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In aquatic ecology, microorganisms play an important role
as primary producers and primary consumers. Determination
of their abundance and species composition is traditionally
done by microscopy, which has significant drawbacks. Many
microbial cells lack clear morphologically distinctive traits.
Moreover, cell preparation measures, such as filtering or stain-
ing, may damage cells, altering their morphology (Gieskes and
Kraay 1983). Smaller phytoplankton, especially picoplankton,
are recognized to contribute significantly to marine primary
production (e.g., Li et al. 1983; Platt et al. 1983), yet are diffi-
cult to determine microscopically and are easily overlooked
during cell counts.

If determination up to species level is not necessary, bio-
markers provide a powerful alternative to cell counts. In ecol-
ogy, these are molecules that exclusively or predominantly
occur in distinct species, taxonomic, or functional groups.
They can be used to identify and quantify broad taxonomic
groups when microscopic quantification fails or is considered
too time-consuming. A common method is pigment analysis
of water samples using high performance liquid chromatog-
raphy (HPLC), allowing determination of major phytoplankton

groups, typically up to class level (e.g., Cryptophyceae, Prasino-
phyceae, Bacillariophyceae). Lipid analysis using gas chro-
matography (GC) is another example, which also allows esti-
mating abundances of heterotrophic cells to a certain extent.
If a gas chromatographer is coupled to an isotope ratio mass
spectrometer, then also stable isotopes can be measured in
specific lipids making it possible to link identity with func-
tioning (Boschker and Middelburg 2002; Van Den Meersche
et al. 2004).

For biomarkers to be used as a quantification tool, they
have to meet several requirements. Within the considered
taxon, their concentration must be a reasonably constant frac-
tion of total biomass. Also, biomarkers should be short-lived,
or degrade rapidly after cell death, if they are to represent liv-
ing biomass. A third prerequisite, which is rarely met, is the
exclusive occurrence of a biomarker in one or a few taxa.
Biomarkers that are unique for one taxon can then be used
for quantification of this taxon. Examples are zeaxanthine for
cyanobacteria (Mackey et al. 1996), branched fatty acids for
bacteria (Gillan et al. 1981; Sargent et al. 1987), and ladder-
anes for Anammox bacteria (Damsté et al. 2002). However,
really unique biomarkers are rare, and more often taxa share a
number of biomarkers, or differ merely in the relative impor-
tance of various biomarkers. In this case, the whole spectrum
of analyzed compounds needs to be taken into account. Many
chromatography-based techniques provide such a spectrum of
compounds. Estimation of taxonomical composition from
these spectra of non-unique biomarkers is possible, although
not as straightforward as estimation from unique biomarkers.

The most well-known and widespread technique to estimate
microplankton composition from biomarker data in aquatic
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ecology is the CHEMTAX program (Mackey et al. 1996). It has
proven useful as a tool for estimating taxonomic composition
of phytoplankton solely from the pigment composition and
has been applied in different marine and lacustrine environ-
ments (Lionard et al. 2005; Llewellyn et al. 2005; Rodriguez et
al. 2002). It has been benchmarked against microscopic counts,
and in most cases, leads to acceptable estimates of phyto-
plankton composition. As the method is not restricted to
water samples or pigment data, it has been successfully
applied to sediments as well as to phospholipid-derived fatty
acids (PLFA) (Dijkman and Kromkamp 2006). The combina-
tion of pigment or lipid analysis and CHEMTAX is a suitable,
sufficiently accurate, and possibly time-saving alternative to
elaborate cell counts, which has been proposed as a monitor-
ing tool for phytoplankton bloom successions in coastal
ecosystems (Muylaert et al. 2006).

CHEMTAX not only estimates taxonomic composition, but
it also adjusts the taxon-specific biomarker ratios to obtain a
better fit to the data. This makes the result less sensitive to the
input values for the biomarker ratios and potential errors
therein. This was presented as an important feature of the
algorithm, and it was shown that even with input values devi-
ating significantly from the true values, the algorithm still
converged to the correct result.

