
1. Introduction
Cloud and precipitation processes that interact in a nonlinear manner with aerosols have an important role 
in Earth's energy budget, hydrological cycle, and climate feedbacks (e.g., Goosse et  al.,  2018; Hartmann & 
Short, 1980; Schär et al., 1999). However, the nature of these processes remains unclear and is difficult to repre-
sent due to their physical complexity and large spatiotemporal variations. The representation of cloud and precip-
itation phases is important in robustly reproducing feedbacks in a future climate scenario (Frey & Kay, 2018; Kay 
et al., 2018; Mülmenstädt et al., 2021).

Numerous studies have discussed cloud phase partitioning in mixed-phase clouds (e.g., Cesana et al., 2021; Ervens 
et al., 2011), given its influence on the radiative balance. This is because the radiative effects of liquid clouds 
and ice clouds at the same water content can differ significantly from each other, based on their macro- (i.e., 
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altitude and temperature) and micro- (i.e., number concentration and droplet radius) physical properties (Hogan 
et al., 2003; Matus & L’Ecuyer, 2017). Despite the significance of the partitioning, many global climate models 
(GCMs) have underestimated the supercooled liquid fraction (SLF; Cesana et al., 2015; McCoy et al., 2016) until 
recently (Zelinka et al., 2020). Tan et al. (2016) showed that models with a lower SLF have higher potential for 
ice melting into liquid when the climate becomes warmer, which results in overestimation of a negative feedback 
that offsets climate warming (i.e., the cloud-phase feedback; Mitchell et al., 1989), due to a larger cooling effect 
caused by the reflection of shortwave radiation. The diversity of SLF values in GCMs is a major source of uncer-
tainty in the cloud feedback mechanism and climate sensitivity.

In comparison with cloud phases, fewer studies have focused on the phase partitioning of precipitation (i.e., 
rain or snow), but this is also important in studies of climate change (Cohen et al., 2015; You et al., 2021). For 
example, snowfall increases downwelling longwave radiation at the surface (Li et  al.,  2019) and contributes 
to a warmer climate. Precipitation on sea ice can also have a major effect on the polar climate (e.g., Bintanja 
& Selten, 2014), given that snow accumulation promotes the growth of sea ice due to the high albedo of fresh 
snowfall, but also restricts it due to its insulating properties (Sturm et al., 2002), whereas rain decreases surface 
albedo and causes sea ice melting (Perovich et al., 2002). Given the important roles of precipitation, incorrect 
precipitation phase partitioning in GCMs would introduce biases into the simulated snow water equivalent, snow 
depth, and snow cover, as discussed by Jennings et al. (2018). As such, it is essential to correctly partition the 
precipitation phase for accurate climate modeling.

To evaluate partitioning, precipitation phase diagnostics utilizing a spaceborne active sensor are now availa-
ble in GCMs with the aid of the satellite simulator COSP (Cloud Feedback Model Intercomparison Project 
Observational Simulator Package; Bodas-Salcedo et al., 2011), which enables a consistent comparison between 
satellite retrievals and GCM outputs. This approach was pioneered by Kay et  al.  (2018), who introduced the 
precipitation flag algorithm into the COSP version 2 (hereafter COSP2; Swales et al., 2018) in a manner that is 
consistent with the CloudSat observations and provides information on near-surface precipitation phases. Based 
on the near-surface precipitation frequency from the Community Earth System Model version 1 (CESM1), Kay 
et  al.  (2018) showed that CESM1 overestimates various types of precipitation frequencies on a global scale, 
except for the heavy rain category that is slightly underestimated. Lenaerts, Drew Camron, Wyburn-Powell, and 
Kay (2020) also found similar biases with CESM1 over the Greenland ice sheet. The results of these previous 
studies indicate that climate models do not robustly reproduce actual precipitation phase partitioning.

The discrepancy in precipitation frequency and phase partitioning can be partly attributed to the treatment of 
precipitation in GCMs. The Model for Interdisciplinary Research on Climate (MIROC) has adopted the diag-
nostic precipitation scheme (DIAG scheme; Ghan & Easter, 1992), which does not explicitly represent mixing 
ratios of precipitation, to reduce computational costs. This simplified DIAG scheme ignores the vertical sedimen-
tation of precipitating hydrometeors across timesteps, which leads to further uncertainties in cloud and precipi-
tation processes. As such, MIROC6 has recently introduced a prognostic precipitation scheme (PROG scheme; 
Michibata, Suzuki, Sekiguchi, & Takemura, 2019) that explicitly represents the mass and number mixing ratios 
of rain and snow along with their radiative effects. Recently, several models have introduced the PROG scheme, 
but the number of such models is still limited (e.g., Cesana et al., 2019; Forbes & Ahlgrimm, 2014; Gettelman 
et al., 2015; Rasch et al., 2019; Sant et al., 2015; D. N. Walters et al., 2011). The updated PROG scheme improves 
simulations including warm rain processes and the magnitude of aerosol-cloud interactions (e.g., Michibata 
& Suzuki, 2020; Michibata et al., 2020), similar to pioneering approaches used in other models (e.g., CAM5: 
Gettelman et al., 2015; ECHAM5–HAM: Sant et al., 2015). Both liquid-phase, and mixed- and ice-phase clouds 
have key roles in the global hydrological cycle (Mülmenstädt et  al.,  2015), and require further investigation 
in polar regions with the PROG scheme. For example, previous studies have reported that CAM6  incorporat-
ing the PROG scheme improves the occurrence frequency of Arctic liquid-containing clouds, which signifi-
cantly affects the radiation budget (McIlhattan et  al.,  2020) and better represents cloud liquid and ice paths 
in the Arctic (Lenaerts, Gettelman, Van Tricht, van Kampenhout,  2020). Although other models have also 
incorporated an explicit precipitation scheme (e.g., E3SM: Rasch et al., 2019; GISS-E3: Cesana et al., 2019; 
ARPEGE-Climat 6.3: Roehrig et al., 2020; UM Global Atmosphere7: D. Walters et al. (2019); ECMWF-IFS: 
Forbes & Ahlgrimm, 2014), the effects of the PROG scheme on process representations in mixed- and ice-phase 
clouds are presently unclear. Therefore, a key question is how the PROG scheme changes the precipitation phase 
partitioning and its occurrence frequency.
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In this study, we utilize the two versions of MIROC with the traditional DIAG 
scheme (Tatebe et al., 2019) and the latest PROG scheme (Michibata, Suzuki, 
Sekiguchi, et al., 2019). To examine the process-level model bias, our study 
uses multiple satellite data and a corresponding instrument simulator. In 
addition, we mainly focus on Arctic regions for the following reasons: (a) 
the Arctic climate becomes much warmer and wetter with climate warming 
(Boisvert & Stroeve, 2015; Screen & Simmonds, 2010; Serreze et al., 2009), 
and thus the reproducibility of either cloud or precipitation phase parti-
tioning has large effects on the Arctic energy budget, sea ice extent, and 
climate predictions; (b) the estimate of a >50% increase in precipitation in 
Arctic regions by the end of the 21st century (Collins et al., 2013; Kattsov 
et al., 2007) emphasizes the importance of proper precipitation phase parti-

tioning in GCMs when considering the Arctic; and (c) micro-physical processes within mixed- or solid-phase 
clouds that are ubiquitous in the Arctic have been little investigated with our model.

