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Abstract. Elementary Recursive Nonstandard Analysis, in short ERNA, is

a constructive system of nonstandard analysis with a PRA consistency proof,
proposed around 1995 by Patrick Suppes and Richard Sommer. Recently,

the author showed the consistency of ERNA with several transfer principles

and proved results of nonstandard analysis in the resulting theories (see [12]
and [13]). Here, we show that Weak König’s lemma (WKL) and many of

its equivalent formulations over RCA0 from Reverse Mathematics (see [21]

and [22]) can be ‘pushed down’ into the weak theory ERNA, while preserving
the equivalences, but at the price of replacing equality with equality ‘up to

infinitesimals’. It turns out that ERNA plays the role of RCA0 and that

transfer for universal formulas corresponds to WKL.

1. Introduction

The theory ERNA (short for Elementary Recursive Nonstandard Analysis) was
introduced around 1995 by Patrick Suppes and Richard Sommer ([23] and [24]),
who also proved its consistency inside PRA. ERNA’s predecessor, developed by
Rolando Chuaqui and Patrick Suppes ([6] and [25]), has recently been reconsidered
in the systems NQA± of Michal Rössler and Emil Jeřábek ([17]). In [12], a Π1-
transfer principle was added to ERNA, and a PRA-proof was provided for the
consistency of the resulting theory. This theory provides a Σ1-supremum principle
and the Cauchy completeness of ERNA’s field, both ‘up to infinitesimals’. In [13],
ERNA was further extended with Σ2-transfer, with a consistency proof for the
extended theory. This theory is better suited for ERNA’s intended purpose, which
is to develop basic analysis in a finitistic setting; in particular, transfer applies to
formulas containing nonstandard objects such as ERNA’s exponential

∑ω
n=0

xn

n! .
Below, we upgrade transfer for universal formulas in a similar way.

Reverse Mathematics is a program in Foundations of Mathematics founded
around 1975 by Harvey Friedman ([8] and [9]) and developed intensely by Stephen
Simpson and others; for an overview of the subject, see [21] and [22]. The goal of
Reverse Mathematics is to determine what (minimal) axiom system is necessary to
prove a particular theorem. By now, it is well known that large portions of math-
ematics (especially so in analysis) can be carried out in systems far weaker than
ZFC, the ‘usual’ background theory for mathematics. Classifying theorems accord-
ing to their logical strength reveals the following striking phenomenon: ‘It turns
out that, in many particular cases, if a mathematical theorem is proved from appro-
priately weak set existence axioms, then the axioms will be logically equivalent to
the theorem’ ([21, Preface]). This recurring phenomenon is called the ‘Main theme’
of Reverse Mathematics (see e.g. [20]) and a good instance of it, is the following
theorem from [21, p. 36].
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1. Theorem (Reverse Mathematics for WKL0). Within RCA0, one can prove that
Weak König’s Lemma (WKL) is equivalent to each of the following mathematical
statements:

(1) The Heine-Borel lemma: every covering of [0, 1] by a sequence of open
intervals has a finite subcovering.

(2) Every covering of a compact metric space by a sequence of open sets has a
finite subcovering.

(3) Every continuous real-valued function on [0, 1], or on any compact metric
space, is bounded.

(4) Every continuous real-valued function on [0, 1], or on any compact metric
space, is uniformly continuous.

(5) Every continuous real-valued function on [0, 1] is Riemann integrable.
(6) The maximum principle: every continuous real-valued function on [0, 1], or

on any compact metric space, is bounded, or (equivalently) has a supremum
or (equivalently) attains its maximum.

(7) The Peano existence theorem: if f(x, y) is continuous in the neighbour-
hood of (0, 0), then the initial value problem y′ = f(x, y), y(0) = 0 has a
continuously differentiable solution in the neighbourhood of (0, 0).

(8) Gödel’s completeness theorem: every at most countable consistent set of
sentences in the predicate calculus has a countable model.

(9) Every countable commutative ring has a prime ideal.
(10) Every countable field (of characteristic 0) has a unique algebraic closure.
(11) Every countable formally real field is orderable.
(12) Every countable formally real field has a (unique) real closure.
(13) Brouwer’s fixed point theorem: every uniformly continuous function from

[0, 1]n to [0, 1]n has a fixed point.
(14) The separable Hahn-Banach theorem: if f is a bounded linear functional

on a subspace of a separable Banach space, and if ‖f‖ ≤ 1, then f has an

extension f̃ to the whole space such that ‖f̃‖ ≤ 1.

Below, we will establish a similar theorem for ERNA. For future reference, we
list some of the arguments pointing in this direction. First, there is an interpreta-
tion of WKL0 in ERNA + Π1-TRANS (see [12, Theorem 45]). Hence it is to be
expected that some of the equivalent formulations of WKL have an interpretation
in ERNA too. Second, in [16], Keisler introduces a nonstandard and conservative
extension of WKL0, called ∗WKL0. It is defined as ∗ΣPA + STP, where ∗ΣPA is
a weak nonstandard first-order theory and STP is the second-order principle that
any set of naturals can be coded into a hyperinteger and vice versa. As part of
STP plays the role of WKL, other nonstandard principles, like Π1-TRANS, may
have similar properties. Third, ERNA can prove results of basic analysis ‘up to
infinitesimals’; see e.g. [24], where the proof of ERNA’s version of the above item
(7) is outlined. This suggests that replacing equality with equality up to infinitesi-
mals might translate some of the equivalences in theorem 1 into ERNA. Fourth, a
version of Σ1-separation is provable in ERNA + Π1-TRANS (see theorem 37). The
former schema is equivalent to WKL ([21, IV.4.4]). Fifth, in [21, X.4.3] Simpson
suggests reconsidering the results of Reverse Mathematics for WKL0 in the weaker
theory WKL∗0. For ERNA, which has roughly the same first-order strength, we
will prove the following theorem; it contains several statements, translated from
theorem 1 and [21, IV] into ERNA’s language, while preserving equivalence. For
the definitions, see below.
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2. Theorem (Reverse Mathematics for ERNA + Π1-TRANS). The theory ERNA
proves the equivalence between Π1-TRANS and each of the following theorems con-
cerning near-standard functions:

(1) Every S-continuous function on [0, 1], or on any interval, is bounded.
(2) Every S-continuous function on [0, 1], or on any interval, is continuous

there.
(3) Every S-continuous function on [0, 1], or on any interval, is Riemann inte-

grable.
(4) Weierstrass’ theorem: every S-continuous function on [0, 1], or on any in-

terval, has, or attains a supremum, up to infinitesimals.
(5) The uniform Brouwer fixed point theorem: every S-continuous function φ :

[0, 1]→ [0, 1] has a fixed point up to infinitesimals of arbitrary depth.
(6) The first fundamental theorem of calculus.
(7) The Peano existence theorem for ordinary differential equations.
(8) The Cauchy completeness, up to infinitesimals, of ERNA’s field.
(9) Every S-continuous function on [0, 1] has a modulus of uniform continuity.

(10) The Weierstrass approximation theorem.

A common feature of the items in the theorem is that strict equality has been
replaced with ≈, i.e. equality up to infinitesimals. This seems the price to be paid
for ‘pushing down’ into ERNA the theorems equivalent to WKL. For instance, item
(5) guarantees that there is a number x0 in [0, 1] such that φ(x0) ≈ x0, i.e. a fixed
point up to infinitesimals, but in general there is no point y0 such that φ(y0) = y0.
In this way, one could say that the Reverse Mathematics of ERNA + Π1-TRANS
is a ‘copy up to infinitesimals’ of the Reverse Mathematics of WKL0.

Below, we prove theorem 2 in ERNA and briefly explore a possible connection
between the Reverse Mathematics for ERNA + Π1-TRANS and the program of
Constructive Reverse Mathematics. We also demonstrate that our results have
implications for physics. Recently, the question has arisen whether Reverse Math-
ematics has implications outside mathematics and, to the best of our knowledge,
we have obtained the first example.

2. Upgrading Transfer

For the definition of ERNA and related notation, we refer to [12]. In this section,
we expand the scope of ERNA’s universal transfer principle, which, until now, was
quite limited. Indeed, Π1-transfer is limited to formulas of Lst. Hence, a formula

cannot be transferred if it contains, for instance, ERNA’s cosine
∑ω
n=0(−1)n x2n

(2n)!

or similar objects not definable in Lst. This is quite a limitation, especially for
the development of basic analysis. In this section, we overcome this problem by
widening the scope of Π1-transfer so as to be applicable to objects like ERNA’s
cosine. For special Π1-formulas, this was done in [13, §3] with a relatively easy
proof. For general Π1-formulas, the proof becomes significantly more difficult.

First we label some terms which, though not part of Lst, are ‘nearly as good’
as standard for the purpose of transfer. As in [12, Notation 57], the variable ω′ in
(∀ω′) runs over the infinite hypernaturals.

3. Definition. Let the term τ(n, ~x) be standard, i.e. not involve ω or ≈. We say
that τ(ω, ~x) is near-standard if ERNA proves

(∀~x)(∀ω′, ω′′)(τ(ω′, ~x) ≈ τ(ω′′, ~x)). (1)

An atomic inequality τ(ω, ~x) ≤ σ(ω, ~x) is called near-standard if both members are.
Since x = y is equivalent to x ≤ y ∧ x ≥ y, and N (x) to dxe = |x|, any internal
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formula ϕ(ω, ~x) can be assumed to consist entirely of atomic inequalities; it is called
near-standard if it is made up of near-standard atomic inequalities.

An example of a near-standard term is arctanx :=
∫ x
0

1
1+t2 dπ1

t, where π1 is

a fixed infinitely fine partition (see definitions 17, 18 and 28 below). Defining

π := 4
∑ω
k=0

(−1)k
2k+1 , the following formula is near-standard:

x > 0→ arctanx ≤ π
2 . (2)

Another example is
√
x which satisfies

(√
x
)2 ≈ x for x ∈ [0, 1]. This ‘square root

function’ is defined as
√
x := (µn ≤ ω)

[
(nω )2 ≥ x

]
/ω (see [11, Example 5.2.4] and

[12, Theorem 58]). The following formula is near-standard:

0 < x < y2 < 1→
√
x < y. (3)

In stronger theories of Nonstandard Analysis, near-standard terms such as arctanx
and

√
x, defined above, would be converted to standard terms by the ‘standard

part map’ st(x) which satisfies st(x + ε) = x, for ε ≈ 0 and standard x. However,
ERNA does not have such a map and hence functions of basic analysis like arctanx
and
√
x, defined above, are not allowed in Π1-TRANS. Moreover, full transfer for

near-standard formulas is actually impossible: formulas (2) and (3) are true for
all rational x, y, but there are hyperrational counterexamples. Nonetheless, the
following formulas hold for all x, y

x > 0→ arctanx / π
2 and 0 < x < y2 < 1→

√
x / y.

