
A Self-learning Nurse Call System

Femke Ongenaea,∗, Maxim Claeysa, Wannes Kerckhovea, Thomas Duponta,
Piet Verhoeveb, Filip De Turcka

aDepartment of Information Technology (INTEC), Ghent University - iMinds, Gaston
Crommenlaan 8 bus 201, B-9050 Ghent, Belgium

biMinds VZW, Gaston Crommenlaan 8 bus 102, B-9050 Ghent, Belgium

Abstract

The complexity of continuous care settings has increased due to an ageing

population, a dwindling number of caregivers and increasing costs. Electronic

healthcare (eHealth) solutions are often introduced to deal with these issues.

This technological equipment further increases the complexity of healthcare

as the caregivers are responsible for integrating and configuring these so-

lutions to their needs. Small differences in user requirements often occur

between various environments where the services are deployed. It is difficult

to capture these nuances at development time. Consequently, the services

are not tuned towards the users’ needs.

This paper describes our experiences with extending an eHealth applica-

tion with self-learning components such that it can automatically adjust its

parameters at run-time to the users’ needs and preferences. These compo-

nents gather information about the usage of the application. This collected

∗Corresponding author: Tel.: +32 9 331 49 38, Fax: +32 9 331 48 99
Email addresses: Femke.Ongenae@intec.UGent.be (Femke Ongenae),

Maxim.Claeys@intec.UGent.be (Maxim Claeys), Wannes.Kerckhove@intec.UGent.be
(Wannes Kerckhove), Thomas.Dupont@intec.UGent.be (Thomas Dupont),
Piet.Verhoeve@iminds.be (Piet Verhoeve), Filip.DeTurck@intec.UGent.be (Filip De
Turck)

Preprint submitted to Computers in Biology and Medicine December 5, 2013

information is processed by data mining techniques to learn the parameter

values for the application. Each discovered parameter is associated with a

probability, which expresses its reliability. Unreliable values are filtered. The

remaining parameters and their reliability are integrated into the application.

The eHealth application used is the ontology-based Nurse Call System

(oNCS), which assesses the priority of a call based on the current context and

assigns the most appropriate caregiver to a call. Decision trees and Bayesian

networks are used to learn and adjust the parameters of the oNCS. For a

realistic dataset of 1,050 instances, correct parameter values are discovered

very efficiently as the components require at most 100 milliseconds execution

time and 20 megabyte memory.

Keywords:

Self-learning, Adaptive, Ontology, eHealth, Nurse call system

1. Introduction1

Due to a longer life expectancy and dwindling fertility rates, the percent-2

age of people over 60 is growing more rapidly than any other age group [1].3

Because of health problems, a lot of the elderly are no longer able to live in-4

dependently and require some form of institutionalized long-term care, e.g.,5

residential care or long stays in the hospital [2]. These developments are ac-6

companied by emerging staff shortages in the formal care sector. In 2006, the7

World Health Organization (WHO) reported an estimated shortage of almost8

4.3 million doctors, midwives, nurses and support workers worldwide [3].9

Moreover, people are increasingly living longer with one or more chronic10

diseases, which increases the complexity of diagnosis and treatment and re-11

2

quires more personalized healthcare and specialized staff. Consequently, the12

healthcare costs have also been on the rise. Spending on healthcare almost13

consistently grows faster than the Gross Domestic Product (GDP) [4].14

To achieve a more optimized use of resources and rostering of staff and15

to reduce the healthcare costs, Information Technology (IT) and technolog-16

ical equipment, e.g., monitoring equipment and Electronic Patient Records17

(EPR), are often introduced in institutionalized healthcare settings [5]. Elec-18

tronic Healthcare (eHealth) software and services can then be built that take19

advantage of all the collected information to ideally support caregivers in20

their daily work practices. The benefits of eHealth, such as improved oper-21

ational efficiency, higher quality of care, and positive return on investments,22

have been well documented in the literature [6]. However, the increased in-23

troduction of eHealth also increases the complexity of healthcare as the care-24

givers are responsible for tweaking and configuring the eHealth solutions to25

suit their needs. The various healthcare environments where the services are26

deployed, e.g., different nursing units or hospital departments, have slightly27

different requirements pertaining to how the collected information about the28

patients, caregivers and environment is taken into account. It is difficult to29

capture these small nuances at development time as domain experts often30

find it difficult to assess these parameters. Consequently, the resulting ser-31

vices are not really personalized towards the needs and preferences of the32

caregivers and they have to significantly alter their workflow patterns to ac-33

commodate the technology instead of the other way around [7]. This hinders34

the adoption of these services [8].35

An important way to coordinate work, communicate and provide con-36

3

tinuous care is by making use of a nurse call system. In previous research,37

we have developed an ontology-based Nurse Call System (oNCS) [9], which38

finds the most appropriate caregiver to handle a call based on profile and39

environment information captured in an ontology, e.g., the risk factors of40

the patient, the locations of the staff and patient, the priority of the call41

and the current tasks of the staff. Simulations showed that the workload42

distribution amongst nurses and the arrival times of caregivers at calls are43

positively influenced by using the oNCS [9]. However, user tests performed44

with the prototype also showed that small nuances were often required in45

how the profile information was taken into account within a specific health-46

care setting. Domain experts also found it difficult to specify the parameters47

of the oNCS, i.e., which context should be taken into account and how, at48

development time. However, little previous research has been done on how49

discovered trends and patterns can be used to automatically optimize the50

nurse call assignment. To resolve this issue, this paper presents an extension51

of the oNCS that allows automatically adjusting its parameters at run-time.52

More technical details about the self-learning, probabilistic, ontology-based53

framework, which was developed to realize this extension, can be found in54

Ongenae et al. [10].55

The remainder of this paper is structured as follows. Section 2 gives an56

overview of the oNCS and the associated priority assessment and nurse call57

algorithm. Section 3 details the extension of the oNCS with components,58

which enable the autonomous adjustment of its parameters. The implemen-59

tation of these components is discussed in Section 4, while Section 5 highlights60

how the correctness and performance of the extension was evaluated. Finally,61

4

Section 6 discusses the results and Section 7 summarizes the conclusions.62

2. Ontology-based Nurse Call System63

The main functionality of the oNCS is to provide an efficient support for64

wireless nurse call buttons and to employ a sophisticated nurse call algorithm65

that takes the profiles of the staff members and patients into account. A de-66

tailed description can be found in Ongenae et al. [9]. To realize the latter, a67

continuous care ontology [11] is used of which the most important classes per-68

taining to the dynamic algorithm are visualized in Figure 1. An ontology [12]69

formally models all the concepts and their relationships and properties within70

a domain. The ontology models people and associates them with their roles,71

location, profile, the hospital department they work or lie on, risk factors,72

and current tasks. Additionally, the ontology models the various types of73

nurse calls. Patients can launch three types of calls, i.e., service calls for74

“caring” requests, sanitary calls originating from sanitary spaces and normal75

calls for mostly medical requests. All the other calls, i.e., urgency, medical,76

technical and (sanitary) assistance calls, are launched by nurses. Each call77

is associated with a status and a priority. It is also indicated who made the78

call and which staff members are assigned to it.79

When a new call is launched, the information captured in the ontology80

is used to assign the most appropriate staff member to the call. First, the81

priority of the call is determined, using the algorithm visualized in Figure 2.82

The ontology specifies for each risk factor a probability, which indicates the83

likelihood that a patient with this risk factor is classified as a high, medium84

or low risk patient. Patients can of course exhibit several risk factors. In85

5

L
o

w
e

s
t

P
ri
o

ri
ty

A
b

o
v
e

N
o

rm
a

l

P
ri
o

ri
ty

B
e

lo
w

N
o

rm
a

l

P
ri
o

ri
ty

N
o

rm
a

l

P
ri
o

ri
ty

H
ig

h

P
ri
o

ri
ty

H
ig

h
e

s
t

P
ri
o

ri
ty

L
o

w

P
ri
o

ri
ty

R
is

k
F

a
c
to

r

T
ra

n
s
fe

rr
e

d

F
ro

m
IC

U
T

ra
c
h

e
o

to
m

y
H

ig
h

A
g

e
P

n
e

u
m

o
n

ia
N

e
u

ro
lo

g
ic

P
ro

b
le

m
P

a
ra

p
le

g
ia

C
o

n
fu

s
e

d
_

D
is

o
ri
e

n
te

d

H
e

a
rt

D
is

e
a

s
e

R
e

a
n

im
a

te
d

C
O

P
D

P
a

ti
e

n
t

T
ra

n
s
fe

rr
e

d

F
ro

m
IC

U

L
e

s
s
T

h
a

n

7
2
h

A
g

o

R
e

a
n

im
a

te
d

L
e

s
s
T

h
a

n

7
2
h

A
g

o

G
a

s
tr

ic

B
le

e
d

in
g

W
it
h

in
4

8
h

H
ig

h
F

a
llR

is
k

D
ia

b
e

ti
c

h
a

s
R

is
k
fa

c
to

r

P
e

rs
o

n
P

ro
fi
le

h
a

s
P

ro
fi
le

B
a

s
ic

P
ro

fi
le

S
o

c
io

lo
g

ic
a

l

P
ro

fi
le

B
io

lo
g

ic
a

l

P
ro

fi
le

S
e

x
L

a
n

g
u

a
g

e

R
o

le

C
o

m
p

e
te

n
c
y

S
ta

ff
P

a
ti
e

n
t

M
e

d
ic

a
lR

o
le

C
a

re
R

o
le

A
n

s
w

e
rC

a
ll

C
o

m
p

e
te

n
c
y

D
o

c
to

r
N

u
rs

e

C
a

re
g

iv
e

r

L
o

g
is

ti
c
s

E
m

p
lo

y
e

e

L
o

c
a

ti
o

n

Z
o

n
e

C
o

o
rd

in
a

te

R
o

o
m

S
y
s
te

m

S
e

n
s
o

r

H
e

a
rt

R
a

te

S
e

n
s
o

r

T
e

m
p

e
ra

tu
re

S
e

n
s
o

r

P
la

n
n

e
d

T
a

s
k

U
n

P
la

n
n

e
d

T
a

s
k

C
a

ll

T
a

s
k

A
s
s
is

ta
n

c
e

C
a

ll

N
o

rm
a

l

C
a

ll

U
rg

e
n

c
y

C
a

ll

M
e

d
ic

a
l

C
a

ll

P
ri
o

ri
ty M

e
d

iu
m

P
ri
o

ri
ty

U
rg

e
n

t

P
ri
o

ri
ty

V
e

ry
U

rg
e

n
t

P
ri
o

ri
ty

M
in

o
r

P
ri
o

ri
ty

h
a

s
P

ri
o

ri
ty

h
a

s
C

u
rr

e
n

tT
a

s
k

a
s
s
ig

n
e

d
T

o
 (

in
v
e

rs
e

:
is

A
s
s
ig

n
e

d
T

o
)