The remainder of this paper is organized as follows. Section 2 describes the satellite data sets and numerical 
model settings. Section 3 presents a comparison between the model simulations and satellite observations (i.e., 
COSP2). Finally, a summary and discussion are presented in Section 4.

2. Data and Methodology
2.1. Satellite Data

This study used multiple satellite data sets of the Afternoon Constellation (A-Train) to evaluate cloud and precip-
itation processes in the MIROC6 GCM. These sun-synchronous and polar-orbiting satellites nearly simultane-
ously observe the Earth, and fly approximately 705 km above the sea surface (Stephens et al., 2002). We used 
satellite data from: (a) the Cloud Profiling Radar (CloudSat CPR; Tanelli et al., 2008) (b) Cloud-Aerosol Lidar 
with Orthogonal Polarization (CALIPSO CALIOP; Winker et al., 2009) and (c) Moderate Resolution Imaging 
Spectroradiometer (Aqua MODIS; King et al., 1992).

2.1.1. CloudSat and MODIS Joint Product

CloudSat was launched by NASA in April 2006 for the purpose of resolving the vertical structure of cloud and 
precipitating hydrometeors. The CloudSat CPR is an active sensor operating in the W-band (94 GHz) with a 
minimum detectable cloud reflectivity of −28 dBZ. The footprint of the CPR is 1.4 km cross-track and 1.8 km 
along-track, and the vertical resolution is 480 m oversampled to 240 m (Stephens et al., 2008).

The Aqua satellite carries a passive MODIS sensor that observes emitted radiation in a range of channels from 
0.41 to 14.5 μm. This multispectral sensor has a relatively fine spatial resolution of <1 km and a broad swath of 
2,330 km. The CPR and MODIS observe the same location within a short time distance, and thus the combined use 
of the active and passive sensors provides us with more detailed insights into the process-level, aerosol-cloud-pre-
cipitation interactions (e.g., Kubar et al., 2009; Nakajima et al., 2010; Suzuki & Stephens, 2008).

The variables available from each CloudSat R04 product utilized in this study are summarized in Table 1. We 
used the 2B-GEOPROF product (Marchand et al., 2008) for the radar reflectivity profile; the 2B-TAU product 
(Polonsky et al., 2008) for the cloud optical depth and droplet effective radius from the 2.1 μm MODIS radiance 
channels (Ackerman et al., 1998); the 2C-ICE product (Deng et al., 2010) for the ice water path (IWP) from CPR 
and CALIOP; the 2C-PRECIP-COLUMN product (Haynes et al., 2009) for the near-surface precipitation inci-
dence flag (i.e., the precipitation flag); and the 2C-SNOW-PROFILE product (Wood et al., 2013) for the snowfall 
rate at the surface and its uncertainty. The precipitation flag indicates various types of intensity and the phase 
of near-surface precipitation (Table 2; Section 2.3). This study used these data from January 2007 to December 
2010, since CloudSat has operated only in the daytime since 2011 as a result of battery malfunction.

2.1.2. CALIPSO-GOCCP

CALIPSO was launched as part of the A-Train constellation and has operated since 2006 along with CloudSat. 
CALIOP carried on CALIPSO is a LiDAR that provides backscatter profiles at 532 and 1,064 nm, and collects 
information on the vertical structure of aerosols and clouds around Earth (Winker et al., 2013, 2009). This active 

CloudSat product Variable name

2B-GEOPROF Radar_Reflectivity

2B-TAU total_optical_depth, mean_effective_radius

2C-ICE ice_water_path

2C-PRECIP-COLUMN Precip_flag

2C-SNOW-PROFILE snowfall_rate_sfc, snowfall_rate_sfc_uncert

Table 1 
CloudSat Product and Variable Names Used in This Study
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sensor can detect high thin clouds that CloudSat CPR cannot observe due to its detection limitations (Mace & 
Zhang, 2014).

The GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP) is a data set designed for evaluating cloud 
properties simulated in GCMs by utilizing the same algorithm as the LiDAR simulator adopted in the COSP 
(Chepfer et al., 2010). CALIPSO-GOCCP uses the attenuated backscattered (ATB) profile at 532 nm embedded 
in the CALIPSO LiDAR Level 1 product (Winker et al., 2009). The original vertical resolution for the ATB 
profile is 30 m below 8.2 km, but is converted to 480 m to be consistent with the GCMs.

Pixels are defined as being cloudy if the value for the LiDAR scattering ratio acquired from the modified ATB 
profile is >5. The cloud fraction (CF) is then determined as the number of cloudy pixels (n) divided by the 
total number of observed pixels. The data are classified by pressure as low-level (>680  hPa), middle-level 
(440–680 hPa), and high-level (<440 hPa) clouds. Based on temperature, ATB, and cross-polarized ATB (ATB⊥), 
cloudy pixels are then categorized as liquid- or ice-phase (Cesana & Chepfer, 2013; Cesana et al., 2012). The 
liquid cloud fraction (CFl) and ice cloud fraction (CFi) are represented as follows:

��� =
��
�
× �� (1)

��� =
��
�
× �� , (2)

where nl and ni are the number of cloudy pixels defined as liquid and ice, respectively. The mixed-phase clouds 
are classified as either nl or ni, according to the ATB thresholds, as detailed by Cesana and Chepfer  (2013). 
Finally, these data are averaged into 2° × 2° gridded boxes. We used the data set to assess the simulated cloud 
coverages and SLF. The analysis period is from June 2006 to March 2018.