However, in many cases, CHEMTAX has problems with
identifiability of biomarkers (Latasa 2007). On one hand, dur-
ing calculations, several local optima may be present, imply-
ing several mathematically viable solutions, and the algorithm
may select the wrong one. For this reason, it is recommended
to verify the results with microscopic observations of the same
sample. The user can then narrow the range in which ratio
values are allowed to vary and thus force the algorithm into
the direction of one single solution. On the other hand, if the
problem is underdetermined, several runs may end up in dif-
ferent results. The composition matrix is then unidentifiable.
Especially when direct observations of occurring taxa are not
available, it becomes hard to draw sensible conclusions from
the data. Latasa (2007) proposed iterative CHEMTAX runs to
improve convergence to one solution. He could show that in
many cases this is the correct solution, but exceptions remain.
Finally, CHEMTAX uses an optimization routine; it estimates
just one solution and does not allow estimating uncertainties
on the estimated composition.

In this paper, we propose a technique that tackles these
shortcomings. Instead of searching one optimal result, we use
prior knowledge on biomarker ratios and sampled data in
terms of probability distributions to assess the probability dis-
tribution of the sample compositions. This expected proba-
bility distribution, also called posterior probability distribu-
tion, is obtained with Bayesian inference, which involves
fitting a probability model to data (Gelman et al. 2004).
Although the fundamentals of this type of statistics were
established in the 18th century, mathematical difficulties in
calculating the posterior probability distribution postponed

its wide-range application until the second half of the 20th
century, when numerical solutions became possible thanks to
computers. Today, Markov Chain Monte Carlo (MCMC) algo-
rithms are widely available and can be used to sample the
posterior probability distribution numerically (Gilks et al.
1996). The result is a full, multidimensional posterior proba-
bility distribution of the parameters, that also describe rela-
tionships between parameters. The full posterior probability
distribution can be used to extract means, confidence inter-
vals, covariances, and maximum likelihood, as well as to rec-
ognize unidentifiable parameters.

In this paper, we first introduce the mathematical founda-
tions of the Bayesian Compositional Estimator (BCE) for taxo-
nomical determination based on biomarker profiles. This BCE
will be assessed and benchmarked against CHEMTAX. This
Bayesian method not only allows investigators to fully use
available data (prior information), but also provides uncer-
tainty estimates to the final outcome. In the discussion, we
then deal with identifiability, uncertainty, and some funda-
mental choices concerning the use of prior distributions in
Bayesian inference.

Materials and procedures
To formalize the problem of estimating compositions from

biomarker ratios and biomarker data, we define three matrices:
an input data matrix B containing biomarker ratios in (field)
samples, an input ratio matrix A containing the biomarker
ratios for several taxonomic groups, and an unknown compo-
sitional matrix X. Each row of A contains the biomarker com-
position of one taxon, while each row of B contains the bio-
marker composition of one sample. After solving the model,
each row of X will contain the taxonomic composition (the
relative proportion of a taxon) of each sample. All elements of
X are positive, and the row sum equals 1. The product of A and
X approximates or equals the data matrix B:

s is the number of samples, t the number of taxa, and b the
number of biomarkers. The mathematical core problem is the
estimation of X, given A and B. This is a multidimensional lin-
ear inverse problem. Three cases can be considered. If the
number of biomarkers is smaller than the number of taxa, the
problem has more unknowns (s ∗ t) than equations (s ∗ b), and
there exist an indefinite number of solutions (the problem is
underdetermined). If there are as many biomarkers as there are
taxa, and all matrix rows are linearly independent, a unique
solution X = BA-1 can be found, but this solution is not neces-
sarily positive-definite (all elements > 0). In general, one will
have more biomarkers than taxonomical groups. Then an
over-determined system is obtained, which can be solved with
a (constrained) least squares regression. The constraints are
that the elements of the compositional matrix X have to be
positive (inequalities), and they should sum to 1 for each sam-
ple (equalities). Different algorithms are available for solving

X A Bs t t b s b× × ×≅
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the over- and evenly determined problem, e.g., the LSEI algo-
rithm (Lawson and Hanson 1995). Recently, a method has
been devised to sample the solution space in case the problem
is underdetermined (Van den Meersche et al. in prep).