D
e

p
a

rt
m

e
n

t

T
a

s
k
S

ta
tu

s

S
ta

tu
s

m
a

k
e

s
C

a
ll

(i
n

v
e

rs
e
:
c
a

llM
a

d
e

B
y
)

m
a

k
e

s
C

a
ll

(i
n

v
e

rs
e

:
c
a

llM
a

d
e

B
y
)

h
a

s
S

ta
tu

s

h
a

s
C

u
rr

e
n

tR
o

le

h
a

s
R

o
le

 (
in

v
e

rs
e

:
is

R
o

le
O

f)

h
a

s
L

o
c
a

ti
o

n

(i
n

v
e

rs
e
:
is

L
o

c
a

ti
o

n
O

f)

h
a

s
C

o
m

p
e

te
n

c
e

(i
n

v
e

rs
e

:
b

e
lo

n
g

s
T

o
R

o
le

)

lie
s
O

n
w

o
rk

s
O

n

re
s
p

o
n

s
ib

le

F
o

r

h
a

s
L

o
c
a

ti
o

n

(i
n

v
e

rs
e
:
is

L
o

c
a

ti
o

n
O

f)

H
ig

h

R
is

k

P
a

ti
e

n
t

M
e

d
iu

m

R
is

k

P
a

ti
e

n
t

L
o

w

R
is

k

P
a

ti
e

n
t

S
a

n
it
a

ry

A
s
s
is

ta
n

c
e

C
a

ll

S
e

rv
ic

e

C
a

ll

S
a

n
it
a

ry

C
a

ll

T
e

c
h

n
ic

a
l

C
a

ll

h
a

s
T

h
re

s
h

o
ld

d
o

u
b

le

L
e

g
e

n
d

O
n

to
lo

g
y
 C

o
n

c
e

p
t

O
b

je
c
t
P

ro
p

e
rt

y
/R

e
la

ti
o

n

D
a

ta
ty

p
e

 P
ro

p
e

rt
y

In
h

e
ri
ta

n
c
e

C
o

n
c
e

p
t

re
la

ti
o

n

p
ro

p
e

rt
y

d
a

ta

ty
p

e

Figure 1: Prevalent concepts of the continuous care ontology

6

R
is

k
 f

a
c

to
rs

?

H
e

a
rt

 d
is

e
a

s
e

?

R
e

a
n

im
a

te
d

?

H
ig

h
 a

g
e
?

…
.

..
.

P
(H

ig
h

 R
is

k
 P

a
ti
e

n
t
|
H

e
a

rt
 D

is
e

a
s
e

)

P
(M

e
d

iu
m

 R
is

k
 P

a
ti
e

n
t
|
H

e
a

rt
 D

is
e

a
s
e

)

P
(L

o
w

 R
is

k
 P

a
ti
e

n
t
|
H

e
a

rt
 D

is
e

a
s
e
)

P
(H

ig
h

 R
is

k
 P

a
ti
e

n
t
|
R

e
a

n
im

a
te

d
)

P
(H

ig
h

 P
ri
o

ri
ty

 |
 H

ig
h

 R
is

k
 P

a
ti
e

n
t
∩

 N
o

rm
a

l
C

a
ll)

P
(H

ig
h

 P
ri
o

ri
ty

 |
 M

e
d

iu
m

 R
is

k
 P

a
ti
e

n
t
∩

 A
s
s
is

ta
n

c
e

 C
a

ll)

P
(N

o
rm

a
l
P

ri
o

ri
ty

 |
 L

o
w

 R
is

k
 P

a
ti
e

n
t
∩

 A
s
s
is

ta
n

c
e

 C
a

ll)

P
(N

o
rm

a
l
P

ri
o

ri
ty

 |
 H

ig
h

 R
is

k
 P

a
ti
e

n
t
∩

 N
o

rm
a

l
C

a
ll)

T
y
p

e
 o

f
c
a

ll

P
ri
o

ri
ty

T
h

re
s
h

o
ld

s

..
.

..
.

P
a

ti
e

n
t

C
o

n
fi
g

u
re

 p
a

ra
m

e
te

rs

Figure 2: Probabilistic priority algorithm

7

this case, probabilistic reasoning on the specified probabilities is used to de-86

termine for each risk group the combined likelihood that a particular patient87

belongs to it. As shown in Figure 1, there are seven priority levels. Prob-88

abilities are indicated in the ontology, which specify the likelihood that a89

call of a particular type made for a patient associated with a particular risk90

group has a certain priority. As example, Table 1 shows the probabilities for91

the types of calls, which can be launched by patients. For each of the seven92

priority classes, probabilistic reasoning is thus used to combine these prob-93

abilities with the probabilistic assignment of patient to risk groups in order94

to determine the likelihood that a call of a certain type has this priority. To95

determine the suitable priority for this call based on these probabilistic val-96

ues, a threshold algorithm is used. Thresholds are specified in the ontology97

for each priority class. If the probabilistic value for the highest priority is98

higher than or equal to the threshold for this priority, the call is associated99

with the highest priority. If not, the same condition is checked for the other100

priority classes in the following order: high, above normal, below normal,101

normal, low and lowest.102

The priority of the call is then combined with the other context informa-103

tion in the ontology to find the most appropriate staff member to handle the104

call, e.g., the distance between the caregivers and the patient, the current105

tasks of the available staff and the capability of the caregivers to handle the106

call based on their roles and competencies. For calls with a higher priority,107

more weight is given to finding a caregiver who is able to quickly rush to108

the patient and assess the situation. In contrast, other context information109

is given more weight for calls with a lower priority such as the profile and110

8

R
is
k
g
ro

u
p

T
y
p
e
o
f
ca

ll

H
ig
h
e
st

H
ig
h

A
b
o
v
e
n
o
rm

a
l

N
o
rm

a
l

B
e
lo
w

N
o
rm

a
l

L
o
w

L
o
w
e
st

High

Normal 0.2 0.6 0.2

Sanitary 0.3 0.6 0.1

Service 0.2 0.2 0.6

Medium

Normal 0.3 0.6 0.1

Sanitary 0.4 0.5 0.1

Service 0.2 0.4 0.4

Low

Normal 0.6 0.3 0.1

Sanitary 0.7 0.2 0.1

Service 0.4 0.4 0.2

Table 1: Probabilistic assignment of priorities to calls based on the risk group

of the patient and the type of call.

competencies of the staff. The assigned caregiver receives the call on a smart-111

phone, which runs the mobile nurse call application. This application allows112

staff to receive, assess, accept and redirect calls. They are also able to change113

the priority of the call or indicate its reason. The information provided by114

the caregivers using the application is also captured in the ontology.115

It can be noted that the adequate assessment of the priority of a call116

and thus the suitable assignment of caregivers to calls largely depend on the117

correctness of the specified probabilities and thresholds. The probabilities118

9

were determined by consulting various domain experts, i.e., nurses, doctors119

and developers of nurse call systems. The thresholds were determined by120

running simulations of calls and calculating the probabilistic priority assign-121

ment for these calls using the probabilities defined by the experts. Thresholds122

were then chosen such that the distribution of the simulated calls across the123

different priority classes deviates the least from the ideal distributions as de-124

termined by the experts, namely 5% - 10% - 25% - 35% - 25% - 0% - 0%,125

ordered from the highest to the lowest priority.126

However, it was found that domain experts struggled upon defining these127

probabilities and ideal distribution of calls amongst priority categories. It was128

also difficult to extract these probabilities out of logging data as the current129

installed nurse call systems do not allow nurses to indicate or change the130

priority of a call. Furthermore, these parameters also slightly differ between131

