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ABSTRACT 

Scaffold architecture and composition are crucial parameters determining the initial cell 

spatial distribution and consequently bone tissue formation. Three-dimensional poly-ε-

caprolactone (PCL) scaffolds with a 0/90° lay-down pattern were plotted and subjected to 1) 

an oxygen plasma (PCL O) or 2) a post-argon plasma modification with gelatin and 

fibronectin (PCL Fn). These scaffolds with an open pore structure were compared with more 

compact scaffolds fabricated by conventional processing techniques: oxidized polylactic acid 

(LA O) and collagen (COL) scaffolds. Human adipose tissue derived stem cell/scaffold 

interaction was studied.  

The study revealed that the biomimetic surface modification of plotted scaffolds did not 

increase the seeding efficiency. The proliferation and colonization was superior for PCL Fn in 

comparison with PCL O. The plotted PCL Fn was completely colonized throughout the 

scaffold whereas conventional scaffolds only at the edge. Protein-based scaffolds (PCL Fn 

and COL) enhanced the differentiation, although plotted scaffolds showed a delay in their 

differentiation compared with compact scaffolds. In conclusion, protein modification of 

plotted PCL scaffolds enhances uniform tissue formation but shows a delayed differentiation 

in comparison with compact scaffolds. The present study demonstrates that biomimetic PCL 

scaffolds could serve as a guiding template to obtain a uniform bone tissue formation in vivo. 
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INTRODUCTION 

Among the different tissue engineering (TE) strategies, the scaffold plays an important role as 

temporary support for the development of new tissue either through in vivo guiding cell 

growth in the scaffold or through in vitro culturing cells on the scaffold prior to implantation. 

In in vivo developmental processes, tissue formation is often preceded by high cell densities.
1
 

This important biological aspect has to be taken into account at the level of designing three-

dimensional (3D) scaffolds for TE applications. During the last decades, many different 

processing techniques have been developed to design and fabricate 3D scaffolds resulting in 

an evolution from pre-formed scaffolds to patient-specific implants. These scaffolds, 

fabricated by diverse methods, have different physical architectures ranging from porous to 

fibrous and irregular to uniform. It is known that scaffold architecture plays a critical role in 

regulating cell spatial distribution, affecting the cellular signal expression and consequently 

tissue formation.
2-4

 In scaffolds processed by conventional techniques (porogen leaching, gas 

foaming, solvent casting), cell migration and tissue ingrowth are often limited to the 

peripheral region resulting in a localized, non-uniform tissue formation.
2 

In contrast, scaffolds 

fabricated by rapid prototyping (RP) techniques suffer from low resolution leading to 

scaffolds with large pore sizes, highly geometrical designs resulting in an open pore 

architecture with 100 % interconnectivity, influencing the tissue formation.
5
 Poly-ε-

caprolactone (PCL) and poly-lactic acid (LA) find wide application for the processing of 

scaffolds. Although PCL is a preferred polymer for RP techniques, a disadvantage is its 

intrinsic hydrophobicity and lack of functional groups resulting in poor cell attachment.
6
 To 

enhance the bioactive properties of PCL, various surface modification techniques are 

reported.
7-19

 Among these, plasma-based approaches have gained considerable popularity.
14-

16,18,19
 One of the major limitations of plasma technologies is the diversity of functional 

groups and the fact that the induced surface properties are not permanent.
18

 More recently, 
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studies have been focusing on the use of plasma-treated surfaces as interfacial bonding layers 

for the subsequent immobilization of well-defined chemical species/molecules. Hence, 

achieving a more controlled surface chemistry which is designed to elicit specific biological 

responses can be reached.
18,20

 Collagen has been among the most widely used biomaterials for 

biomedical applications.
21

 However, due to some disadvantages, there is a shift towards 

surface modification of implants with collagen or gelatin.
8,22

 Fibronectin (Fn), a glycoprotein, 

stimulates initial cell adhesion, but importantly, it should be immobilized in a biological 

active conformation. It was reported that Fn has an affinity for gelatin.
23

 In our previous 

studies, we have shown that PCL films and scaffolds could be successfully modified using a 

multistep protocol, involving a plasma pretreatment, an UV-induced 2-amino-

ethylmethacrylate (AEMA)-graft polymerization followed by the immobilization of gelatin 

and physisorbtion of Fn.
24-26

 