If the input ratio matrix A is known exactly, the above out-
line suffices to estimate X. However, natural variations in bio-
markers occur all the time: between species of the same taxon,
between strains, or even between individuals of the same
species. Physiological and/or environmental conditions influ-
ence the composition of an individual cell. Thus, the elements
of the input ratio matrix A are themselves uncertain. One way
to deal with this is to also treat the elements of the input ratio
matrix A as unknowns, which have to obey certain con-
straints. This is the procedure adopted in the CHEMTAX
method, where prior information about A is implemented as a
uniform distribution with boundaries set by a limitation
matrix, i.e., all the elements of A are assumed to be within
minimum and maximum ranges (Fig. 1a). The CHEMTAX
procedure then selects the optimal A and X matrices for
which the discrepancy between the product XA and the data B
is minimized in the least square sense, i.e., 
while conforming to the inequalities A > Amin and A < Amax
and the constraints for X.

Treating the uncertainty of the input ratio matrix A as a
uniform distribution implies random ratios within the speci-
fied range. Literature values for the ratio matrix are not ran-
dom but have a most likely value (the mean of the mea-
surements) and some accuracy (the standard deviation).

To take into account uncertainties in the ratio matrix A,
one can perform a least squares regression with uncertainties
for independent variables A as well as dependent variables B,
while X contains the regression parameters. An outline for
this method can be found in Tarantola (2005). Alternatively,
in the BCE algorithm, A is given a more realistic continuous
probability distribution function with an average value and a

standard deviation. Because both X and A are uncertain and
have to be estimated, the problem is not linear.

In the formalism of Bayesian inference (Gotelli and Ellison
2004), we distinguish the model parameters X and A, a model
M, which is the product XA, and a data series B. The rule of
Bayes for the conditional probability density is generally valid:

The left-hand side (probability of the parameters, given the
data) is the probability of interest, i.e., the probability of both
the elements of X and A, in view of the data B. In the right-hand
side, the probabilities of X and A are independent. The proba-
bility of the data given the parameters p(B|X,A), doesn’t depend
on the parameters directly but only on the model result M = XA.
Therefore, the rule of Bayes can be rewritten into:

Generally, the only prior information on X is that all ele-
ments have to be positive, and the row sums have to be equal
to 1. The prior probability of X can thus be considered con-
stant. Also, the probability of the data in absence of the
model, p(B), is constant. Thus, the combined posterior prob-
ability of the composition matrix X and the ratio matrix A
given the data B, is proportional to the product of the prior
probability of A, and the probability of B given the model
outcome M = XA:

A prior probability distribution of A can be provided as any
non-negative distribution with a given average and standard
deviation. The probability of the data B given the model out-
come, p(B|M), can also be estimated as a probability distribu-
tion depending on M.

Then we can calculate the posterior probability for each
given set of X and A from the prior probabilities of A and B.

p X,A|B p A p B|M( ) ∝ ( ) ( )

p X,A|B
p X p(A)p B|M

p(B)
( ) = ( ) ( )

p X,A|B
p(X,A,B)

p(B)
p(X,A)p(B|X,A)

p(B)
( ) = =

min XA B
2−( )

Fig. 1. Prior probability distributions of the ratio matrix A (a) and the data matrix B (b) in CHEMTAX (solid line) and BCE (dashed line).
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In BCE, the default implemented probability distribution for
A as well as B is a γ distribution. There are two main reasons for
this choice. First, all values of A and B must be positive, which
excludes symmetric distributions such as the normal distribu-
tion. Two, the presence of zeros or near-zeros in the data, makes
the lognormal distribution unsuitable, as it causes numerical
problems with values that are near zero. γ distributions
approach normal and lognormal distributions when standard
deviations become smaller, and approach exponential distribu-
tions when the modus becomes smaller. They can also easily be
expressed in terms of mean or modus and standard deviation.
The assumed prior probability distributions of A and B in
CHEMTAX and in the BCE are compared in Fig. 1.

