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Abstract

Cancer is a complex disease, initiated and sustained by the interplay of germline
and somatic mutations and environmental factors. Understanding the phenotypic
consequences of somatic mutations, how their spectrum and effects are influenced
by germline variation and the role of environmental factors in increasing cancer risk
is key to improving cancer prevention, early detection, and treatment. In this thesis,
I explore both the genetic and environmental influences on cellular phenotypes and
cancer risk.

First, I take advantage of a simple yeast model to investigate the effects of sponta-
neously accumulating mutations on cell growth. I describe a mutation accumulation
experiment conducted in yeast strains with a defective MutSβ complex of the mismatch
repair system (MMR). MutSβ -deficient lines accumulate mutations mainly in simple
sequence repeats (SSRs), inherently unstable regions involved in normal eukaryotic
transcriptional regulation and several human pathologies, including cancer. I show
that abrogating MutSβ function leads to an increased SSR mutation rate, with a bias
towards deletions. I also report a drastic increase in mutation rate in SSR loci longer
that 8-bp, which suggests MutSβ is primarily responsible for mismatch repair at longer
repeat loci. Finally, I show that SSR mutations have mostly small deleterious effects
on cell growth, and propose a role for the combined effects of many mildly deleterious
passenger mutations in the favourable prognosis observed for microsatellite unstable
cancers.

Next, I investigate the effects of cigarette smoke on the transcriptome of an accessible
airway tissue, nasal epithelium, in a cohort of healthy volunteers and patients with
suspected or diagnosed lung cancer. I find that smoke injury response is strikingly
different in healthy individuals and clinic patients, with genes and biological functions
affected by smoking showing a slower reversal to healthy baseline level in clinic
patients. In particular, I find persistent smoking-associated immune alterations to be a
hallmark of the clinic patients. Finally, I show that a classifier including nasal expres-
sion of smoke-injury-associated genes to predict lung cancer performs better than a
model based exclusively on clinical information, providing evidence for the potential
of nasal epithelial gene expression to improve population-level risk stratification with
the use of a non-invasive test.





Zusammenfassung

Krebs ist eine komplexe Krankheit, die durch das Zusammenspiel von Keimbahn- und
somatischen Mutationen sowie Umweltfaktoren ausgelöst und aufrechterhalten wird.
Das Verständnis der phänotypischen Folgen somatischer Mutationen, der Beeinflus-
sung ihres Spektrums und ihrer Auswirkungen durch Keimbahnvarianten sowie der
Rolle von Umweltfaktoren bei der Steigerung des Krebsrisikos ist der Schlüssel zur
Verbesserung der Prävention, Früherkennung und Behandlung von Krebserkrankungen.
In dieser Arbeit untersuche ich sowohl die genetischen als auch die umweltbedingten
Einflüsse auf zelluläre Phänotypen und das Krebsrisiko.

Zu Beginn nutze ich ein einfaches Hefemodell, um die Auswirkungen von spontan
akkumulierenden Mutationen auf das Zellwachstum zu untersuchen. Ich beschreibe ein
Mutationsakkumulationsexperiment, das in Hefestämmen mit einem defekten MutSβ -
Komplex des Mismatch-Reparatursystems (MMR) durchgeführt wurde. MutSβ -
defiziente Linien häufen Mutationen hauptsächlich in einfachen Sequenzwiederholun-
gen (SSRs) an, welche inhärent instabilen Regionen darstellen, die an der normalen
eukaryotischen Transkriptionsregulation und mehreren menschlichen Pathologien, ein-
schließlich Krebs, beteiligt sind. Ich zeige, dass die Aufhebung der MutSβ -Funktion
zu einer erhöhten SSR-Mutationsrate führt, mit einer Tendenz zu Deletionen. Zudem
zeige ich einen drastischen Anstieg der Mutationsrate in SSR-Loci, die länger als
8 bp sind, was darauf hindeutet, dass MutSβ hauptsächlich für die Reparatur von
Fehlpaarungen an längeren Repeat-Loci verantwortlich ist. Abschließend zeige ich,
dass SSR-Mutationen meist geringe, negative Auswirkungen auf das Zellwachstum
haben, und schlage vor, dass die kombinierten, leicht negativen Effekte vieler Pas-
sagiermutationen eine Rolle bei der günstigen Prognose spielen, die für Krebsarten
mit Mikrosatelliteninstabilität beobachtet wird.