hospital departments depending on the medical profile of the patients and132

the gravity of the treated pathologies. Therefore it was chosen to initialize133

the oNCS with the educated guesses of the domain experts and employ a134

self-learning framework. This framework allows automatically adjusting the135

probabilities and thresholds to the specific needs of the department where136

the oNCS is deployed.137

3. Self-learning extension of the oNCS138

The self-learning extension of the oNCS is visualized in Figure 3. The139

oNCS was built as an extension of the Context-Aware Service Platform140

(CASP) [13], which consists of a collection of OSGi [14] bundles to han-141

dle context information. The Context Framework Layer contains the Con-142

10

G
e

t
C

o
n

te
x
t

In
fo

rm
a

ti
o

n

In
s
p

e
c
t

e
v
id

e
n

c
e

C
o

n
fi
g

u
re

P
e

rs
o

n

P
ro

v
id

e
r

S
e

rv
ic

e

C
a

ll
P

ro
v
id

e
r

In
s
e

rt
 p

e
rs

o
n

in
fo

rm
a

ti
o

n

C
o

n
te

x
t
In

te
rp

re
te

r

C
o

n
te

x
t
M

o
d

e
l

R

u
le

s

P

e
lle

t

P

ro
n

to

 K

n
o

w
le

d
g

e
 B

a
s
e

U
p

d
a

te
 c

a
ll

in
fo

rm
a

ti
o

n
L

a
u

n
c
h

 n
e

w
 c

a
lls

C
o

m
p

le
x

Q
u

e
ry

 S
e

rv
ic

e

W
e

b

S
e

rv
ic

e

C
o

n
te

x
t

G
a

th
e

ri
n

g

L
a

y
e

r

C
o

n
te

x
t

F
ra

m
e

w
o

rk

la
y

e
r

A
p

p
li
c

a
ti

o
n

 L
a

y
e

r

E
n

v
ir
o

n
m

e
n

t

P
ro

v
id

e
r

U
p

d
a

te
 e

n
v
ir
o

n
m

e
n

t
in

fo
rm

a
ti
o

n

C
a

ll

S
e

rv
ic

e

U
p

d
a

te
 c

a
ll

in
fo

rm
a

ti
o

n

W
e

b

A
p

p
lic

a
ti
o

n

P
e

rs
o

n

C
h

a
n

g
e

S
e

rv
ic

e

P
e

rs
o

n
 P

ro
v
id

e
r

U
p

d
a

te
 p

e
rs

o
n

in
fo

rm
a

ti
o

n

U
p

d
a

te
 p

e
rs

o
n

 i
n

fo
rm

a
ti
o

n

R
e

q
u

e
s
t

d
e

ri
v
e

d

in
fo

rm
a

ti
o

n

R
e

q
u

e
s
t

in
fo

rm
a

ti
o

n

N
u

rs
e

 D
e

s
k
to

p

R
e

q
u

e
s
t
in

fo
rm

a
ti
o

n

S
e

rv
ic

e

R
e

q
u

e
s
t

in
fo

rm
a

ti
o

n

E
n

v
ir
o

n
m

e
n

t

P
ro

v
id

e
r

S
e

rv
ic

e

C
a

ll

 Q
u

e
ry

S
e

rv
ic

e

L
o

c
a

ti
o

n

Q
u

e
ry

S
e

rv
ic

e

D
e

v
ic

e

Q
u

e
ry

S
e

rv
ic

e

E
n

v
ir
o

n
m

e
n

t

Q
u

e
ry

S
e

rv
ic

e

G
e

t
lo

c
a

ti
o

n

 i
n

fo
rm

a
ti
o

n

G
e

t
c
a

ll

 i
n

fo
rm

a
ti
o

n

G
e

t
d

e
v
ic

e

s
ta

tu
s
 i
n

fo
rm

a
ti
o

n
G

e
t
e

n
v
ir
o

n
m

e
n

t

 i
n

fo
rm

a
ti
o

n

R
e
q
u
e
st

in
fo

rm
a
tio

n
P

e
rs

is
te

n
c

e
 L

a
y

e
r

S
e

rv
e

r
S

id
e

C
o

m
p

o
n

e
n

ts

C
o

n
te

x
t
P

ro
v
id

e
r

In
te

rf
a

c
e

L
e

g
e

n
d C
lie

n
t
S

id
e

C
o

m
p

o
n

e
n

ts

S
e

n
s
o

r
In

te
rf

a
c
e

A
p

p
lic

a
ti
o

n

In
te

rf
a

c
e

D
e

v
ic

e

L
a

y
e

r

C
o

re
 A

P
I

S
e

n
s
o

r

S
e

rv
ic

e

E
n

v
ir
o

n
m

e
n

t

C
h

a
n

g
e

S
e

rv
ic

e

In
s
e

rt
 e

n
v
ir
o

n
m

e
n

t

in
fo

rm
a

ti
o

n

U
p

d
a

te
 e

n
v
ir
o

n
m

e
n

t

in
fo

rm
a

ti
o

n

D
a

ta
b

a
s
e

D
a

ta
b

a
s
e

W
if
i

S
e

rv
ic

e
L

A
N

S
e

rv
ic

e

U
p

d
a

te
 l
o

c
a

ti
o

n

in
fo

rm
a

ti
o

n

R
e

q
u

e
s
t
s
ta

ti
c

in
fo

rm
a

ti
o

n

e
.g

.
ro

o
m

s
,

d
e

p
a

rt
m

e
n

ts

D
a

ta
b

a
s
e

P
u

s
h

n
o

ti
fi
c
a

ti
o

n

R
e
q
u
e
st

in

fo
rm

a
tio

n

M
o

n
it
o

r
b

e
h

a
v
io

r

S
to

re

e
v
id

e
n

c
e

L
e

a
rn

in
g

 L
a

y
e

r

C
o

lle
c
t

e
v
id

e
n

c
e

M
o

n
it
o

ri
n

g

C
o

m
p

o
n

e
n

t

Data

Collection

Component

E
v
id

e
n

c
e

F
o

rm
a

tt
e

d
 d

a
ta

P
re

-p
ro

c
e

s
s
e

d
 d

a
ta

R
e

s
u

lt
s

P
ro

b
a

b
ili

ti
e

s
 &

T
h

re
s
h

o
ld

s

P
a

ra
m

e
te

rs

Integration

Component

P
a

ra
m

e
te

rs

In
s
e

rt
 c

a
ll

in
fo

rm
a

ti
o

n

C
o

n
fi
g

u
ra

ti
o

n

M
o

d
u

le

C
o

lle
c
t
e

v
id

e
n

c
e

C
o

n
fi
g

u
re

G
e

t
C

o
n

te
x
t

In
fo

rm
a

ti
o

n
C

o
n

fi
g

u
re

P
ip

e
lin

e

M
a

n
a

g
e

r

In
it
ia

liz
e

&
 s

ta
rt Learning pipeline

In
p

u
t
C

o
n

v
e

rt
o

r

P
re

-P
ro

c
e

s
s
o

r

D
a

ta
 M

in
in

g

P
o

s
t-

P
ro

c
e

s
s
o

r

D
e

c
is

io
n

C
o

m
p

o
n

e
n

t

In
it
ia

liz
e

&
 s

ta
rt

In
it
ia

liz
e

&
 s

ta
rt

In
it
ia

liz
e

 &
 s

ta
rt

Figure 3: The oNCS extended with self-learning components

11

text Interpreter, which uses the continuous care ontology implemented in143

OWL [15] to model all the context information gathered about the environ-144

ment, tasks, calls, patients and staff members. Pronto [16] is used to reason145

on the probabilistic information in the ontology, while Jena Rules [17] imple-146

ment the threshold and nurse call algorithm. The Context Providers allow147

inserting new information into the Knowledge Base, e.g., a new nurse call148

or location of the patient. This new information can come from a database149

(Persistence Layer) or directly from a device (Device Layer and Context150

Gathering Layer). In contrast, the Query Services are used to extract de-151

rived knowledge from the Knowledge Base, such that it can be processed by152

the applications and services in the Application Layer. To improve the scala-153

bility and robustness of the system, context information can be stored in the154

Persistence Layer. This historical context information can then be exploited155

by the new self-learning components to adjust the parameters of the oNCS156

to the behavior of the users. These new components are indicated in grey.157

The Monitoring Component constantly monitors the ontology to pick up158

trends and patterns in the way the priorities are assigned to calls by the care-159

givers. This component stores the evidence in the Persistence Layer. This160

evidence can be inspected by the domain experts by using the Configuration161

Module. When enough evidence has been collected, the Learning Pipeline162

can be initiated by the Configuration Module. The Configuration Module is163

notified of which data should be collected for the Learning Pipeline, either164

by the Monitoring Component or by the domain experts and administrator.165

The latter allows to initiate the Learning Pipeline with external data pro-166

vided by the stakeholders. The Configuration Module configures the Pipeline167

12

Manager to use the Data Collection Component, Input Convertor and Inte-168

gration Component that suits this type of evidence. It also passes the correct169

parameters to the Pipeline Manager, which are needed to retrieve the data170

from the Persistence Layer using the Data Collection Component.171

The Learning Pipeline is implemented using the Pipes-and-Filters archi-172

tectural design pattern [18]. A pipeline consists of a set of filters, imple-173

menting small processing steps, which are connected by pipes. All the filters174

implement the same interface such that they can easily be rearranged, omit-175

ted or added. In this way, an extensible and flexible architecture is achieved.176

The Pipeline Manager initiates the Data Collection Component to col-177

lect the necessary evidence. To achieve a flexible Learning Pipeline, a generic178

internal data format is used, which allows expressing both the information179

which is used as evidence and the probabilities and thresholds that are ob-180

tained as output. The format is largely based on the Attribute-Relation181

File Format (ARFF), which is the text file format used by the Waikato En-182

vironment for Knowledge Analysis (WEKA) [19]. The Input Convertor is183

responsible for converting the collected data to this format.184

Next, the Pipeline Manager creates and starts the Learning Pipeline. Pre-185

Processor components can be used to clean the data, e.g., remove outliers186

or scale the data. This cleaned data is then processed by a Data Mining187

component to build a model, e.g, a Bayesian network or decision tree, that188

conveys the relation between the properties of the call, e.g., its type and the189

patient group, and it priority. This learned model is then processed by a190

Post-Processor component to extract the probabilities or thresholds for the191

oNCS.192

13

Finally, to assess the correctness of the learned probabilities and thresh-193

olds, the Decision Component associates each discovered parameter with a194

probabilistic value expressing its reliability. When the calculated probabilis-195

tic value is too low, the discovered parameter is discarded and not adjusted196

in the oNCS.197

The Integration Component is responsible for adjusting the parameters198

of the oNCS according to the probabilities and thresholds discovered by the199

Learning Pipeline. The associated probability, which was calculated by the200

Decision Component, is also added to the ontology to convey the reliability201

of the parameter values to the domain experts. If the parameter value in202

the ontology is the same as the learned value, the associated probability is203

updated to reflect its increased reliability, namely by using the average of the204

old and new probability.205

4. Implementation details206

Two scenarios can be identified, namely adjusting the probabilities and207

the thresholds. For the first scenario, this paper focuses on adjusting the208

probabilities, which indicate that a call has a particular priority based on209

its type and the risk group of the patient, who made the call. We will210

concentrate on learning the probabilities for calls launched by patients, i.e.,211

normal, service and sanitary calls. Adjusting the probabilities that indicate212

the likelihood that patients belong to particular risk groups and for other213

types of calls, is analogous. The pipelines for these scenarios are visualized214

