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Abstract 

The rapid evolution of information and positioning technologies, and their increasing adoption in 

tourism management practices allows for new and challenging research avenues. This paper presents 

an empirical case study on the mining of association rules in tourist attraction visits, registered for 15 

days by the Bluetooth tracking methodology. This way, this paper aims to be a methodological 

contribution to the field of spatiotemporal tourism behavior research by demonstrating the potential 

of ad-hoc sensing networks in the non-participatory measurement of small-scale movements. An 

extensive filtering procedure is followed by an exploratory analysis, analyzing the discovered 

associations for different visitor segments and additionally visualizing them in ‘visit pattern maps’. 

Despite the limited duration of the tracking period, we were able to discover interesting associations 

and further identified a tendency of visitors to rarely combine visits in the center with visits outside 

of the city center. We conclude by discussing both the potential of the employed methodology as 

well as its further issues. 
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1. Introduction 
Movement represents a key aspect of tourism, both in order to reach a certain destination from an 

individual’s habitual environment and to move around within that tourist destination. As a 

consequence, many research efforts have focused on the spatiotemporal behavior of tourists in 

order to inter alia optimize tourist infrastructure, for marketing incentives, and to better manage the 

impacts of tourist mobility on the environment (Shoval & Isaacson, 2009). Due to the complex nature 

of tourism (McKercher, 1999), there is a growing need for empirical movement data to accompany 

theoretical models. Yet, empirical studies into tourist mobility have traditionally been rather scarce 

due to the labor-intensive and often expensive nature of traditional methods such as direct 

observation (Hartmann, 1988) or personal interviews (Kemperman, Borgers, & Timmermans, 2009). 

Space-time diaries (Connell & Page, 2008; Janelle, Goodchild, & Klinkenberg, 1988; Lau & McKercher, 

2006) shift some of the weight away from the researchers but are often characterized by a low 

reliability as respondents tend to forget or neglect to register certain activities. Recently, however, 

tracking technologies offer a more scalable and objective way to capture spatiotemporal behavior in 

a detailed way (Shoval & Isaacson, 2009). The use of global navigation satellite systems – such as GPS 

– is currently the dominant approach and its adoption in tourism research through the distribution of 

logging devices is well-documented (Shoval & Isaacson, 2007a, 2007b; Shoval, McKercher, Ng, & 

Birenboim, 2011; Tchetchik, Fleischer, & Shoval, 2009). An alternative approach is to track the 

movement of mobile phones through a cell tower network without the direct participation of the 

phone’s owner (González, Hidalgo, & Barabási, 2008; Ratti, Pulselli, Williams, & Frenchman, 2006). 

Particularly in Estonia, this method has already been extensively used for studying regional 

movement patterns of tourists (Ahas, Aasa, Mark, Pae, & Kull, 2007; Ahas, Aasa, Roose, Mark, & Silm, 

2008). 

Despite the undeniably important contribution of both tracking methodologies to the research field, 

we argue that both approaches have certain limits. The distribution of logging devices necessitates 

the direct collaboration of the tracked individual. This makes it hard to scale up the methodology to 

large groups of individuals. Additionally, any participatory methodology presents a risk for self-

selection bias where individuals with certain characteristics would show a higher degree of 

cooperation and thus be overrepresented in the sample. While the use of smartphone apps for 

tracking tourist movements – e.g. through shared user-generated content such as pictures 

(Jankowski, Andrienko, Andrienko, & Kisilevich, 2010) – may decrease some of the intrusive nature in 

comparison with the use of logging devices, it still represents a participatory methodology with an 

inherent risk for bias and data sparseness in some locations. Finally, GPS technology is not applicable 

to indoor contexts. Cell phone tracking, on the other hand, encompasses other limitations. First, the 



3 

spatial accuracy of the method is limited by the density of cell towers over the study area. In Estonia, 

for example, around 50% of measurements were correct to within only 400 meters in urban areas 

and only 2600 meters in rural areas (Ahas, Laineste, Aasa, & Mark, 2007). While this does not hinder 

the study of regional movements, it does pose a problem when studying movement within a certain 

tourist destination (e.g. a city). Second, these datasets are property of mobile operators and – as 

such – not freely available. In summary, it seems that small-scale spatiotemporal behavior cannot be 

measured without the direct involvement of the individual to be tracked. This hinders studying larger 

groups of individuals. 

A recent alternative in the non-participatory tracking of mobile phones is the use of ad-hoc sensor 

networks distributed over a study area. Bluetooth technology, for example, has already been 

employed for studying pedestrian flows at mass events (Delafontaine, Versichele, Neutens, & Van de 

Weghe, 2012; Stange, Liebig, Hecker, Andrienko, & Andrienko, 2011; Versichele, Neutens, 

Delafontaine, & Van de Weghe, 2012; Versichele, Neutens, Goudeseune, Van Bossche, & Van de 

Weghe, 2012) and in social studies (Eagle & Pentland, 2005). WiFi (Bonné, Barzan, Quax, & Lamotte, 

2013) and RFID (Öztayşi, Baysan, & Akpinar, 2009) technology provide similar possibilities. Due to the 

limited coverage of each sensor, a careful deployment of sensors may thus provide movement 

records with a granularity that is much smaller than the accuracy level of cell phone tracking data. By 

deploying sensors with these wireless technologies at a set of pre-defined tourist locations, one is 

able to study the spatiotemporal behavior at and between these locations. Despite this potential in 

the non-participatory registration of small-scale movements, we have as yet no indication of the 

application of the methodology for tourism management purposes.  

This paper aims to address this issue by presenting a case study where visitors to tourist attractions 

in Ghent, Belgium were registered through an ad-hoc Bluetooth sensor network. Due to the novelty 

of Bluetooth technology – and the use of ad-hoc sensing networks in general for that matter – we 

will not only elaborate extensively on the working principle of the methodology, but also on the 

analytical potential of such tracking data. Ad-hoc sensor network data lack the typical socio-

demographic or psychographic variables used as explanatory factors in various studies related to 

tourism behavior. In contrast with hypothesis testing procedures, sensor network data often need to 

be investigated without any a priori assumptions. The collection of such methods that can be used to 

discover (non-trivial) patterns and knowledge from large data sets is called data mining (Fayyad, 

Piatetsky-Shapiro, & Smyth, 1996). Several data mining techniques have already been frequently 

applied to tourism data, including regression techniques (Song & Li, 2008; Witt & Witt, 1995), 

clustering (Bloom, 2005; Cini, Leone, & Passafaro, 2010; Dolničar & Leisch, 2003; Dolničar, 2004; 

Tchetchik et al., 2009), sequential pattern mining (Orellana, Bregt, Ligtenberg, & Wachowicz, 2012; 

Shoval & Isaacson, 2007a), and classification (Law & Au, 2000; Law, Bauer, Weber, & Tse, 2006). 