The hypothesis of this study is that cell density is a crucial factor in the differentiation process 

and tissue formation in 3D scaffolds and can be regulated by the scaffold architecture and 

composition. The influence of scaffold architecture (plotted versus conventional scaffold) and 

composition/surface chemistry (oxidized polyester versus protein-based surfaces) on adipose 

tissue derived stem cell (ADSC) adhesion, proliferation, colonization and differentiation was 

studied. Two modification strategies, 1) an oxygen plasma modification and 2) a double 

protein coating via post-argon plasma AEMA grafting followed by gelatin immobilization and 

Fn physisorption, on plotted PCL scaffolds were compared. These plotted scaffolds with an 

open pore architecture were compared with conventional scaffolds based on oxidized poly 

D,D-L,L-lactic acid (LA O) and collagen (COL) having a more compact architecture with an 

irregular pore network.  

 

MATERIALS AND METHODS 
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Three-dimensional  PCL scaffold fabrication 

Poly-ε-caprolactone (PCL) pellets (MW = 80 000 g.mol
-1

) were obtained from Sigma-Aldrich 

Company. Porous cylindrical PCL scaffolds with a height of 3 mm and a diameter of 4.5 mm 

were produced using the Bioscaffolder
®
 device (Sys-Eng, Germany). The scaffolds were 

designed in Inventor while PrimCam (Sys-Eng, Germany) was used to create the final 

structure. The needle was a gauge 27, the pressure was maintained at 5 bar and the 

temperature was set to 120°C. The selected lay-down pattern was 0/90° and the anticipated 

pore size was 300 µm.
26,27

  

 

Scaffold surface modification 

Oxygen plasma modification 

Scaffolds were subjected to an oxygen plasma treatment (dielectrical discharge plasma reactor, 

Model Femto, version 3, Diener Electronic, Germany) for 60 s.
27

 These scaffolds will be 

denoted as PCL O. 

Multi-step gelatin-fibronectin modification   

Scaffolds were subjected to a multi-step procedure involving a double protein coating of 

gelatin and fibronectin.
24-26

 Briefly, PCL scaffolds were pre-activated by Ar plasma treatment 

followed by exposure to the atmosphere. These scaffolds were immersed in a 1M AEMA 

solution and subsequently subjected to UV-irradiation. After thoroughly rinsing with 

deionised water, the scaffolds were immersed in 1 mg/ml gelatin type B (gelB) solution in 

distilled water. Subsequently, 1 mg/ml water soluble 1-ethyl-3(-3-dimethylaminopropyl) 

carbodiimide hydrochloride solution was added. After this immobilization step, several 

cleaning cycles were performed using deionised water followed by an overnight incubation at 

37°C. In the last modification step, the scaffolds were coated with Fn by immersion in 0.1 
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mg/ml Fn solution for 60 s followed by drying at ambient atmosphere. These scaffolds will be 

denoted as PCL Fn. 

PCL O and PCL Fn scaffolds were sterilized using ethylene oxide (UZGhent) for the cell 

culture experiments.  

 

Reference scaffolds 

BD
TM

 three dimensional OPLA
®
 scaffolds (LA O) (Cat. No. 354614) and  BD

TM
 three 

dimensional Collagen scaffolds (COL) (Cat. No. 354613) (Becton Dickinson (Erembodegem, 

België)) were used as reference materials. LA O is synthesized from D,D-L,L polylactic acid 

and oxidized by an atmospheric plasma treatment. COL is comprised of a mixture of soluble 

and fibrillar collagen (type I and type II collagens). These sponge-type 3D reference scaffolds 

have a diameter of 4.7 mm and a height of 2.25 mm.  

