therapies for the 150 
different bacterial pathogens of farmed and wild fish (e.g., 
A. hydrophila in loaches, F. columnare in catfish, and F. 
psychrophilum in rainbow trout) [104]. Our results show 
the potential of shotgun genomics to support the devel-
opment of additional innovative phage therapies or other 
pathway-based disruptive measures.

Conclusion
Our results show that microbial communities in RAS are 
highly dynamic and site-specific despite the permanent 
circulation of water throughout the system. Additionally, 
management routines create a state of continuous suc-
cession and recolonization, especially for  biofilm com-
munities. Finally, commonly used 16S primers can detect 
spatio-temporal development and dynamics across RAS 
compartments, sample types, and farms, but cannot pro-
vide the resolution required for species or strain identi-
fication, which is critical knowledge for RAS managers.

The results presented here contribute to quantify-
ing the microbial community and dynamic and complex 
interactions in RAS. Further research of microbial com-
munities in aquaculture is necessary to harvest the full 
power of these micro-  —but mighty—organisms dur-
ing farm management (e.g., during biofilter start-up or 
disease prevention), to extract basic biological princi-
ples (e.g., the link between environmental stressors and 
microbiome dysbiosis), and to clarify medically relevant 
interactions (e.g., between host-microbiome-environ-
ment interaction and disease development).
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