The joint posterior probability distribution of the parame-
ters X and A is sampled numerically using a random walk. The
Metropolis-Hastings algorithm (Roberts 1996) generates sam-
ples of the parameter space (X and A) of which the distribu-
tion approximates this posterior probability distribution. The
algorithm starts with a chosen initial set of parameters: the
mean values of the input ratio matrix A and the least squares
regression solution for X. This initial set can be viewed as one
point in a multidimensional parameter space. From this
parameter point (X1,A1) and every accepted point (Xi,Ai) there-
after, a new point is drawn randomly from a jump distribution
that only depends on the last accepted point. This new point
is either accepted or rejected based on the following criterion:

Where jmp is the jump distribution (see below), r is a
random number sampled uniformly between 0 and 1, and
p(X,A|B) is estimated as in Eq. 1. After many iterations, the dis-
tribution of the accepted points approaches the true posterior
probability distribution of the parameters. The jump distribu-
tion can be any kind of distribution that selects a new point
only depending on the last point. However, this jump distri-
bution should be selected with care for optimal performance.
For A, a normal jump distribution is used, and for X, a Dirich-
let jump distribution. The Dirichlet distribution operates in a
standard simplex, see e.g., Aitchison (1986), and therefore,
ensures that every new randomly chosen X has a sum of 1 and
all parameters > 0.

Good mixing of the MCMC random walk, meaning that
the solution space has been thoroughly sampled, is an impor-
tant criterion for the validity of the parameter estimates.
Inspection of the MCMC output is a crucial step before accept-
ing results. If the parameters vary randomly during the
MCMC, without showing clear patterns, then the random
walk can be considered well-mixed. This was double-checked
by comparing runs with different initial conditions, which led
to comparable results. Mixing improved a lot when a fraction

of the ratio matrix standard deviation was used as jump length
matrix. One-hundred thousand iterations proved to be suffi-
cient for most model runs, whereas the longest model run
contained 1,000,000 iterations.

The BCE algorithm is implemented as a function in the
statistical environment R (http://www.r-project.org). It can
be obtained from the authors upon request and, will be
made available as an R-package from the R website. R is a
free software implementation of the S statistical program-
ming language. It offers a wide range of mathematical, sta-
tistical, and graphical techniques, and is comparable in
power and applicability to major software packages such as
Matlab and S-plus. Packages to assess convergence of the
MCMC procedure are available in R and can be applied to
the output of BCE.

Assessment
Two problems are frequently neglected in optimization

approaches: identifiability and uncertainty. Uncertainty origi-
nates from the accumulated inaccuracies in data points and in
the model. In Bayesian models, it is incorporated in the prior
probability distributions. These then result in uncertainties in
the parameter estimates, described in their posterior distribu-
tions. Identifiability has little to do with the quality of the
data, but a great deal with the model: some parameters are dif-
ficult or impossible to estimate accurately, either because the
model is underdetermined (see above), or because even small
uncertainties in the data lead to large uncertainties in the
result, due to the structure of the model.

Although Bayesian approaches have been incorporated
into ecological textbooks (Gotelli and Ellison 2004), the
approach is largely underexploited by the research commu-
nity. To illustrate the advantage of the BCE for assessing iden-
tifiability, we will work out a simple case of two taxa and three
biomarkers. A data sample (B) contains biomarker ratios
observed in an experiment:

The ratio matrix A1 contains proposed biomarker ratios in the
two taxa present in the sample:

Standard deviations are all set to 0.1. What is the expected tax-
onomic composition? In other words, what is the expected
probability distribution of the elements of the solution matrix
X = [X1 X2], with two components X1 and X2 = 1 – X1?

The system is overdetermined when solving the equation
XA1 = B and has only one best solution, bestX = [0.45 0.55].
However, due to the small differences in biomarker composi-
tion between the two taxa compared with the standard devia-
tions, the resulting estimate for X is almost completely unde-
termined (Fig. 2a). The 66% prediction interval (equivalent to
a mean ± standard deviation in a normal distribution) for X1 is

A = 0.3 0.7 0.4

0.2 0.8 0.6
1 ⎡

⎣
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⎤
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⎥
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[0.21 0.78], while the 66% prediction interval of a uniform
distribution between 0 and 1 would be [0.17 0.83] (the distri-
bution of X2 is of course the mirror image of the distribution
of X1). This demonstrates that if estimated errors on the data
are large compared with the differences in biomarker ratios
(e.g., pigment composition) of the considered taxon, a solution
can remain unidentifiable, even for an overdetermined system.