Association rule learning is concerned with discovering associations between variables without fixing 

the output variable, as is the case in classification. In comparison with the other techniques, 

implementations of association rule learning in tourism research are rather scarce. Documented 

applications found in literature include tourism product development (Al-Salim, 2008; Liao, Chen, & 

Deng, 2010), domestic tourist profiling (Emel, Taskin, & Akat, 2007), sharers and browsers of touristic 

websites (Rong, Vu, Law, & Li, 2012), and change and trend identification in Hong Kong outbound 

tourism (Law, Rong, Vu, Li, & Lee, 2011). 
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This paper aims to be a methodological contribution to the field of spatiotemporal tourism behaviour 

research by demonstrating the potential of ad-hoc sensing networks in the non-participatory 

measurement of small-scale movements. We describe a case study where visitors to 14 tourist 

attractions were registered through Bluetooth technology sensing the mobile devices they were 

carrying around. In an attempt to investigate the analytical potential of the resulting data, we employ 

an association rule learning algorithm to mine for ‘interesting’ patterns in the combinations of visits 

to different attractions (in the sense that they represent potentially valuable information which 

would be hard to discover in another more straightforward way). As the tracking data are completely 

anonymous, it is impossible to directly distinguish between local visitors and actual tourists as 

defined by the World Tourism Organization: people “traveling to and staying in places outside their 

usual environment for not more than one consecutive year for leisure, business and other purposes” 

(World Tourism Organization, 1995). By deploying sensors in 14 hotels, however, some visitors will 

be identified as hotel guests therefore giving a strong suggestion that they are indeed tourists. Extra 

context is added by tracking visitors at the tourist inquiry desk as well. Combining the tracking data 

with these contextual assumptions, we will investigate patterns for different visitor segments (e.g. 

those that were only detected on one day, those that were identified as hotel guests, etc.). For the 

sake of clarity, we will always use the term visitors instead of further labeling them as tourists.  

The remainder of the paper is organized as follows. In section 2, we first discuss the Bluetooth 

tracking methodology and its specific implementation in the case study (2.1). Next, we describe 

association rule learning in more detail (2.2) and how the information it generates can be 

summarized in visit pattern maps (2.3). Section 3 outlines the filtering of the raw tracking data in 

detail, and section 4 presents a first data exploration. The actual association rule mining is performed 

for the different visitor segments in section 5. We finish with a discussion and conclusion (6). 

2. Methods and data 

2.1. Bluetooth tracking 

For this study, scanners with Bluetooth sensors were deployed at 29 locations in and around the 

historical center and the ‘arts quarter’ of Ghent (Belgium) for 15 days in May of 2012. Ghent was 

chosen as the study area because of its rather unique touristic character: despite its wealth of 

attractions and historical significance, it was once described as “Belgium’s best kept secret” (Lonely 

Planet, 2011) due to the nearby presence of better known destinations such as Bruges. As a result, it 

attracts a more diverse (and probably less predictable) audience, which makes it an intriguing yet 

challenging test bed for the suggested approach. Additionally, some of its attractions are located at 

considerable distances from the historical center and the tourism department was very receptive to 

any methodology which could offer additional insights in the visiting behavior over the entire city. 

An overview of the study area and the sensor locations is given in Figure 1. The full names of the 

different venues are shown in Figure 4. The locations consist of fourteen hotels (a-n), three open (1-3) 

and eleven of the most visited closed (4-14) tourist attractions, and the inquiry desk for tourists. We 

make the distinction between open and closed attractions based on the need for visitors to either 

buy a ticket or register. The open (i.e. no registration required) attractions consisted of a cathedral, a 

church and an indoor market. All closed attractions were museums, covering a wide range of 

interests such as classic/modern arts, history, textiles, and the former ‘Castle of the Counts’. In 2012, 
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these fourteen selected attractions were responsible for around 76% of the total number of visits to 

all attractions in Ghent. The hotels comprised the entire range of common classes and price-ranges: 

one hotel without stars (a), one *- (b), two **- (c-d), four ***- (e-h), four ****-hotels (i-l), and two 

hostels (m-n). Together, these fourteen hotels contained 67% of the total number of available beds 

in the city. 

The Bluetooth scanners continuously searched for discoverable Bluetooth devices within their 

detection range, and registered the MAC address and COD (class-of-device) code of each detected 

device together with the detection timestamp. The MAC address acts as a unique identifier of the 

detected device, and can be used to link different detections (at different locations) to the same 

device and thus generate trajectories. The COD code can be used to deduce the type of device 

(phone, car kit, mp3-player, etc.). More details on the Bluetooth tracking methodology and the 

deployed hardware can be found in a previous study (Versichele, Neutens, Delafontaine, et al., 2012). 

All Bluetooth sensors used were Class 2 devices, which have a theoretical communication range of 

around 10 meters according to the official Bluetooth specifications. The actual detection range of 

Bluetooth sensors, however, largely depends on the environment and the presence/absence of a 

line-of-sight between the sensor and the detected device. As such, the exact location of each sensor 

was chosen by balancing the need for an optimal position (in order to only detect devices inside the 

attraction or hotel) and the sake of convenience (i.e. the presence of a power supply). All Bluetooth 

scanners were connected to the internet (18 wired, 11 wireless) in order to facilitate the remote 

monitoring of their correct operation. 

As a first generalization of the detection data, each scanner concurrently generated a compressed log 

format where successive detections of the same device within 10.24 s of each other were 

compressed into detection intervals. This duration corresponds to the standard Bluetooth inquiry 

time (Peterson, Baldwin, & Kharoufeh, 2006). The difference between the detections and the 

resulting detection intervals is illustrated in Figure 2. The resulting dataset, hereafter referred to as 

the raw data, consisted of 17,496 Bluetooth devices being detected over 235,597 time intervals over 

all locations. As tracked individuals were not approached, no additional socio-demographic or other 

variables were present in the dataset. The owners of the detected devices thus remain completely 

anonymous, and were in fact not aware of being part of a scientific study. In previous experiments, 

we observed that around 8% of a general public is traceable through a detectable Bluetooth device 

with the class ‘phone’ by comparing manual head counts with tracking data at the same location over 

periods of five to fifteen minutes. We will use this figure to provide a rough approximation of the 

number of detected individuals based on the number of detected phones. We continue this chapter 

by describing the association rule learning method.  

2.2. Association rule learning 

Association rule learning represents a popular data mining method for discovering interesting 

relationships between variables in large databases. Adhering to the original definition (Agrawal, 

Imieliński, & Swami, 1993), an association rule can be defined as     with       and 

     . The itemsets   and   are called antecedent and consequent respectively. The total 

itemset   in this study consists of the fourteen attractions:             . The database of 

transactions can be formalized as                with each transaction     . Note that the 

general notion of a transaction is borrowed from the domain of market basket analysis (Chen, Tang, 

Shen, & Hu, 2005), but consists of an unordered set of locations visited by a Bluetooth device  . The 
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time ordering of visits is thus ignored, which distinguishes the method from sequential pattern 

mining. The rules are generated by the Apriori algorithm (Agrawal & Srikant, 1994) with the arules 

package (Hahsler, Chelluboina, Hornik, & Buchta, 2011) in the R (2.14.0) statistical environment.  

Three measures are used to compare rules: support, confidence and lift. The support of a rule is a 

measure of the share of tracked individuals to which the rule applies:              , with 

the support of an itemset   (in this case      ) defined as the proportion of transactions in the 

dataset which contain the itemset:                     . The confidence of a rule is a 

measure of the probability of its consequent given its antecedent:                   . The 

lift of a rule is a measure of its support compared with the support that can be expected if   and   

were independent:                          . As this measure indicates whether a 

rule’s support is lower, similar or higher than would be expected if   and   are assumed 

independent, it is often used as the primary measure for the interestingness of a rule. In other words, 

rules with a higher lift indicate a stronger association between antecedent and consequent than 

what could be predicted based on the frequency of the items separately and are thus potentially 

more informative and valuable. In order to further clarify these concepts, Table 1 shows an 

illustrative example of transactions (visitors) being constituted of visits to four of the main tourist 

attractions in Paris. Say, the following rule is generated: 

                                     . The support of this rule would be the share of 

visitors that visited all three attractions:          . Its confidence would be its support divided 

by the support of its antecedent:                       . The lift would be calculated as 

follows:                            . To limit the number of generated rules and enhance 

interpretability, the following constraints were used for the Apriori algorithm:       ,        

and         (in order to filter out rules with an empty antecedent). This way, rules needed to 

be supported by at least 5 tracked individuals or roughly 60 individuals taking the detection ratio of 8% 

into account. We finish this chapter with more details on how we will present the information 

extracted from this data mining method. 