in Figures 4 and 5.215

14

Configuration

module

Monitoring

Component

F
ile

 D
a

ta
 C

o
lle

c
to

r

A
R

F
F

 I
n

p
u

t
C

o
n

v
e

rt
o

r

It
e

ra
ti
v
e

 T
re

e
 M

in
e

r

A
R

F
F

 C
o

n
v
e

rt
o

r

A
R

F
F

 D
e

c
o

n
v
e

rt
o

r

T
h

re
s
h

o
ld

 F
ilt

e
r

A
lg

o
ri
th

m

P
ri
o

ri
ty

 T
h

re
s
h

o
ld

In
te

g
ra

ti
o

n
 C

o
m

p
o

n
e

n
t

C
o

u
n

te
r

R
e

lia
b

ili
ty

A
lg

o
ri
th

m

T
h

re
s
h

o
ld

 E
x
tr

a
c
to

r

A
R

F
F

 I
te

ra
ti
v
e

T
re

e
 E

n
g

in
e

Figure 4: The Learning Pipeline used to learn and adjust the threshold

parameters of the oNCS

Configuration

module

Monitoring

Component

F
ile

 D
a

ta
 C

o
lle

c
to

r

A
R

F
F

 I
n

p
u

t
C

o
n

v
e

rt
o

r

B
a

y
e

s
 N

e
t
M

in
e

r

A
R

F
F

 C
o

n
v
e

rt
o

r

A
R

F
F

 D
e

c
o

n
v
e

rt
o

r

T
h

re
s
h

o
ld

 F
ilt

e
r

A
lg

o
ri
th

m

P
ri
o

ri
ty

 P
ro

b
a

b
ili

ty

In
te

g
ra

ti
o

n
 C

o
m

p
o

n
e

n
t

F
lu

c
tu

a
ti
o

n
 R

e
lia

b
ili

ty

A
lg

o
ri
th

m

P
ro

b
a

b
ili

ty
 C

a
lc

u
la

to
r

A
R

F
F

 B
a

y
e

s

N
e

t
E

n
g

in
e

Figure 5: The Learning Pipeline used to learn and adjust the probabilistic

parameters of the oNCS

4.1. Data collection and input conversion216

The Monitoring Component monitors the ontology for new calls that217

receive the status Finished, indicating that the call has been completely218

handled and processed by the caregiver. The component collects the type219

and priority of the call using SPARQL [20] queries. The priority can be the220

one assigned by the oNCS, but it is also possible that the caregiver changed221

it using the mobile nurse call application. The Monitoring Component also222

retrieves the probabilistic assignment of the call to the seven priority classes223

based on its type and the probabilistic assignment of the patient to the three224

risk groups using the probabilistic reasoner Pronto. Finally, the probabilistic225

15

Above Below

Higest High Normal Normal Normal Low Lowest Assigned

priority priority priority priority priority priority priority priority

0.13 0.29 0.25 0.07 0.03 0.81 0.27 Above normal

0.18 0.96 0.46 0.45 0.06 0.66 0.01 High

0.12 0.18 0.20 0.00 0.00 0.00 0.70 Below normal

0.07 0.05 0.88 0.27 0.18 0.12 0.12 Above normal

0.06 0.02 0.15 0.11 0.02 0.56 0.59 Normal

0.44 0.11 0.53 0.27 0.21 0.51 0.31 Highest

0.20 0.09 0.12 0.01 0.04 0.54 0.03 Above normal

Table 2: Some example instances of the dataset to learn the threshold pa-

rameters

assignment of this patient to the three risk groups is requested. Based on226

this collected data, two datasets are created. Each instance in the dataset227

represents one call. The first is used to learn the threshold parameters and228

contains for each call the calculated probabilistic value for each priority class229

and the priority that was assigned it. Some example instances of this dataset230

are illustrated in Table 2. The second dataset is used to learn the probabilistic231

assignment of calls to priority classes based on their type and the risk group232

of the patient associated with the call. It indicates for each call the risk group233

of the patient, the type of the call and the assigned priority. Only calls with234

type normal, service or sanitary are retained. The risk group for the patient235

is chosen based on the calculated probabilistic assignment of this patient to236

the risk groups. For example, a patient with a heart disease has at least 50%237

chance of being a high risk patient. Some example instances of this dataset238

16

Risk group Type of call Assigned priority

High Normal Above normal

Low Sanitary Low

Medium Normal Normal

High Service High

Table 3: Some example instances of the dataset to learn the probability

parameters of the assignment of calls to priority classes

are listed in Table 3. To be able to demonstrate the Input Convertor, the239

datasets are saved in the ARFF format in the Persistence Layer.240

The Monitoring Component keeps track of how many instances have been241

collected for each dataset. When a representative amount has been gathered,242

the Configuration Module is invoked to initiate the Learning Engine. Differ-243

ent Learning Pipelines are used to process each of the scenarios. These are244

implemented by different Pipeline Managers, e.g., ARFFBayesNetEngine or245

ARFFIterativeTreeEngine. The Monitoring Component also indicates to the246

Configuration Module the location of the data, its format and which Pipeline247

Manager should be used.248

The Configuration Module configures the Pipeline Manager to use the249

appropriate Data Collection Component and Input Convertor, which suit the250

format of the data. A File Data Collector was implemented, which is able to251

read the data from a file at a specified location. The result is a String, which252

is provided to the ARFF Input Convertor. This Input Convertor is able253

to translate this ARFF-String to the internal format used by the Learning254

17

Probability

Above
Normal

Probability

Other
Above

Normal

≥ 0.21 < 0.21

≥ 0.13 < 0.13

Figure 6: Example of a decision tree that encodes the learned knowledge

about the threshold for the Normal priority class

Pipeline. A Pre-Processor is not needed for these scenarios as no anomalies255

can occur in the data.256

4.2. Data mining and post-processing257

Both scenarios use the WEKA data mining toolbox to learn the thresholds258

and probabilities of the oNCS. The first uses decision trees [21], while the259

latter uses a Bayesian network [22]. The following subsections detail how260

these models are built and how the parameters of the oNCS are derived261

from them. As previously mentioned, WEKA uses the ARFF data format to262

represent data. Therefore, (de)convertors were implemented that are able to263

translate the internal data format of the Learning Pipeline to and from the264

ARFF data format.265

4.2.1. Discovering the thresholds using a C4.5 decision tree266

The Data Mining filter needs to find relations in the threshold dataset267

between the probabilistic assignment of the calls to the priority classes and268

18

the priority that was eventually assigned to the calls. The former are con-269

sidered input attributes, while the latter is called the label. Supervised [19]270

classification techniques [23] are used to discover these relations between the271

input attributes and the label. Decision trees are a well-known and easy to272

use classification technique. A decision tree consists of leaves, which each rep-273

resent a possible value of the label, and internal nodes and branches, which274

represent the attributes on which the decision is based and the conditions275

that they must fulfill. An example is visualized in Figure 6. For this research,276

the J4.8 Java implementation of the C4.5 algorithm [24] in the WEKA data277

mining tool was used to build the decision trees.278

The following knowledge of the threshold algorithm can be exploited to279

optimize the data mining. First, a call is assigned a priority x based on the280

probabilistic value for this priority class. Second, the probabilistic values281

for the priority classes are checked in a particular order, as discussed in282

Section 2. The probabilistic values for the priority classes, which occur later283

in the sequence than the assigned priority, are not taken into account for this284

call. Consequently, the decision was made to implement an Iterative Decision285

Tree algorithm, which builds a separate decision tree for each priority class.286

The decision trees are built in the same order as the priority classes are287

checked by the threshold algorithm. The dataset for each iteration consists288

only of one input attribute, i.e., the priority class under scrutiny. The label289

can also only assume two values, namely the considered priority and “Other”.290

The latter is used to replace all other possible priority classes. Finally, all291

the instances that were assigned a priority class, which is checked earlier292

than the priority class for which the decision tree is being built, are removed293

19

Above Normal priority Assigned priority

0.25 Above normal

0.20 Other

0.88 Above normal

0.15 Other

0.12 Above normal

Table 4: Some example instances of the dataset to learn the threshold pa-

rameter for the Normal priority class

from the dataset. In this way, a dataset is built, which can be used by a294

decision tree to learn when the probabilistic value of a priority class is high295

enough to receive this priority as label. As an example, Table 4 visualizes296

some instances of the dataset for the Above Normal priority class, which were297

derived from the original dataset visualized in Table 2. It can be noted that298

all the instances were removed, which were assigned the Highest and High299

priority, as these are checked earlier by the threshold algorithm.300

The Iterative Decision Tree algorithm builds the decision tree for each301

priority class. The J4.8 algorithm outputs a textual representation of the302

decision tree. For example, the tree visualized in Figure 6 is represented as303

follows:304

20

N0 [label=“Probability”]

N0→ N1 [label=“ >= 0.21”]

N1 [label=“Above Normal”]

N0→ N2 [label=“ < 0.21”]

N2 [label=“Probability”]

N2→ N3 [label=“ >= 0.13”]

N3 [label=“Other”]

N3→ N4 [label=“ < 0.13”]

N4 [label=“Above Normal”]

The nodes and branches are identified and translated to the internal data305

format such that the results can be forwarded to the Post-Processor.306

The Threshold Extractor Post-Processor was implemented, which ex-307

tracts the discovered thresholds out of the textual representation of each308

decision tree. For each decision tree, all the branches are considered that re-309

sult in a leaf with the priority class label, associated with this decision tree.310

The branches, which result in a leaf with the label “Other”, are ignored.311

All the considered branches are followed from the leaf up to the root and312

the conditions are checked. The condition that represents the highest lower313

bound is chosen as threshold for this priority class, i.e., a condition of the314

type ≥ x where x is the highest value for a condition of this type in this tree.315