 

Scaffold characterization 

SEM analysis was performed on a JEOL JSM-5600 (JEOL, Japan) instrument. The apparatus 

was used in the secondary electron mode (SEI). Different dimensions of the scaffold were 

measured: strut diameter, interstrut distance, height of the struts and pore size (mean and SD 

of triplicate values). The porosity of 3D plotted scaffolds was calculated.
28

 Bioplotted PCL 

and the conventional scaffolds were evaluated using inverted contrast light microscopy 

(Olympus inverted Research System Microscope, Cell
M

 software, Olympus, Belgium). 

 

Cell culture and cell seeding onto PCL and conventional scaffolds 

ADSC (Cryo-Save, Belgium) were plated at a density of 5000 cells/cm² in MesenPRO 

(Invitrogen) and expanded until P3-6 that were used for all experiments performed in our 

study. Cells were cultured at 37 °C (5% CO2). For the cell/scaffold experiments, cells were 
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cultured in α-MEM glutamax (Gibco Invitrogen) supplemented with 10% foetal calf serum 

(FCS, Gibco Invitrogen) and 0.5 vol% penicillin-streptomycin (10,000 U/ml-10,000 µg/ml, 

Gibco Invitrogen) named as standard medium.  

Before cell seeding, the scaffolds were immersed in serum-free standard medium in 

Eppendorf tubes.  Air was removed from their pores by generating vacuum with a 20 ml 

syringe equipped with a gauge 18 needle. The scaffolds were left in medium on a gyratory 

shaker (37°C, 70 rpm). After 24 h, the scaffolds were placed into 96-well tissue culture dishes 

(for suspension culture). Cells were seeded at a density of 0.75 x 10
6
 cells/40 µl/scaffold and 

were allowed to adhere for 4 hours. Medium (160 µl) was added to each well and the seeded 

scaffolds were further incubated overnight. After 24 h, cell/scaffold constructs were placed in 

a 12 well plate. Three ml osteogenic culture medium (standard medium supplemented with 

100 µM L-ascorbic acid 2-phosphate (Sigma), 100 nM dexamethasone (Sigma) and 10 mM β-

glycerophosphate (Sigma)) was added and the cell/scaffold constructs were cultured for 28 

days (5% CO2/95% air, 37°C) with a culture medium change twice a week.  

Characterization of cell/scaffold constructs 

Cell seeding efficiency, adhesion, proliferation, colonization and differentiation were 

evaluated at different time points (1, 7, 14 and 28 days post-seeding).  

Seeding efficiency 

12 hours post-seeding, the scaffolds were removed and the remaining cells in the wells were 

counted using a counting chamber. The seeding efficiency was calculated using the equation: 

seeding efficiency (%) = (cells added to scaffold – residual cells in well)/cells added to 

scaffold x 100.  (Mean and SD of 12 replicates). 

Phase contrast and fluorescence microscopy 

To visualize cell adhesion and colonization on the scaffolds, cell/scaffold constructs were 

evaluated using inverted contrast light microscopy and fluorescence microscopy (Olympus 
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inverted Research System Microscope, type U-RFL-T, Cell
M

 software, Olympus, Belgium) 

after calcein AM/propidium iodide staining as described previously.
21

  

Histology 

Cell/scaffold constructs were rinsed with PBS, fixed with 4% phosphate (10 mM) buffered 

formaldehyde (pH 6,9) (4°C, 24 h), dehydrated and embedded in paraffin. 5-7 µm sections 

were stained with hematoxylin & eosin (H&E) and Masson’s Trichrome and mounted with 

mounting medium (Cat.No. 4111E, Richard-Allan Scientific).  

 Immunohistochemistry 

Immunohistochemistry, using antibodies (Ab) directed against, collagen I (polyclonal rabbit 

anti-human, Acris R1038, Acris) and osteocalcin (polyclonal goat anti-human, V-19 sc-18319, 

Santa Cruz Biotechnology) was performed on the tissue sections as described previously.
21

  

Protein assay and alkaline phosphatase activity 

Cell/scaffold constructs were lysed into 0.5 ml of a 1% Triton X-100 containing Tris HCl 

buffer, homogenized by two freeze-and-thaw cycles and sonicated on ice for 3 x 10 s 

(amplitude of 40 %) (Vibra Cell
TM

 SONICS (ANALIS)). Protein content and alkaline 

phosphatase (ALP) were determined as previously.
29

 ALP activity was expressed as mM p-

nitrophenol/mg protein.  