Now consider a different input ratio matrix, A2, where dif-
ferences in biomarker compositions between the two taxa are
more pronounced:

The solution with the highest probability is the same as for
previous case: bestX=[0.45 0.55]. However, the uncertainty
ranges are much smaller (Fig. 2b). The 66% prediction interval
for X1 is now [0.35 0.64].

Mackey et al. (1996) presented an input ratio matrix for a
Southern Ocean phytoplankton community, mainly based on
quantitative data from algal cultures. We use this same ratio
matrix to estimate compositions with the BCE, which should
ease comparison with results obtained with the CHEMTAX
method. An artificial data matrix B was produced by taking the
product of a random compositional matrix X, and the ratio
matrix A, and adding small perturbations (<5%). The original
compositional matrix is the expected result of the analysis.

Figure 3 shows pairwise scatter plots of the random walk
solutions of one sample (below diagonal), together with the
marginal probability distributions of the taxa (on the diago-
nal). Bayesian methods like BCE output a multidimensional
probability distribution. Marginal distributions and summary
statistics can then be inferred from this distribution. Groups of
organisms that cannot be properly quantified can also be
identified. It also illustrates another aspect of uncertainties in
a composition matrix (with a constant row sum of 1). The
MCMC random walk shows that while the estimates of the

proportion of most taxa are uncorrelated, the estimates for the
relative proportion of Cryptophytes and Haptophytes are
inversely correlated. These two taxa make up the bulk of the
composition of the sample, and have a larger range of uncer-
tainty. Because all other taxa are well-constrained and the sum
of all taxa is one, also the sum of Cryptophytes and Hapto-
phytes is well-constrained, and their distributions are
inversely correlated. Note however that this inverse correla-
tion originates from the model and does not imply an ecolog-
ical trade-off between these two taxa.

Posterior distributions of the ratio matrix (A) and the com-
position matrix (X) are determined by their prior distributions
and the distribution of the data. For the remainder of this sec-
tion, we discuss the consequences of prior distribution selec-
tion and sample size on the result. All samples are generated
based on the Southern Ocean phytoplankton community data
of Mackey et al. (1996), and using variable standard deviations
of the ratio matrix and data matrix.

In Fig. 4, we compare uninformative (uniform) and
informative prior distributions (γ distributions with a relative
standard deviation of 0.2) for the input ratio matrix. When
uninformative priors for the ratio matrix are used, the poste-
rior distribution of the ratio matrix and the composition
matrix are solely estimated based on the data. This is a situ-
ation that is comparable with the CHEMTAX algorithm. The
graphs in 4b show the results for runs including one sample.
In this case, large uncertainties in the composition estimates
(X) appear, even for small uncertainties on the data. This is
best understood by considering the number of unknowns
(all elements of X and all non-zero elements of A) compared
with the number of data points. There are simply not
enough constraints, and the problem remains underdeter-
mined. The inclusion of several samples in one run will raise
the number of constraints and make the problem overdeter-
mined. When 40 samples are included (Fig. 4d), the compo-
sitional uncertainties are lower and with reliable data (small

A = 0.3 0.7 0.1

0.2 0.8 0.9
2 ⎡
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Fig. 2. Identifiability: Posterior probability density function of the composition estimates of the first of two taxa with similar (a) and clearly distinct (b)
biomarker ratios. Identifiability problems occur when taxa have similar ratios (a).
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standard deviation), it is possible to infer compositions with
reasonable precision.

When informative priors are used for the input ratio matrix
A, and 40 samples are included per run (Fig. 4c), we observe
little or no difference in the posterior distribution of the com-
positional matrix X compared with uninformative priors for A
(compare Fig. 4c and 4d). This is due to the fact that the results
are completely determined by the data matrix B. The huge
amount of data (40 samples) weigh so heavily on the result
that the ratio matrix has only minor impact.