2.3. Visit pattern maps 

A correct dissemination of patterns or knowledge discovered through data mining is essential. The 

output of this specific case study should be tailored for all stakeholders involved in the tourism 

management of the study area. Association rule learning methods are known to generate large 

amounts of rules, and the selection of those rules with a higher relevance to the research question is 

a non-trivial task. Several approaches in visualizing association rules, in contrast with the classical 

tabular representation, have already been documented. These include the use of scatter plots and 

matrix-based visualizations (Hahsler & Chelluboina, 2010), graph-based representations (Appice & 

Buono, 2005), parallel coordinate plots (Bruzzese & Davino, 2003; Yang, 2005), 3D volumes 

(Compieta, Di Martino, Bertolotto, Ferrucci, & Kechadi, 2007), or others (Techapichetvanich & Datta, 

2005). As a way of summarizing the gathered knowledge on tourist attraction visits of a specific 

segment of individuals, we introduce an alternative approach called a ‘visit pattern map’. This map is 

a geographical depiction combining two types of information: the spatial distribution of visits over 

the study area, and the association (combination) of visits to different attractions. The spatial 

distribution of visits is visualized by proportionally sized circles showing the share of tracked 

individuals that visited each attraction. The association between the different attractions is visualized 

by means of lines connecting different attractions. We believe that a geographical depiction of 

association rules will enhance the interpretability, in contrast with the traditional tabular fashion of 
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representation. In order to avoid cluttering, we only visualize rules with single-item antecedents. This 

way, rules are only associated with one item in both the antecedent and consequent. Rules can now 

be represented by a single line connecting two attractions at their geographical location. Although it 

could be possible to include all three indicators in the visualization, we opt to neglect the confidence 

as it is known to be biased by frequent items in the consequent (Tan, Steinbach, & Kumar, 2005). 

Including it would additionally clutter the visualization as it is the only measure which is not 

symmetrical for the case of two-item rules (             ,              ,     

         ). The support of a rule is linked to the width of the line, the lift is represented by a 

discontinuous color scale. Rules with higher lift values are plotted after (above) rules with lower lift 

values, making the former easier to identify. The visit pattern maps generated for this dataset are 

shown in Figure 7 and Figure 8. 

3. Filtering 
As mentioned above, nothing was known on the individuals carrying the detected Bluetooth devices. 

Before analyzing the dataset for associations between the different attractions, we needed to make 

sure we know whether devices detected at a certain attraction represented actual visitors or 

individuals that merely passed the location (either because of a sensor with a detection range that 

was too large, because these individuals physically approached a registration desk but only for 

information purposes, or in the case of staff). Analogously, we needed to distinguish between actual 

hotel guests and detected individuals with other purposes (hotel staff, restaurant guests, convention 

attendees, browsers, etc.). In order to make this distinction, we applied a progressive filtering 

process on the set of detected Bluetooth devices at each location. The filtering was based on a 

combination of three parameters: the type of device (accessible through the COD code), the duration 

of visit (  ) to a location and the duration of presence (  ) at a location. By taking the device type 

into account, we could filter on ‘phones’ and remove all other classes that do not represent a moving 

individual including carkits, printers, etc. The duration of visit was calculated as the time difference 

between the very first and very last detection of a device at the corresponding location. In contrast, 

the duration of presence is the duration that a device was actually detected by the sensor of that 

location (after merging of co-located detection intervals, i.e. intervals that were less than one minute 

apart). This way, a device that was detected at a location from 20:35 until 20:42 and from 08:32 until 

08:35 the next morning would have a duration of visit    of 12 hours and a duration of presence    

of 10 minutes. The concepts of dv and dp are further illustrated in Figure 2. 

For most locations, we received actual visitor/guest counts for the 15-day tracking period (  ). By 

taking the detection ratio of 8% ( ) into account, we could estimate the number of visitors that 

should have been tracked at each location as such:               . Where available, we could 

compare these figures with the actual number of detected devices (  ) that remained after each 

successive filtering step. The ratio          could then act as a reference for stating when the 

filtering process had reached an appropriate end point (   ). The limits imposed on    and    

were chosen by heuristic common sense linked to the type of venue. As such, we describe the 

filtering for the group of hotels, open attractions and inquiry desk, and closed attractions separately. 

Figure 3 represents a graphical overview of the filtering process. In the remainder of the paper, all 

visitor counts will refer to detected visitors (  ) unless otherwise stated. 
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As can be seen in Figure 3a, the number of unfiltered devices detected at most hotels significantly 

exceeded estimates based on guest counts (with hotels e, i and k being the extremes with     ). 

Only hotels a and d seemed to represent a set of devices with an acceptable size without any filtering. 

A constraint on phones caused a moderate decrease in   for all hotels, but a significantly larger 

decrease in hotel c. Further investigation indicated this sensor’s range overlapping with a nearby 

parking lot, causing an overrepresentation of devices associated with vehicles (28% vs. 7±4% for all 

other hotels). The subsequent filtering steps were based on   . Setting the lower limit to one hour 

clearly removed the largest share of noise from the dataset, but common sense dictates that a visit 

to a hotel should range from at least 8 hours (a guest checking in at night, and checking out early 

next morning), up to a reasonable maximum number of days (in order to filter out hotel staff, 

subcontractors, etc.). The upper limit was fixed at 5 days, which is still rather conservative compared 

to the average duration of a visit in Flanders of 2,43 days (Toerisme Vlaanderen, 2012). After filtering 

on the visit duration, all hotels except hotels e, i and k were now associated with sets of devices that 

corresponded with or were slightly smaller than the estimations. For these three hotels, a further 

filtering on the actual duration of presence yielded acceptable sets when the lower limit was set at 

one minute. The detection of individuals frequently passing these hotels or their registration desks 

over several days is the most probable reason for the necessity of this extra filtering step. We opted 

to apply this additional filtering solely on these three hotels, because it caused a significant 

additional decrease in four other hotels. 

For the three open attractions and the tourist inquiry desk (Figure 3b), no visitor counts were 

available and the filtering was based on a conservative minimum visit duration of 10 seconds. This 

choice may seem arbitrary, but was made on the notion that some of these attractions are known to 

serve as passageways for general movements throughout the center. A further distinction between 

individuals merely glancing at the attraction, and purposeful visits will not only necessitate further 

data but also entails a semantic discussion on how to define a ‘visit’ to such a location. 

The filtering for the closed attractions was again based on a combination of the constraint to phones, 

duration of visit, and the duration of presence. The heuristic lower and upper limits of the visit 

duration were now set to 15 minutes and 5 hours respectively, thus filtering out inquirers and 

museum staff. Figure 3c shows that all but four attractions reached an acceptable   value after 

filtering on    alone. As with the hotels, a further filtering on the duration of presence (minimum of 

1 minute) was necessary for the remaining venues. Only attraction 9 was associated with a device set 

that was still somewhat larger than would be expected after this filtering (     ). In absolute 

numbers, the difference seems less pronounced (      vs.       ). As the lower limit on    

would need to be set at nearly 5 minutes, we chose to stop the filtering and accept one device set 

that was slightly larger than expected. The nearby presence of a bar associated with the museum 

(the visitors of which could be tracked but are not included in the visitor counts) might have caused 

this anomaly. 