Real-time RT-PCR analysis 

ADSC cultures were trypsinized, collected and centrifuged at 1000 rpm, 5 min. After removal 

of the supernatant, TRI Reagent was added. Cell/scaffold constructs were rinsed in PBS and 

TRI Reagent was added. RNA was isolated followed by DNA treatment and RNA was 

transcribed to cDNA. Real time PCR was performed on the ABI 7500 Fast Real Time PCR 

device with Taqman probes for the following genes: runt-related transcription factor (Runx2), 

collagen type I (COL1A1) and osteocalcin (OCN) as described previously.
21

 Relative 

quantification (Rq, n fold expression) values were calculated using the equation 2
-ΔΔCt

. 
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Statistical analysis 

A Mann-Whitney test using SPSS 19.0 was performed to compare the differences among 

groups. Differences among groups were considered as statistically significant when p ≤ 0.05. 

Mean and SD were reported in each Fig. 

 

RESULTS 

Scaffold characterization 

In Fig. 1, a photograph of the Bioscaffolder
®
 (a) and a plotted PCL scaffold with a 0/90 lay-

down pattern (a, insert) are presented. SEM-images of a top-view (c) and a cross-section (d) 

are presented. The scaffold properties are presented in Table 1, according to the scaffold 

dimensional parameters (Fig. 1 b). Phase-contrast micrographs of the scaffolds are shown in 

Fig. 2. The plotted scaffolds (Fig. 2 (a, d)) consist of repeating structural units, well controlled 

interconnected pores with a pore size of ± 300 µm and a porosity of 60-78%. This is in 

contrast to LA O (Fig. 2 (b, e)) and COL (Fig. 2 (c, f)) scaffolds,  which have a more compact 

architecture, an irregular structure and pore morphology (pore size ± 100-200 µm) and a 

porosity of 90-98 %. The fibrillar network of both scaffolds is presented in Fig. 2 (c, f). 

The characterization of surface modified PCL scaffolds by direct oxygen plasma (PCL O) and 

a multistep procedure involving post-argon plasma AEMA grafting, gelB immobilization and 

Fn physisorption (PCL Fn) was reported earlier.
24,25,27,30

  

 

Cell seeding efficiency 

The seeding efficiency is presented in Fig. 3 a. Low seeding efficiencies were obtained for 

plotted PCL scaffolds: PCL O (45.1 ± 15.9 %) and PCL Fn (33.3 ± 8.1 %). Conventional LA 
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O and COL based scaffolds reach seeding efficiencies of  78.6 ± 2.6 % respectively 82.7 ± 

5.5 %.  

 

Cell proliferation and colonization 

The results of cell imaging for plotted and conventional scaffolds as a function of time is 

depicted in Fig. 4. After 4 hours, a lot of round, non-adherent cells between the polymer struts 

of the plotted scaffolds are visible by phase-contrast microscopy (Fig. 4 a, a’, b, b’). Round 

cells can also be detected on the conventional scaffolds (Fig. 4 c, c’, d, d’). After 7 days, the 

polymer struts of the plotted scaffolds are completely covered with viable cells, independent 

of the surface modification (Fig. 4 e, f). The cells are bridging the pores of the plotted 

scaffolds (elongated cells) (Fig. 4 e’, f’). The surface of LA O and COL is completely covered 

with viable cells (Fig. 4 g, h). After 14 days, the surface of the plotted scaffolds is completely 

covered with viable cells and bridging of the pores continues (Fig. 4 i, i’, j, j’). The cellular 

appearance and the amount of viable cells on the surface of the conventional scaffolds 

remains unchanged (Fig. 4 k, k’, l). 