Replacing ‘≤’ with ‘/’ for near-standard formulas is the key idea behind generalising
the scope of transfer, as is clear from definition 6 and (5) below. However, we need
a few definitions, first ‘positive’ and ‘negative’ occurrence of subformulas (see [5, p.
15]).

Intuitively speaking, an occurrence of a subformula B in A is positive (negative)
if, after resolving the implications outside B and pushing all negations inward, but
not inside B, there is no (one) negation in front of B. Thus, in

(¬(B → C) ∧ (D → B))→ ¬D,
all occurrences of B are negative, C has one positive occurrence and D occurs both
positively and negatively. The formal definition is as follows.

4. Definition. Given a formula A, an occurrence of a subformula B, and an oc-
currence of a logical connective α in A, we say that B is negatively bound by α
if either α is a negation ¬ and B is in its scope, or α is an implication → and B
is a subformula of the antecedent. The subformula B is said to occur negatively
(positively) in A if B is negatively bound by an odd (even) number of connectives
of A.

5. Notation. We write a� b for a ≤ b ∧ a 6≈ b and a / b for a ≤ b ∨ a ≈ b.

6. Definition. Given a near-standard formula ϕ(~x), let ϕ(~x) be the formula ob-
tained by replacing every positive (negative) occurrence of a near-standard inequal-
ity ≤ with / (�).

Now consider the following transfer principles. The first one is ERNA’s transfer
principle for universal formulas (see [12, Axiom schema 43]).

7. Principle (Π1-TRANS). Let ϕ(x) be standard and quantifier-free. Then

(∀stx)ϕ(x)→ (∀x)ϕ(x). (4)

8. Principle (Π1-TRANS). Let ϕ(x) be near-standard and quantifier-free. Then

(∀stx)ϕ(x)→ (∀x)ϕ(x). (5)
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The second principle is also called ‘bar transfer’. When formulated in contrapos-
itive form, bar transfer is called ‘Σ1-TRANS’. Although bar transfer has a much
wider scope than Π1-transfer, the two are in fact equivalent.

9. Theorem. In ERNA, the schemas Π1-TRANS and Π1-TRANS are equivalent.

Proof. For a standard formula, there holds ϕ ≡ ϕ and hence the schema Π1-TRANS
clearly implies Π1-TRANS. Now assume Π1-TRANS, let ϕ be as in Π1-TRANS and
let τ1 and τ2 be near-standard terms. We first prove the atomic case, i.e. where
ϕ(n) is τ1(n, ω) ≤ τ2(n, ω). So, assume that ϕ(n) holds for all n ∈ N, and consider
the sentence

(∀n)(∀ω′, ω′′)(τi(n, ω′) ≈ τi(n, ω′′)) (6)

for i = 1, 2. This sentence expresses that τ1 and τ2 are near-standard. Also, it
implies

(∀stk)(∀n)(∀ω′, ω′′)(|τi(n, ω′)− τi(n, ω′′)| < 1/k), (7)

and also
(∀stk)(∀ω′, ω′′)(∀n ≤ ω1)(|τi(n, ω′)− τi(n, ω′′)| < 1/k),

where ω1 is a fixed infinite hypernatural number. By underflow ([12, Theorem 54]),

(∀stk)(∃stM)(∀m,m′ ≥M)(∀n ≤ ω1)(|τi(n,m)− τi(n,m′)| < 1/k) (8)

and Π1-transfer implies

(∀stk)(∃stM)(∀m,m′ ≥M)(∀n)(|τi(n,m)− τi(n,m′)| < 1/k). (9)

Now suppose there exists a number n0 satisfying τ1(n0, ω)� τ2(n0, ω) and assume
k0 ∈ N is such that τ1(n0, ω) − τ2(n0, ω) > 1/k0. Then apply (9) for k = 4k0 and
obtain, for i = 1, 2, a number Mi ∈ N such that

(∀n)(∀m,m′ ≥Mi)(|τi(n,m)− τi(n,m′)| < 1/4k0). (10)

In particular, this implies

|τi(n0,Mi)− τi(n0, ω)| < 1/4k0,

for i = 1, 2. This formula, together with τ1(n0, ω)− τ2(n0, ω) > 1/k0, implies

τ1(n0,M1)− τ2(n0,M2) > 1/2k0, (11)

yielding
(∃n)(τ1(n,M1)− τ2(n,M2) > 1/2k0).

By Σ1-transfer, we obtain

(∃stn)(τ1(n,M1)− τ2(n,M2) > 1/2k0).

By (10), this implies
(∃stn)(τ1(n, ω)− τ2(n, ω) > 0),

which contradicts our assumption (∀stn)(τ1(n, ω) ≤ τ2(n, ω)).

For the general case, we use induction on the number of near-standard atomic
formulas. We may assume that in ϕ each instance of A→ B is replaced by ¬A∨B
and that all negations have been pushed in front of the atomic formulas by using
De Morgan’s laws from left to right. By definition, each instance of a � b in ϕ
occurs negatively and hence each instance of a� b now occurs as ¬(a� b). Thus,
it can be replaced by a ' b and hence we may assume ϕ to be free of ‘�’.

In case only one near-standard atomic formula occurs in ϕ(n), the latter has the
form either τ1(n, ω) ≤ τ2(n, ω) ∧ ψ(n) or τ1(n, ω) ≤ τ2(n, ω) ∨ ψ(n), with ψ ∈ Lst
quantifier-free. In the first case, consider (∀st)ϕ(n) and push the universal quantifier
through the conjunction. Now apply regular Π1-transfer to the second part of the
conjunction and apply the atomic case treated above to the first part. Hence there
follows (∀n)ϕ(n). For the second case, assume (∀stn)ϕ(n) and suppose there is a
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number n0 such that ¬ϕ(n0), i.e. τ1(n0, ω) � τ2(n0, ω) ∧ ¬ψ(n0). In the exactly
the same way as in the atomic case above, we obtain (10) and (11). As there also
holds ¬ψ(n0), (11) implies

(∃n)
[
τ1(n,M1)− τ2(n,M2) > 1/2k0 ∧ ¬ψ(n)

]
.

The previous formula is standard and hence, by Σ1-transfer, there follows

(∃stn)
[
τ1(n,M1)− τ2(n,M2) > 1/2k0 ∧ ¬ψ(n)

]
.

By (10), there follows

(∃stn)
[
τ1(n, ω)− τ2(n, ω) > 0 ∧ ¬ψ(n)].

This contradicts our assumption that ϕ(n) holds for all n ∈ N and this case is done.

Now assume we have established the case for m ≥ 1 occurrences of near-standard
atomic formulas. We now prove bar transfer for formulas ϕ(n) with m + 1 occur-
rences of near-standard atomic formulas. Again, the formula ϕ(n) has the form
τ1(n, ω) ≤ τ2(n, ω)∧ψ(n) or τ1(n, ω) ≤ τ2(n, ω)∨ψ(n), where ψ has only m occur-
rences of near-standard atomic formulas. The first case is treated in the same way
as in the case for m = 1, with the exception that the induction hypothesis is invoked
to apply bar transfer to (∀stn)ψ(n). For the second case, assume (∀stn)ϕ(n) and
suppose there is a number n0 such that ¬ϕ(n0), i.e. τ1(n0, ω)� τ2(n0, ω)∧¬ψ(n0).
In the same way as before, we obtain (10) and (11). As there also holds ¬ψ(n0),
(11) implies

(∃n)
[
τ1(n,M1)− τ2(n,M2) > 1/2k0 ∧ ¬ψ(n)

]
.

The previous formula only involves m occurrences of atomic near-standard formulas
and hence the induction hypothesis applies to it. By Σ1-transfer, there follows

(∃stn)
[
τ1(n,M1)− τ2(n,M2) > 1/2k0 ∧ ¬ψ(n)

]
. (12)

By (10), there follows

(∃stn)
[
τ1(n, ω)− τ2(n, ω) > 0 ∧ ¬ψ(n)].

This contradicts our assumption that ϕ(n) holds for all n ∈ N and we are done. �

Note that it is clear from the proof of the atomic case why we cannot weaken
the predicate ‘�’ or strengthen the predicate ‘/’ in bar transfer. Also, without
theorem 9, all items listed in theorem 2 would be limited to standard functions.
This would exclude most functions from basic analysis, like ERNA’s cosine and
exponential.

3. Mathematics in ERNA

3.1. Mathematics without Transfer. In this section, we obtain some well-known
mathematical results in the theory ERNA. The ‘running theme’ is that ERNA can
prove many theorems of ordinary mathematics, as long as we allow an infinitesimal
error. This theme is best expressed in theorems 12, 16, 29 and 31. Note that every
theorem in this section is proved in ERNA.

Hereafter, we assume that a and b are finite numbers such that a 6≈ b. A
function f(x) is an internal term, not involving min and everywhere defined. Also,
we recall ERNA’s weight function ‖x‖ which is defined as ‖ ± n/m‖ = max{n,m},
for hypernatural n,m with m 6= 0 (see [12, Theorem 23]). The following theorem
is used throughout this paper.

10. Theorem. In ERNA, there are hyperrationals of arbitrarily large weight be-
tween any two numbers.
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Proof. If a is a hyperrational, ‖−a‖ = ‖a‖ and ‖1/a‖ = ‖a‖ if a 6= 0. Hence we can
restrict ourselves to given hyperrationals 1 ≤ a < b. Write a = a1

a2
with a1 and a2

relatively prime hypernaturals. From a ≥ 1 we deduce that ‖a‖ = max(a1, a2) = a2.
Choose a hypernatural n so large that a < a+ 1

n < b and n > a2. As Euclid’s proof
of the infinitude of the prime numbers can easily be formalised in ERNA, we may
assume that n is prime. This implies that a2n and a1n + a2 are relatively prime.
Indeed, n is not a common divisor, as it would divide a2 < n. Therefore, a common
divisor d > 1 would divide a2, hence also (a1n+ a2)− a2 and finally a1. Therefore∥∥a+ 1

n

∥∥ = ‖a1n+a2a2n
‖ = max(a1n+ a2, a2n) = a1n+ a2 = ‖a‖n+ a2, (13)

growing arbitrarily large with n �

3.1.1. Continuity. First, we introduce the notion of (nonstandard) continuity in
ERNA and prove some fundamental results.