4. Data exploration 
As a summary of the progressive filtering process, the size of each filtered device set associated with 

all covered locations is depicted in Figure 4. The filtered sets can now be aggregated into three 

different sets of tracked individuals: visitors (symbolized as  , part of at least one of the filtered 

device sets at attractions 1-14), hotel guests (symbolized as  , part of at least one of the filtered 
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device sets at hotels a-n) and inquirers (symbolized as  , part of the filtered device set at the tourist 

inquiry desk). The total filtered population of tracked individuals         contains 7,326 devices, 

which represents a 58% reduction by the filtering process. Looking at the number of hotel guests and 

comparing with the map of the study area depicted in Figure 1, we can generally distinguish between 

cheaper hotels further from the center with lower guest numbers, larger and more expensive hotels 

in the center, and two hostels accommodating a very small share of guests. The open attractions are 

associated with significantly larger numbers of visitors than the closed attractions. Based on this 

finding and the previously mentioned different characteristics of a visit/visitor between the two 

types of attractions, we will further distinguish between visitors sensu lato (       ) and visitors 

sensu stricto (  ), with    representing all visitors to at least one of the open attractions and    all 

visitors to at least one of the closed attractions. 

As already stated in section 3, there is a significant semantic difference between visiting an open and 

a closed attraction as visits to open attractions can be very short and sometimes coincidental in 

nature due to the free entrance and lack of a registration procedure. We therefore suspect that both 

types of visits are generally performed by different individuals. In order to explore this hypothesis, 

we start by defining 5 visitor segments based on (different combinations of) the sets  ,    and   . 

These five segments are:    (visited at least one open/closed attraction),    (visited at least one open 

attraction),    (visited at least one closed attraction),       (visited at least one open attraction but 

none of the closed attractions),       (visited at least one closed attraction but none of the open 

attractions). The similarities between these segments are depicted in Table 2, where Jaccard-indices 

(size of the intersection divided by size of the union) were calculated as measures for the similarity. 

As expected, the number of open attraction visitors    (80% of  ) clearly exceeds the number of 

closed attraction visitors    (36%). Additionally, the overlap is quite small: 80% of the open attraction 

visitors never visited any of the closed attractions, 56% of the closed attraction visitors never visited 

any of the open attractions, only 16% combined both types of attractions. Next, we investigated the 

share of hotel guests, inquirers and one-day/several-day visitors (calendar days) for the different 

visitor segments. It appears that especially individuals that only visited one or more closed 

attractions (     ) show a deviating (lower) hotel (4 vs. 8%) and inquiry desk (4 vs. 13%) use, and 

contain a slightly higher frequency of one-day visitors (83 vs. 78%) compared to  . It would be 

reasonable to assume that this is caused by the geographical distance between most of the closed 

attractions and the historical center where most tourists (identified hotel guests) stay, making that 

this group has a higher representation of local (one-day) visitors. 

Almost two thirds of all visitors ( ) only visited one or more of the open attractions (     ). Due to 

the low number of open attractions (3), this would make a large part of the dataset be composed of a 

rather homogeneous and less informative subpopulation. As such, we continue exploring the set    

(i.e. the individuals having visited at least one closed attraction) as a more heterogeneous and better 

candidate set for a data mining method. We continue the investigation by distinguishing between 

one-day and several-day visitors, leading to two extra visitor segments:        and         

respectively. As Table 2 shows, one in four visitors in    is present in the database over more than 

one (calendar) day. Around 37% of the several-day visitors were identified as hotel guests, and 23% 

went to the inquiry desk. Please note that the hotel usage will be an underestimation of the real 

figure as only 67% of the total hotel capacity was tracked in the experiment, so the other 63% of 

several-day visitors will be a combination of hotel guests outside of the tracked sample and visitors 

that performed visits over several days that may or may not be contiguous (e.g. over a first visit in 
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the first weekend, and a second visit in the following weekend). As a last segment, we additionally 

constrained to identified hotel guests (         ). This segment, which comes as close to the 

definition of tourists as explained in the introduction, shows an even slightly larger use of the inquiry 

desk. 

In order to explore the possible effect of hotel choice on visiting patterns, we further also distinguish 

between the guests of hotels located far from the center (a, c, g or j;     ), four-star hotels (i-l,    ) 

and hostels (m, n;        ). Guests of a hotel far from the center clearly less often visit an open or 

closed attraction, or the inquiry desk. The four-star hotel guests seem to follow the pattern of the 

more general set of hotel guests. Hostel guests hardly visit the inquiry desk, but seem to visit tourist 

attractions slightly more often than the average hotel guest. 

We also investigated the total duration covered in the tracking data and the number of visited 

attractions in the different visitor segments. Figure 5 shows the resulting distributions of the number 

of calendar days, number of attractions and number of closed attractions for the ten visitor segments 

which will be further investigated in section 5. Around 80% of the visitor population   is tracked over 

only one calendar day, and practically none over more than five days. Visitors to at least one closed 

attraction    and those that did not visit any open attraction       do not seem to deviate 

significantly from this distribution. Several-day visitors that were identified as hotel guests seem to 

cover a slightly higher number of calendar days than those that were not. Please recall that we 

cannot state with certainty whether an individual did not stay at a hotel because only a subset of 

hotels was covered by a Bluetooth sensor, so it is difficult to explain this difference directly. 

Concerning the hotel-based visitor segments, guests of the remote hotels cover slightly less calendar 

days, and hostel guests slightly more than on average. More than 60% of the visitors sensu lato only 

visit one attraction. Those that visited at least one closed attraction are more distributed towards a 

higher number of attractions. Looking at the number of visited closed attractions, however, the share 

of visitors that only visited one closed attraction is even higher (over 80%). Several-day visitors (both 

those identified as hotel guests and those that were not) visit a larger number of attractions when 

the open attractions are included, but do not deviate significantly from the general trend that most 

visitors only visited one closed attraction. Remote hotel guests visit slightly less closed attractions, 

hostel guests slightly more. 

As a first approach to investigating the degree of association between the different venues, we also 

examined the degree of overlap in between the sets of visitors/guests of the different locations as 

listed in Figure 4. These overlaps are again calculated by the Jaccard index and are depicted in Figure 

6 for both the unfiltered and filtered sets. As expected, the overlaps between the hotels is very low: 

tourists usually only stay at one hotel during a visit. The remaining overlaps after filtering are mainly 

caused by geographical proximity (e.g. hotels h and k nearly face each other across the same street) 

and guests of one hotel being mistakenly classified as guests of the other. The open attractions, and 

closed attractions 5 (Belfry) and 7 (Castle of the Counts) all show significant mutual overlaps. As can 

be seen in Figure 1, proximity is probably the most important cause besides similarity in 

characteristics (all are historical buildings). The same effect also explains the higher overlaps 

between the tourist inquiry desk and the open attractions in the center, and the moderate overlaps 

with attractions 5-7. Outside of the center, attractions 10, 12 and 14 in the ‘arts quarter’ also show 

significant mutual overlaps. A deeper understanding of the associations, however, will be mined for 

by the association rule learning method. In the next section, we will outline its results. 
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5. Visit pattern mining 
The degree of overlap between the different locations and their visitors discussed in the previous 

section offers a first insight into the degree of association between the different attractions. To 

obtain a deeper understanding, however, a more thorough analysis is needed. In this section, we will 

mine for association rules between the fourteen (open and closed) attractions for the previously 

identified visitor segments. The mining process was described in section 2.2 (minimum support of 5 

devices, minimum confidence of 5%). The subset of rules with only one item in the antecedent is 

visualized in their geographical context, together with the share of visitors in the segment that visited 

each attraction, in a ‘visit pattern map’ as described in section 2.3. For each segment, the top-20 of 

all association rules is additionally listed in a tabular fashion. The rest of this section is divided into 

two parts. In section 5.1, ‘visitor segment exploration’, we describe the patterns and their differences 

found going from the general set of visitors sensu lato   to the most specific segment of hotel guests 

that visited at least one closed attraction and have a duration of visit of at least 1 day (         ). 