The discovered thresholds are represented in the internal data format and316

forwarded to the Decision Component.317

21

4.2.2. Discovering the probabilities using a Bayesian network318

In this scenario, the Data Mining filter needs to find probabilistic relations319

between two input attributes, i.e., the type of the calls and the risk group320

of the patients, and the priority labels that were eventually assigned to the321

calls. Bayesian networks can ideally be used to discover these probabilistic322

relations. Bayesian networks are graphical models that represent the condi-323

tional dependencies between a set of variables as a directed acyclic graph.324

Each node is associated with a probability function. This function is able to325

calculate the probability of the variable represented by this node based on a326

particular set of values for the variables, which are represented by nodes that327

are parents of this node. Different techniques can be used to build Bayesian328

networks. Naive Bayesian networks assume that all the input attributes are329

conditionally independent. Consequently, a network is obtained in which the330

label is connected to each input attribute, but the input attributes are not331

connected to each other. As the risk group of the patient is independent332

of the types of calls this patient makes, Naive Bayesian networks are used333

for this research. The BayesNet implementation of WEKA was used to con-334

struct the network. The probabilities obtained by building the network are335

retrieved from WEKA and represented in the internal data format.336

The Probability Calculator Post-Processor was implemented to calculate337

the needed probability parameters for the oNCS. To explain this calculation,338

the following notation is introduced:339

• The risk group input attribute is represented by A and has n1 possible340

values a1, ..., an1.341

• The type of call input attribute is depicted by B and has n2 possible342

22

values b1, ..., bn2.343

• X represents the label, i.e., the priority class, and has m possible values344

x1, ..., xm.345

The output of the BayesNet algorithm contains the following probabilities:346

• P (X = xi), ∀ i ∈ [1,m].347

• P (A = ai|X = xj), ∀ i ∈ [1, n1] and ∀ j ∈ [1,m].348

• P (B = bi|X = xj), ∀ i ∈ [1, n2] and ∀ j ∈ [1,m].349

Bayes’ rule can be used to calculate the probability parameters for the oNCS:350

P (X = xi|A = aj ∩B = bk) =
P (A = aj ∩B = bk|X = xi)P (X = xi)

P (A = aj ∩B = bk)

where i ∈ [1,m], j ∈ [1, n1] and k ∈ [1, n2] (1)

Only the probabilities P (X = xi) can be directly derived from the Bayesian351

network. As attributes A and B are conditionally independent, the other352

term of the numerator can be calculated as follows:353

P (A = aj ∩B = bk|X = xi) = P (A = aj|X = xi)P (B = bk|X = xi)

where i ∈ [1,m], j ∈ [1, n1] and k ∈ [1, n2] (2)

The probabilities on the right hand side of this equation can also be354

derived from the Bayesian network. These calculated probabilities can be355

used to derive the denominator using the law of total probability as follows:356

23

P (A = aj ∩B = bk) =
m∑
i=1

P (A = aj ∩B = bk|X = xi)P (X = xi)

where j ∈ [1, n1] and k ∈ [1, n2] (3)

By inputting the results of Equations 2 and 3 in Equation 1, the needed357

probability parameters can be calculated. These parameters are represented358

in the internal data format and forwarded to the Decision Component.359

4.3. Filtering the results and expressing their reliability360

As mentioned in Section 3, the Decision Component attaches probabilities361

to the discovered parameters to express their reliability to the users.362

To assess the reliability of the thresholds, the Counter Reliability Algo-363

rithm is used. This algorithm applies the new thresholds to the original364

dataset. For all the calls of a particular priority, it then calculates the per-365

centage that received this priority correctly by the new threshold algorithm.366

For example, suppose that 0.44 - 0.35 - 0.21 - 0.07 - 0.2 - 0 - 0 are discov-367

ered as thresholds, ordered from the Highest to the Lowest priority. If these368

thresholds are applied to the dataset visualized in Table 2, the threshold for369

the Above Normal priority achieves 67% reliability, as the first and fourth370

calls are correctly assigned the Above Normal priority, while the last call371

incorrectly receives the Low priority.372

The Fluctuation Reliability Algorithm computes the reliability of the dis-373

covered probability parameters. It first calculates the difference x between374

the new and old parameter value. When the Learning Pipeline is used for375

the first time to learn the probability parameters, the probability parameters376

24

Above

Normal

Priority

Normal

Priority

High

Priority

Priority

Medium

Priority

Urgent

Priority

hasThresholddouble

High

Priority

Call

NormalCall

MadeBy

HighRisk

Patient

Above

Normal

Priority

Call

Normal

Priority

Call

UnPlanned

Task

Call

Task

Normal

Call

hasPriority

0.20.60.2

hasPriority
hasPriority

hasPriority

PriorityWith

Threshold0_21

PriorityWith

Threshold0_35

PriorityWith

Threshold0_07

0.75 0.67 0.65

Legend

Ontology Concept

Object Property/Relation

Datatype Property

Inheritance

Concept

relation

property data

type

HighPriority

NormalCall

MadeByHigh

RiskPatient

WithProb0_2

hasProbabilityParam

double

0.6

AboveNormal

PriorityNormal

CallMadeBy

HighRiskPatient

WithProb0_6

Normal

PriorityNormal

CallMadeBy

HighRiskPatient

WithProb0_2

0.8 0.7

hasProbabilityParam

double

hasProbabilityParam

double

Figure 7: Integrating the learned parameters of the oNCS into the ontology

with an associated probability to express their reliability

in the ontology are used as the old parameter values. In later runs of the377

pipeline, the parameter values discovered in the previous run are used as old378

parameter values. The reliability of the new parameter is then set to 1− x.379

Consequently, if the Learning Pipeline consecutively discovers very similar380

parameter values, the reliability increases. The reliability thus increases if381

the value of the parameter converges.382

A simple filter algorithm, namely the Threshold Filter Algorithm, was383

implemented, which filters the parameters for which the reliability is lower384

than a specified threshold, e.g., 50%. These parameters are not adjusted385

in the oNCS. However, these discovered parameters are stored such that386

they can be used by subsequent runs of the Learning Pipeline, e.g., as old387

parameter values in the Fluctuation Reliability Algorithm.388

25

4.4. Integrating the parameters in the oNCS389

4.4.1. Integrating the thresholds in the oNCS390

The Priority Threshold Integration Component is responsible for integrat-391

ing the discovered thresholds into the oNCS with their associated probability.392

To integrate a discovered threshold for a particular priority class, this com-393

ponent first checks whether this priority was already associated with this394

threshold, i.e., the parameter value has not changed. If this is the case, only395

the reliability is changed, as explained further. To integrate a new threshold,396

a subclass of the Priority class is introduced in the ontology, as shown in397

Figure 7. For example, to integrate the threshold of 0.21 for the Above Nor-398

mal priority, the PriorityWithThreshold0 21 class is created. This class is399

defined as follows:400

Priority AND (hasThreshold VALUE 0.21̂ d̂ouble)

If this class already exists in the ontology, it is re-used. The priority class401

associated with this threshold is then defined as a subclass of this class, e.g.,402

AboveNormalPriority becomes a subclass of PriorityWithThreshold0 21.403

The priority also inherits the definition and is thus effectively associated with404

the correct threshold. The subclass relationship with the previous threshold405

is removed.406

Next, the associated reliability is expressed in the ontology. Pronto is407

used to represent and reason on the probabilistic information in the ontol-408

ogy. To express probabilistic knowledge, Pronto uses Generic Conditional409

Constraints (GCCs) [25]. A GCC is of the form (D—C)[l,u] where D and410

C are the classes in the ontology and [l,u] is a closed subinterval of [0,1].411

26

To represent these GCCs in the ontology, Pronto employs subsumption ax-412

iom annotations. For example, to express that the 0.21 threshold for the413

normal priority class only has a reliability of 67%, the subclass relationship414

between the AboveNormalPriority and PriorityWithThreshold0 21 con-415

cepts is annotated as follows:416

< owl11:Axiom >

< rdf:subject rdf:resource=“#AboveNormalPriority” >

< rdf:predicate rdf:resource=“&rdfs;subClassOf” >

< rdf:object rdf:resource=“#PriorityWithThreshold0 21” >

< pronto:certainty > 0.67;0.67 < /pronto:certainty >

< owl11:Axiom >

Pronto uses probability intervals to express probabilistic knowledge. How-417

ever, as illustrated in the previous example, strict probabilities can easily be418

expressed by defining an interval with an equal upper and lower limit. When419

a new threshold is associated with a priority, the reliability calculated by the420

Decision Component is used. If the priority was already connected to this421

threshold, the reliability is changed to the average of the old and the new422

reliability.423

4.4.2. Integrating the probabilities in the oNCS424

The probability parameters, which express the the likelihood that a call425

of a particular type made by a patient belonging to a specific risk group has a426

particular priority, are represented in the ontology by annotated subsumption427

axioms between Call classes, as illustrated in Figure 7. For example, the428

27

following annotated subsumption axiom expresses that a normal call made429

by a high risk patient has 0.2 probability of having a normal priority:430

< owl11:Axiom >

< rdf:subject rdf:resource=“#NormalCallMadeByHighRiskPatient” >

< rdf:predicate rdf:resource=“&rdfs;subClassOf” >

< rdf:object rdf:resource=“#NormalPriorityCall” >

< pronto:certainty > 0.2;0.2 < /pronto:certainty >

< owl11:Axiom >

These two classes are defined as follows:431

NormalCallMadeByHighRiskPatient:

NormalCall AND (callMadeBy SOME (hasRole SOME HighRiskPatient))

NormalPriorityCall:

Call AND (hasPriority SOME NormalPriority)