11. Definition. A function f(x) is ‘continuous over [a, b]’ if

(∀x, y ∈ [a, b])(x ≈ y → f(x) ≈ f(y)). (14)

The attentive reader has noted that we work with the nonstandard version of uni-
form continuity. There are two reasons for this. First of all, if we limit the variable
x in (14) to Q, the function 1

x2−2 satisfies the resulting formula, although this func-

tion is infinite in the interval [−2, 2]. Similarly, the function g(x), defined as 1 if
x2 < 2 and 0 if x2 ≥ 2, satisfies (14) with x limited to Q, but this function has a
jump in its graph. The same holds for the pointwise ε-δ continuity and thus both
are not suitable for our purposes. Second, in light of theorem 2, the ε-δ definition
of uniform continuity is closely related to Π1-transfer. In the absence of the latter
principle, we are left with (14).

12. Theorem (Weierstrass extremum theorem). If f is continuous over [a, b], there
is a number c ∈ [a, b] such that for all x ∈ [a, b], we have f(x) / f(c).

Proof. Let a, b, f be as stated. The points xn = a + n(b−a)
ω , for hypernatural

1 ≤ n ≤ ω − 1, partition the interval [a, b] in infinitesimal subintervals [xn, xn+1].
Every x ∈ [a, b] is in one of these intervals, hence infinitely close to both of its end
points. As f is continuous over [a, b], we have f(x) ≈ f(xn) for x ∈ [xn, xn+1].
ERNA has an explicit maximum operator, see [12, Section 5.1] and we define

M := max
0≤n≤ω−1

f (xn) . (15)

Hence f(x) /M for all x ∈ [a, b]. �

13. Corollary. If f is continuous on [a, b] and finite in at least one point, then it
is finitely bounded on [a, b].

Proof. Let a, b, f be as stated. Denote by ϕ(n) the formula

(∀x, y ∈ [a, b])(|x− y| ≤ 1/n ∧ ‖x, y‖ ≤ ω → |f(x)− f(y)| < 1). (16)

As f is continuous, this formula holds for all infinite n. By [12, Corollary 53], (16)
may be treated as quantifier-free. Underflow yields that it holds from some finite
n0 on. Assume f(x0) is finite in x0 ∈ [a, b]. Partitioning [a, b] with points 1/ω apart
shows that we may assume ‖x0‖ ≤ ω. From ϕ(n) for n = n0, it easily follows that
f(c) given by the theorem deviates at most n0db− ae from f(x0). �

14. Corollary. If f is near-standard and cont. on [a, b], it is finitely bounded there.

Proof. From (1), we can derive (8) for f(x, ω) instead of τi(n, ω). Thus f is finitely
close to a standard term in at least one point. By [12, Theorem 30], this standard
term is finite and hence f is finite in at least one point. �
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15. Theorem (Intermediate value theorem). If f is continuous on [a, b], and f(a) ≤
y0 ≤ f(b), then there is an x0 ∈ [a, b] such that f(x0) ≈ y0.

Proof. Let a, b, y0 and f be stated. The points xn = a+ n(b−a)
ω , for hypernatural

1 ≤ n ≤ ω − 1, partition the interval [a, b] in infinitesimal subintervals [xn, xn+1].
Similarly, the points f (xn) partition the interval [f(a), f(b)] in subintervals. As f
is continuous, the intervals [f(xn), f(xn+1)] are also infinitesimal. Using ERNA’s
explicit ‘least’ operator (see [12, Section 5.1]), we find an N ≤ ω such that |y0 −
f(xN )| is minimal. Hence we have y0 ∈ [f(xN ), f(xN+1)] or y0 ∈ [f(xN−1), f(xN )].
In either case, x0 = xN satisfies the requirements. �

Note that if there are rational x1 and y1 such that x0 ≈ x1 and y0 ≈ y1, then
y0 ≈ f(x0) implies y1 = f(x1), if f is continuous. Most numbers in ERNA, however,
do not have a standard number infinitely close.

The previous theorem includes the one-dimensional Brouwer fixed point theorem.

16. Corollary (Brouwer fixed point theorem). If f : [0, 1] → [0, 1] is continuous,
then there is an x0 ∈ [0, 1] such that f(x0) ≈ x0.

Proof. Let f be as stated. If f(0) ≈ 0 or f(1) ≈ 1, we are done. Otherwise,
f(1) − 1 � 0 and f(0) − 0 � 0. Applying the theorem to the function f(x) − x,
we find x0 such that f(x0)− x0 ≈ 0. �

Note that the theorem and the corollary also follow if f only satisfies (14) for x
and y of weight at most some infinite ω1.

3.1.2. Riemann integration. The next step in the construction of elementary cal-
culus is the Riemann integral. In Darboux’s approach, a function is integrable if
the infimum of the upper sums equals the supremum of the lower sums. Although
several supremum principles are provable in ERNA and its extensions (see [12]),
they are not very suited for a Darboux-like integral, because the supremum of
nonstandard objects like lower sums does not have sufficiently strong properties.
Therefore, we adopt Riemann’s original approach, defining the integral as the limit
of Riemann sums over ever finer partitions.

17. Definition. In ERNA, a partition π of [a, b] is a vector (x1, . . . , xn+1, t1, . . . tn)
such that xi ≤ ti ≤ xi+1 for all 1 ≤ i ≤ n and a = x1 and b = xn+1. The number
δπ = max1≤i≤n(xi+1−xi) is called the ‘mesh’ of the partition π. We call a partition
‘infinitely fine’ if its mesh is infinitesimal.

Riemann integration implies quantifying over all partitions of an interval, which,
as such, is not a first order-operation. However, encoding hyperfinite sets to hyper-
natural numbers, we are left with quantifying over all hypernaturals. The pairing
function defined in [12, Section 5.2] is not suited for that purpose, because its
iterations grow too fast for ERNA. Instead, we will use the pairing function

π(2)(x, y) =
1

2
(x+ y)(x+ y + 1) + y.

All its iterations

π(n)(x1, . . . xn) := π(π(n−1)(x1, . . . , xn−1), xn).

are available in ERNA, as one readily verifies by induction that

‖π(n)(x1, . . . , xn)‖ ≤ 22
n+1

‖x1, . . . , xn‖2
n

,

for all xi and hypernatural n > 2. Similarly, the decoding function
(
π(n)

)−1
, which

yields the vector (x1, . . . , xn) when applied to π(n)(x1, . . . , xn), can be defined in
ERNA. Thus, ERNA allows quantification over all partitions of an interval.
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18. Definition (Riemann Integration). Let f be a function defined on [a, b].

(1) The Riemann sum corresponding to a partition (x1, . . . , xn+1, t1, . . . , tn) is
defined as

∑n
i=1 f(ti)(xi+1 − xi).

(2) The function f is called ‘Riemann integrable on [a, b]’ if Riemann sums of
infinitely fine partitions are finite and infinitely close to each other. If so,
the Riemann sum corresponding to the infinitely fine partition π of [a, b] is

denoted by
∫ b
a
f(x) dπx.

19. Theorem. A function, continuous and finite over [a, b], is Riemann integrable
over that interval.

Proof. Let f be as stated and consider two infinitely fine partitions π1 and π2 of
[a, b]. Let

∑ω1

i=1 f(ti)(xi+1−xi) and
∑ω2

i=1 f(si)(yi+1−yi) be the respective Riemann
sums. Using ERNA’s definition by cases (see [12, Corollary 51]), we modify π1 in
the following way: if [xi, xi+1] contains some yj , break it into subintervals [xi, yj ]
and [yj , xi+1] and rename these subintervals to [zi, zi+1] and [zi+1, zi+2]. Thus,
the entry f(ti)(xi+1 − xi) of the Riemann sum of π1 is replaced by f(t′i+1)(zi+2 −
zi+1) + f(t′i)(zi+1 − zi) with t′i+1 := ti and t′i := ti. Proceeding in the same
way for π2, we convert the original Riemann sums into

∑ω3

i=1 f(t′i)(zi+1 − zi) and∑ω3

i=1 f(s′i)(zi+1 − zi), which share the upper bound ω3 and the partition points.
As all indices i and j are bounded by ω1 +ω2 +2, this procedure is compatible with
ERNA’s definition by cases. Also, by construction, t′i ≈ s′i. Hence we have

ω1∑
i=1

f(ti)(xi+1 − xi)−
ω2∑
i=1

f(si)(yi+1 − yi)

=

ω3∑
i=1

f(t′i)(zi+1 − zi)−
ω3∑
i=1

f(s′i)(zi+1 − zi)

=

ω3∑
i=1

(f(t′i)− f(s′i))(zi+1 − zi). (17)

Let ε be the maximum of the |f(t′i−1) − f(s′i−1)| for 2 ≤ i ≤ ω3, as provided by
ERNA’s explicit max operator. Because f is continuous over [a, b], we have ε ≈ 0
and so the absolute value of (17) is at most

∑ω3

n=1 ε(zi− zi−1) = ε(b− a) ≈ 0. This
implies that the Riemann sums considered are infinitely close to each other. By
theorem 12, the function f is bounded on [a, b] and hence every Riemann sum is in
absolute value at most the finite number (M + 1)(b− a), with M as in (15). �

3.1.3. Differentiation. Another key element of analysis is the derivative, defined in

this paragraph. For brevity, we write ‘∆hf(x)’ for f(x+h)−f(x)
h .

20. Definition. [Differentiability] A function f is ‘differentiable over (a, b)’ if ∆εf(x) ≈
∆ε′f(x) is finite for all nonzero ε, ε′ ≈ 0 and all a� x� b.

If f is differentiable over (a, b) and 0 6= ε ≈ 0, then ∆εf(x0) is called the ‘ε-
derivative of f at x0’ and denoted by f ′ε(x0). Any f ′ε(x0) with nonzero ε ≈ 0 is a
representative of ‘the’ derivative f ′(x0), which is only defined up to infinitesimals.
Thus, any statement about f ′(x0) should be interpreted as a statement about
∆εf(x0), quantified over all nonzero ε ≈ 0.