In section 5.2, we investigate the potential differences in patterns for remote hotel guests, four-star 

hotel guests, and hostel guests. 

5.1. Visitor segment exploration 

Figure 7 shows the visit pattern maps for the five visitor segments going from visitors sensu lato  , 

over   ,       , and         to          . Table 3 lists the top-20 of all rules (including those 

with more than one item in the antecedent) for all these visitor segments. Looking at the share of 

visitors visiting each attraction (proportionally-sized circles) on the visit pattern map for visitors sensu 

lato ( ), we clearly observe a concentration of visits in the city center and its open attractions 

(attractions 1 and 2 each attract nearly 50% of the tracked population). Of the closed attractions, the 

Castle of the Counts (7) attracts the largest share of visitors (12%), followed by the Belfry (5) with 6%. 

All other closed attractions, both in the center and more remote, attract significantly smaller shares – 

the largest being the Museum of Contemporary Art (SMAK, 12) which attracts around 4% of the 

population. Concerning the rules for the visitors sensu lato ( ) segment, both the map and the top-

20 show that all association rules with a high lift have a very low support (the rule with the highest 

lift in the map is supported by only 1% of the population, rules with more items in the top-20 have 

even lower supports). As previously mentioned, visitors sensu lato represent a heterogeneous group 

of individuals – many of which only visited one or more open attractions (Figure 5) on relatively short 

trips. Despite low supports, the strong associations between the SMAK museum (12) and the 

Museum of Fine Arts (10) and especially between the SMAK museum and the Saint Peter’s Abbey (14) 

are noteworthy. Longer-distance associations have a low lift and support, indicating that visitors 

seem to rarely combine in-center and out-of-center visits. The associations between the open 

attractions logically have a larger support, but show lift values close to 1 suggesting that the 

associations are not significantly stronger than expected.  

With regard to the more specific visitor segments and starting by constraining to closed attraction 

visitors (  ), the associations between the three art museums in the south are no longer the 

strongest in the set (although they still have lift values higher than 1). Instead, the highest lift values 

are now found in the city center, especially between Saint Nicholas’ Church (3), and the Belfry (5) and 

Saint Bavo’s Cathedral (2): for visitors that made at least one conscious choice in visiting a closed 

attraction we find a higher than expected association between the attractions in the city center (lift > 

1).  
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Next, for visitors that visited none of the open attractions (     ) very few associations are found, 

only with low lift values: only the combinations 12-10 and 12-14 remain, together with an association 

between the Castle of the Counts (7) and the House of Alijn (8).  

Visitors sensu stricto that were only tracked on one calendar day (      ) show nearly no 

association between attractions in the center and those outside of the center, revealing they either 

visit one or the other.  

Those that were tracked over several days (       ) do show these associations as they probably 

have more free time to cover these distances. Comparing these visitors to the visitors sensu stricto in 

general (  ), there are no clear differences in both patterns for the city center.  

Finally, comparing identified hotel guests (         ) with the general several-day visitors 

(       ) some differences between the patterns become visible. Saint Peter’s Abbey looses its 

significance, together with the associations between the art museums in the south. In contrast, both 

the House of Alijn (8) and the City Museum of Ghent (STAM, 13) appear to gain in importance: both 

now show significant (lift>1) and considerable (support of almost 10%) associations. The lift of the 

association between the Museum of Industrial Archeology and Textiles (MIAT, 9) and attraction 1 

also seems to have risen, but the support of the rule is very low (3,5%, 7 tracked individuals). 

5.2. Effect of hotel location and type 

The potential effect of the hotel location and type is investigated by comparing the visit patterns of 

four distinct segments of hotel guests: the general set of hotel guests that visited at least one 

open/closed attraction (   ), those that stayed at one of the four most remote hotels (a, c, g or j, 

      ), those that stayed at one of the four 4-star hotels (     ), and finally those that stayed 

in one of both hostels (         ). The four corresponding visit pattern maps are shown in Figure 8. 

The top-20 of rules for each segment is listed in Table 4. Remote hotel guests, who were already 

shown to significantly more often engage in one or more visits (Table 2), clearly show a preference 

for the open attractions and the Castle of the Counts (7) in the center. They rarely visit any of the 

closed attractions further from the center, and associations besides those between open attractions 

are rare. The 4-star hotel guests show a visit pattern that is almost identical to the general visit 

pattern for hotel guests, which makes sense as they form the largest share of hotel guests. Hostel 

guests, finally, show a pattern that bears some similarities to the remote hotel guests. The Museum 

of Contemporary Art (SMAK, 12) seems to attract a significantly larger share of these visitors (24% vs. 

4% of the general hotel guest segment). It should be noted, however, that the size of this last 

segment has become rather small, possibly limiting the representativeness of the pattern it exhibits. 

6. Discussion and conclusion 
In this section, we will first further interpret the filtering and mining processes and the results that 

were generated from the dataset. Subsequently, we will discuss the current and future potential of 

the presented methodology (Bluetooth tracking + association rule learning) for tourism management 

purposes. We conclude with further avenues for future research. 

6.1. Further interpretation of filtering, mining and results 

As in any knowledge discovery process, data mining techniques form only part of a chain of 

subprocesses going from data to knowledge (Fayyad et al., 1996). As described in section 3, the 
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Bluetooth tracking data needed to undergo significant preprocessing before being able to function as 

an input for association rule learning. There are two main reasons for the need for such an extensive 

filtering procedure. First, Bluetooth is a very popular and widely distributed technology available on a 

large variety of devices. Whereas phones can be assumed to be linked to one individual each, other 

classes, such as carkits, cannot. Second, the proximity of an individual to a place of interest cannot be 

directly associated with a certain activity related to that location. This becomes clear in Figure 4, 

where most sensors at both hotels and attractions clearly detected significantly more Bluetooth 

devices than predicted according to the actual guest/visitor counts and the detection ratio of 8%. As 

can be seen in Figure 3, most hotels are associated with very short detections indicated by the large 

decrease in filtered devices by choosing    to a minimum of one hour. A further constraint of this 

parameter to the heuristic interval between 8 hours and 5 days leads to acceptable filtered sets, 

except for three hotels where a further constraint had to be placed on   . A similar trend, but with 

different constraints on   , is visible for the closed attractions. While it is impossible to statistically 

verify the accuracy of the applied temporal filtering, Figure 6 at least gives an indication that most 

significant overlaps between hotels (where there should not be any) have decreased significantly. 

The overlaps that remain after filtering are mainly due to proximity (e.g. hotels h and k). The 

uncertainty over whether a tracked individual actually visited an attraction and/or stayed at a hotel 

could be addressed in future work by making the scanning of the device part of the registration 

process. This shift in a participatory nature would make the methodology significantly more labor-

intensive, though, thereby potentially nullifying its main advantage. 

Before we started mining for association rules, we performed an extensive data exploration. Two 

hypotheses received special attention. First, the combination of open and closed attractions was 

suspected to result in a heterogeneous group of ‘visitors’ because of the semantic difference 

between both types. Second, we needed to investigate the tendency of individuals to visit more than 

one attraction over the 15-day tracking period before looking at the specific associations. As was 

listed in Table 2, visitors sensu lato show little overlap between visitors sensu stricto: only 36% of the 

former group also visit at least one closed attraction, and only 16% combine both types. Figure 5 

showed that only a small fraction of visitors combined more than one closed attraction, which would 

certainly influence the mining for association rules. Readers should bear in mind that 15 days is quite 

a short period for capturing combination preferences between museums for visits that are not part 

of a chained trip of visits (e.g. for local residents), and that the tracking period would ideally be 

composed of the entire touristic season. Where the mined associations for these individuals would 

certainly be an underestimation and thus possibly not representative, identified hotel guests can be 

assumed to perform visits that form part of a trip. As such, this group (         ) received 

special attention in the analyses. 