To integrate the discovered probability parameters in the oNCS, the Pri-432

ority Probability Integration Component just changes the probabilistic value433

in the annotated subsumption axiom.434

Next, the Priority Probability Integration Component associates the reli-435

ability with this discovered parameter. To realize this, a new class is created436

in the ontology that represents the annotated subsumption axiom. For exam-437

ple, to represent the previous subsumption axiom, the class NormalPrior-438

ityNormalCallMadeByHighRiskPatientWithProb0 2 was created with the439

following definition:440

28

hasProbabilityParam VALUE 0.2̂ d̂ouble

An annotated subsumption axiom is then created, which associates the in-441

put attributes, i.e., a call of a particular type made by a patient belonging to442

a specific risk group, with this new class and annotates this subclass relation-443

ship with the reliability. For example, the following annotated subsumption444

axiom is created for the running example to express that this parameter value445

has a reliability of 70%:446

< owl11:Axiom >

< rdf:subject rdf:resource=“#NormalCallMadeByHighRiskPatient” >

< rdf:predicate rdf:resource=“&rdfs;subClassOf” >

< rdf:object rdf:resource=“#NormalPriorityNormalCallMadeBy

HighRiskPatientWithProb0 2” >

< pronto:certainty > 0.7;0.7 < /pronto:certainty >

< owl11:Axiom >

Note that if the parameter value has not changed, the reliability is up-447

dated to 100%, as this reliability expresses how much the parameter value448

deviates from the previous value.449

5. Evaluation set-up450

To adequately evaluate the correctness and performance of the self-learning451

components, generated datasets are used for both scenarios. In this way,452

29

trends can be introduced into the datasets, which should be discovered by453

the Learning Pipeline. To achieve realistic datasets, noise is introduced. The454

following subsections detail how these datasets were generated and noise was455

added. The datasets were generated in the ARFF format and stored in the456

Persistence Layer so that they can be retrieved by the File Data Collector457

and translated to the internal format by the ARFF Input Convertor.458

To evaluate the applicability of the framework, it is important to assess459

the correctness of the derived parameters. The correctness of the data min-460

ing techniques is influenced by the size of the dataset and the amount of461

noise. To assess the influence of the latter, the Learning Pipeline was consec-462

utively applied to datasets of the same size, but with an increasing amount463

of noise. The amount of noise is varied from 0% to 50% in steps of 1%. It is464

unnecessary to increase the noise percentage beyond 50% as a random label465

is assigned at this point and the dataset becomes meaningless. The amount466

of noise needs to be increased in a dataset of realistic size. Each instance467

in the dataset corresponds to one made by or for a patient. Out of logging468

data of the nurse call system installed at Ghent University Hospital [26], it469

was derived that one average five calls are made per 24 hours by or for a470

specific patient. Consequently, for a nursing unit containing on average 30471

patients, 1,050 calls are launched per week on average. Therefore, to assess472

the influence of noise, datasets were generated containing 1,050 instances.473

The influence of the size of the dataset on the correctness is evaluated by474

consecutively applying the Learning Pipeline to datasets of increasing size.475

The dataset sizes range from 100 to 2,000 instances in steps of 100 instances.476

This range also contains the realistic dataset size for each of the scenarios.477

30

It is also important to evaluate the performance, i.e., execution time and478

memory usage, of the developed Learning Engine. Although, the learning479

process will mostly run in the background, it is important to assess the480

amount of resource usage. Most healthcare environments have a limited481

amount of resources and delegating the processing to the cloud is often dif-482

ficult because of privacy issues. To evaluate the influence of noise on the483

performance, the same datasets were used as for the correctness tests. How-484

ever, to assess the influence of the size of the dataset, datasets were generated485

with sizes ranging from 1,000 to 30,000 in steps of 1,000 instances. Bigger486

datasets were used as it is important to explore the limits of the proposed487

self-learning components.488

To achieve reliable results, each test was repeated 35 times, of which the489

first three and the last two were omitted during processing. For each run,490

a new dataset was generated. Finally, the averages across the 30 remaining491

runs are calculated and visualized in the form of graphs. The tests were492

performed on a computer with the following specifications: 4096 megabyte493

(MB) (2 x 2048 MB) 1067 megahertz (MHz) Double Data Rate Type Three494

Synchronous Dynamic Random Access Memory (DDR3 SDRAM) and an495

Intel Core i5-430 Central Processing Unit (CPU) (2 cores, 4 threads, 2.26496

gigahertz (GHz), 3 MB cache).497

5.1. Generating the dataset to discover thresholds498

As indicated in Section 4.1, the dataset consists of seven input attributes,499

i.e., the probabilistic assignment of a call to the priority classes. As label,500

the assigned priority of the call is used. The dataset is generated in such a501

way that discovered thresholds should be the ones that are currently being502

31

used by the oNCS, i.e., 0.21 - 0.3 - 0.24 - 0 - 0.05 - 0 - 0, ordered from the503

highest to the lowest priority.504

To generate a new instance of the dataset, a priority label is first chosen.505

The label is chosen such that the distribution of the generated calls amongst506

the different priority classes reflects the following realistic distribution deter-507

mined by domain experts: 5% - 10% - 25% - 35% - 25% - 0% - 0%, ordered508

from the highest to the lowest priority. Based on this label, the probabilistic509

values for the input attributes are generated. For all the priority classes that510

are checked earlier by the threshold algorithm than the assigned priority, a511

probabilistic value is randomly generated that is smaller than the threshold512

for this priority. For example, if a call with a High priority is being created,513

then the probabilistic value for the Highest priority will be lower than 0.21.514

For the assigned priority, a random probabilistic value is generated, which515

is higher than its threshold. Finally, for the remaining priority classes, a516

random probabilistic value is generated. The thresholds for these priorities517

are thus not taken into account.518

To introduce noise in the generated datasets, the priority labels of some519

generated instances are changed. This means that they receive a different520

label from the one which would be assigned by the threshold algorithm and521

which was used to generate these instances. For a noise percentage of x, each522

generated instance has x% chance of being assigned a priority label that is523

one level higher or one level lower than the correct priority label. Some524

generated instances are shown in Table 2. The labels indicated in italics525

represent noise.526

32

5.2. Generating the dataset to discover the probabilities for the priorities527

The dataset generated for this scenario contains two input attributes,528

i.e., the type of the call and the risk group of the patient who made it, and529

the assigned priority as label. To create a new instance, a risk group is530

randomly assigned based on the following distribution: 20%, 50% and 30%531

chance of being a High, Medium or Low Risk patient respectively. Moreover,532

the instance has 60%, 30% and 10% chance of being a Normal, Sanitary and533

Service call respectively. These distributions were determined based on input534

from domain experts. Using the parameters already defined in the oNCs and535

visualized in Table 1, the probabilistic assignment of this generated call to536

the various priority categories is determined. For example, if an instance537

is generated with the input attributes Normal type of call and High Risk538

patient, then it has 20%, 60% and 20% chance of receiving the High, Above539

Normal and Normal priorities respectively. Based on this distribution, a540

priority is randomly chosen as label.541

Similar to that in the previous scenario, noise is introduced by changing542

the label of an instance to a priority that is one lever higher or lower than543

the assigned one. Some generated instances are shown in Table 3. The labels544

indicated in italics represent noise.545

6. Results and discussion546

6.1. Correctness of the discovered thresholds547

To assess the correctness, the relative error of the discovered thresholds548

is calculated. The relative error expresses how much the learned threshold549

deviates from the threshold on which the dataset generation was based. For550

33

0

0.005

0.01

0.015

0.02

0.025

0.03

0 200 400 600 800 1000 1200 1400 1600 1800 2000

R
e

la
ti

ve
 e

rr
o

r

Dataset size

Above Normal Highest Highest Below Normal

3

2.5

2

1.5

1

0.5

 0

Figure 8: The relative errors (%) of the thresholds discovered for the different

priority categories as a function of the size of the dataset

example, a relative error of 5% for the threshold of the Above Normal priority551

indicates that the discovered threshold deviates at most 5% from 0.24. The552

oNCS employs a threshold of 0 for the Normal, Low and Lowest priority553

categories to ensure that the default priority assigned to calls is the Normal554

priority. The Low and Lowest priorities are generally reserved for particular555

types of calls, e.g., technical assistance calls. Because of the way the dataset556

generation algorithm takes these zero thresholds into account to generate the557

instances, these thresholds are always discovered. Therefore, only the other,558

non-zero, thresholds are discussed.559

Figure 8 depicts the relative error of the discovered thresholds as a func-560

tion of the dataset size. It can be derived that very accurate thresholds are561

34

obtained, even when datasets with a small amount of instances are used.562

When the dataset contains at least 500 instances, the relative error stays563

smaller than 0.5% for all the thresholds. As mentioned previously, on av-564

erage five calls are launched per patient in a department with on average565

30 patients. Consequently, four days after deployment of the oNCS enough566

data would be collected to accurately adjust the thresholds to the behavior567

of the caregivers. Note that for small datasets, more accurate results are568

obtained for the thresholds of higher priority classes. A separate decision569

tree is built for each priority class, based on a subset of the total dataset.570

In these subsets the instances are removed, which received as label a higher571

priority class than the one that the decision tree is currently being built for.572

Consequently, the decision trees for lower priorities are trained on less data573

than the decision trees for higher priorities. As a result, these lower priorities574

exhibit a higher relative error for small datasets.575

Figure 9 visualizes the relative errors for the discovered thresholds as576

a function of the amount of noise in a realistically sized dataset of 1,050577

instances. It is clear that the Learning Pipeline is insensitive to a noise578

rate of less than 20%, as they result in relative errors for the thresholds579

of less than 5%. If the amount of noise increases beyond this point, the580

relative errors quickly rise to 10% and higher. The relative error of the581

threshold of the Below Normal priority is higher than the ones of the Normal582

and High priority because it is trained on smaller datasets, as explained in583

the previous paragraph. The relative error of the threshold of the Highest584

priority is much higher than the others. This is the first threshold that needs585

to be determined. Consequently, it is trained on a dataset with a very high586

35

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 5 10 15 20 25 30 35 40 45 50

R
e

la
ti

ve
 e

rr
o

r

Noise ratio

Above Normal Highest High Below Normal

50

45

40

35

30

25

20

15

10

5

0

Figure 9: The relative errors (%) of the thresholds discovered for the different

priority categories as a function of the amount of noise in the dataset

amount of instances labeled as “Other”. This skewed dataset, containing587

more negative than positive examples, results in a higher relative error for588

this priority.589

6.2. Correctness of the discovered probabilities590

The dataset for this scenario consists of two input attributes, namely the591

risk group of the patient and the type of the call, each of which can have three592

possible values. The priority label can have seven possible values. Conse-593

quently the Bayesian network needs to determine 63 probability parameters.594

It is difficult to give a clear overview of all the calculated parameter values595

for all the different dataset sizes and noise ratios. Therefore, Table 5 visual-596