A weaker notion than differentiability is provided by

21. Definition. [S-differentiability] A function f is called ‘S-differentiable over
(a, b)’ if ∆εf(x) ≈ ∆ε′f(x) is finite for all large enough ε, ε′ ≈ 0 and all a� x� b.
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The informal expression ‘for all large enough infinitesimals’ in the previous def-
inition is short for the Σ2-statement

(∃ε0 ≈ 0)(∀ε, ε′ ≈ 0)(∀x)[
a� x� b ∧ |ε0| < |ε|, |ε′| → ∆εf(x0) ≈ ∆ε′f(x0)

]
. (18)

The derivative is defined in the same way as for definition 20. A crucial point
is that ε0 does not depend on the choice of x. Indeed, otherwise ε0 would be a
function of x, i.e. in (18) the quantifier ‘(∀x)’ would be at the front. However, in
ERNA, it is not possible to compute the function ε0(x) from the latter formula,
as it involves ‘≈’. In this case, the derivative would not be defined properly as it
cannot be computed in a straightforward way.

Furthermore, ‘S-differentiable’ is short for ‘standardly differentiable’, and it does
imply the classical ε-δ-definition of uniform differentiability, as we show in the next
theorem. Thus, as in the case of continuity, the uniform version of differentiability
is more natural than the pointwise one. Such phenomenon also occurs in the setting
of Constructive Mathematics. The latter is briefly considered in section 4. A more
utilitarian argument in favour of S-differentiability is that it arises naturally in the
proof of ERNA’s version of the first fundamental theorem of calculus and Peano’s
existence theorem.

22. Theorem. If f is S-differentiable over (a, b), we have that

(∀stk)(∃stN)(∀sth, h′)(∀stx ∈ (a, b))[
0 < |h|, |h′| < 1/N → |∆hf(x)−∆h′f(x)| < 1/k

]
. (19)

Proof. Choose ε0 as in (18) and fix an infinite hypernatural ω0. We see that

(∀h, h′)(∀x ∈ (a, b))(|ε0| < |h|, |h′| ≤ 1/ω ∧ ‖h, h′, x‖ ≤ ω0 → ∆hf(x) ≈ ∆h′f(x))

holds for all infinite hypernatural ω. Fixing k ∈ N, we have in particular

(∀h, h′)(∀x ∈ (a, b))(|ε0| < |h|, |h′| ≤ 1/ω ∧ ‖h, h′, x‖ ≤ ω0 → |∆hf(x)−∆h′f(x)| < 1
k ),

for all infinite hypernatural ω. By [12, Corollary 53], this formula is equivalent to
a quantifier-free one and underflow yields

(∀h, h′)(∀x ∈ (a, b))(|ε0| < |h|, |h′| ≤ 1/N ∧ ‖h, h′, x‖ ≤ ω0 → |∆hf(x)−∆h′f(x)| < 1
k ),

for all N ≥ N(k) ∈ N, implying (19). �

Since S-differentiability is stronger than ‘normal’ differentiability, the derivative
will have stronger properties, as witnessed by the following theorem. A function is
said to be ‘continuous over (a, b)’ if it satisfies (14) for all a� x, y � b.

23. Theorem. If f is differentiable over (a, b), then f ′(x) is cont. over (a, b).

Proof. Choose two points x ≈ y such that a� x < y � b. If y − x = ε, then

∆εf(x) = f(x+ε)−f(x)
ε = f(y)−f(y−ε)

ε = f(y−ε)−f(y)
−ε = ∆−εf(y) ≈ ∆εf(y),

and thus f ′ε′(x) ≈ f ′ε(x) ≈ f ′ε(y) ≈ f ′ε′(y), for all nonzero ε′ ≈ 0. �

The theorem generalizes to S-differentiable functions, but not in an elegant way.

24. Corollary. If f is S-differentiable over (a, b), then f ′ε(x) is continuous over
(a, b), for ε ≈ 0 large enough.

Proof. Let ε0 > 0 be as in (18). Choose points x ≈ y such that a � x < y � b.
First, suppose y − x = ε ≥ ε0. The same proof as in the theorem yields this case.
Now suppose y − x = ε < ε0 and define z = y + 2ε0. Then z − x = ε′ ≥ ε0
and z − y = ε′′ ≥ ε0 and by the previous case, we have f ′ε′(x) ≈ f ′ε′(z) and
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f ′ε′′(z) ≈ f ′ε′′(y). By the definition of S-differentiability, we have f ′ε′(z) ≈ f ′ε′′(z),
and thus f ′ε′′′(x) ≈ f ′ε′(x) ≈ f ′ε′′(y) ≈ f ′ε′′′(y), for all ε′′′ ≥ ε0. �

Since the derivative is only defined up to infinitesimals in ERNA, the statement
f ′(x) > 0 is not very strong, as f ′(x) ≈ 0 may hold at the same time. Similarly,
f(x) < f(y) is consistent with f(x) ≈ f(y) and we need stronger forms of inequality
to express meaningful properties of functions and their derivatives.

25. Definition. A function f is strictly increasing over an interval [a, b], if for all
x, y ∈ [a, b] we have x� y → f(x)� f(y).

26. Theorem. If f is differentiable over (a, b), there is an N ∈ N such that

(1) if f ′(x0)� 0, then f is strictly increasing in [x0 − 1
N , x0 + 1

N ],

(2) if f ′(x0)� 0, then f is strictly decreasing in [x0 − 1
N , x0 + 1

N ].

Proof. For the first item, f ′(x) � 0 implies f(y) > f(z) for all y, z satisfying
y, z ≈ x0 and y > z. Fix an infinite number ω1 and let M � 0 be f ′(x0)/2. By the
previous observation, the following sentence is true for all infinite hypernaturals ω

(∀y, z)
[
‖y, z‖ ≤ ω1∧y > z∧|x0−z| < 1

ω ∧|x0−y| <
1
ω → f(y) > f(z)+M(y−z)

]
.

Applying overflow yields the first item, as f is continuous over (a, b). Likewise for
the second item. �

A function is said to be ‘continuous in a’ if (14) holds for x = a.

27. Theorem (Mean value theorem). If f is differentiable over (a, b) and contin-

uous in a and b, then there is an x0 ∈ [a, b] such that f ′(x0) ≈ f(b)−f(a)
b−a .

Proof. Let f be as in the theorem. First, we prove the case where f(a) ≈ f(b).
By theorem 12, f reaches its maximum (up to infinitesimals), say in x0, and its
minimum (idem), say in x1, over [a, b]. If f(x0) ≈ f(x1) ≈ f(a), then f is constant
up to infinitesimals. By theorem 26 we have f ′(x) ≈ 0 for all a � x � b. If
f(x0) 6≈ f(a), then by theorem 26 we have f ′(x0) ≈ 0. The case f(x1) 6≈ f(a) is
treated in a similar way. The general case can be reduced to the previous case by

using the function F (x) = f(x)− f(b)−f(a)
b−a (x− a). �

3.1.4. The first fundamental theorem of calculus. In this paragraph, we obtain
ERNA’s version of the first fundamental theorem of calculus.

28. Definition. If π is an infinitely fine partition of [a, b], we denote by x the least
partition point not exceeding x. If f is integrable over [a, b], we define

Fπ(x) :=

∫ x

a

f(t) dπt. (20)

In ERNA, there is no standard-part function mapping a finite number x to the
unique standard number r ≈ x. Consequently, there is no natural way to avoid
that integrals are only defined up to infinitesimals. The same occurred in ERNA’s
predecessor NQA+ proposed in [6]. There, differentiation and integration cancel
each other out on the condition that the mesh du of the hyperfinite partition and
the infinitesimal y used in the derivative are related by du/y ≈ 0. This requirement
is hidden under a complicated definition of the integral (see [6, Axiom 18]). Our
definitions of integration and differentiation are quite natural and we still obtain
an elegant version of the first Fundamental Theorem of Calculus, see corollary 30
below.

29. Theorem. Let f be continuous on [a, b]. For every η ≈ 0 and every hyperfine
partition π of [a, b] with δπ/η ≈ 0, we have ∆ηFπ(x) ≈ f(x) for all a� x� b.
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Proof. Let f , π and η be as stated and fix a� x0 � b. Then we have

Fπ(x0) =

ω1∑
i=1

f(ti)(xi+1 − xi) and Fπ(x0 + η) =

ω2∑
n=1

f(ti)(xi+1 − xi),

with ω2 > ω1. Now, let M be the largest and m the smallest of the f(ti) for
ω1 < i ≤ ω2. Then,

Fπ(x0+η)−Fπ(x0) =

ω2∑
i=ω1+1

f(ti)(xi+1−xi) ≤M
ω2∑

i=ω1+1

(xi+1−xi) = M(xω2+1−xω1+1).

By definition 28, |x0 − xω1+1| ≤ δπ and |(x0 + η)− xω2+1| ≤ δπ. Consequently

η − 2δπ ≤ xω2+1 − xω1+1 ≤ η + 2δπ,

which implies that
xω2+1−xω1+1

η ≈ 1. Therefore, (Fπ(x0 + η) − Fπ(x0))/η / M .

Combining with the similar result for m, we obtain

m /
Fπ(x0 + η)− Fπ(x0)

η
/M.

Assuming that M = f(tj1) and m = f(tj2), we have m ≈ f(x0) ≈ M thanks to
continuity and t′j1 ≈ t

′
j2
≈ x0. Hence, ∆ηFπ(x0) ≈ f(x0). �

The previous theorem can be formulated much more elegantly if we see
∫ b
a
f(x) dx

and F ′(x) as ERNA objects ‘defined up to infinitesimals’ (compare [1, §5]). Accord-

ingly, we interpret an informal statement about
∫ b
a
f(x) dx as a statement about

all the Riemann sums corresponding to infinitely fine partitions of [a, b]. As we can
quantify over all partitions of an interval, this informal statement can be expressed
in the language of ERNA and we will sometimes forget the distinction between
informal and formal terminology. With these conventions, the previous theorem
becomes.

30. Corollary (First fundamental theorem of Calculus). Let f be continuous on
[a, b] and F (x) =

∫ x
a
f(t)dt. Then F is S-differentiable on [a, b] and F ′(x) ≈ f(x)

holds for all a� x� b.