Subsequently, the associations between the different open and closed attractions were investigated 

through the application of the Apriori algorithm and the interpretation and visualization of the 

extracted rules. Combining the exploratory findings, we gradually restricted the set of visitors sensu 

lato to individuals that visited at least one closed attraction (as this indicates at least one conscious 

choice in their itinerary) and additionally to identified hotel guests. Figure 7 shows the resulting 

series of visit pattern maps. Taking all visitors sensu lato as input, large but predictable associations 

in the center appear next to very small but more interesting associations between the art-oriented 

attractions in the south of the study area. Constricting to visitors sensu stricto decreased this 

conceptual difference due to the lower frequency (higher lift) of the center-based attractions and the 
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higher frequency (lower lift) of the art attractions. Several-day visitors clearly show associations 

(though most of them are quite small) between the center and more remote attractions, whereas 

one-day visitors rarely combine both areas. The constrained set of identified hotel guests, which 

could be argued to be the only representative segment in the series, shows some interesting 

differences with the general several-day visitor set (which also includes individuals that did not stay 

overnight). The strong associations between the art museums disappear together with the 

significance of Saint Peter’s Abbey individually, but two new locations appear in considerable 

associations with the open attractions in the center: the City Museum of Ghent (STAM), and the 

House of Alijn’. Subsequently, we investigated the additional differences in visit patterns between 

remote hotel guests, four-star hotel guests and hostel guests. Remote hotel guests show a very large 

preference in the open attractions in the center and rarely venture further away, whereas hostel 

guests show a similar pattern with the exception of a higher representation of the Museum of 

Contemporary Art (SMAK). Four-star hotel guests followed the general pattern. 

6.2.  Potential of the employed methodology for tourism management 

The potential of Bluetooth tracking in tourism management practices was illustrated by applying an 

association rule learning scheme on the visits to different attractions in an urban environment. In this 

specific case study, we focused on discovering interesting associations as indicated by attractions 

appearing together more often than predicted by an independent choice model. Such associations or 

the lack thereof can be used for a wide array of purposes. Focusing on the attractions, existing 

associations could either be strengthened or non-existent or weak associations could be created by 

applying specific promotional advertisements at each attraction, thereby urging visitors to visit other 

attractions as well. In contrast, the focus could also lie on the tourist and discovered patterns could 

be used in recommendation systems based on collaborative filtering. These recommendations could 

be disseminated through the use of smartphones. In a long-term strategic context, pattern maps 

such as those in Figure 7 could also be used by urban planners for optimizing tourist accessibility and 

facilities. The three art museums in the south of the study area (promoted as the ‘arts quarter’) can 

serve as an illustrative example. While they do seem associated with each other mutually, our 

analysis has also pointed out that there is little association with the attractions in the center. 

Planners could tackle this issue by developing the necessary tourist facilities (e.g. hotels) in the ‘arts 

quarter’ itself, improving the (visibility of) public transport options between both areas, or by 

designing a corridor to minimize the perceived distance between the center and the ‘arts quarter’ 

(e.g. by improving pedestrian accessibility, creating more green and open spaces, etc.). The 

effectiveness of certain actions could also be investigated by tracking during a period both before 

and after the action was taken. 

6.3. Further issues surrounding the methodology 

Three main issues can be identified with regard to the used methodology: (i) errors introduced when 

using presence detections to deduce activities, (ii) potential bias in the tracked sample introduced by 

using Bluetooth technology, and (iii) lack of any metadata on tracked visitors due to the non-

participatory nature of the methodology. We will shortly reflect on all of these issues.  

Deducing activities from presence detections through sensors is a process which can essentially be 

affected by two types of errors. The first error could be labeled as false presence detections, where a 

sensor detects devices that do not physically enter a building or approach a desk. Filtering 

procedures were able to remove most of this sensor noise but further efforts are certainly warranted 
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in order to calibrate the sensors thereby minimizing false presence detections. The second type of 

error is due to actual presences not automatically implying certain activities. In the context of this 

study, these could be caused by staff members or inquirers. Filtering on common-sense thresholds 

for the duration of visit and duration of presence, we were able to deduce acceptable device sets. 

However, questions still remain on why additional filtering steps were necessary for some of the 

locations. In the end, a higher accuracy in deducing activities will most probably imply contacting 

individuals and registering the MAC address of their device(s) in contrast with the use of an 

unsupervised filtering procedure. 

Second, it is possible that certain age segments, or one gender might have a higher usage rate of 

devices with a discoverable Bluetooth interface. Tourists might, for example, preferentially opt to 

turn off their mobile phones in order not to be disturbed and thus be under-represented. Despite the 

undeniable importance of these potential influencing factors on any tourism management incentive, 

it falls outside of the scope of this research to fully investigate this issue. As in any other tracking 

study, however, it is of vital importance that more attention should be devoted to this question.  

The lack of metadata, finally, can be interpreted as the downside of using a non-participatory 

methodology. Instead of dealing participatory and non-participatory methodologies as complete 

opposites, we argue that both methodologies might be combined. Alternatively, ad-hoc sensing 

networks could be made semi-participatory by approaching and interviewing part of the tracked 

population. In our scenario, for example, individuals could be contacted in the hotel where they are 

staying. Again, this fell outside of the current scope but could aid in further strengthening 

assumptions made about visitors.  

6.4. Future research 

Due to the limited number of sensors at our disposal, this study only included primary touristic 

locations. It is well known that a significant share of tourists may wander from these locations and 

engage in other related activities such as shopping, visiting bars, etc. Future studies may include 

some of these secondary locations in order to provide a more holistic image of tourism. While we 

applied an association rule learning technique in this case study, other data mining tasks could be 

used or combined for answering other or similar research questions as those put forward in this 

paper. If the order of visits were important for example, sequential pattern mining techniques could 

be used. Clustering methods could segment tourists based on their associations of visits. In addition, 

a second and longer period of tracking could serve as a point of comparison with the patterns found 

during the 15-day tracking period of this study. The visit pattern maps summarize a considerable 

amount of information in one map, which possibly makes them challenging to interpret. User studies 

could clarify the way in which people read the map (e.g. by eye-tracking procedures), and the 

provided insights could be used to further fine-tune the visualization. The selective visualization of 2-

item-rules causes some of the (potentially valuable) information contained within rules with more 

items to be lost. How to efficiently visualize these complex rules in a legible way is saved for future 

work. 
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Figure 1. Overview of the Bluetooth sensor placement in Ghent, Belgium. The inset map shows a more detailed view of 
the city center. 

 

Figure 2. Schematical representation of detections, detection intervals, the duration of presence (dp), and the duration of 
visit (dv). 
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 Table 1. Illustrative example of a transaction database in the context of tourist attractions in Paris (1: visited, 0: not 
visited). 