It is usually not advisable to include this many samples
in one analysis. By combining samples from different com-
munities, the obtained variability in the output ratio matrix
will reflect spatiotemporal variability in the community
properties. In other words, when including one sample in
the analysis, the posterior probability in the input ratio
matrix will reflect the uncertainty for this particular sample.
When more samples from a larger area are combined, the
uncertainty will also include the spatial and temporal
heterogeneity. This is illustrated in Fig. 4a and 4c. When

including 40 samples per run (Fig. 4c), uncertainty is high.
When we include only one (the first) sample in the analysis,
and use an informative prior probability distribution of the
ratio matrix A (Fig. 4a), we see that the composition matrix
X can be estimated with good accuracy. The taxonomic
composition is now a compromise between samples and
knowledge on biomarker ratios.

To analyze the combined effect of the informative prior dis-
tributions on the posterior distribution in more detail, a series
of model runs were performed with the same mean value for
ratio matrix and data matrix, but with different relative stan-
dard deviations (Fig. 5). One sample was included. Increases in
standard deviation in the ratio matrix as well as in the data
matrix are reflected in increased standard deviations in the
estimated composition matrix. However, these spreads have
little effect on the mean composition. The BCE mean compo-
sition is very similar to the composition which resulted from
a CHEMTAX analysis using the same data and ratio matrix.
Also the median of the ratio matrix did not deviate a lot from
the original ratio matrix. The slight discrepancy is due to a

Fig. 3. Results of the MCMC random walks in 1 sample of the Southern Ocean artificial data. Note the correlated distributions for cryptophytes and
haptophytes. Only 500 out of 5000 iterations are shown for clarity.
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difference in implementation. CHEMTAX uses rescaled input
matrices for data and biomarker ratios. BCE doesn’t rescale,
and therefore, can be applied with a combination of different
types of biomarkers. All the columns in the BCE data matrix
are thus independent, which is not the case in CHEMTAX.
Because CHEMTAX defines a normal distribution on rescaled,
dependent values and BCE defines distributions on the non-
rescaled, independent values, results are not exactly the same,
even when using the same distribution types.

Discussion
Traditional (or frequentist) and Bayesian statistics prima-

rily differ in the use of prior information. Ecology is one of
the fields where Bayesian inference only recently started gain-
ing popularity (Clark 2005). The lack of “plug and play” soft-
ware packages and the apparent complexity of Bayesian
applications often discourage researchers. However, ecologi-
cal data are notorious for not meeting assumptions for fre-
quentist models and for their complexity that goes beyond
the power of these simple models. The power of Bayesian
approaches lies exactly therein: fewer assumptions have to be
met, prior knowledge can be incorporated at will and the
hierarchical structure of Bayesian models allows analysis with

virtually any complexity. While unidentifiability in classical
approaches forces the use of over-simplified models, there is
no such need in Bayesian modeling (Omlin and Reichert
1999). As illustrated in the assessment, this turns out to be a
relevant feature when estimating compositions. The BCE
treats uncertainties and unidentifiabilities properly and
incorporates them into the solution. Monte-Carlo simulation
based correlation plots as shown in Fig. 3 guide the user in
identifying the groups of organisms that cannot be properly
quantified from a certain data set because of identifiability
problems. The BCE also provides uncertainty estimates
around the best estimates and thus fully embraces the vari-
ance inherent to natural communities.

The BCE has a great flexibility in its choice of prior proba-
bility distributions. If one is uncomfortable with defining
prior probabilities, uninformative (e.g., uniform) priors are an
attractive solution. Uniform priors for the ratio matrix in
combination with normal distributions for the data matrix
produce results that are equivalent to the results obtained
with a least squares method such as CHEMTAX. There are
some important consequences when using uniform distribu-
tions for the input ratio matrix. As shown in the assessments,
the final result for biomarker ratios and sample compositions