2.2. MIROC6

2.2.1. General Model Description

We used two versions of the MIROC6 GCM: one is the version that participated in the CMIP6 (Tatebe 
et al., 2019), and the other is the latest version including a new precipitation parameterization (Michibata, Suzuki, 

Value for flag Condition over the ocean Condition over the land Meaning

Flag indicating rain (Fice < 0.1 over ocean; Tsurf > 275 K over land)

 1 −15 < dBZ < −7.5 −15 < dBZ < 5 and Zmax < 2.5 dBZ Rain possible

 2 −7.5 < dBZ < 0 −15 < dBZ < 5 and Zmax > 2.5 dBZ Rain probable

 3 dBZ > 0 dBZ > 5 or Zmax > 10 dBZ and PIA > 30 dBZ Rain certain

 8 PIA > 40 dBZ PIA > 40 dBZ Heavy rain

Flag indicating mixed-phase (0.1 < Fice < 0.9 over ocean; 273 K < Tsurf < 275 K over land)

 6 −15 < dBZ < −5 −15 < dBZ < −2.5 and Zmax < −5 dBZ Mixed precipitation possible

 7 dBZ > −5 dBZ > −2.5 or Zmax > 10 dBZ and PIA > 30 dBZ Mixed precipitation certain

Flag indicating snow (Fice > 0.9 over ocean; Tsurf < 273 K over land)

 4 −15 < dBZ < −5 −15 < dBZ < −5 Snow possible

 5 dBZ > −5 dBZ > −5 Snow certain

Others

 0 dBZ < −15 dBZ < −15 No precipitation

 9 Uncertain

 aRain, mixed, and snow phases were classified based on the fraction of ice (Fice) over the ocean and surface air temperature (Tsurf) over the land. Near-surface 
unattenuated and attenuated radar reflectivity (dBZ) were used as the thresholds over the ocean and land, respectively. PIA is the two-way radar beam attenuation. 
Uncertainflag (9) was allocated if acquired conditions were not applied to any definition of flags 0–8.

Table 2 
Description of the Precipitation Flags Applied to COSP2 a
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Sekiguchi, et  al.,  2019) described in Section 2.2.2. MIROC6 is coupled to the global aerosol module, Spec-
tral Radiation-Transport Model for Aerosol Species (SPRINTARS; Takemura et al., 2000, 2002, 2005, 2009). 
SPRINTARS simulates mass mixing ratios of major tropospheric aerosol species, including black carbon, organic 
matter, sulfate, soil dust, sea salt, and precursor gases of sulfate.

MIROC6-SPRINTARS uses the probability density function (PDF)-based large-scale condensation (LSC) scheme, 
which considers the subgrid-scale fluctuations in temperature and total water content (Watanabe et al., 2009). The 
LSC scheme is combined with the ice micro-physical scheme proposed by Wilson and Ballard (1999), which 
treats cloud ice as a prognostic variable. The model uses a two-moment bulk scheme that involves both the mass 
and number mixing ratios of liquid droplets and ice crystals (Takemura et al., 2009).

2.2.2. Diagnostic and Prognostic Precipitation

Many GCMs, including MIROC, treat precipitation diagnostically, which assumes that it reaches the surface 
instantaneously and does not remain in the atmosphere in the next time step in the model calculation (Ghan & 
Easter, 1992). If the models explicitly simulate the fall velocity of the precipitation v, the Courant-Friedrichs-
Lewy (CFL) criterion, which is defined as vΔt/Δz < 1, must be satisfied for numerical stability (Δt is the model 
timestep and Δz is the vertical model resolution). The DIAG scheme helps to avoid the restriction of the CFL 
criterion in the sedimentation process of precipitating hydrometeors. However, the DIAG scheme is unsuitable 
for drizzle and snow, which do not actually reach the surface within one model time step (10–20 min in general). 
This overemphasizes the auto-conversion process and underestimates the accretion process. The former depends 
on aerosol concentrations whereas the latter does not (Posselt & Lohmann, 2008), resulting in overly strong 
aerosol-cloud interactions in the DIAG scheme models (Gettelman et al., 2013; Jing et al., 2019).

To solve this problem, the PROG scheme, called CHIMERRA (Cloud/Hydrometeors Interactive Module with 
Explicit Rain and Radiation), was introduced into the latest version of MIROC6 (Michibata, Suzuki, Sekiguchi, 
et al., 2019). The two-moment PROG scheme prognoses rain and snow for their mass and numerical mixing 
ratios. The auto-conversion and accretion schemes are based on Khairoutdinov and Kogan (2000). The radiative 
effect for rain and snow is also considered by CHIMERRA.

2.3. Satellite Simulator (COSP2) and Precipitation Phase Diagnosis

The direct comparison between native model outputs and satellite retrievals causes uncertainties, due to the 
mismatch in scale between the model and observations, as well as retrieval assumptions (Bodas-Salcedo 
et al., 2011). For a consistent comparison between the model and satellite observations, COSP software was used 
in this study.

COSP divides the GCM grid mean profile into sub-columns with the Subgrid Cloud Overlap Profile Sampler 
(Klein & Jakob, 1999). In this study, we generated 140 sub-columns in the model to mimic the satellite pixel 
scales. Instrument simulators replicate synthetic retrievals of individual observations using ISCCP (Klein & 
Jakob, 1999; Webb et al., 2001), MISR (Marchand & Ackerman, 2010), PARASOL (Konsta et al., 2016), MODIS 
(Pincus et al., 2012), CALIPSO (Chepfer et al., 2008), and CloudSat (Haynes et al., 2007) simulators. COSP 
summarizes statistics based on individual simulators into output histograms and diagnostics (e.g., Michibata, 
Suzuki, Ogura, & Jing, 2019).

A key diagnostic to comprehensively evaluate cloud and precipitation is available from the CloudSat CPR and 
corresponding simulator (Quickbeam; Haynes et al., 2007). To diagnose the near-surface precipitation frequency 
and hydrometeor species, Kay et al. (2018) introduced a precipitation flag into COSP2 that is consistent with the 
CloudSat 2C-PRECIP-COLUMN product. Table 2 provides a definition of the precipitation flag in COSP2. The 
integer flag values are categorized based on the ice fraction, surface air temperature, and radar reflectivity, with 
thresholds that differ with the surface types (i.e., land [Haynes et al., 2009] or ocean [Smalley et al., 2014]). The 
definition follows the CloudSat precipitation flag retrievals in 2C-PRECIP-COLUMN, which enables a consist-
ent comparison of precipitation frequency between CloudSat retrievals and climate model outputs, which ensures 
the evaluation is “scale aware” and “definition aware.” This is consistent with our objective of assessing the 
Arctic precipitation system, where liquid-, solid-, and mixed-precipitation are frequently observed (McIlhattan 
et al., 2020, 2017).
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2.4. Experimental Design

Simulations using the DIAG and PROG schemes were performed with prescribed sea surface temperatures and 
sea ice extent under present-day conditions. The COSP simulator was turned on after a 5 yr spin-up, and run for 
1 yr to examine the seasonal variations. The model resolution is T85 (approximately 1.4° in longitude and lati-
tude), with 40 vertical levels. COSP2 was applied to the entire simulated region, including areas south of 82°S 
and north of 82°N where the A-Train does not pass. We, therefore, define the Arctic region as 67°–82°N.