Transaction 
(=visitor) 

Eiffel Tower Louvre Museum Arc de Triomphe Notre Dame 

1 1 1 0 1 
2 0 0 1 0 
3 1 0 1 1 
4 1 1 1 1 
5 0 1 1 1 

 

 

 

Figure 3. Progressive filtering process on the detected Bluetooth devices for the hotels (a), open attractions and tourist 
inquiry desk (b) and closed attractions (c). The point symbols indicate the filtering end points for each location. For the 
hotels and closed attractions, the filtering is based on          with    representing the number of devices and     
the estimated number of tracked visitors/guests based on a detection ratio   of 8%. For the open attractions and the 
inquiry desk, no visitor counts were available and only    was taken into account. Note the breaks in scale depicted as 
the dashed horizontal line on the y-axes in (a) and (c). 
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Figure 4. Preprocessing summary showing the number of detected devices before and after filtering at each location, and 
the aggregation of the filtered devices into the sets of hotel guests  , visitors   (sensu lato), information seekers  , open 
attraction visitors   , closed attraction visitors   , and the entire population of tracked individuals  . Note the break in 
scale on the x-axis depicted by the dashed vertical line. 

 

Table 2. Sizes of, similarities between different visitor segments (Jaccard-index), and the corresponding share of hotel 
guests ( ), inquirers ( ), one-day (   ) and several-day visitors (    ) for each visitor segment. The five visitor segments 
are:   (all visitors),    (open attraction visitors),    (closed attraction visitors),       (only visited one or more open 
attractions but none of the closed attractions),       (only visited one or more closed attractions but none of the open 
attractions). 

  Jaccard-index:                         

                                                   

  5,891 1 0.80 0.36 0.64 0.20 0.08 0.13 0.78 0.22    
   4,726 0.80 1 0.16 0.80 0 0.09 0.15 0.77 0.23    
   2,095 0.36 0.16 1 0 0.56 0.10 0.14 0.75 0.25    

      3,796 0.64 0.80 0 1 0 0.07 0.12 0.80 0.20    
      1,165 0.20 0 0.56 0 1 0.04 0.04 0.83 0.17    

       1,564      0.00 0.11 1 0   0.75 
        531      0.37 0.23 0 1   0.25 

          196      1 0.27 0 1   0.09 

  1,581       0.08   0.31 0.28 0.13 
     456       0.05   0.16 0.15 0.03 

    675       0.09   0.37 0.33 0.16 
        64       0.02   0.39 0.33 0.19 
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Figure 5. Cumulative relative frequency of the number of tracked calendar days (top), and absolute relative frequency of 
the number of visited attractions (middle) and closed attractions (bottom). 
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Figure 6. Overlap between unfiltered (left) and filtered (right) device sets at hotels (a-n, top), and the open and closed 
attractions and inquiry desk (1-14 + I, bottom). The numbers in the grid are the Jaccard indices of each combination of 
device sets, and represent the degree of overlap (0: less than one % overlap, 100: completely identical). 
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Figure 7. Visit pattern maps for visitor segments  ,   ,       ,        , and          . The size of each 
segment is given between brackets. The spatial distribution of visits is represented by proportionally sized circles 
symbolizing the share of visitors in the segment visiting each attraction. Two-element association rules are visualized as 
lines connecting the locations in the antecedent and consequent. The support of a rule is symbolized by the width of the 
line, the lift by its color (as shown by the bars above each map, classification was equal-range for lifts below 1 and 
according to Jenks natural breaks above 1). Attractions far from the city center (depicted by the rectangle) are not 
depicted on their actual geographical location in order to increase the legibility of the visualization. 
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Figure 8. Visit pattern maps for visitor segments    ,       ,      , and          . The size of each segment is 

given between brackets. The spatial distribution of visits is represented by proportionally sized circles symbolizing the 
share of visitors in the segment visiting each attraction. Two-element association rules are visualized as lines connecting 
the locations in the antecedent and consequent. The support of a rule is symbolized by the width of the line, the lift by 
its color (as shown by the bars above each map, classification was equal-range for lifts below 1 and according to Jenks 
natural breaks above 1). Attractions far from the city center (depicted by the rectangle) are not depicted on their actual 
geographical location in order to increase the legibility of the visualization. 

 

 

 

 

 

 

 



27 

Table 3. Top-20 (where applicable) of association rules     for visitor segments  ,   ,       ,        , and 

         . Rules were generated based on constraints on both support (    ) and confidence (      ), and are 
sorted on their lift ( ) value. The relative (  ) and absolute (  ) support, as well as the confidence ( ) are also shown. 
Rules with only item in the antecedent (marked by a grey shading) are also visible in  

   (5,891 devices)    (2,095 devices)        (1,564 devices) 

                                           

1 3,7,8 5 8.5E-04 5 0.63 10.40 2,5,7,8 3 2.4E-03 5 0.71 6.01 12,2 10 3.2E-03 5 0.50 4.80 

2 2,3,7,8 5 8.5E-04 5 0.63 10.40 2,5,8 3 3.3E-03 7 0.64 5.35 1,5,7 3 5.8E-03 9 0.39 4.05 

3 10,2,7 5 8.5E-04 5 0.56 9.25 10,5 3 2.4E-03 5 0.63 5.26 5,6 1 3.8E-03 6 0.75 3.83 

4 10,7 5 8.5E-04 5 0.45 7.56 10,2,5 3 2.4E-03 5 0.63 5.26 1,2,5,7 3 5.1E-03 8 0.36 3.77 

5 1,2,7,8 5 8.5E-04 5 0.45 7.56 1,2,5,8 3 2.4E-03 5 0.63 5.26 2,5,6 1 3.2E-03 5 0.71 3.65 

6 12,2 10 1.4E-03 8 0.29 7.45 5,7,8 3 2.4E-03 5 0.56 4.67 10,2 3 5.8E-03 9 0.35 3.59 

7 2,3,8 5 1.2E-03 7 0.44 7.28 1,5,8 3 2.4E-03 5 0.56 4.67 6,7 1 5.8E-03 9 0.69 3.54 

8 1,7,8 5 1.0E-03 6 0.43 7.13 10,2,7 3 2.4E-03 5 0.56 4.67 1,2,5 3 1.5E-02 24 0.34 3.50 

9 2,7,8 5 1.2E-03 7 0.41 6.85 1,2,7,8 3 2.9E-03 6 0.55 4.59 2,5 3 4.0E-02 62 0.34 3.49 

10 3,8 5 1.2E-03 7 0.39 6.47 5,8 3 3.3E-03 7 0.54 4.53 2,6,7 1 3.8E-03 6 0.67 3.41 

11 2,3,5,7 8 8.5E-04 5 0.15 6.47 1,2,5,7 3 1.1E-02 22 0.52 4.41 1,3,6 2 3.2E-03 5 1.00 3.37 

12 1,3,8 5 8.5E-04 5 0.38 6.40 1,5,7 3 1.1E-02 23 0.52 4.40 1,5 3 1.8E-02 28 0.32 3.33 

13 1,2,3,8 5 8.5E-04 5 0.38 6.40 2,7,8 3 3.8E-03 8 0.47 3.96 5,7 3 1.1E-02 17 0.31 3.26 

14 3,5,8 7 8.5E-04 5 0.71 6.05 10,7 3 2.4E-03 5 0.45 3.82 5,7 2 3.3E-02 52 0.96 3.25 

15 2,3,5,8 7 8.5E-04 5 0.71 6.05 3,7,8 5 2.4E-03 5 0.63 3.70 1,5,7 2 1.4E-02 22 0.96 3.22 

16 3,5,7 8 8.5E-04 5 0.14 5.93 2,3,7,8 5 2.4E-03 5 0.63 3.70 3,5 2 4.0E-02 62 0.93 3.12 

17 5,8 7 1.5E-03 9 0.69 5.87 5,7 3 1.7E-02 36 0.43 3.65 2,8 1 9.0E-03 14 0.61 3.11 

18 14 12 6.1E-03 36 0.24 5.84 1,7,8 3 2.9E-03 6 0.43 3.61 1,2 3 3.5E-02 54 0.30 3.06 

19 12 14 6.1E-03 36 0.15 5.84 2,5,7 3 1.6E-02 33 0.42 3.56 1,2,7 3 1.9E-02 29 0.29 3.03 

20 1,5,7 8 1.0E-03 6 0.14 5.82 1,2,5 3 2.4E-02 50 0.42 3.51 10,3 2 5.8E-03 9 0.90 3.03 

         (531 devices)           (196 devices)  