Fig. 4. Comparison of uninformative (uniform, b, d) and informative (a, c) prior distributions for the input ratio matrix. CHEMTAX results are presented for
comparison. Informative priors are γ distributions with a relative standard deviation of 0.2. The results obtained when including one sample (a,b) and 40 sam-
ples (c,d) are compared for different relative standard deviations for the prior distributions of the data matrix. Error bars indicate the 10% and 90% quantiles.
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will then mainly depend on the data. This implies that one
needs excellent quality data and a sufficiently large number
of samples to include in the run. Otherwise identifiability
problems will occur, uncertainty will be unbearably large, and
there will be poor recovery of the true composition in the
samples. Moreover, these samples need to be independent
and have distinct compositions. When there is a strong
dependence between samples, identifiability can remain an
issue. There is, however, an important ecological caveat for
the use of different independent samples in one run. When
combining samples, one assumes that the taxonomical
groups present in each sample have exactly the same bio-
marker composition. Composition of biomarkers, notably
pigments, is not uniform within higher taxonomical groups.
Besides interspecific variation, compositions may also vary
within one species due to differences in environment (tem-
perature, salinity, light, nutrients, etc.) (Jeffrey et al. 1997).
Hence, data from time series or transects should not auto-
matically be lumped together. For example, samples coming
from different salinities in an estuary will contain different
communities with unique species compositions and thus
unique biomarker ratios within the groups. In most cases, it
is therefore advisable to only consider a few samples per run.
This has the additional consequence that attempts to esti-
mate biomarker ratios from field data should be discouraged,
unless this is the goal of the study and sampling is performed

accordingly. In that case, one may also include well-constrained
priors for the taxonomical compositions using microscopy or
other techniques. These priors are then used as input for the
model, and the biomarker ratios are estimated from bio-
marker data and taxonomical compositions.

In general, we have more information on biomarker ratios
than simple min-max bounds; prior information is available
as mean ± standard deviation in particular for pigment or lipid
composition of phytoplankton species (Ahlgren et al. 1990,
1992; Bourdier and Amblard 1987; Jeffrey et al. 1997; Reuss
and Poulsen 2002; Vera et al. 2001; Volkman et al. 1989). One
can formulate input probability distributions of biomarker
ratios from literature or from experimental data. This
approach avoids the identifiability problems that occur with
uninformative priors and small sample sizes. At the same time,
it makes good sense statistically. Instead of first pretending
that no prior information is available and then adapting the
prior distribution post-analysis to obtain an “acceptable”
result (the approach adopted by CHEMTAX users), it is statis-
tically more sound to use all available information prior to
analysis. The result is then a probability distribution of the
solution, reflecting the available statistical knowledge. If the
information provided for the biomarker ratios is not compati-
ble with the data, the maximum likelihood result will find a
compromise between the probability of the ratio matrix and
the probability of the data. The deviation of this maximum

Fig. 5. Estimated compositions based on CHEMTAX and BCE using different relative standard deviations for prior distributions of ratio matrix and data
matrix. Means were the same for all distributions. Absolute standard deviations were set to 0.001. Relative standard deviations were varied. Error bars
indicate the 10% and 90% quantiles.
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likelihood solution from the prior biomarker ratios and the
data can be used to verify post-hoc the proposed standard
deviations in the prior probability distributions.

Comments and recommendations
There is one important challenge in the use of Bayesian

inference, involving the Markov Chain Monte Carlo algo-
rithm. This algorithm uses predefined probability distribu-
tions to find new random solutions. These jump probabilities
determine the efficiency of the algorithm. It is often necessary,
also for BCE, to adjust parameters for these distributions in
order to limit calculation time. For most problems, we envis-
age that the default settings will be adequate; however, for
applications that differ significantly from the default, we sug-
gest the procedure proposed by Raftery and Lewis (1996) as a
starting point.

The BCE has been developed to estimate microbial taxon-
omy based on pigment or lipid compositional data, or on a
combination of both. However, the approach is generic and
can be used for other compositional estimation problems as
well. For instance, combined with isotope labeling of pig-
ments or lipids, it can be used to estimate the growth rate of
phytoplankton groups. Many organic contaminants are ana-
lyzed with chromatographic techniques and certain pollu-
tion sources have characteristic ratios. The BCE may prove
useful to estimate the contribution of different potential
pollution sources to aquatic systems or organisms. Nucleic
acid–based fingerprinting methods such as T-RFLP and
DGGE are used extensively in microbial ecology. Provided
that the output patterns of these techniques can be linked
quantitatively to the studied microbial communities and
taxa, there might be a use for BCE in quantifying composi-
tions of bacterial communities.
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