36

Relative error

Risk Type of Above Below

group call Highest High normal Normal normal Low Lowest

High

Normal 1 3 1

Sanitary 6 2 5

Service 4 4 16

Medium

Normal 0 4 2

Sanitary 4 4 1

Service 2 5 14

Low

Normal 6 3 3

Sanitary 1 2 2

Service 3 2 12

Table 5: Relative error (%) for the discovered probability parameters for a

dataset with 1,050 instances

37

izes only the relative errors for the discovered probabilities for a dataset of597

realistic size, i.e., 1,050 instances, without noise. Despite the large number598

of parameter values that need to be deduced from a relatively small dataset,599

the relative errors are quite small. Three discovered probabilities have a rel-600

ative error bigger than 10%. These errors are indicated in italics in Table 5.601

However, all the other derived parameter values deviate only on average 3%602

and maximum 6% from the correct value. It can also be noted that higher603

relative errors correspond to situations that do not occur often in reality. As604

the dataset is generated based on realistic distributions, these situations are605

represented by less instances in the dataset. This makes it more difficult for606

the Bayesian network to obtain a correct parameter value for these situa-607

tions. For example, as explained in Section 5.2, an instance only has 10%608

chance to receive the type Service and 20% chance of being launched by a609

High Risk patient. Consequently, there’s only 2% chance that an instance is610

generated that fulfills both of these criteria. As a result, the relative error611

for this probabilistic value is 0.16%.612

6.3. Execution time of the threshold Learning Pipeline613

The execution time as a function of the size of the dataset is depicted614

in Figure 10. The execution times of the Threshold Extractor, Counter Re-615

liability Algorithm and Threshold Filter Algorithm are negligible compared616

to the execution times of the visualized components. The execution time of617

the Priority Threshold Integration Component depends heavily on the com-618

plexity and the amount of data in the ontology as this component checks the619

consistency of the ontology after the parameters are adjusted. As the ontol-620

ogy was not initialized with a realistic data set, e.g., representing a realistic621

38

0

500

1000

1500

2000

2500

3000

3500

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0

1
1

0
0

0

1
2

0
0

0

1
3

0
0

0

1
4

0
0

0

1
5

0
0

0

1
6

0
0

0

1
7

0
0

0

1
8

0
0

0

1
9

0
0

0

2
0

0
0

0

2
1

0
0

0

2
2

0
0

0

2
3

0
0

0

2
4

0
0

0

2
5

0
0

0

2
6

0
0

0

2
7

0
0

0

2
8

0
0

0

2
9

0
0

0

3
0

0
0

0

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

Dataset size

ARFF Input Convertor ARFF Convertor Weka initialization J4.8 Mining Overhead ARFF Deconvertor

0

500

1000

1500

2000

2500

3000

0 5000 10000 15000 20000 25000 30000

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

Dataset size

ARFF Input Convertor ARFF Convertor

Weka Initialization J4.8

Mining Overhead ARFF Deconvertor

Weka Total Conversion + Weka + Post-Processor

Figure 10: Execution time as a function of the dataset size for the different

components of the threshold Learning Pipeline

39

amount of staff members and patients, the execution time of this module is622

not shown. The processing of the data by the Iterative Tree Miner can be623

split up into three parts. The Mining Overhead denotes the time needed to624

pre-process the dataset such that the different decision trees can be built as625

explained in Section 4.2.1. The Weka Initialization step consists of trans-626

forming the ARFF format to Java Objects, while J4.8 algorithm builds the627

actual decision tree using WEKA. The execution times of these three steps628

are visualized separately.629

It can be derived from Figure 10a that the execution time is exponential as630

a function of the size of the dataset. Figure 10b shows that this is caused by631

the exponentially increasing execution time of the Mining Overhead. The ex-632

ecution times of the other components are linear as a function of the amount633

of instances. The complexity of the J4.8 algorithm is O(m∗n2) for a dataset634

with m instances and n attributes [27]. The number of attributes is con-635

stant in this scenario, i.e., one input attribute and one label per decision636

tree built for a particular priority. Consequently, the complexity reduces to637

O(m) and thus becomes linear in the number of instances. The ARFF Input638

Convertor, ARFF Convertor and ARFF Deconvertor are also linear in the639

size of the dataset, as they need to (de)convert all the instances one by one.640

It can also be noted that the ARFF Input Convertor consumes more time641

than the ARFF Convertor. The first translates a String-based representa-642

tion of the dataset, while the second receives the instances expressed in the643

internal data format as input. This second, structured representation can be644

processed more easily.645

Figure 11 analyzes the execution time of the Mining Overhead in more646

40

0

200

400

600

800

1000

1200

0 5000 10000 15000 20000 25000 30000

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

Dataset size

Remove Instances Remove Attributes Correct ARFF

Figure 11: Execution time as a function of the dataset size for the different

steps of the Mining Overhead

detail. As explained in Section 4.2.1, a dataset is constructed for each priority647

by removing the input attributes related to the other priority classes, remov-648

ing all the instances labeled with a higher priority and renaming all the lower649

priority labels as “Other”. Figure 11 indicates that most of the execution650

time is consumed by removing the instances. A possible solution is removing651

the instances before the dataset is translated to the ARFF format. The com-652

plexity of removing instances from the dataset, represented in the internal653

data format, is linear in the size of the dataset. However, this solution also654

requires that each separate dataset is translated by the ARFF Convertor.655

This also increases the execution time as there is significant overlap between656

the datasets and thus more instances need to be converted. Figure 12 com-657

41

0

200

400

600

800

1000

1200

0 5000 10000 15000 20000 25000 30000

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

Dataset size

Current implementation Conversion & Deconversion

Figure 12: Compares the execution times of removing instances from the

dataset as a function of the dataset size for the current and alternative im-

plementation

pares the execution time of the current implementation for removing the658

instances with the additional execution time, which is needed to (de)convert659

the separate datasets for the alternative solution. The additional execution660

time of the alternative implementation is linear in the amount of instances.661

However, it only achieves a better performance for bigger datasets with at662

least 15,000 instances. As 1,050 instances were deemed to be a realistic size663

of the dataset, the current implementation is preferred.664

Figure 13a depicts the execution time as a function of the amount of665

noise for the realistic dataset containing 1,050 instances. As the measured666

execution times are quite small, i.e., lower than 25 ms, the graphs are quite667

42

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

Noise ratio

ARFF Input Convertor ARFF Convertor Weka Initialization

J4.8 Mining Overhead ARFF Deconvertor

(a) Dataset of 1,050 instances

0

50

100

150

200

250

0 5 10 15 20 25 30 35 40 45 50

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

Noise ratio

ARFF Input Convertor ARFF Convertor Weka Initialization

J4.8 Mining Overhead ARFF Deconvertor

(b) Dataset of 5,000 instances

Figure 13: Execution time as a function of the amount of noise in the dataset

for the different components of the threshold Learning Pipeline

43

erratic and unpredictable. To get a clear view on the underlying trends, the668

performance tests were repeated for a dataset consisting of 5,000 instances.669

The resulting graph is visualized in Figure 13b. It can be derived that the670

influence of the amount of noise on the execution time is negligible. The671

dataset for each decision tree consists of only one input attribute and a label,672

which can only assume two values. Consequently, increasing the amount of673

noise will not have a large impact on the complexity of the constructed674

decision tree.675

It can be concluded that a dataset with a realistic size of 1,050 instances676

can be processed in less than 100 ms, irrespective of the amount of noise.677

6.4. Execution time of the probabilities Learning Pipeline678

The execution time as a function of the size of the dataset is depicted679

in Figure 14. The execution times of the Probability Calculator, Fluctuation680

Reliability Algorithm, Threshold Filter Algorithms and Priority Probability681

Integration Component are not shown for the same reasons as in the pre-682

vious section. The Bayes Net Miner consists of only two steps, namely683

initializing Weka and building the model using the BayesNet algorithm of684

Weka. The execution times for these two steps are visualized separately. It685

can be noted that the execution time is linear as a function of the size of686

the dataset. Figure 14b illustrates that the execution time of each of the687

individual components is also linear as a function of the size of the dataset.688

The execution times are also very small. The input conversion and initial-689

ization of Weka consume most of the execution time. Building the Bayesian690

network only requires a small amount of time, namely at most 20 ms for a691

dataset of 30,000 instances. The complexity of the Bayesian network is the692

44

0

50

100

150

200

250

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0

1
1

0
0

0

1
2

0
0

0

1
3

0
0

0

1
4

0
0

0

1
5

0
0

0

1
6

0
0

0

1
7

0
0

0

1
8

0
0

0

1
9

0
0

0

2
0

0
0

0

2
1

0
0

0

2
2

0
0

0

2
3

0
0

0

2
4

0
0

0

2
5

0
0

0

2
6

0
0

0

2
7

0
0

0

2
8

0
0

0

2
9

0
0

0

3
0

0
0

0

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

Dataset size

ARFF Input Convertor ARFF Convertor Weka Initialization BayesNet ARFF Deconvertor