In the PROG scheme simulation, a suite of sensitivity experiments was carried out to examine how the uncer-
tain tuning parameters link to the model-observation discrepancy. The model configuration other than the 
tuning parameters is the same as the control PROG scheme experiment (CTRL), and the details are summa-
rized in Table 3. The (1) bfice and (2) bfsnow are scale factors of the water vapor diffusion coefficients in the 
Bergeron-Findeisen process (Bergeron, 1935; Findeisen, 1938) for the growth of cloud ice and snow, respec-
tively. For the auto-conversion process that produces snow due to collisions of cloud ice, (3) csiaut, (4) eauti, 
and (5) tsauti are the particle size threshold between cloud ice and snow, a scale factor, and the timescale for 
crystal-to-snow conversion, respectively. For the processes that occur between cloud ice and vapor, (6) depsubi 
relates to the deposition of vapor or sublimation of cloud ice, and (7) dnfsubi is the parameter for changing the 
values of the number mixing ratios. Sublimation of snow is controlled by (8) subs. The parameter (9), (10) vfcts 
is a scale factor for the terminal snowfall velocity. The results are presented in Section 3.5.

We also performed nudged simulations for 2007–2008, where horizontal winds and temperatures were nudged 
toward ERA-Interim reanalysis data to identify whether the model bias is from the environmental or physics 
schemes. The 2008 data were used for the subsequent nudged model analysis and compared with the observa-
tions, as discussed in Section 3.3 (Figure S2 in Supporting Information S1).

3. Results
3.1. Warm Clouds

As reported in recent studies, the modeling approach of the PROG scheme improves the cloud-to-rain conversion 
(Michibata & Suzuki, 2020) and the magnitude of aerosol-cloud interactions (Gettelman et al., 2015; Michibata 
et  al.,  2020), which are in better agreement with satellite observations. These evaluations have mainly been 
conducted for low- and mid-latitude warm clouds, to understand their link to aerosols. However, little is known 
about the impact of different precipitation parameterizations on high-latitude cloud biases. Here, we examined 
the difference in warm cloud representation between the DIAG and PROG schemes over the Arctic, where the 
hydrometeor phase is susceptible to the thermodynamic conditions (Morrison et al., 2012; Zamora et al., 2018). 
For simplicity, we extracted the single-layer warm clouds (SLWCs) from the COSP output and satellite retrievals 
following Michibata, Suzuki, Ogura, et al. (2019). Following Michibata et al. (2016), the cloud layer was defined 
as being where the CPR cloud mask is >30, CPR radar reflectivity is higher than −30 dBZe, MODIS cloud 

Tuning parameter Factor Relevant process Meaning

(1) bfice ×0.1 BF process (l → i) Factor for water vapor diffusion coefficients

(2) bfsnow ×0.1 BF process (l → s) Factor for water vapor diffusion coefficients

(3) csiaut ×2 Auto-conversion (i → s) The particle size threshold between cloud ice and snow

(4) eauti ×0.1 Auto-conversion (i → s) Factor for changing rate of mass mixing ratio

(5) tsauti ×2 Auto-conversion (i → s) Timescale for crystal-to-snow conversion

(6) depsubi ×0.1 Deposition and sublimation (v ↔ i) Factor for changing rate of mass mixing ratio

(7) dnfsubi ×10 Sublimation (i → v) Factor for changing rate of number mixing ratio

(8) subs ×10 Sublimation (s → v) Factor for changing rate of mass mixing ratio

(9) vfcts ×0.5 Snowfall velocity Factor for bulk fall velocity weighted by mass and number

(10)  vfcts ×1.5 Snowfall velocity Factor for bulk fall velocity weighted by mass and number

Table 3 
Details of the Tuning Experiment (”l”, ”i”, ”s”, and ”v” Are the Cloud Liquid, Cloud Ice, Snow, and Vapor, Respectively)
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optical depth is >0.1 (within an uncertainty of <5), and the MODIS cloud effective radius is 5–35 μm (within an 
uncertainty of <1 μm). We used SLWCs with cloud top temperatures of >273.15 K.

Figure 1 shows the occurrence frequencies of the non-precipitating, drizzling, and precipitating clouds obtained 
from the A-Train observations, DIAG scheme, and PROG scheme over the Arctic. These three types of cloud 
regime are classified by the CloudSat column maximum radar reflectivity (Zmax) as follows: Zmax < −15 dBZe for 
non-precipitating clouds; −15 dBZe < Zmax < 0 dBZe for drizzling clouds; and Zmax > 0 dBZe for precipitating 
clouds. SLWCs are rare in the Arctic (annual average of 1.7% of all Arctic single-layer clouds), but the SLWCs in 
this region are important because of (a) the high magnitude of aerosol-cloud interactions (Coopman et al., 2018) 
and (b) regime-dependent LWP adjustment (Murray-Watson & Gryspeerdt, 2022).

Although significant underestimation of the frequency of the non-precipitating regime was found with both 
the DIAG and PROG schemes as compared with the A-Train observations (65.5%), the DIAG scheme (45.2%) 
performed more poorly than the PROG scheme (56.6%; Figures 1a, 1d, and 1g). The PROG scheme performs 
well in simulating the frequency over continental regions and the Greenland Sea, which DIAG underestimates, 
whereas over the East Siberian Sea and periphery of 82°N the occurrence frequency is less than the observation. 
For the drizzling regime, the annual averages of the occurrence frequency are over-represented in both versions of 

Figure 1. Annual averages of the relative occurrence frequency of (a, d, g) non-precipitating clouds, (b, e, h) drizzling 
clouds, and (c, f, i) precipitating clouds for Arctic warm clouds obtained from (a–c) A-Train observations, and the (d–f) 
MIROC6 DIAG and (g–i) MIROC6 PROG scheme simulations. Area-weighted averages over the Arctic are shown above 
each panel. Note that the region north of 82°N is masked for the model simulations to match the observational area.
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MIROC, indicating that the “too frequent and too light” warm rain bias (Stephens et al., 2010; Suzuki et al., 2015) 
still exists over the Arctic region. However, the PROG scheme simulation (41.5%) is more similar to the A-Train 
observations (29.4%) than the DIAG scheme simulation (51.5%), especially for continental regions and the 
Greenland Sea (Figures 1b, 1e, and 1h), along with the non-precipitating regime. Although some biases also exist 
in the precipitating regime (Figures 1c, 1f, and 1i), this regime seldom dominates, and thus is less important over 
the Arctic. Therefore, the fact that the PROG scheme yields occurrence frequencies of the non-precipitating and 
drizzling regimes (which dominate the Arctic) that are in better agreement with the A-Train observations suggests 
this scheme provides an improved representation of Arctic warm clouds.