Als nächstes untersuche ich die Auswirkungen von Zigarettenrauch auf das Transkrip-
tom eines leicht zugänglichen Atemwegsgewebes, des Nasenepithels, in einer Kohorte
von gesunden Freiwilligen und Patienten mit Verdacht auf oder diagnostiziertem
Lungenkrebs. Ich stelle fest, dass die Reaktion auf durch Rauch hervorgerufene Ver-
letzungen bei gesunden Personen und Klinikpatienten auffallend unterschiedlich ist,
wobei Gene und biologische Funktionen, die durch das Rauchen beeinträchtigt werden,
bei Klinikpatienten langsamer auf ein gesundes Ausgangsniveau zurückkehren. Ich
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stelle zudem fest, dass anhaltende, rauchassoziierte Immunveränderungen ein klares
Kennzeichen der Klinikpatienten sind. Schließlich zeige ich, dass ein Klassifika-
tor, der die nasale Expression von mit Rauchverletzungen assoziierten Genen zur
Vorhersage von Lungenkrebs einbezieht, bessere Ergebnisse erzielt als ein Modell,
das ausschließlich auf klinischen Informationen basiert. Damit belege ich das Poten-
zial der Einbeziehung der Genexpression des Nasenepithels zur Verbesserung der
Risikostratifizierung auf Bevölkerungsebene mit Hilfe eines nicht-invasiven Tests.
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Chapter 1

Introduction

1.1 Genes and environment in cancer

The definition of cancer as a "disease of the genome" is today very well established.
Malignant transformation starts with the accumulation of somatic mutations in the
genome of a normal cell. While some mutations are inconsequential, others lead
to changes which confer the cell a selective advantage. The accumulation of these
mutations eventually leads to uncontrolled expansion of the cell of origin, which forms
a "clone" that grows, giving rise to the tumour. In 2000, Hanahan and Weinberg de-
scribed six fundamental characteristics, or hallmarks, of malignant cells (Hanahan and
Weinberg, 2000). These hallmarks are sustained growth, evasion of growth-regulating
signals, replicative immortality, resistance to cell death, induction of angiogenesis,
and the ability to invade and metastasise other tissues. In the following years, two
additional characteristics were included: metabolic reprogramming and immune eva-
sion (Hanahan and Weinberg, 2011). These are characteristics of the cancer cells
themselves. However, a tumour does not exist as an isolated entity. It is part of a
complex environment that includes a variety of surrounding cell types and intercellular
components such as stromal, endothelial and immune cells and the extracellular matrix
(ECM). The back and forth interaction between malignant cells and non-malignant
components of this "tumour microenvironment" sustains tumour growth and promotes
its development and invasiveness (Balkwill et al., 2012). Therefore, factors that modify
and shape the tumour microenvironment also contribute to cancer development. An im-
portant example is tumour-associated inflammation. While the immune system plays a
role in the initial anti-tumoral response, attempting to eradicate malignant cells from
healthy tissue, it is now clear that inflammation at the tumour site promotes tumori-
genesis by producing proliferation-sustaining, pro-angiogenic and ECM-degrading
factors that enhance growth and invasiveness, together with cytokines and chemokines
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that sustain the inflammatory state making the tumour site a never-healing wound
(Grivennikov et al., 2010).

Mutations that confer cells a fitness advantage, which often coincides with the acquisi-
tion of the above-mentioned hallmark capabilities, are defined as ’driver’ mutations,
as opposed to ’passenger’ mutations, which have no effect on cellular phenotype.
Driver mutations frequently affect two types of genes: proto-oncogenes and tumour
suppressors (Kopnin, 2000). Proto-oncogenes are genes whose normal functions pro-
mote cell proliferation and growth. Common examples of proto-oncogenes encode for
growth factor and angiogenic factor receptors such as EGFR and VHL, intracellular
signalling molecules such as RAS and RAF, and anti-apoptotic factors such as BCL-2.
Cancer-promoting mutations in these genes are typically gain-of-function mutations,
which lead to an over-activation of the gene product and thus enhanced growth and
proliferation, and resistance to apoptosis and anti-proliferative signals. Mutations in
proto-oncogenes are also generally dominant, with only one mutated copy of the gene
being sufficient to produce the pro-tumorigenic effect (Alberts et al., 2002). Tumour
suppressors, on the other hand, have anti-proliferative and pro-apoptotic functions,
or are involved in DNA repair and maintenance of genome stability. The most typi-
cal examples of tumour suppressor genes are TP53 and RB1, which are involved in
growth, apoptosis and DNA repair regulation. Mutations observed in tumour suppres-
sor genes are loss-of-function mutations, and generally both copies of the gene must
be inactivated to observe an effect on the phenotype (Alberts et al., 2002; Kopnin,
2000).