                                   

1 1,2,7,8 3 1.1E-02 6 0.75 4.06 1,7,8 3 2.6E-02 5 0.83 3.02       

2 2,5,8 3 9.4E-03 5 0.71 3.87 1,5,7 3 2.6E-02 5 0.83 3.02       

3 2,7,8 3 1.3E-02 7 0.70 3.79 1,2,7,8 3 2.6E-02 5 0.83 3.02       

4 1,2,5,7 3 2.6E-02 14 0.70 3.79 1,2,5,7 3 2.6E-02 5 0.83 3.02       

5 2,5,7 3 3.4E-02 18 0.69 3.75 5,7 3 4.1E-02 8 0.80 2.90       

6 1,5,7 3 2.6E-02 14 0.67 3.61 2,5,7 3 4.1E-02 8 0.80 2.90       

7 5,7 3 3.6E-02 19 0.66 3.55 7,8 3 3.1E-02 6 0.75 2.72       

8 1,7,8 3 1.1E-02 6 0.60 3.25 2,7,8 3 3.1E-02 6 0.75 2.72       

9 5,8 3 9.4E-03 5 0.56 3.01 12,2 3 3.1E-02 6 0.60 2.18       

10 1,2,5 3 4.9E-02 26 0.53 2.88 2,5 3 1.1E-01 21 0.60 2.18       

11 2,5 3 6.8E-02 36 0.53 2.87 1,3,7 8 2.6E-02 5 0.21 2.15       

12 3,8 5 9.4E-03 5 0.45 2.51 1,2,3,7 8 2.6E-02 5 0.21 2.15       

13 2,3,8 5 9.4E-03 5 0.45 2.51 2,3,7 8 3.1E-02 6 0.21 2.13       

14 1,2,7 3 7.5E-02 40 0.45 2.46 2,3 5 1.1E-01 21 0.42 2.06       

15 1,2,8 3 1.7E-02 9 0.45 2.44 1,2,3 8 3.6E-02 7 0.19 2.01       

16 1,5 3 4.9E-02 26 0.45 2.43 3,7 8 3.1E-02 6 0.19 2.00       

17 2,3 5 6.8E-02 36 0.42 2.34 1,3 8 3.6E-02 7 0.19 1.95       

18 1,2,3 5 4.9E-02 26 0.42 2.32 5 3 1.1E-01 21 0.53 1.91       

19 2,8 3 2.1E-02 11 0.42 2.29 3 5 1.1E-01 21 0.39 1.91       

20 5,7 8 1.1E-02 6 0.21 2.29 1,2,5 3 6.1E-02 12 0.52 1.89       
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Table 4. Top-20 (where applicable) of association rules     for visitor segments    ,       ,      , and 

         . Rules were generated based on constraints on both support (    ) and confidence (      ), and are 
sorted on their lift ( ) value. The relative (  ) and absolute (  ) support, as well as the confidence ( ) are also shown. 
Rules with only item in the antecedent (marked by a grey shading) are also visible in Figure 8. 

     (483 devices)        (71 devices)       (249 devices) 

                                           

1 1,3,7 8 1.0E-02 5 0.21 5.30 1,2 7 7.0E-02 5 0.21 1.48 1,3,7 8 2.0E-02 5 0.36 7.41 

2 1,2,3,7 8 1.0E-02 5 0.21 5.30 3 2 2.1E-01 15 0.88 1.36 1,2,3,7 8 2.0E-02 5 0.36 7.41 

3 2,3,7 8 1.2E-02 6 0.21 5.26 2 3 2.1E-01 15 0.33 1.36 2,3,7 8 2.4E-02 6 0.33 6.92 

4 3,7 8 1.2E-02 6 0.19 4.92 1,3 2 9.9E-02 7 0.88 1.35 3,7 8 2.4E-02 6 0.32 6.55 

5 2,5 8 1.0E-02 5 0.14 3.53 7 2 1.1E-01 8 0.80 1.23 1,2,7 8 2.0E-02 5 0.23 4.72 

6 1,7,8 3 1.0E-02 5 0.83 3.53 2 7 1.1E-01 8 0.17 1.23 7,8 3 2.4E-02 6 1.00 4.61 

7 1,5,7 3 1.0E-02 5 0.83 3.53 1,2 3 9.9E-02 7 0.29 1.22 1,7,8 3 2.0E-02 5 1.00 4.61 

8 1,2,7,8 3 1.0E-02 5 0.83 3.53 1,7 2 7.0E-02 5 0.71 1.10 2,7,8 3 2.4E-02 6 1.00 4.61 

9 1,2,5,7 3 1.0E-02 5 0.83 3.53 7 1 9.9E-02 7 0.70 1.08 1,2,7,8 3 2.0E-02 5 1.00 4.61 

10 5,7 3 1.7E-02 8 0.80 3.39 1 7 9.9E-02 7 0.15 1.08 2,5 8 2.0E-02 5 0.22 4.51 

11 2,5,7 3 1.7E-02 8 0.80 3.39 2,7 1 7.0E-02 5 0.63 0.96 1,2,3 8 2.8E-02 7 0.21 4.40 

12 1,3,8 7 1.0E-02 5 0.71 3.35 1 2 3.4E-01 24 0.52 0.81 2,8 5 2.0E-02 5 0.45 4.19 

13 1,2,3,8 7 1.0E-02 5 0.71 3.35 2 1 3.4E-01 24 0.52 0.81 1,3 8 2.8E-02 7 0.20 4.15 

14 1,2,7 8 1.2E-02 6 0.13 3.25 3 1 1.1E-01 8 0.47 0.73 5,7 3 2.4E-02 6 0.86 3.95 

15 2,8 5 1.0E-02 5 0.28 3.19 1 3 1.1E-01 8 0.17 0.73 2,5,7 3 2.4E-02 6 0.86 3.95 

16 7,8 3 1.2E-02 6 0.75 3.18 2,3 1 9.9E-02 7 0.47 0.72 8 5 2.0E-02 5 0.42 3.84 

17 2,7,8 3 1.2E-02 6 0.75 3.18       5 8 2.0E-02 5 0.19 3.84 

18 2,3,7 5 1.7E-02 8 0.28 3.17       2,3 8 3.2E-02 8 0.17 3.61 

19 3,8 7 1.2E-02 6 0.67 3.13       2,7 8 2.4E-02 6 0.17 3.56 

20 2,3,8 7 1.2E-02 6 0.67 3.13       3,8 7 2.4E-02 6 0.75 3.40 

           (25 devices)   

                           

1 1,2 5 1.2E-01 3 0.43 3.57             

2 5 2 1.2E-01 3 1.00 2.08             

3 2 5 1.2E-01 3 0.25 2.08             

4 1,5 2 1.2E-01 3 1.00 2.08             

5 5 1 1.2E-01 3 1.00 1.56             

6 1 5 1.2E-01 3 0.19 1.56             

7 2,5 1 1.2E-01 3 1.00 1.56             

8 2 1 2.8E-01 7 0.58 0.91             

9 1 2 2.8E-01 7 0.44 0.91             

 

 