3.2. Cloud Coverage and Snowfall

Figure 2 shows the spatial distributions of annual mean cloud coverage for total-, high-, middle-, and low-level 
clouds from CALIPSO-GOCCP observations, and the DIAG and PROG scheme simulations. Total cloud cover-
age is significantly underestimated by the DIAG scheme relative to the observations (Figures 2a and 2b), reflect-
ing a “too few” cloud bias that is a common problem for the tropics in GCMs (Nam et al., 2012), and is also the 
case over the Arctic in the traditional MIROC DIAG scheme. This result is consistent with previous studies (e.g., 
English et al., 2015; Kay et al., 2012; McIlhattan et al., 2020). However, the PROG scheme simulation reproduces 
the observed cloud cover, particularly over the Barents Sea and continental regions, as well as averages over the 
Arctic region (Figure 2c). For the high-level cloud, the DIAG scheme underestimates for all the Arctic regions, 
while the geographical distribution from the PROG scheme, especially in continental regions, is consistent with 
the observations (Figures 2d–2f). Similarly, middle-level cloud over most of the Arctic regions is underestimated 
with the DIAG scheme (14.8%), but is more than doubled in the PROG scheme (34.3%) and closer to observa-
tions (27.7%; Figures 2g–2i). Finally, the distribution and averages of the low-level cloud from the PROG scheme 
are similar to observations (Figures 2j–2l).

Figure 3 shows the monthly mean cloudiness from the CALIPSO-GOCCP observations and two versions of 
MIROC, along with the root mean squared error (RMSE) with respect to the observation. Focusing on the total 
cloud coverage, the underestimation is up to 20% smaller than the observations from the DIAG scheme, whereas 
the PROG scheme performs better during all months (Figure 3a). The annual cycle of high-level cloud coverage, 
which increases in summer and decreases in winter, is also well reproduced by the PROG scheme, but is not 
evident in the DIAG scheme simulation (Figure 3b). Although the middle-level cloud coverage is slightly over-
estimated by the PROG scheme simulation, the annual cycle is much closer to the observed trend as compared 
with the DIAG scheme simulation (Figure 3c). For the low-level cloud coverage (Figure 3d), the PROG scheme 
simulation produces more realistic values than the DIAG scheme simulation, and is almost the same as the obser-
vations from January to March. Low-level cloud coverage varies widely according to the season and has a large 
effect on the total cloud coverage and its seasonal changes. The RMSEs for the PROG scheme are smaller than 
those for the DIAG scheme, which indicates the former performs better in modeling in the Arctic cloudiness.

Figure  4 shows maps of annual mean snowfall rates in the Arctic, as obtained from the CloudSat observa-
tions, and DIAG and PROG scheme simulations. The annual average snowfall rate from the PROG scheme 
simulation (249.1 mm yr −1) is closer to the observation (254.5 mm yr −1) than is the DIAG scheme simulation 
(230.9 mm yr −1). This is consistent with the improvement of cloud coverage as shown in Figures 2 and 3. In terms 
of the geographic distributions, although the DIAG scheme simulation accurately reproduces the snowfall rates 
in Siberia and Canada, it underestimates the rates in the periphery of Greenland, where the PROG simulation 
shows a better performance.

The monthly mean snowfall rates and observational uncertainty, which are available from the CloudSat 
2C-SNOW-PROFILE (Wood et al., 2014), are shown in Figure 5. Both the DIAG and PROG scheme simulations 
adequately reproduce the observed seasonal cycle (i.e., low snowfall in summer and high snowfall in winter) and 
are generally within the observational range, but they both have a positive bias in summer and negative bias in 
winter. These biases are smaller for the PROG scheme simulation, given it has smaller RMSEs than does for the 
DIAG scheme, suggesting that the model performance for snowfall rates is improved by using the PROG scheme, 
with regards to both annual and monthly averages. This is likely linked to the improved cloudiness in the PROG 
scheme (Figure 3).
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3.3. Precipitation Frequency and Phase Partitioning

Although we obtained improved representations of Arctic warm clouds, cloud coverage, and snowfall rate with 
the PROG scheme, it is unclear how frequently and what types of hydrometeors fall to the surface. To under-
stand their effects on Arctic climate, we assessed the morphology of near-surface precipitation following Kay 
et al. (2018), who introduced a new diagnostic method using a precipitation flag. The precipitation flag provides 

Figure 2. Annual mean geographic distributions of (a–c) total, (d–f) high-level, (g–i) middle-level, and (j–l) low-level cloud 
coverage over the Arctic obtained from (a, d, g, j) CALIPSO-GOCCP observations, and (b, e, h, k) MIROC6 DIAG and (c, f, 
i, l) MIROC6 PROG scheme simulations. The averages over the Arctic region are shown above each panel. The area north of 
82°N is masked for the model simulations to match the observational area.
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information on the precipitation type and intensity, and is now available in MIROC6 via the COSP2 simulator 
(Table 2). The occurrence frequency of each precipitation phase i (∈ flag 0–9; Table 2) at longitude (λ) and lati-
tude (ϕ) is defined as follows:

𝑓𝑓𝑖𝑖 (𝜆𝜆𝜆 𝜆𝜆) =
𝑛𝑛𝑖𝑖 (𝜆𝜆𝜆 𝜆𝜆)

𝑛𝑛 (𝜆𝜆𝜆 𝜆𝜆)
𝜆 (3)

where n is the total number of samples.

Figure 3. Annual cycle of (a) total, (b) high-level, (c) middle-level, and (d) low-level cloud cover over the Arctic. The gray, black, and red lines correspond to 
CALIPSO-GOCCP observations, and DIAG and PROG scheme simulations, respectively. Root mean squared errors (RMSEs) were calculated from the average 
differences in the monthly mean cloud cover between the models and observations.

Figure 4. Geographic distributions of snowfall rate (mm yr −1) obtained from (a) CloudSat 2C-SNOW-PROFILE, and the (b) 
DIAG and (c) PROG scheme simulations. The Arctic averages are shown above each panel. The area north of 82°N is masked 
for the model simulations to match the observational area.
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Figure 6 shows the geographic distributions of the annual mean occurrence frequencies of each precipitation 
phase. We define the frequencies of no precipitation, rain, light snow, snow, and mixed precipitation as flags 0, 3, 
4, 5, and 7, respectively. It should be noted that the diagnosis includes clear sky scenarios.