A diverse range of mutations is observed in cancer genomes and can potentially affect
driver genes. These include single nucleotide substitutions, short insertions and dele-
tions, copy-number alterations involving large regions of chromosomes, chromosome
arms or entire chromosomes, and a variety of complex structural variants. These muta-
tions can also indirectly affect the function of driver genes. Mutations occurring in
non-coding regions of the genome can potentially modify the behaviour of regulatory
regions such as enhancers and insulators, reshape chromatin organisation and affect
the expression of non-coding regulatory RNAs (Elliott and Larsson, 2021). Changes in
genome sequence are not the only way to acquire hallmarks of cancer. Functional alter-
ation of oncogenes and tumour suppressors can also be caused by epigenetic alterations
(Nishiyama and Nakanishi, 2021). For instance, promoter hypermethylation has been
shown to be a mechanism for silencing of tumour suppressor genes in several cancer
types (Esteller et al., 2000; Herman et al., 1994; Merlo et al., 1995; Zhang et al., 2008).
Patterns of global hypomethylation have also been observed in cancer genomes. This



1.1 Genes and environment in cancer 3

widespread loss of methylation has been linked to increased chromosomal instability;
it can also lead to enhanced transcription of the regions involved, and the potential
overexpression of oncogenes located in these regions (Eden et al., 2003; Nishiyama
and Nakanishi, 2021).

Although the accumulation of somatic alterations is ultimately what leads to tumour
development, germline variation can favour malignant transformation. For example,
germline variants that affect the DNA repair system can increase the overall somatic
mutational burden of the genome (Curtin, 2012; de Boer and Hoeijmakers, 2000; Roy
et al., 2011). In other cases, a mutation in a tumour suppressor is inherited, making the
cell already closer to a malignant state. That is the case for some hereditary cancers,
most famously retinoblastoma. While studying this cancer, Alfred Knudson first
formulated his "two hit" hypothesis, according to which tumour suppressor genes are
recessive in nature and, in order to observe a phenotypic change in the cell, both copies
of the gene need to be inactivated, through either mutation or epigenetic mechanisms
(Knudson, 1971). Germline variation can influence tumorigenesis by acting not only
on the cell-of-origin itself, but on components of the tumour microenvironment, such
as ECM components, stromal cells, immune cells and blood vessels. Polymorphisms in
genes involved in ECM structure, such as metalloproteinases and adhesion molecules,
have been found to be implicated in tumorigenesis, to influence tumour characteristics,
survival time and response to therapy for several cancer types (Han et al., 2011; Kida
et al., 2014; Ricketts et al., 2009). Associations between polymorphisms and cancer
risk were also described for genes that encode proteins produced by stromal cells, such
as SDF1 and TGFβ1, and vascular factors such as VEGF (Eng et al., 2012; Krishna
et al., 2020; Teng et al., 2009; Verboom et al., 2017). Variants affecting immune system
functions also weigh on cancer risk and development. These variants can influence
both the immune anti-tumoral response and the cancer-associated inflammation within
the tumour microenvironment (Duell et al., 2006; Eaton et al., 2018; Frank et al., 2010;
Korobeinikova et al., 2020; Kwon et al., 2011; Sayaman et al., 2021; Shahamatdar
et al., 2020).