On a philosophical note, we mention that it seems impossible to develop ba-
sic analysis in ERNA (or in any system without a standard-part function) in
a quantifier-free way. Indeed, to study the function F (x), we cannot use the
quantifier-free definition of differentiability, but we have to revert back to the (stan-
dard) non-quantifier-free definition. The same holds for Peano’s existence theorem
in ERNA, but equally for nonstandard set theory, e.g. the treatment of the nonstan-
dard representative ε

ε2+x2 (ε ≈ 0) of the Dirac delta function. In [19], we suggest
possible solutions for this problem.

Although the proof of theorem 18 may seem straightforward, the condition
δπ/η ≈ 0 is highly non-constructive (see also (18)) and cannot be ‘read off’ from
the first fundamental theorem of calculus. Thus, it seems only fair to say that this
theorem, at the very least, does not agree with the spirit of finitism. However,
the conditions of the first fundamental theorem can be weakened to remove this
problem. Indeed, if δ = ω1

ω2
, then ε′ =

b√ω1c
d√ω2e is such that δ/ε′ ≈ 0. The functions

b
√
xc and d

√
xe are given by the explicit ERNA-formulas

(µn ≤ x)(n2 ≥ x) and (µ ≤ x)(n2 < x).

However, there are many more of these conditions and none of them is optimal.
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3.1.5. Differential equations. In this paragraph we prove ERNA’s version of the
Peano existence theorem for ordinary differential equations. In [24], Sommer and
Suppes sketch a proof of this theorem inside ERNA. Their sketch is based on the
classical stepwise construction of the function φ(x) which, in the limit, satisfies
the necessary properties. This construction is a prime example of the elegance of
nonstandard analysis (see [10]) and we will carry out this construction explicitly
inside ERNA in the proof of the following theorem.

31. Theorem (Peano existence theorem). Let f(x, y) be continuous on the rectangle
|x| ≤ a, |y| ≤ b, let M be a finite upper bound for |f | there and let α = min(a, b/M).
Then there is a function φ, S-differentiable for |x| ≤ α, such that

φ(0) = 0 and φ′(x) ≈ f(x, φ(x)). (21)

Proof. Without loss of generality, we may assume a = b = α = 1. We will only
consider positive x, the proof for negative x is analogous.

First, define xk := k/ω = kε for k ≤ ω and

ym :=
m∑
k=1

f(xk−1, yk−1)ε and φ(x) :=
ω∑

m=1

Tψ(m,x)ym, (22)

where ψ(m,x) ≡ (xm−1 < x ≤ xm) and y0 = 0. We verify that φ(x) satisfies the
conditions of the theorem. Fix 0 � x � 1 and a nonzero positive infinitesimal η
such that ε/η ≈ 0. The case for negative η is treated similarly. Now assume that

xω1−1 < x+ η ≤ xω1
and xω2−1 < x ≤ xω2

(23)

for certain numbers ω2 ≤ ω1 ≤ ω. Then φ(x+ η) = yω1 and φ(x) = yω2 and

φ(x+ η)− φ(x) = yω1
− yω2

=

ω1∑
k=1

f(xk−1, yk−1)ε−
ω2∑
k=1

f(xk−1, yk−1)ε

= ε

ω1∑
k=ω2+1

f(xk−1, yk−1)

Assume f(xN , yN ) (f(xM , yM ), respectively) is the largest (the least, respectively)
of all f(xi, yi) for i between ω1 and ω2 + 1. Define M ′ = ω1 − ω2 − 1; there holds

εM ′ f(xM , yM ) ≤ φ(x+ η)− φ(x) ≤ εM ′ f(xN , yN )

and also
ε

η
M ′f(xM , yM ) ≤ ∆ηφ(x) ≤ ε

η
M ′f(xN , yN ). (24)

By the definition of xn, there holds

xω1−1 − xω2
= ω1−1

ω − ω2

ω = ω1−ω2−1
ω = εM ′. (25)

But (23) implies xω1−1 − xω2 < η, which yields ε
ηM

′ < 1. Again by the definition

of xn, there holds

xω1 − xω2−1 = ω1

ω −
ω2−1
ω = ω1−ω2+1

ω = εM ′ + 2ε. (26)

But (23) also implies xω1 − xω2−1 > η, which yields ε
ηM

′ > 1 − 2ε/η. Together

with ε
ηM

′ < 1, proved above, this yields ε
ηM

′ ≈ 1. It is clear that x ≈ xN ≈ xM .

We now prove that yM ≈ yN ≈ φ(x). Then (24) and the continuity of f imply

∆ηφ(x) ≈ f(xN , yN ) ≈ f(xM , yM ) ≈ f(x, φ(x)) (27)

and we are done.
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Assume that N < M ; the case N > M is treated analogously. From (22), there
follows

yN − yM =

N∑
k=1

f(xk−1, yk−1)ε−
M∑
k=1

f(xk−1, yk−1)ε = ε

M∑
k=N+1

f(xk−1, yk−1).

By the Weierstrass extremum theorem, f is bounded on [0, 1], say by M ′′ ∈ N.
Then (22) implies

yN − yM ≤ ε(M −N − 1)M ′′ ≤ ε(ω1 − ω2 − 1)M ′′ = εM ′M ′′.

By the previous, this implies yM ≈ yN . In the same way, yN ≈ yω2
= φ(x). �

In [24], Sommer and Suppes claim that φ(x), as defined in (22), is differentiable
(in the sense of definition 20). However, due to the absence of a ‘standard-part
function’, the function φ(x) defined in (22) remains piecewise constant, be it on the
infinitesimal level. Thus, if η is too small, we have φ(x0) = φ(x0 + η) for some x0
and hence ∆ηφ(x0) = 0, even if φ(x) is strictly increasing. Hence, it is obvious that
φ(x) cannot be differentiable, but only S-differentiable. Thus, the Peano existence
theorem implicitly involves a condition ε/η ≈ 0 similar to the condition δ/η ≈ 0
in the fundamental theorem of calculus. As in the latter, S-differentiability hides
this technical requirement, but this does not change the fact that ε-δ-like formulas
occur.

Before we continue, we point out that the theorems proved so far fall in either
of two fundamentally different classes. A good representative of the first kind is
Weierstrass’s extremum theorem: it fails when we limit the weight of x and y to
ω in (14). Also, the consequent of this theorem is a property of all numbers in
[a, b] of arbitrary depth. On the other hand, the Brouwer fixed point theorem does
go through with the aforementioned limitation and its consequent only asserts the
existence of a number x0 of a certain depth. However, if we were to require a fixed
point of arbitrary depth, the resulting ‘uniform’ fixed point theorem becomes part
of the first class. The distinction made here will turn out to be essential in the
section ‘ERNA and Reverse Mathematics’.

3.2. Mathematics with Transfer. In this section, we prove some well-known
results from ordinary mathematics in ERNA + Π1-TRANS.

First, we prove an ERNA-version of Cauchy completeness, to be understood ‘up
to infinitesimals’. Indeed, Cauchy completeness is well-known to be equivalent to
ACA over RCA0 and ACA0 has the first-order strength of PA.

32. Definition. A sequence τ(n) is ‘Cauchy’ if

(∀stk)(∃stN)(∀stn)(∀stm)
(
n,m ≥ N → |τ(n)− τ(m)| < 1

k+1

)
(28)

If a is a constant, we say that a sequence τ(n) is ‘convergent to a’ if

(∀stk)(∃stN)(∀stn)
(
n ≥ N → |τ(n)− a| < 1

k+1

)
Clearly, the constant a is only unique up to infinitesimals. We have the following

theorem, provable in ERNA + Π1-TRANS.

33. Theorem (Cauchy completeness). Let τ(n) be a near-standard Cauchy se-
quence. Then all τ(m) are infinitely close to each other for all infinite m and τ(n)
is standard convergent to any of these.
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Proof. If τ(n) is as required, (28) holds. In this formula, fix any k ∈ N and find
N ∈ N such that

(∀stn,m)
(
n,m ≥ N → |τ(n)− τ(m)| < 1

k+1

)
.

In ERNA + Π1-TRANS, this implies

(∀n,m)
(
n,m ≥ N → |τ(n)− τ(m)| / 1

k+1

)
, (29)

which shows that τ(n) is convergent to τ(m) for any infinite m. Since (29) can be
derived for all k ∈ N, we have |τ(n) − τ(m)| / 1

k+1 for all infinite hypernaturals
n,m and k ∈ N. Hence, infinitely indexed terms differ by infinitesimals. �

Next, we introduce the well-known ε-δ definition of (uniform) continuity in
ERNA. This will have immediate consequences for the continuity, differentiabil-
ity and integration results obtained earlier.

34. Definition. A function f(x) is called ‘S-continuous over [a, b]’ if

(∀stk)(∃stN)(∀stx, y ∈ [a, b])(|x− y| < 1/N → |f(x)− f(y)| < 1/k) (30)

35. Theorem. In ERNA, continuity, i.e. (14), implies S-continuity, i.e. (30), for
any internal f(x).

Proof. Assume that (14) holds for an internal function f(x). Fix k ∈ N and consider
the following internal formula Φ(n)

(∀x, y)
(
(‖x, y‖ ≤ ω ∧ |x− y| < 1/n)→ |f(x)− f(y)| < 1/k

)
.

By corollary [12, Corollary 53], the above formula is equivalent to a quantifier-free
one. By assumption, Φ(n) holds for all infinite n. Hence, by underflow, there is an
N ∈ N such that (∀n ≥ N)Φ(n). From this, (30) follows immediately. �

36. Theorem. In ERNA + Π1-TRANS, (30) implies (14) for near-standard func-
tions.

Proof. Let f(x) be a near-standard function which is S-continuous. Fix 1 < k ∈ N
and let N be such that

(∀stx, y ∈ [a, b])(|x− y| < 1/N → |f(x)− f(y)| < 1/k). (31)

By bar transfer, we obtain

(∀x, y ∈ [a, b])(|x− y| < 1/N → |f(x)− f(y)| / 1/k).

In particular, |f(x) − f(y)| / 1/k if x ≈ y. But k ∈ N can be chosen arbitrarily
large and hence f(x) ≈ f(y) if x ≈ y. �

The previous theorem has the interesting consequence that all the theorems we
obtained in the section ‘Mathematics without Transfer’ now follow for ‘continuous’
replaced with ‘S-continuous’ and ‘internal’ replaced with ‘near-standard’. Thus,
we know that Π1-transfer is sufficient to prove these theorems. In section 4, we
show that this transfer principle is exactly what is needed to prove many of these
theorems, i.e. Π1-transfer is also necessary.