In a next step, we were interested to study cellular colonization in the scaffolds by looking at 

cross-sections as shown in Fig. 5. After 7 days, PCL O scaffolds are colonized only at the 

edge of the scaffold. In the center of the scaffold, no cells are present (Fig. 5 a). PCL Fn 

scaffolds show a better colonization in the center of the scaffold. The pores are completely 

filled with cellular material (Fig. 5 b). The LA O and COL scaffolds show only cell layers at 

the edges of the scaffolds (Fig. 5 c, d). After 28 days in culture, the colonization of PCL O 

scaffolds is still limited mostly to the edge of the scaffold (Fig. 5 e’). In the center of the 

scaffold, almost no colonization is detected (Fig. 5 e). In contrast, plotted PCL Fn scaffolds 

are homogeneously colonized throughout the scaffold (Fig. 5 f). This is in contrast to the 

conventional scaffolds where the cellular colonization did not proceed towards the center of 
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the scaffold (Fig. 5 g, h). More cell layers can be observed in COL (Fig. 5 h) than LA O (Fig. 

5 g) scaffolds.  

The protein content of cell/scaffold constructs after 28 days is shown in Fig. 3 b. The protein 

content is highest for COL followed by PCL Fn, LA O and PCL O. The protein content of 

blanc protein-based scaffolds (PCL Fn and COL) was negligible. Oxidized (PCL O and LA O) 

respectively protein-based scaffolds (PCL Fn and COL) have a comparable proliferation ratio 

(Fig. 3 b). 

 

Extracellular matrix formation 

The ECM formation is visualized in Fig. 6. After 7 days, a dense layer of cells can be seen on 

the periphery of LA O (Fig. 6 c) and COL (Fig. 6 d) scaffolds. The initial ECM formed at the 

edge of the conventional scaffolds already has  a dense appearance. In contrast, plotted PCL 

scaffolds are colonized at the edge (PCL O) or throughout the scaffold (PCL Fn) (Fig. 6 a, b). 

For both plotted scaffolds, the ECM formation is loose (Fig. 6 e, f). For PCL Fn scaffolds, the 

ECM is uniformly distributed throughout the scaffold (Fig. 6 b, f).   

After 28 days, the ECM remains loose in the plotted scaffolds (Fig. 6 i, j, m, n). Sometimes, a 

more dense ECM can be observed at the edge (Fig. 6 n’) or between the narrow space of 2 

struts (artefact) (Fig. 6 m’). In the conventional scaffolds, the ECM is dense and situated 

parallel to the surface of the scaffold (Fig. 6 k, l, o, p). In the center, almost no ECM can be 

observed. 

 

Differentiation 

In a last part of our work, we assessed cell differentiation by evaluating the levels of ALP; 

Runx2, COL1α1, OCN phenotypic expression and (immuno) histochemistry. 
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ALP was undetectable for the plotted scaffolds after 7 days, compared to the conventional 

scaffolds. However, after 14 and 28 days, the ALP activity has increased drastically for these 

structures and reaches similar values as the conventional scaffolds (Fig. 7 a). The phenotypic 

expression of Runx2 is upregulated after 7 days in COL and PCL Fn scaffolds. An 

upregulation of COL1α1 can be observed for the PCL Fn scaffold. An upregulation of OCN 

can already be noticed for the COL scaffold. For all plasma treated scaffolds (PCL O and LA 

O), the three osteogenic markers are down regulated. After 14 days, Runx2 is upregulated for 

all the scaffolds except LA O. Also COL1α1 is upregulated in all scaffolds, but highest for 

PCL Fn and COL. Also OCN is upregulated in all scaffolds, but highest in the protein-based 

scaffolds (PCL Fn and COL). After 28 days, COL1α1 is still upregulated in protein-based 

scaffolds (PCL Fn and COL). OCN upregulation is more pronounced in PCL Fn, followed by 

PCL O, COL and LA O (Fig. 7 d).  

Immunohistochemical analysis of the osteogenic differentiation of ADSCs in plotted PCL 

compared with conventional scaffolds is presented in Fig. 8. The formation of an ECM by 

ADSC after 28 days in culture was observed in both plotted and conventional scaffolds. 