The non-precipitation frequency is better reproduced by the DIAG scheme simulation (Figures 6a–6c). Figure 6 
obtained from the precipitation flags includes both clear and cloudy scenes, whereas Figure 1 only considered 
SLWCs without clear sky conditions, which accounts for the apparent inconsistency between these two figures. 
The frequency of non-precipitating clouds is underestimated by >20% in the PROG scheme simulation, in which 
snowing clouds are frequently observed in the Arctic (Figures 6d–6i). In detail, the PROG scheme simulation 
overestimates the occurrence frequency of light snow (12.9%) as compared with the DIAG scheme simulation 
(8.5%) and observations (8.9%; Figures 6d–6f). However, the bias with the PROG scheme is larger for the snow 
category, particularly for Greenland and the Barents Sea (Figures 6g–6i). The bias is mainly due to the snow 
intensity and/or snowflake diameter, which is discussed later. For the rain and mixed precipitation, the occur-
rence frequencies for the models and observations are much lower than the snow phases. Both the DIAG and 
PROG schemes accurately reproduce the observational averages (Figures 6j–6o). Figure S2 in Supporting Infor-
mation S1 is the same as Figure 6, but for the observations and nudged simulations for 2008. The occurrence 
frequencies of snow categories from the PROG scheme still disagree with that for the observations, implying 
that the principal source of the snow biases is the modeled microphysical processes rather than environmental 
components.

To understand the model bias in Arctic precipitation occurrence frequencies, we examined the seasonal cycle 
(Figure 7). The precipitation types were classified into five categories: (a) no precipitation (flag 0); (b) rain (flags 
1–3 and 8); (c) snow (flags 4 and 5); (d) mixed precipitation (flags 6 and 7); and (e) uncertain precipitation (flag 
9). These precipitation types ignore the precipitation intensity. The observations show that the snow occurrence 
frequency is higher from winter to spring and lower from summer to autumn, when it is replaced by rain and 
mixed precipitation, which is consistent with the seasonal pattern of precipitation rate (Figure 5). This feature is 
also evident from the models, but the ratios of rain, snow, and mixed precipitation from the PROG scheme simu-
lation show marked seasonal changes. This implies that surface precipitation from the PROG scheme simulation 
is more susceptible to the surrounding environment (e.g., temperature) due to melting, riming, and collection 
processes. In addition, snow from the PROG scheme simulation is overly frequent in any season. This indicates 
that the PROG scheme simulation produces more frequent snow than the observations and the DIAG scheme 
simulation. The reason for this is discussed in Section 3.5.

Figure 5. Annual cycle of the snowfall rate (mm month −1) in the Arctic obtained from (a) CloudSat 2C-SNOW-PROFILE, 
and the (b) DIAG and (c) PROG scheme simulations. The CloudSat observations, and DIAG and PROG simulations are 
shown as gray, black, and red lines, respectively. Root mean squared errors (RMSEs; top right) were calculated from the 
monthly mean snowfall rate as compared with the observations, and the gray shading indicates the observational uncertainty.
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3.4. Seasonal Biases in Precipitation Intensity

As described in the previous sections, the PROG scheme simulation has biases in the near-surface precipitation 
frequency and its partitioning, even though the cloudiness and surface snowfall rates are in better agreement with 
the observations. These results suggest that the correct cloud coverage and snowfall rates can be achieved by 
compensating the errors with the precipitation frequency and intensity in the model, which will introduce further 

Figure 6. Annual mean near-surface frequencies of (a–c) no precipitation (flag 0), (d–f) light snow (flag 4), (g–i) snow (flag 
5), (j–l) rain (flag 3), and (m–o) mixed precipitation (flag 7) in the Arctic, obtained from (left) CloudSat observations, and 
(center) DIAG and (right) PROG scheme simulations. The area north of 82°N is masked for the model simulations to match 
the observational area.
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uncertainties into the climate simulation. To understand the reason for the 
biases in snowfall occurrence in the context of the hydrological cycle, we 
must understand how cloud ice contributes to consequent snowfall. As such, 
we attempted to link the IWP and snowfall rates simultaneously to exam-
ine the source of the discrepancy in the precipitation efficiency between the 
model and observations. The CloudSat IWP was used for the observations, 
whereas the MODIS IWP was used for the model analysis, since the Cloud-
Sat IWP is not available in the current Quickbeam. Although the CloudSat 
IWP is generally higher than the MODIS IWP, the difference is relatively 
small over the Arctic region (Eliasson et al., 2011), and this uncertainty is 
not discussed in this paper. This inconsistency should be avoided in future 
studies.

The link between the IWP and snowfall intensity was examined from the joint 
PDF of the IWP and snowfall rate (Figure 8). Although the observed distri-
butions of high-frequency areas in summer and autumn show a slight shift 
toward the top right as compared with those in spring and winter, the PDFs 
are largely seasonally independent (Figures 8a, 8d, 8g, and 8j). This implies 
that snowfall over the Arctic is primarily controlled by the IWP. The DIAG 
and PROG scheme simulations capture the observed characteristics, but the 
models tend to simulate a lower snowfall rate. This is evident in the PROG 
scheme simulation, which rarely generates strong snowfall, even in the case 

Figure 7. Seasonal averages of near-surface precipitation frequencies for no 
precipitation (red), rain (blue), snow (green), mixed precipitation (purple), and 
uncertain precipitation (black) in the Arctic, obtained from observations (O), 
and the DIAG (D) and PROG (P) scheme simulations. Seasons are as follows: 
spring (FMA; February–April), summer (MJJ; May–July), autumn (ASO; 
August–October), and winter (NDJ; November–January).

Figure 8. Seasonal variations in the probability density function (PDF) of the ice water path (IWP) and snowfall rate in the Arctic obtained from (a, d, g, j) A-Train 
observations, and (b, e, h, k) DIAG and (c, f, i, l) PROG scheme simulations. Note that the x-axis for the IWP and colored shading have logarithmic scales.
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when the IWP exceeds 100 g m −2 (Figures 8c, 8f, 8i, and 8l), and is consistent with the “too frequent and too 
light” snowfall bias of the PROG scheme simulation (Figure 6). These results suggest compensating errors exist 
in the PROG scheme simulation, which yield a realistic annual mean cloud coverage and snowfall rate, despite 
the “too frequent and too light” snowfall bias over the Arctic. This is similar to the well-known bias in the tropics.