For completeness, we note that in ERNA the formula (31) implies (14) for x and
y of weight at most some infinite ω1. This is easily proved via overflow in the same
way as in [12, Theorem 63]. Thus, ERNA proves the Intermediate value theorem
and the Brouwer fixed point theorem.

Next, we prove ERNA’s version of Σ1-separation (see [21, I.11.7 and IV.4.4]).
Although ERNA does not have set variables, we can simulate subsets of N in the
following way. Let (x)y be the function which calculates the power of the (y+1)-th
prime number in the prime decomposition of x. It is an easy verification that this
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function is available in ERNA. Thus, we write ‘m ∈ M ’ if (M)m > 0 and in this
way, subsets of N can be mimicked in ERNA (compare [16]).

37. Theorem (Σst1 -separation). For i = 1, 2, let ψi be formulas (∃stm)ϕi(m,n)
with ϕi ∈ Lst quantifier-free. If (∀stn)(ψ1(n) ∨ ¬ψ2(n)), then

(∃M)(∀stn) [ψ1(n)→ n ∈M ∧ ψ2(n)→ n /∈M ] .

Proof. Let ϕi and ψi be as stated. Define T (n) as true if (∃m ≤ ω)ϕ1(m,n) and
false otherwise. By [12, Corollary 52], the formula (∃m ≤ ω)ϕ(m,n) is equivalent
to a quantifier-free one. By [12, Theorem 50], the function T (n) is well-defined. It
is an easy verification that the function ‘pk = the k-th prime number’ is available

in ERNA. Now define the number M :=
∏ω
n=1 p

T (n−1)
n . Using Π1-transfer, it is an

easy verification that M has the right properties. �

Finally, we prove an upgraded version of the isomorphism theorem (see [23,
Section 6]) in ERNA + Π1-TRANS. This theorem states that for a finite set of
atomic internal propositions in ERNA’s language, we can replace each occurrence
of ‘ω’, ‘ε’ and ‘x ≈ y’ with, respectively, ‘n0’, ‘1/n0’ and ‘|x − y| < 1/b’ (for
some n0, b ∈ N) in such a way that the propositions remain true. We first prove
the isomorphism theorem and then discuss its philosophical implications. We also
discuss why definition 38 is natural in this context. The function logk n is defined
as (µm ≤ n)(2mk > n), where 2m0 = m and 2mk+1 = 22

m
k .

38. Definition. An ERNA-term τ(~x) is called ‘intensional’ if there is a k ∈ N such

that ERNA proves (∀~x)
[
‖τ(~x)‖ > logk

(
‖~x‖
)]

.

Intuitively, a term is intensional if ERNA proves that it grows faster than some
iteration of the logarithmic function. By theorem 40, non-intensional terms can
have strange behavior and hence they are excluded from the isomorphism theorem,
considered next. A closed intensional term is a term of the form h(~c) where h(~x) is
intensional and ~c is a tuple of constants.

39. Theorem. Let T be a finite set of closed intensional terms in the language of
ERNA, not including min and closed under subterms. There is a bijection f from
T to a finite set of rationals such that

(i) f(0) = 0, f(1) = 1 and f(ω) = n0, for some n0 ∈ N,
(ii) f(g(τ1, . . . , τk)) = g(f(τ1), . . . , f(τk)), for all non-atomic terms in T ,
(iii) τ ≈ 0 iff |f(τ)| < 1

b , for some n0 > b ∈ N,
(iv) τ is infinite iff |f(τ)| > b, for some n0 > b ∈ N,
(v) τ is hypernatural iff f(τ) is natural,
(vi) σ ≤ τ iff f(σ) ≤ f(τ).

Proof. Let T be as in the theorem and let D be the maximum depth of the terms
in T . Complete T with terms bτc for τ ∈ T , if necessary. By theorem [12, Theorem

30], there is a B1 ∈ N such that ‖h(~x)‖ ≤ 2
‖~x‖
B1

for all terms h in T . As all terms

in T are assumed intensional, there is a B2 ∈ N such that ‖h(~x)‖ > logB2(‖~x‖) for

all terms h in T . Let B be the maximum of B1 and B2 and add the term logB ω
to T if necessary.

Then, define Ψ as the conjunction of all true formulas N (τ), σ = τ and σ ≤ θ
with τ, σ, θ ∈ T . Let Ψ(m) be Ψ with all occurrences of ω replaced with the free
variable m. As ε = 1

ω , any occurrence of ε in Ψ is replaced with 1
m . By construction,

there holds Ψ(ω). As ω is infinite and 212DB is finite, this implies (∃m > 212DB)Ψ(m).
By Σ1-transfer, there holds (∃stm > 212DB)Ψ(m), i.e. there is a finite number m
such that m > 212DB and Ψ(m). Let m0 be such a number. Then, let f be any
map which maps ω to m0 and has property (ii). By construction, f satisfies (v)
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and (vi). To conclude, we show that f also satisfies (iii) and (iv). First of all, by
[12, Theorem 30], if τ ∈ T does not involve ω, then it satisfies ‖τ‖ ≤ 21BD and
hence τ must be finite. By contraposition, if τ ∈ T is infinite, it must involve ω.
Hence we have τ = σ(ω) for some term σ ∈ T . By assumption, bτc is also in T
and as all terms in T are intensional, we have |bσ(n)c| ≥ logB n. In particular, we
have, for τ > 0,

f(bτc) = f(bσ(ω)c) = bσ(f(ω))c = bσ(m0)c ≥ logBm0.

Thus, if τ > 0 is infinite, then f(bτc) ≥ logBm0, which implies f(τ) ≥ logBm0.

Hence, for all infinite τ ∈ T , we have |f(τ)| ≥ logBm0. Now assume that |f(τ)| ≥
logBm0 for some τ ∈ T . This yields |f(τ)| ≥ f(logB ω) and, by item (vi), there

holds |τ | ≥ logB ω. Thus, τ is infinite and we have proved item (iv) for b = logBm0.
As item (iv) implies item (iii), we are done. �

In comparison to [23], we removed the ‘reasonably sound’ condition from the
isomorphism theorem, which is a significant improvement (compare [23, Theorem
6.1]), and we formulated a correct proof. However, we added the ‘intensionality’
condition and it may not be clear why this condition is natural. We give several
arguments, both heuristic and formal. We work in I∆0 + exp because although
theorem 40 can be generalised to ERNA + Π1-TRANS, this is beyond the scope of
this paper.

First of all, the best-known example of a non-intensional function is log∗ n =
(µk ≤ n)(logk n ≤ 1). It can be computed that for n0 = 265536, which is larger than
the number of particles in the universe, log∗ n0 is at most five. Thus, for practical
purposes, log∗ n may be regarded as a constant function. The following theorem
makes this qualitative statement precise and more convincing.

40. Theorem. The theory I∆0 + exp cannot prove that the function log∗ x is un-
bounded, i.e. I∆0 + exp 6` (∀x)(∃y)(log∗ y > x).

Proof. Assume to the contrary that I∆0 + exp proves (∀x)(∃y)(log∗ y > x). By
Parikh’s theorem (see [5, Theorem 1.2.7.1]), there is a term t such that I∆0 + exp
proves the sentence (∀x)(∃y ≤ t(x))(log∗ y > x). As log∗ x is weakly increasing,
there follows that (∀x)(log∗(t(x)) > x). However, this implies that t(x) grows faster
than all 2xk, which is impossible. �

By completeness, there is a model of I∆0 + exp in which log∗ x is bounded.
From the point of view of logic, this model is ‘nonstandard’ and ‘exotic’. However,
given the slow-growing nature of log∗ x discussed above, we perceive this function
as constant or bounded above in the ‘real world’. Thus, this ‘exceptional’ model is
natural from the anthropocentric point of view. Since the isomorphism theorem is
intended to deal with models of physical problems, it seems reasonable to choose
a model of ERNA which corresponds to the real world, i.e. one where log∗ n is
constant. Another interpretation of theorem 40 is that since I∆0 + exp cannot
even prove that non-intensional terms are unbounded (whereas e.g. PRA can), we
might as well exclude such terms from the isomorphism theorem, as we cannot learn
anything about them in I∆0 + exp anyway.

We now discuss the philosophical implications of the isomorphism theorem.

First of all, it shows that the use of irrational numbers (and functions taking
such values) in physics is merely a convenient calculus tool. Indeed, let M be a
model of a (necessarily finite) physical problem P that involves irrational numbers.
We can approximate these numbers by hyperrationals with infinitesimal precision.
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After replacing the irrational numbers with these approximations, we apply the iso-
morphism theorem to obtain a modelM′ of P that only involves rational numbers.
We second Sommer and Suppes’ claim that ‘the continuum may be real for Pla-
tonists, but it can nowhere be unequivocally identified in the real world of physical
experiments.’ (see [23, Introduction]).

Secondly, the representation of physical quantities such as space and time as
continuous variables is called into question by the isomorphism theorem. Indeed,
by the latter, a discrete set of rational numbers already suffices to model a physical
problem and hence no physical experiment can decide the ‘true’ nature (discrete or
continuous) of physical quantities. The obvious way to avoid the previous ‘undecid-
ability’ result, is to simply state that one does not accept the isomorphism theorem
(or Π1-transfer) and hence one is not bound to its implications. We counter with
the following observation: by theorem 2 we know that Π1-transfer is equivalent to
the ‘continuity principle’ that ε-δ continuity implies nonstandard continuity. The
latter formalizes the heuristic notion of continuity, which is fundamental in the
informal reasoning inherent to applied sciences, especially physics. Thus, the con-
tinuity principle is inherent to physics and so is Π1-transfer. From the latter, the
isomorphism theorem follows. To the best of our knowledge, this is the first example
of an application of Reverse Mathematics to physics.

4. Reverse Mathematics and ERNA

4.1. A copy of Reverse Mathematics for WKL0. In this section, we prove the
equivalences between Π1-transfer and theorems of ordinary mathematics listed in
theorem 2. Most of the latter are derived from theorems equivalent to Weak König
lemma (see theorem 1 and [21]) by replacing equality with ‘≈’. Hence the Reverse
Mathematics for ERNA + Π1-TRANS is a ‘copy’ of the Reverse Mathematics for
WKL0, up to infinitesimals.