Mutations accumulate randomly in normal cells due to endogenous mutagenic pro-
cesses such as oxidative stress, erroneous DNA repair and ineffective DNA polymerase
proofreading (Barnes et al., 2018). However, they can also be induced by environ-
mental carcinogens, such as cigarette smoke and UV radiation. Both endogenous and
exogenous processes increase the frequency of certain alterations occurring, creating
very specific mutational patterns or "signatures" (Alexandrov et al., 2013, 2020). Diet
and obesity are also linked to increased risk of some cancers, as are infections with
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certain viruses and bacteria (De Pergola and Silvestris, 2013; Krump and You, 2018).
Even if some of these factors, such as obesity, do not directly induce the occurrence
of mutations, most of them lead to chronic inflammation, creating a pro-tumorigenic
environment (Bosch et al., 2002; Coussens and Werb, 2002; Howe et al., 2013; Lakatos
and Lakatos, 2008; Lee et al., 2012). Interaction between genetic and environmental
factors can also play a role in cancer initiation and development, as germline variation
can modify the response to environmental carcinogens. For example, polymorphisms
in NQO1, a gene encoding for an enzyme involved in cellular detoxification, have
been shown to affect the sensitivity to tobacco carcinogens, thus influencing the risk of
smoking-associated lung cancer (Yamamoto et al., 2017). Similarly, polymorphisms in
the vitamin D receptor gene VDR were associated with an increased risk of UV-induced
skin cancer (Denzer et al., 2011).

Understanding the consequences of germline and somatic variation, the effect of
environmental factors, and the interaction between the two, on cellular phenotype is
fundamental to devise preventive measures, early detection and therapeutic strategies
for human cancers.

1.2 Cancer genomics and its potential clinical applica-
tions

The notion that cancer is a disease of the genome, together with the availability of
the complete sequence of the human genome at the beginning of the millennium,
and the subsequent advent of next-generation sequencing (NGS), has led to a shift
in the way we study and treat cancer. It became possible to characterise cancer cell
genomes, transcriptomes, proteomes, and epigenomes, and to compare them with
those of normal cells, thus identifying the key features underlying malignancy and
disease progression. Single-cell sequencing provided an additional layer to tumour
characterisation, allowing one to study tumour heterogeneity, the evolutionary pro-
cesses underlying cancer development, the spatial organisation of the tumour mass
and tumour microenvironment. In 2006 and 2008, the massive efforts of The Cancer
Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC)
were started, followed and integrated by the Pan-Cancer Analysis of Whole Genomes
Consortium (PCAWG) (ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Con-
sortium, 2020; Weinstein et al., 2013). These efforts led to the collection of genomic,
epigenomic, transcriptomic, and proteomic data from more than 2500 samples across
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39 cancer types. In 2019 ARGO, a new phase of ICGC, was launched (ICGC-ARGO,
2019). The ARGO project will analyse samples from 100,000 cancer patients using
standardised analysis pipelines, in order to gain knowledge that will ultimately improve
personalised treatment, prevention and early detection strategies.The availability of
this vast amount of data and the technological tools to produce it led to the discovery of
a wide spectrum of actionable alterations and to the birth and development of precision
oncology. During the last two decades, several cancer driver genes have been identified
and the effects of their alteration on cellular phenotype characterised. This led to
the development of therapeutic agents specifically targeting these alterations, which
complemented or replaced traditional cytotoxic chemotherapy. Two key examples of
targeted drugs are trastuzumab and imatinib, developed, respectively, to treat HER2-
amplified breast cancer and BCR-ABL-fusion-positive leukaemia (Druker et al., 2001;
Slamon et al., 2001).

Analysing the genome and transcriptome of healthy and cancerous tissues allows us
to understand the mechanisms of disease initiation and progression, and thus devise
so-called biomarkers. A biomarker is a feature, or a short list of features, which carries
information about the status of the disease, and can therefore be of clinical use in
several settings, such as cancer screening and risk assessment, diagnosis, prognosis,
monitoring of disease progression and prediction of response to therapy. A biomarker
can be based on the presence/absence of germline variants and somatic mutations,
on gene expression, protein activity or metabolic profiles (Henry and Hayes, 2012).
The ideal biomarker, specially for risk assessment and early detection, is non-invasive
or minimally invasive, allowing for easy and frequent testing of non-symptomatic
subjects; these might be individuals at high risk of developing certain cancer types (e.g.
cigarette smokers) or part of the general population. For example, in recent years, a lot
of research has focused on biomarkers based on circulating tumour DNA (ctDNA),
genetic material from malignant cells that, if detected in the subject’s blood stream,
can inform diagnosis and clinical decisions (Pessoa et al., 2020).