However, it must be noted that the conventional scaffolds (LA O and COL) show an intense 

staining of ECM by Trichrome Masson (Fig. 8 c, d, g, h) in contrast to plotted scaffolds where 

the stain is less intense (Fig. 8 a, b, e, f). Only at the edge (Fig. 8 f’) or between the narrow 

space of 2 artefact struts, the ECM is stained more intense (Fig. 8 e’). The ECM is staining 

positive for collagen I. Collagen I was observed predominantly at the periphery of the 

conventional scaffolds (Fig. 8 k, l) and almost throughout the plotted scaffolds (Fig. 8 i, j). 

Again the collagen I immunostaining is more intense on the conventional than plotted 

scaffolds. Also OCN can be detected in both plotted and conventional scaffolds. The ECM of 

plotted scaffolds stains less intense for OCN than the conventional scaffolds. It must be 
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reported that OCN already could be detected by immunostaining after 7 days (photograph not 

shown), which was also detected by qRT-PCR. 

 

DISCUSSION 

In TE, the scaffold plays an important role as temporary support for the development of new 

tissue either through in vivo cell invasion or through in vitro culturing cells on the scaffold 

prior to implantation. In this regard, tissue formation in 3D scaffolds is influenced by the 

scaffold design and composition. Hence, the architecture and physico-chemical properties of 

the scaffold that support cell colonization, growth and differentiation need to be considered. 

Scaffold architecture influences passive cell distribution while seeding as well as active cell 

movement and tissue formation.
4
 The scaffold composition should elicit certain biological 

cues to direct the cells towards colonization and tissue formation.  

In the present study, we analyzed the influence of scaffold architecture and composition on 

mesenchymal stem cell adhesion, colonization and differentiation. Two bioplotted PCL 

scaffolds (surface modified with respectively an oxygen plasma and a gelatin/fibronectin 

coating) with an open pore and uniform structure were compared with more compacted, 

irregular oxidized polylactic acid and collagen based scaffolds. 

 

The seeding efficiency has been associated with the surface area available for cells to attach to 

and the surface characteristics influencing the ability of cells to adhere. In addition, also the 

scaffold architecture and pore structure could play an important role.
31 

In our study, no increase in seeding efficiency of double protein coated PCL (PCL Fn) 

compared with plasma modification of PCL scaffolds (PCL O) was found. Also the 

conventional plasma treated LA (LA O) scaffold had a comparable seeding efficiency as the 

COL scaffold. Cell seeding onto plotted PCL scaffolds was significantly lower (39.2 ± 8.3 %) 
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compared to the conventional scaffolds (81.9 ± 1.0 %). The two scaffold types (plotted versus 

conventional scaffolds) on which cells were seeded on the surface clearly showed the effect of 

scaffold architecture. The conventional scaffolds (COL and LA O) are the densest and retain 

the cells on the surface. In contrast, plotted scaffolds have an open pore network and are 

highly geometrical leading to cell loss during seeding. The biomimetic surface modification 

of the 3D PCL plotted scaffold did not contribute to a higher cell seeding efficiency. 

Consistent with other studies, higher seeding efficiencies were reported for more compacted 

architectures.
10,31,32

 From these results, we can suggest that 3D scaffold architecture has a 

more profound influence on the seeding efficiency than surface chemistry, at least with the 

pore size geometry combination evaluated in the present work.  

Although a biomimetic coating (PCL Fn) or scaffold (COL) did not increase the seeding 

efficiency compared to oxidized scaffolds (PCL O and LA O), protein-based surfaces (PCL 

Fn and COL) did have a clear benefit on the proliferation and colonization of ADSC. PCL O 

and LA O showed little proliferation, whereas PCL Fn and COL showed a high increase in 

cell/protein content. Histology demonstrated that only the edges of the PCL O scaffolds were 

colonized, but not the center of the scaffolds, while for PCL Fn the complete structure was 

colonized after 28 days. COL and LA O scaffolds were only colonized at the edges, but the 

peripheral tissue layer was more dense on COL scaffolds. 