We also mention Strict Reverse Mathematics (SRM), recently introduced by
Harvey Friedman, which is ‘a form of Reverse Mathematics relying on no coding
mechanisms, where every statement considered must be strictly mathematical’.
Comparing the usual definition of continuity with [21, Definition II.6.1, p. 85], it
is clear that Reverse Mathematics uses significant coding machinery. In contrast,
ERNA can approximate most functions that appear in mathematical practice by
near-standard functions and bar transfer enables us to prove many well-known
results and the associated reversal, all with minimal coding. Thus, the Reverse
Mathematics of ERNA + Π1-TRANS is also a contribution to SRM.

4.2. Completeness. Recall theorem 33 which expresses that ERNA’s field is Cauchy
complete ‘up to infinitesimals’. Thus, in the context of ERNA, we refer to this the-
orem as the ‘Cauchy completeness principle’. We have the following theorem.

41. Theorem. In ERNA, Π1-transfer is equivalent to the Cauchy completeness
principle.

Proof. By theorems 9 and 33, the forward implication is immediate. To obtain the
reverse implication, assume the Cauchy completeness principle holds, let ϕ be as
in Π1-TRANS and assume ϕ(m) for m ∈ N. Let τ(n) be a near-standard Cauchy
sequence and define the sequence

σ(n) =

{
τ(n) (∀m ≤ n)ϕ(m)

n otherwise
.

By definition 3, σ(n) is also near-standard. By assumption σ(n) = τ(n) for n ∈ N
and hence σ(n) is also a Cauchy sequence. By Cauchy completeness, we have σ(k) ≈
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σ(k′) for all infinite k, k′. If σ(k) = k for some infinite k, then also σ(k+1) = k+1,
by definition. But then σ(k) 6≈ σ(k+ 1), which yields a contradiction. Thus, for all
infinite k, there must hold σ(k) = τ(k). By definition, this implies ϕ(m) for all m
and hence Π1-TRANS follows. �

4.3. Continuity and integration. Consider the following ‘continuity principle’.

42. Principle (Continuity principle). For near-standard functions, S-continuity
implies continuity, i.e. (30) implies (14).

43. Theorem. In ERNA, the continuity principle is equivalent to Π1-TRANS.

Proof. The reverse implication is immediate from theorem 36. Conversely, assume
the continuity principle and consider a quantifier-free formula ϕ of Lst, such that
ϕ(n) holds for n ∈ N. Let f be a near-standard S-continuous function on [a, b]. By
cases, we define the near-standard function

g(x) =

{
f(x) (∀n ≤ ‖x‖)ϕ(n)

‖x‖ otherwise
. (32)

For standard x, we have ‖x‖ ∈ N and (∀n ≤ ‖x‖)ϕ(n) holds by assumption. Hence,
for standard x, g(x) = f(x), the latter being a function S-continuous over [a, b].
Hence g(x) is S-continuous over [a, b] too and, by assumption, this implies that
g(x) is continuous over [a, b]. Now suppose there is an infinite k such that ¬ϕ(k)
and let k0 be the least number with this property. Fix a � x0 � b with weight
≤ k0. Assume k1 ≥ k0 is prime. By (13), ‖x0 + 1/k1‖ ≥ k1 and thus we have
g(x0 + 1/k1) = ‖x+ 1/k1‖, where the latter is infinite. But by assumption g(x) is
continuous, which implies g(x0) ≈ g(x0 + 1/k1), as x0 ≈ x0 + 1/k1. Since g(x0) =
f(x0), the latter is a finite number by corollary 14. This yields a contradiction and
hence ϕ(n) must hold for all n. This implies Π1-TRANS �

In the previous proof, ERNA’s weight function ‖x‖ is used not as a proof the-
oretic tool (as in the consistency proof of [23]), but as an ERNA-function that is
everywhere discontinuous. However, from the proof of the theorem, it is clear that
we could replace it by a function which has a jump in its graph for some a� x0 � b.
Indeed, in the proof, we only consider continuity in the point a � x0 � b. Thus,
the theorem still holds if we only require f to be continuous over (a, b) in the
continuity principle. We will refer to this as the ‘continuity principle’ too.

Now consider the following version of Weierstrass’ extremum theorem.

44. Principle (Weierstrass extremum principle). If f is near-standard and S-
continuous over [a, b], there is a number c ∈ [a, b] such that for all x ∈ [a, b],
we have |f(x)| / |f(c)|.

45. Theorem. In ERNA, the Weierstrass extremum principle is equivalent to
Π1-TRANS.

Proof. The reverse implication is immediate from theorems 12 and 36. Conversely,
assume the Weierstrass extremum principle and consider a quantifier-free formula
ϕ of Lst such that ϕ(n) is valid for all n ∈ N. Define g(x) as in (32). In the same
way as in the previous proof, g is S-continuous over [a, b] and by the Weierstrass
extremum principle there is a number c ∈ [a, b] such that |g(x)| / |g(c)|, for all
x ∈ [a, b]. Now suppose there is an n0 such that ¬ϕ(n0). By theorem 10, there
is an a � x0 � b with weight at least 1 + dmax{n0, |g(c)|}e. As ‖x0‖ > n0, this
implies (∃n ≤ ‖x0‖)¬ϕ(n) and by the definition of g, we have |g(x0)| = ‖x0‖.
But by the definition of x0, there also holds |g(x0)| = ‖x0‖ � |g(c)|. This is a
contradiction and hence ϕ(n) must hold for all n, which implies Π1-TRANS. �
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Note that the proof can be easily adapted to a weaker version of Weierstrass’
extremum principle where |f(x)| is only bounded by some M ∈ N for x ∈ [a, b].

Next, we treat Brouwer’s fixed point theorem. We need the following definition.

46. Definition. The point x0 is a ‘fixed point up to infinitesimals’ of f if f(x0) ≈ x0.

After theorem 36, it was noted before that in ERNA every S-continuous function
has a fixed point up to infinitesimals. As RCA0 proves the one-dimensional Brouwer
fixed point theorem, this supports our claim concerning the resemblance between
the Reverse Mathematics of WKL0 and that of ERNA+Π1-TRANS. However, the
following strengthening of Brouwer fixed point theorem is not provable in ERNA.

47. Principle (Uniform Brouwer fixed point principle). For every function f , near-
standard and S-continuous over [a, b], there is a fixed point up to infinitesimals of
arbitrary weight.

48. Theorem. In ERNA, the Uniform Brouwer fixed point principle is equivalent
to Π1-TRANS.

Proof. The reverse implication, is immediate from theorem 36 and the Brouwer
fixed point theorem. Conversely, assume the Uniform Brouwer fixed point principle
and consider a quantifier-free formula ϕ of Lst such that ϕ(n) is valid for all n ∈ N.
Define g(x) as in (32). In the same way as in the previous proofs, g is S-continuous
over [a, b]. Now suppose ¬ϕ(n0) for some infinite n0. By the Uniform Brouwer
fixed point principle, there is a point x0 ∈ [a, b] with weight at least n0 such that
g(x0) ≈ x0. If g(x0) equals ‖x0‖, there holds ‖x0‖ ≈ x0, which is obviously false.
Thus, we have g(x0) = f(x0), which implies (∀n ≤ ‖x0‖)ϕ(n), by definition. As
‖x0‖ ≥ n0, this yields ϕ(n0), which contradicts ¬ϕ(n0). Thus, ϕ(n) holds for all n
and we obtain Π1-TRANS. �

Finally, we consider the following principle concerned with Riemann integration.

49. Principle (Riemann integration principle). A near-standard function which is
S-continuous over [a, b], is integrable there.

50. Theorem. In the theory ERNA, the Riemann integration principle is equivalent
to Π1-TRANS.

Proof. The reverse implication is immediate from theorems 19 and 36. Conversely,
assume that the Riemann integration principle holds and consider a quantifier-free
formula ϕ of Lst such that ϕ(n) is valid for all n ∈ N. Let g(x) be as in (32). As
ϕ(n) is true for all n ∈ N, we have g(x) = f(x) for all standard x and hence the
Riemann integration principle applies to g. Overflow applied to (∀stn)ϕ(n) yields
(∀n ≤ ω1)ϕ(n) and hence g(x) = f(x) for all x such that ‖x‖ ≤ ω1. Then put
ω2 = bω1/2c and consider the equidistant partition with mesh 1/ω2 and points

ti = xi+1−xi

2 . As ‖ti‖ ≤ ω1, it is clear that g(ti) = f(ti) for 1 ≤ i ≤ ω2 and assume
the Riemann sum of f corresponding to this partition is the finite number S.

Now suppose there is a (necessarily infinite) hypernatural n0 such that ¬ϕ(n0).
By the definition of g(x), there follows g(x) = ‖x‖ if ‖x‖ ≥ n0. Then consider the

equidistant partition with mesh 1/n0 and points ti = xi+1−xi

2 . The corresponding
Riemann sum is easily calculated:

n0∑
i=1

g(ti)(xi − xi−1) =

n0∑
i=1

‖ti‖
1

n0
=

n0∑
i=1

2n0
1

n0
= 2n0.

By the Riemann integration principle, there holds S ≈ 2n0. Obviously, this is
impossible and the assumption that there is a number n0 such that ¬ϕ(n0) is false.
This implies Π1-TRANS and we are done �
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Theorem 43 suggests an alternative proof for the forward implication. Indeed,
assume the Riemann integration principle and suppose there are x0, y0 ∈ [a, b] such
that x0 ≈ y0 and f(x0) 6≈ f(y0). Assume x0 < y0 and fix an infinitely fine partition
π of [a, b] for which xi < x0 < y0 < xi+1 and x0 = ti for some i. Change π into π′

by putting y0 = ti. It is easily checked that the Riemann sums corresponding to π
and π′ differ a finite amount and we have a contradiction. Thus f is continuous on
[a, b] and theorem 43 implies Π1-transfer.

4.4. Integration and differentiability. Consider the following version of the
first fundamental theorem of calculus.

51. Principle (FTC1). Let f be near-standard and S-continuous on [a, b] and as-
sume F (x) =

∫ x
a
f(t)dt. Then F is S-differentiable on [a, b] and F ′(x) ≈ f(x) holds

for all a� x� b.