0

20

40

60

80

100

120

140

0 5000 10000 15000 20000 25000 30000

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

Dataset size

ARFF Input Convertor ARFF Convertor

Weka Initialization BayesNet

ARFF Deconvertor Weka total

Conversion + Weka + Post-Processor

Figure 14: Execution time as a function of the dataset size for the different

components of the probabilities Learning Pipeline

45

same as the J4.8 algorithm, namely O(m∗n2) for a dataset with m instances693

and n attributes [28]. As the amount of attributes does not change in this694

scenario, this complexity also reduces to O(m) and thus becomes linear in695

the number of instances. The difference in execution time between the ARFF696

Input Convertor and ARFF convertor was already explained in the previous697

section.698

Figure 15a depicts the execution time as a function of the amount of noise699

for the realistic dataset containing 1,050 instances. Again, these execution700

times are too small, i.e., lower than 7 ms, to perceive a clear trend and the701

tests were repeated for a dataset of 5,000 instances, as shown in Figure 15b.702

Similar to the previous section, it can be concluded that the influence of the703

amount of noise on the execution time is negligible.704

For this scenario, it can also be concluded that, irrespective of the amount705

of noise, the execution time is very good and negligible for datasets of a706

realistic size of 1,050 instances, i.e., less than 20 ms.707

6.5. Memory usage708

Figure 16 illustrates the memory usage of the Learning Pipeline for both709

scenarios as a function of the size of the dataset. The fluctuating pattern710

of the graphs can be explained by the memory that is consumed by the711

Garbage Collector in Java. However, trend lines can clearly be discerned. It712

can be noted that the memory usage is linear as a function of the amount of713

instances. Moreover, the total amount of consumed memory stays quite low,714

i.e., at most about 120 MB for the threshold Learning Pipeline and 25 MB715

for the probabilities scenario. For the realistic dataset of 1,050 instances, the716

memory usage is negligible for both scenarios, namely lower than 5 MB for717

46

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35 40 45 50

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

Noise Ratio

ARFF Input Convertor ARFF Convertor Weka Initialization

BayesNet ARFF Deconvertor

(a) Dataset of 1,050 instances

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30 35 40 45 50

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

Noise ratio

ARFF Input Convertor ARFF Convertor Weka Initialization

BayesNet ARFF Deconvertor

(b) Dataset of 5,000 instances

Figure 15: Execution time as a function of the amount of noise in the dataset

for the different components of the probabilities Learning Pipeline

47

0

20

40

60

80

100

120

140

0 5000 10000 15000 20000 25000 30000

M
e

m
o

ry
 u

sa
ge

 (
M

B
)

Dataset size

Iterative Tree Miner & ARFF (De)Convertor Threshold Extractor

(a) Threshold Learning Pipeline

0

5

10

15

20

25

0 5000 10000 15000 20000 25000 30000

M
e

m
o

ry
 u

sa
ge

 (
M

B
)

Dataset size

Bayes Net Miner & ARFF (De)Convertor Probability Calculator

(b) Probabilities Learning Pipeline

Figure 16: The memory usage as a function of the size of the dataset

48

the probabilities Learning Pipeline and 20 MB for the threshold scenario.718

The memory usage for the threshold scenario is significantly higher. This719

can be explained by the different datasets that need to be created and stored720

to build the decision trees for each of the priorities.721

7. Conclusion722

This paper describes our experiences with extending the oNCS with self-723

learning components such that it can automatically adjust its parameters.724

This ensures that the application is tuned towards the needs and require-725

ments of the caregivers and increases its adoption. Moreover, caregivers are726

no longer burdened with trying to define accurate parameter values for the727

application at development time or tweak its configuration at run-time.728

The self-learning extension consists of the following steps. First, Mon-729

itoring Algorithms are used to monitor how the application is used with a730

certain context. These algorithms gather and store data. When enough data731

has been collected the Data Collection Component and Input Convertor re-732

trieve the data and transform it to the internal data format used by the733

self-learning components. Second, the Pre-Processor cleans the data. Data734

Mining techniques and a Post-Processor are used to discover the new pa-735

rameter values. The Decision Component associates probabilities with these736

learned parameter values to express their reliability. Values with a too low737

probability are filtered. Finally, the Integration Component integrates the738

new parameter values and their associated reliability in the oNCS.739

The oNCS contains two types of parameters, namely thresholds and prob-740

abilities. An extensive evaluation was performed to assess the applicability,741

49

correctness and performance of the self-learning components for both sce-742

narios. For the thresholds, it was shown that correct results with a relative743

error of less than 5% are obtained when the dataset contains at least 500 in-744

stances, i.e., calls, and the noise ratio is less than 20%. For the probabilities,745

it was deduced that for a realistic dataset of 1,050 instances correct results746

were obtained. Both the threshold and probability parameters are learned747

very efficiently as the components require at most 100 ms execution time and748

20 MB memory for a realistic dataset of 1,050 instances, irrespective of the749

amount of noise in this dataset.750

Future work will mainly focus on evaluating a prototype of the self-751

learning oNCS in a real-life setting.752

Acknowledgment753

F. Ongenae and M. Claeys would like to thank the IWT for financial754

support through their Ph.D. grant.755

[1] World Health Organization (WHO), Health topics: Ageing, http://756

www.who.int/topics/ageing/en/ (2013).757

[2] I. Meyer, S. Müller, L. Kubitschke1, A. Dobrev, R. Hammer-758

schmidt, W. B. Korte1, T. Hüsing, T. van Kleef, S. Otto, J. Hey-759

wood, M. Wrede, eCare as a way of coping with an ageing popu-760

lation today and tomorrow. The eCare benchmarking study, Tech.761

rep., European Commission, Directorate General Information Society762

and Media, Brussels, http://ec.europa.eu/information_society/763

newsroom/cf/itemdetail.cfm?item_id=10182 (April 12 2013).764

50

[3] World Health Organization (WHO), The world health report 2006765

- working together for health, http://www.who.int/whr/2006/en/766

(2006).767

[4] E. Percy, Healthcare challenges and trends, Tech. rep., Logica (2012).768

[5] C. Orwat, A. Graefe, T. Faulwasser, Towards pervasive computing in769

health care - a literature review, BMC Medical Informatics and Decsion770

Making 8 (26) (2008) 18.771

[6] J. Li, A. Talaei-Khoei, H. Seale, P. Ray, C. R. MacIntyre, Health care772

provider adoption of ehealth: Systematic literature review, Interactive773

Journal of Medical Research 2 (1) (2013) e7.774

[7] J. H. Jahnke, Y. Bychkov, D. Dahlem, L. Kawasme, Context-aware775

information services for health care, in: Proc. of the Workshop on Mod-776

eling and Retrieval of Context, 2004, pp. 73–84.777

[8] J. Criel, L. Claeys, A transdisciplinary study design on context-aware778

applications and environments. A critical view on user participation779

within calm computing, Observatorio 2 (2) (2008) 57–77.780

[9] F. Ongenae, D. Myny, T. Dhaene, T. Defloor, D. Van Goubergen, P. Ver-781

hoeve, J. Decruyenaere, F. De Turck, An ontology-based nurse call man-782

agement system (oNCS) with probabilistic priority assessment, BMC783

Health Services Research 11 (2011) 26.784

[10] F. Ongenae, M. Claeys, T. Dupont, W. Kerckhove, P. Verhoeve,785

T. Dhaene, F. De Turck, A probabilistic ontology-based platform for self-786

51

learning context-aware healthcare applications, Expert Systems with787

Applications 40 (18) (2013) 76297646.788

[11] F. Ongenae, L. Bleumers, N. Sulmon, M. Verstraete, A. Jacobs, M. Van789

Gils, A. Ackaert, S. De Zutter, P. Verhoeve, F. De Turck, Participatory790

design of a continuous care ontology: Towards a user-driven ontology en-791

gineering methodology, in: J. Filipe, J. L. G. Dietz (Eds.), Proceedings792

of the International Conference on Knowledge Engineering and Ontol-793

ogy Development (KEOD), ScitePress Digital Library;, Paris, France,794

2011, pp. 81–90.795

[12] T. Gruber, A translation approach to portable ontology specifications,796

Knowledge Acquisition 5 (2) (1993) 199–220.797

[13] M. Strobbe, O. V. Laere, F. Ongenae, S. Dauwe, B. Dhoedt, F. D. Turck,798

P. Demeester, K. Luyten, Novel applications integrate location and con-799

text information, IEEE PERVASIVE COMPUTING 11 (2) (2012) 64–800

73.801

[14] S. Haiges, A step by step introduction to OSGi programming based802

on the open source Knopflerfish OSGi framework, Tech. rep. (October803

2004).804

[15] D. L. McGuinness, F. v. Harmelen, OWL Web Ontology Lan-805

guage overview, Tech. Rep. REC-owl-features-20040210, World Wide806

Web Consortium, http://www.w3.org/TR/owl-features/ (February807

10 2004).808

52

[16] P. Klinov, Pronto: A non-monotonic probabilistic description logic rea-809

soner, in: Proceedings of the 5th European Semantic Web Conference,810

Tenerife, Spain, 2008, pp. 822–826.811

[17] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne,812

K. Wilkinson, Jena: implementing the semantic web recommendations,813

in: Proceedings of the 13th international conference on World Wide814

Web, Alternate track papers & posters, New York, NY, USA, 2004, pp.815

74–83.816

[18] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice,817

2nd Edition, Addison-Wesley Professional, 2003.818

[19] I. H. Witten, E. Frank, M. Hall, Data Mining: Practical Machine Learn-819

ing Tools and Techniques, 3rd Edition, Morgan-Kaufmann, 2011.820

[20] E. Prud’hommeaux, A. Seaborne, SPARQL Query Language for RDF,821

W3C Recommendation REC-rdf-sparql-query-20080115, http://www.822

w3.org/TR/rdf-sparql-query/ (January 15 2008).823

[21] S. B. Kotsiantis, Decision trees: a recent overview, Artificial Intelligence824

Review 39 (4) (2013) 261–283.825

[22] R. E. Neapolitan, Learning Bayesian Networks, Prentice-Hall, San Fran-826

cisco, CA, USA, 2003.827

[23] S. B. Kotsiantis, Supervised machine learning: A review of classification828

techniques, Informatica 31 (3) (2007) 249–268.829

53

[24] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kauf-830

mann, San Francisco, CA, USA, 1993.831

[25] T. Lukasiewicz, Probabilistic description logics for the Semantic Web,832

Tech. rep., Technical University of Wien, Institute for Information Sys-833

tems, Wien, Austria (2007).834

[26] Ghent university hospital, http://www.healthcarebelgium.com/835

index.php?id=uzgent (2013).836

[27] J. Su, H. Zhang, A fast decision tree learning algorithm, in: Proceedings837

of the 21st National Conference on Artificial Intelligence, Boston, MA,838

USA, 2006, pp. 500–505.839

[28] J. Su, H. Zhang, Full Bayesian network classifiers, in: Proceedings of840

the 23rd International Conference on Machine Learning (ICML), Pitts-841

burgh, PA, USA, 2006, pp. 897–904.842

54