We can thus conclude that both surface modification and scaffold architecture have a clear 

influence on the cellular proliferation and colonization. The influence of a protein-based 

surface modification was also reported by Yildirim et al. who observed an increased cell 

amount in an oxygen plasma/Fn modification of PCL compared to plasma-only modified 

PCL.
14

 Consistent with other reports
4,33,34

, a limited colonization at the edge of the 

conventional scaffolds was observed resulting in a strong gradient of cell density from the 

surface to the inner scaffold region. 
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As tissue formation is often preceded by high cell densities, the observed difference in 

seeding efficiency, proliferation and colonization between the scaffolds, varying in 

architecture and composition, will inevitally lead to differences in ECM formation and 

differentiation. In conventional scaffolds (LA O and COL) with a compact design, a dense 

ECM is formed at the edge of the scaffold already after 7 days in culture. In contrast, the 

ECM formed in plotted scaffolds was loose even after 28 days in culture. This is reflected in 

the osteogenic differentiation: ALP activity and late-stage osteogenic markers (OCN) in 

conventional scaffolds could already be detected after 1 week. Kumar et al. described that 

scaffold structure was more influential than scaffold composition on the cellular gene 

expression of human bone marrow stromal cells.
35

 Nevertheless, during further culture 

periods, the osteogenic markers in plotted scaffolds reached levels competing with the 

conventional scaffolds. Cells on protein based surfaces (PCL Fn and COL) did show 

increased osteogenic marker expression throughout the whole culture period. Also Yildirim et 

al. reported that a combined plasma/Fn modified scaffold leaded to a higher ALP activity 

compared to plasma-only modified scaffolds.
14

 In general, it can be concluded that protein-

based surfaces stimulate the differentiation of ADSC towards bone cells. However, it should 

be noticed that the cell differentiation on uniform, open pore structured scaffolds produced by 

RP is delayed compared to the differentiation on compact, irregular pore structured scaffolds 

processed by conventional techniques. It can be hypothesized that this is due to the fact that 

cells need a longer proliferation period on the plotted scaffolds, in order to colonize the 

complete structure. Therefore, the required cell density to differentiate is reached at a later 

stage compared to the conventional scaffolds where the cells remain on the edge. 

Cipitria et al. reported that plotted scaffolds acted as a guiding substrate to enable the 

formation of a fibrous network as a prerequirement for later bone formation. The fibrous 

network morphology, which in turn is guided by the scaffold architecture, influences the 
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microstructure of the newly formed bone. A structured fibrous tissue across the entire defect 

was formed, which acted as a secondary supporting network for cells.
36 

The double protein modified PCL scaffold, combining the advantages of the bioplotter 

technology and the biomimetic properties, is a promising scaffold serving as a guiding 

template during the bone regeneration process. Future directions in guided tissue regeneration 

will focus on optimalization of scaffold design by tailoring the scaffold structure or by 

combining multiple processing techniques to create hybrid scaffolds.
35,37,38

 

 

CONCLUSIONS 

In the present study, PCL scaffolds were plotted applying the 3D Bioscaffolder
®
 technology 

and successfully modified with two surface modification strategies: an oxygen plasma 

modification and a double protein biomimetic coating. Uniform but loose tissue formation 

was obtained in both plotted scaffolds in contrast to conventional scaffolds, where the tissue 

formation is dense but non-homogeneous. The biomimetic coating of PCL resulted in an 

increased osteogenic differentiation compared with oxygen plasma-only modified PCL 

scaffolds, but a delayed differentiation compared with scaffolds with a more compact 

architecture. In conclusion, the present study successfully demonstrates that biomimetic PCL 

scaffolds can serve as a guiding template to obtain a uniform bone tissue formation. 
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Fig. 1. Fabrication and characterization of bioplotted PCL scaffolds. a) Bioscaffolder
®
 device, 

a insert) photograph of a bioplotted PCL scaffold, b) bioplotted scaffold dimensional 

parameters. d1: fiber diameter, d2:interstrut distance, d3: layer thickness, d4: pore size, c-d) 

SEM images (top-view and cross-section). 
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Fig. 2. Phase-contrast images. a, d) PCL scaffold (0/90° pattern), b, e) LA O scaffold, c, f) 

COL scaffold. 
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Table 1. 