52. Theorem. In ERNA, FTC1 is equivalent to Π1-TRANS.

Proof. The reverse implication is immediate by corollary 30 and theorem 36. For
the forward implication, assume FTC1 and let f be as stated there. By FTC1, F (x)
is S-differentiable and hence F ′(x) is continuous, by corollary 24. Again, by FTC1,
the formula F ′(x) ≈ f(x) holds for all a� x� b and hence f(x) is also continuous
over (a, b). By theorem 43, this implies Π1-TRANS and we are done. �

Consider the following version of the Peano existence theorem.

53. Principle (Peano existence principle). Let f(x, y) be near-standard and S-
continuous on the rectangle |x| ≤ a, |y| ≤ b, let M be a finite upper bound for f
there and let α = min(a, b/M). Then there is a function φ, S-differentiable for
|x| < α, such that

φ(0) = 0 and φ′(x) ≈ f(x, φ(x)).

54. Theorem. In ERNA, the Peano existence principle is equivalent to Π1-TRANS.

Proof. The reverse implication is immediate by theorem 31 and theorem 36. For
the forward implication, we prove that the function φ′(x) is continuous in the same
way as for FTC1. Then it is immediate that f(x, φ(x)) is continuous over (a, b).
From this, Π1-TRANS follows in the same way as in the proof of theorem 43. �

4.5. Approximation and Bernstein polynomials. In this paragraph, we study
an ERNA-version of the Weierstrass approximation theorem. The latter is equiva-
lent to WKL over RCA0 (see [21, Theorem IV.2.5]).

55. Definition. For a function f , define the n-th Bernstein polynomial as

Bn(f)(x) :=

n∑
k=0

f(k/n)

(
n

k

)
xk(1− x)n−k.

56. Principle (Weierstrass approximation principle). Let f be near-standard and
S-cont. on [a, b]. Then Bm(f)(x) ≈ f(x) for all x ∈ [a, b] and infinite m.

57. Theorem. In ERNA, the Weierstrass approximation theorem is equivalent to
Π1-TRANS.

Proof. Assume Π1-TRANS. It suffices to prove the Weierstrass approximation
principle for [a, b] equal to [0, 1]. In [7], an elementary, rather tedious, proof of the
Weierstrass approximation theorem is given, based on Bernstein’s original proof.
This proof can easily be adapted to the context of ERNA to prove

(∀stk)(∃stN)(∀stn ≥ N)(∀stx ∈ [0, 1])
(
|Bn(f)(x)− f(x)| < 1/k

)
.
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Applying transfer to the innermost universal formula implies Bm(f)(x) ≈ f(x) for
all x ∈ [0, 1] and all infinite m.

Now assume the Weierstrass approximation theorem and let f be as stated there.
Its a technical verification that ERNA proves that Bm(f)(x) is continuous on [a, b]
for small enough infinite m. Since Bm(f)(x) ≈ f(x) for all x ∈ [a, b] and infinite
m, this implies the continuity of f on [a, b] and theorem 43 yields Π1-TRANS. �

4.6. Modulus of uniform continuity. In this paragraph, we study ERNA’s ver-
sion of the ‘modulus of uniform continuity’ (see [21, Definition IV.2.1]). The state-
ment ‘every uniform continuous function has a modulus of uniform continuity’ is
equivalent to WKL over RCA0 ([21, IV.2.9]). We use the following weaker defini-
tion. Indeed, our modulus depends on ‖x, y‖.

58. Definition. Let f be a function defined on [a, b]. A function h(k,m) is a
modulus of uniform continuity for f if for all m we have

(∀stk)(∀x, y ∈ [a, b])
[
‖x, y‖ ≤ m

∧ |x− y| < 1
h(k,m) → |f(x)− f(y)| < 1

k+1

]
, (33)

and h(k,m) is finite for finite k.

59. Principle (Modulus principle). Every near-standard function, S-continuous on
[a, b], has a modulus of uniform continuity.

60. Theorem. In ERNA, the modulus principle is equivalent to Π1-TRANS.

Proof. First, assume Π1-TRANS and let f be as in the modulus principle. Then,

(∀stk)(∃stN)(∀stx, y ∈ [a, b])
[
|x− y| < 1

N → |f(x)− f(y)| < 1
k+2

]
,

and by bar transfer

(∀stk)(∃stN)(∀x, y ∈ [a, b])
[
|x− y| < 1

N → |f(x)− f(y)| / 1
k+2

]
,

and also

(∀stk)(∃stN)(∀x, y ∈ [a, b])
[
|x− y| < 1

N → |f(x)− f(y)| < 1
k+1

]
.

Thus, for any fixed m, there holds

(∀stk)(∃stN)(∀x, y ∈ [a, b])
[
‖x, y‖ ≤ m ∧ |x− y| < 1

N → |f(x)− f(y)| < 1
k+1

]
.

By [12, Corollary 53], the innermost universal formula is equivalent to quantifier-
free formula. Then define h(k,m) as

(µN ≤ ω)(∀x, y ∈ [a, b])
[
‖x, y‖ ≤ m ∧ |x− y| < 1

N → |f(x)− f(y)| < 1
k+1

]
,

which is a suitable modulus.

For the forward implication, assume the modulus principle and let f be as stated
there. Then f satisfies (33) for some modulus h(k,m). Now fix x0, y0 ∈ [a, b] such
that x0 ≈ y0 and apply (33) for m0 = ‖x0, y0‖. This implies that f(x0) ≈ f(y0)
and hence f is also continuous over [a, b]. By theorem 43, Π1-TRANS follows and
we are done. �
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4.7. Conclusion. We concluded the proof of theorem 2 and we repeat our dictum.

The Reverse Mathematics of ERNA + Π1-TRANS is a ‘copy up to
infinitesimals’ of the Reverse Mathematics of WKL0.

However, one slight anomaly is present: the Cauchy completeness property is equiv-
alent to ACA over RCA0 ([21, Theorem III.2.2]), but ERNA’s version of Cauchy
completeness is equivalent to Π1-TRANS. In section 5, we give a possible explana-
tion for this phenomenon.

Finally, we note that the list in theorem 2 is not exhaustive. We point to [26]
where Keita Yokoyama proves the equivalence between WKL and Cauchy’s integral
theorem which states that a complex function f ∈ C1(Ω) satisfies the well-known
zero-law

∮
γ
f(z) dz = 0 for a sufficiently well-behaved closed curve γ ⊂ Ω. It

is beyond the scope of this paper to develop complex analysis in ERNA, but we
mention that Π1-TRANS is equivalent to an ERNA-version of the Cauchy integral
theorem with ‘approximate’ zero-law

∮
γ
f(z) dz ≈ 0.

Similarly the Jordan curve theorem is equivalent to WKL0 ([18]) and ERNA’s
version of this theorem would only imply that for every arc A(x) with endpoints
in the interior and exterior of the Jordan curve J(x), there is a point x0 such that
A(x0) ≈ J(x0). Thus, the Jordan curve and the arc only meet ‘up to infinitesimals’,
consistent with our dictum.

5. ERNA and Constructive Reverse Mathematics

In this section we speculate on the connection between the Reverse Mathematics
for ERNA + Π1-TRANS and Constructive Reverse Mathematics. We first briefly
introduce the latter.

Constructive mathematics ([2–4]) is described by Douglas Bridges as ‘that math-
ematics which is characterised by numerical content and computational method.’
([3, p. 1]). Thus, in constructive mathematics, the quantifier ‘(∃x)’ means ‘there is
an algorithm to compute the object x’. This is stronger than the ‘ideal’ notion of
existence in the sense of Plato used in classical mathematics. From the construc-
tive perspective, the law of excluded is suspect since it carries non-constructive
content and therefore it is excluded from constructive mathematics. Construc-
tive Reverse Mathematics studies equivalences between both constructive and non-
constructive theorems in a constructive base theory (see e.g. [14,15]). In the case of
non-constructive theorems, one of the goals is to find out just how much of the law
of excluded middle (or another non-constructive principle) is needed to prove such
a theorem. In this context, the following principle occurs in relation to Cauchy
completeness.

61. Principle (Σ1-PEM). For all quantifier-free ϕ, there holds

(∃n)ϕ(n) ∨ (∀n)¬ϕ(n).

In the previous, the existential quantifier ‘(∃n)’ means that ‘a number n can be
computed’. Also, Π1-transfer is equivalent to the following schema.

62. Principle (Σ1-TRANS). For all quantifier-free ϕ ∈ Lst, there holds

(∃stn)ϕ(n) ∨ (∀n)¬ϕ(n).

In this way, Σ1-TRANS is a form of ‘hyperexcluded middle’: it excludes the
possibility that (∀stn)ϕ(n) ∧ (∃n)¬ϕ(n). Not only does Σ1-transfer resemble Σ1-
PEM, we can also easily compute a witness to (∃stn)ϕ(n) by the number (µn ≤
ω)ϕ(n). Thus, we see that Π1-transfer has significant constructive content, similar
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to that of Σ1-PEM. As the latter is related to Cauchy completeness, it is no surprise
that Π1-transfer is also related to Cauchy completeness (see theorem 2.(8)).

We can take this analogy further by considering another principle from Con-
structive Reverse Mathematics related to Cauchy completeness.

63. Principle (Π0
1-AC00). For A ∈ Π1, we have

(∀m)(∃n)A(m,n)→ (∃α)(∀m)A(m,α(m)).

In constructive mathematics, this choice principle implies that every Cauchy
sequence has a modulus. In ERNA + Π1-TRANS, we have the following theorem.

64. Theorem (Countable Universal Choice). Assume A(m,n) is (∀stk)B(k,m, n)
with B ∈ Lst and quantifier-free. Then (∀stm)(∃stn)A(m,n) implies the formula
(∀stm)A(m,α(m)) for some nonstandard function α.

Proof. Let A(m,n) be as stated. By transfer, (∀stm)(∃stn)A(m,n) implies the
formula (∀stm)(∃stn)(∀k)B(k,m, n). This yields (∀stm)(∃stn)(∀k ≤ ω)B(k,m, n)
and the function α(m) = (µn ≤ ω)(∀k ≤ ω)B(k,m, n) is a suitable modulus. �

The previous theorem can be modified to be equivalent to Π1-TRANS.

65. Acknowledgement. I thank Professor Andreas Weiermann (University of
Ghent) and Professor Chris Impens (University of Ghent) for their valuable ad-
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