3.5. Links Between Model Biases and Tuning Parameters

To understand the source of the compensating errors described above, we conducted a suite of sensitivity experi-
ments by perturbing the tuning parameters for the processes involving snow and cloud ice. In these experiments, 
values for the tuning parameters, which are the semi-empirical and physical parameters attributed to various 
assumptions in the parameterization of GCMs, were changed within the range of their uncertainties as summa-
rized in Table 3. The parameters (1) bfice and (2) bfsnow for the BF process were reduced by a factor of 0.1 
following Lawson and Gettelman (2014), to achieve a better agreement with observations. The parameter (3) 
csiaut controls the initiation of the ice-to-snow conversion, with a larger csiaut allowing more cloud ice and 
less snow (Eidhammer et al., 2014); it also controls the ice-to-snow auto-conversion timescale. The parameter 
(5) tasuti, behaves in a similar fashion (Morrison & Gettelman, 2008), whereas parameter (4) eauti is a simple 
unphysical factor utilized in the conversion efficiency. Although the parameters for deposition and sublimation, 
which are (6) depsubi, (7) dnfsubi, and (8) subs, should not be tuned because these processes are thermodynam-
ically determined, we also examined these sensitivities for comparison with other micro-physical processes. The 
varied values for (9), (10) vfcts were determined such that the snowfall velocity was higher than that of cloud ice 
and lower than that of raindrops. The results are detailed in Table S1 in Supporting Information S1.

Figure 9 shows the occurrence frequencies of each precipitation type (i.e., no precipitation, rain, snow, mixed 
precipitation, and uncertain) as in Figure  7. In comparison with the CTRL, the snow frequency has a rela-
tively high sensitivity to the parameters (9) and (10) vfcts in all seasons, which implies that snow formation 
in the PROG scheme simulation is susceptible to snowfall velocity. For each season, (5) tsaut shows a slight 
improvement in spring and summer as a result of limits to snow formation by crystal-to-snow auto-conversion. 
We also found  somewhat better results for (3) csiaut in autumn and winter, as only larger crystals contribute to 
producing snow. Nevertheless, the dramatic changes necessary to make the frequencies for the CTRL simulation 
equivalent to the observational frequencies were not obtained. This implies that there are fundamental uncer-

Figure 9. Relative frequency of precipitation phase partitioning for (a) FMA, (b) MJJ, (c) ASO, and (d) NDJ from 
observations (Obs.) and MIROC PROG simulations of the CTRL experiment and a suite of sensitivity experiments. 
The numbers in parentheses correspond to the configuration described in Table 3. The seasonal mean frequencies of no 
precipitation (red), rain (blue), snow (green), mixed precipitation (purple), and uncertain precipitation (black) in the Arctic 
are shown.
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tainties in the cloud and precipitation representations, such as the dynamics, 
thermodynamics, and turbulence (e.g., Eirund et al., 2019; Feist et al., 2019; 
Korolev & Field, 2008; Shupe et al., 2013), as well as the sub-grid-scale ice 
representation.

In addition to evaluation of precipitation phase partitioning, it is essential 
to examine the cloud phase partitioning, which has a significant role in 
Arctic climate (Avramov & Harrington, 2010; Cesana et al., 2021; Morrison 
et al., 2009; Zhang et al., 2019). Figure 10 shows the dependence of SLF on 
temperature in Arctic mixed-phase clouds. The SLF decreases with decreas-
ing temperature, but the rate of decrease is quite different between the DIAG 
and PROG scheme simulations, and also between the snow-aware and tradi-
tional LiDAR simulations in the PROG scheme. The DIAG and traditional 
PROG scheme simulations that are not snow-aware produce the observed 
trend, whereas the snow-aware PROG scheme simulations have a much 
lower SLF than the observations. Given that the SLF increases significantly 
by switching from the snow-aware to traditional LiDAR simulations for the 
CTRL experiment (Figure 10), all the tuning experiments yield results more 
consistent with the observations (not shown), depending on how much cloud 
ice is included in the model.

In one tuning experiment, (1) bfice shows a slight improvement because 
cloud ice formation by the BF process is constrained by changing the value 
to one tenth of the default value. We observed the strongest sensitivities for 

(6) depsubi, which affects the balance of sublimation of cloud ice and vapor deposition. Other experiments also 
show a slight improvement (e.g., (2) bfsnow, (10) vfcts); however, all the SLF results from the model tuning 
remained much lower than the observations. These results show that the PROG scheme simulation results in a 
significant underestimate of the SLF and overestimates the ratios of cloud ice. Given that the PROG precipitation 
effectively increases the Arctic cloudiness as compared with the DIAG precipitation (Figures 2 and 3), the lower 
SLF is possibly linked to the overestimation of snow frequency. Although some GCMs include PROG precipita-
tion, the frequent snowfall generated by our MIROC model also appears to characterize some other models (e.g., 
the CESM model; McIlhattan et al., 2020).

Figure 11 is a schematic diagram that explains the difference between the two model schemes. The SLF diag-
nostic in the DIAG scheme and PROG scheme with the traditional LiDAR simulations uses the ratio of cloud 
liquid water to total cloud water (i.e., liquid and ice; Figure 11a). Although this assumption appears not to be 
problematic, the latest version of the CALIPSO LiDAR simulator used in this study includes some snowflakes 
adjacent to clouds in the cloud phase diagnosis (Cesana et al., 2021). This is consistent with the actual LiDAR 
observations, because LiDAR retrieval cannot distinguish accurately between ice crystals and snowflakes. There-
fore, unlike the DIAG scheme, snowflakes in the atmosphere are partly detected as a cloud layer by the PROG 
scheme (Figure 11b). As a result, the PROG scheme has a high total water content that is the denominator for the 
calculation of the SLF, which leads to an apparent deterioration of the cloud phase diagnostics.

Figure 10. Supercooled liquid fraction (SLF) as a function of temperature in 
Arctic clouds for the CALISPO-GOCCP observations (solid gray line), and 
DIAG (solid black line) and PROG (colored lines) scheme simulations. The 
solid and dashed red lines indicate the snow-aware and traditional LiDAR 
simulations in the PROG scheme, which account for and ignore snowflakes 
near clouds in the SLF diagnostic, respectively. The other dashed lines 
represent the tuning experiments in the snow-aware PROG scheme simulation.

Figure 11. Schematic illustration of the difference in retrieval algorithm between the (a) DIAG and (b) PROG schemes for 
cloud detection with the LiDAR simulator.
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4. Summary and Discussion
This study has examined phase partitioning of cloud and precipitation in the Arctic. To focus directly on the struc-
tural differences in the precipitation parameterization, we used two versions of the MIROC6 GCM: the conven-
tional DIAG and updated PROG schemes. The model outputs were systematically compared with multi-satellite 
retrievals using the COSP2 satellite simulator.