Scaffold d1 (µm) 

Interstrut 

d2 (µm) d3 (µm) 

Pore size 

 (d4) (µm) 

Porosity 

(%) 

PCL 0/90 253 ± 29 593  288 ± 1 310 ± 24 60-78 

LA O n.a. n.a. n.a. 100-200 90-98 

COL n.a. n.a. n.a. 100-200 90-98 

 

 

 

Table 1. Overview of the scaffold characteristics. 
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Fig. 3. a) Seeding efficiency of ADSC on bioplotted (PCL O, PCL Fn) and conventional (LA 

O, COL) scaffolds. * Statistical difference (p ≤ 0.05) from LA O and COL. b) Protein content 

of cell/scaffold constructs cultured in standard medium for 1 and 28 days. # Statistical 

difference (p ≤ 0.05) from other groups. 
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Fig. 4. Influence of surface modification and scaffold design on the colonization of the 

scaffolds. Phase-contrast (a-d, a’-d’, e’-f’) and fluorescence (e-l, i’-k’) (CaAM/PI staining) 

microscopy of 3D scaffolds after 1 (a-d), 7 (e-h) and 14 (i-l) days in osteogenic medium. a, e, 

i) PCL O; b, f, j) PCL Fn; c, g, k) LA O and d, h, l) COL. 
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Fig. 5. Influence of surface modification and scaffold design on the colonization of the 

scaffolds. Histological analysis of 3D scaffolds after 7 (a-d) and 28 (e-h) days in osteogenic 

medium.  H& E staining. a, e) PCL O; b, f) PCL Fn; c, g) LA O and d, h) COL.  
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Fig. 6. Influence of surface modification and scaffold design on the extracellular matrix 

formation. Histological analysis of 3D scaffolds after 7 (a-h) and 28 (i-p) days in osteogenic 

medium.  H& E staining. a, e, i, m) PCL O; b, f, j, n) PCL Fn; c, g, k, o) LA O and d, h, l, p) 

COL. 

 

  

 Page 31 of 34 

T
is

su
e 

E
ng

in
ee

ri
ng

 P
ar

t A
T

he
 r

ol
e 

of
 s

ca
ff

ol
d 

ar
ch

ite
ct

ur
e 

an
d 

co
m

po
si

tio
n 

on
 th

e 
bo

ne
 f

or
m

at
io

n 
by

 a
di

po
se

 d
er

iv
ed

 s
te

m
 c

el
ls

 (
do

i: 
10

.1
08

9/
te

n.
T

E
A

.2
01

3.
01

79
)

T
hi

s 
ar

tic
le

 h
as

 b
ee

n 
pe

er
-r

ev
ie

w
ed

 a
nd

 a
cc

ep
te

d 
fo

r 
pu

bl
ic

at
io

n,
 b

ut
 h

as
 y

et
 to

 u
nd

er
go

 c
op

ye
di

tin
g 

an
d 

pr
oo

f 
co

rr
ec

tio
n.

 T
he

 f
in

al
 p

ub
lis

he
d 

ve
rs

io
n 

m
ay

 d
if

fe
r 

fr
om

 th
is

 p
ro

of
.



32 

32 
 

 

 

Fig. 7. Influence of surface modification and scaffold design on the differentiation of ADSC. 

a) Alkaline phosphatase activity (mM pNP/mg protein) of ADSC seeded on scaffolds with 

different surface modification and design after 6, 14 and 28 days. * Statistical difference (p  

0.05) from LA O and COL. b-d) Gene expression (Runx2, COL11, OCN) analysis of ADSC 

cultured for 7, 14 and 28 days on scaffolds. # Statistical different from other groups. * 

Statistical different from LA O and COL. 
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Fig. 8. Differentiation of ADSC after 28 days in plotted 3D scaffolds compared with 

conventional scaffolds. Histological analysis. a, e, i, m) PCL O; b, f, j, n) PCL Fn; c, g, k, o) 

LA O and d, h, l, p) COL. a-h) Trichrome Masson staining, i-l) collagen I immunostaining 

and m-p) osteocalcin immunostaining. 

 

 

 

Role of scaffold characteristics on bone formation 
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