The MIROC PROG simulation performed better by increasing the non-precipitating cloud and decreasing driz-
zling cloud occurrences for the Arctic warm cloud occurrences (Figure 1), increasing the cloud cover (Figures 2 
and 3), and increasing the snowfall rates at the surface (Figures 4 and 5), as compared with the DIAG simulation. 
However, critical biases in Arctic precipitation and cloud phase partitioning still characterize the PROG simula-
tion. Precipitation phase diagnostics using COSP2 (Kay et al., 2018; Swales et al., 2018) have revealed that the 
PROG scheme simulation produced a much higher frequency of annual mean Arctic snow, as observed in a previ-
ous study of the Greenland ice sheet (Lenaerts, Drew Camron, et al., 2020), implying faster snow formation. In 
addition, although the satellite-derived snowfall rates over the Arctic increased rapidly with increasing IWP, the 
MIROC GCM did not capture the strong snowfall, even for the larger IWP, particularly with the PROG scheme 
simulation (Figure 8). In addition to the annual biases outlined above, the ratios of snow, rain, and mixed-phase 
precipitation in the PROG scheme simulation are more sensitive to seasonal changes relative to the satellite obser-
vations (Figure 7), and exhibit a higher occurrence of rain in summer and snow in winter. These results suggest 
that the “too frequent and too light” Arctic snowfall bias appears due to switching the precipitation scheme 
from DIAG to PROG, which inadvertently produces realistic annual mean Arctic cloud cover and snowfall. The 
significant increase in the snow water path from the DIAG to PROG scheme (Figure S1 in Supporting Informa-
tion S1) possibly results in the too frequent snowfall. This suggests that there are more fundamental errors in the 
conversion process from cloud ice to snow, which is an important area to explore in future model development 
(e.g., Milbrandt & Morrison, 2016).

The compensating errors identified in this study possibly exist in other GCMs, due to the simplified treatment 
of cloud and precipitation (Jing et al., 2019). If the models overestimate the occurrence frequency of snow, then 
the potential phase change from snow to rain will also be over-represented. The key point is that although snow 
has a large effect on the radiation budget through both the greenhouse and parasol effects (Li et al., 2019, 2020; 
Michibata, Suzuki, Sekiguchi, et al., 2019), the radiative effect of rain is negligible (Hill et al., 2018). Given 
the different radiative roles of rain and snow on in terms of climate, the precipitation phase change affects the 
climate sensitivity (Cesana et al., 2021). If snow is converted into rain that is less radiatively opaque as the climate 
warms, the incoming solar radiation at the surface and outgoing long-wave radiation will increase, driving a 
positive and negative feedback, respectively. This is one possible hypothesis based on a few limited models, but 
there is no consensus on the magnitude of these feedbacks and their mechanisms (Cesana et al., 2021; Hirota 
et al., 2022), due to uncertainties in our understanding and representation of aerosol-cloud-precipitation inter-
actions (Michibata, 2022). However, the introduction of the PROG scheme increases the equilibrium climate 
sensitivity (ECS; e.g., Gettelman, Hannay, et al., 2019; Hirota et al., 2022).

One of the key causes of increased ECS is that the cloud altitude feedback is more evident in the PROG scheme 
due to the improved representations of the amount of cloud and its vertical structure, which result in the efficient 
longwave warming effect (Hirota et al., 2022). If we improve the bias in the precipitation phase partitioning by 
mitigating the too frequent snowfall by suppressing the ice-to-snow conversion, then the model enhances this 
positive cloud altitude feedback due to the increase in high-level cloud amount. However, the increased cloud ice 
can also induce a negative optical depth feedback (Tan et al., 2016). Although the net cloud feedback, including 
other processes, is highly model-dependent, multiple model results suggest that a positive cloud feedback will be 
dominant (e.g., Hirota et al., 2022; Wang et al., 2021; Zelinka et al., 2022, 2020).

However, the effects of the biases in the precipitation phase partitioning on the radiative feedback under warming 
remain controversial. A continuous study of how snowfall biases affect the radiative feedback would constrain 
the model uncertainties, such that more accurate climate predictions can be made. Given that the model biases 
were barely reduced by parameter tuning of the micro-physical processes (Figure 9), one cause of these discrep-
ancies may be the surrounding environmental regimes (e.g., Gierens et al., 2020; Griesche et al., 2021), such as 
temperature, humidity, and wind. In this regard, it will be important to investigate the sensitivity of the biases to 
the vertical model resolution (Ingram & Bushell, 2021). Although we undertook nudged simulations, the results 
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suggested that environmental factors have less effect on the Arctic snowfall biases (Figure S2 in Supporting Infor-
mation S1). Therefore, it is still necessary to improve the representation of micro-physical processes, because 
GCMs simply consider sub-grid-scale variability of cloud and precipitation and ignore larger precipitating hydro-
meteors (e.g., graupel), apart from some state-of-the-art models (e.g., MG3; Gettelman, Morrison, et al., 2019; 
Morrison et al., 2009).

In addition to the precipitation phase, this study also showed that the cloud phase diagnosis was strongly affected 
by changing the precipitation scheme. Our results indicate that the PROG scheme simulated lower SLF values for 
the Arctic than the CALIPSO observations and DIAG scheme. This is mainly attributable to increased total ice 
water due to prognosed snow, part of which is regarded as being cloud ice in the simulator (Cesana et al., 2021). 
The increased cloud ice, as well as cloud cover, in the PROG scheme can be a cause of the excess snowfall. To 
address this issue, a further study of the accurate mass ratios between snowflakes and cloud ice used in the cloud 
phase diagnostics should be undertaken. In addition, if satellite observations count in-cloud snow as part of the 
total water, then the satellites and models might yield erroneously consistent results when GCMs use a DIAG 
scheme. This means that the latent bias in the SLF exists in most of the CMIP6 models, although recent studies 
have reported improvements in SLF simulations (Mülmenstädt et al., 2021; Zelinka et al., 2020). In addition, 
GCMs that underestimate the SLF will underestimate climate sensitivity due to a stronger negative feedback 
mechanism (Tan et al., 2016). Thus, it is necessary to examine how the biases in both the cloud and precipitation 
phase partitioning are linked to climate feedback in a warming climate.

We have found that the more sophisticated PROG scheme simulation still has biases in precipitation and cloud 
phase partitioning, and their occurrence frequency, over the Arctic. There is a “too frequent and too light” snow-
fall bias with inaccurate phase partitioning in the model, and the bias will influence feedback processes in future 
climate simulations.

Data Availability Statement
The CloudSat data products were provided by the CloudSat Data Processing Center at CIRA/Colorado State 
University (https://www.cloudsat.cira.colostate.edu). CALIPSO-GOCCP data set version 3.1.2 was obtained 
from the ClimServ data center (https://climserv.ipsl.polytechnique.fr/cfmip-obs/Calipso_goccp.html). COSP is 
available online (https://github.com/CFMIP/COSPv2.0). The MIROC6 simulation data are available at https://
doi.org/10.5281/zenodo.5977099.
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