Despite all the advances and discoveries described, and their indubitable potential to
improve cancer patient care, translating genomic-based biomarkers from a research
setting to actual clinical use is not an easy task, and few biomarkers are translated into
actual clinical practice. This can be due to the biomarker failing to meet the required
criteria of high sensitivity, specificity and cost effectiveness (Diamandis, 2012). More-
over, while early detection of cancer is generally desirable and conducive to timely
treatment and better survival, there is a risk of overdiagnosis and overtreatment. A
prominent example is the controversial use of prostate-specific antigen (PSA) for the
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screening of prostate cancer in men. The improvement in early detection of prostate
cancer using PSA screening and the benefits derived from it were negatively balanced
by the increase in unnecessary medical procedures, both diagnostic and curative, for a
typically indolent and slow-growing malignancy (Loeb et al., 2014). Another point
to consider is that often, at the point in disease development where a biomarker is
capable of detection, the cancer is already at an advanced stage, effectively limiting
the benefits of the biomarker assessment (Diamandis, 2012). Furthermore, biomarkers
are usually built by leveraging features of the tumour mass itself. However, biomark-
ers for screening and assessing the risk of cancer occurrence and recurrence would
greatly benefit from taking into consideration other tumour-associated features, such
as the characteristics of cancer stem cells, the tumour microenvironment, and tissue
alterations preceding and leading to the actual malignancy (Brooks, 2012).

In this context, the study of the processes occurring before, and leading to, cancer in-
surgence is another promising application of cancer ’omics. Malignant transformation
is usually a long and slow process, and alterations linked to tumorigenesis can occur
years before a tumour is diagnosed (Gerstung et al., 2020). Often, in particular for
cancer types associated with environmental factors, such as colorectal, oesophageal
and lung cancer, pre-malignant lesions are present in the involved tissue before the
appearance of a frank malignancy. Pre-malignant lesions are areas of tissue with
an abnormal appearance, that frequently harbour similar driver mutations, pathway
alterations and hallmark characteristics as the cancer itself, but lack the characteristic
uncontrolled expansion and invasiveness of malignant tissue (Ryan and Faupel-Badger,
2016). Thus, an individual presenting such lesions is at higher risk of developing
cancer. Examples of pre-malignant conditions are Barrett’s oesophagus, oral leuko-
plakia, colorectal ulcerative colitis, cervical dysplasia, and lung squamous metaplasia
(Burd, 2003; Hnatyszyn et al., 2019; Kaz et al., 2015; Mustafa et al., 2021; Wistuba
et al., 1997). However, not all pre-malignant lesions will progress to cancer: it is
possible for the lesions to regress to a healthy morphology or persist in their pre-
malignant state without ever developing further. One of the factors in determining
the final outcome of a pre-malignant lesion is the microenvironment in which it re-
sides. Current knowledge on the topic points to a switch of the involved cellular
components from an anti-tumorigenic to a pro-tumorigenic behaviour as the lesion
progresses towards malignancy (Jones et al., 2021). A fundamental role is played by
the immune system, both its innate and adaptive components. While early lesions are
characterised by strong immune surveillance, as they progress, the microenvironment
switches to an immunosuppressive state that is fully established and observable in
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the tumour microenvironment. Being able to identify pre-malignant lesions based
on their morphology is already a valuable tool in clinical practice. One example is
the "Pap test", currently used in routine screening for pre-cancerous lesions caused
by the human papilloma virus (HPV) in the uterine cervix (Kitchen and Cox, 2021).
However, molecular typing of pre-malignant lesions has the potential to add further
clinical benefits, by providing insight into the possible outcome of the lesions, and indi-
cation for possible chemopreventive strategies. Colorectal cancer (CRC), for example,
develops from precursor lesions exhibiting clear genetic, transcriptional and epigenetic
alterations compared to normal tissue. Among these alterations is the overexpression
of nitric oxide synthase (iNOS) and lipoxygenase (5-LOX), pro-inflammatory enzymes.
Inhibitors of these enzymes have shown promising chemopreventive effects in pre-
clinical models of CRC (Gao et al., 2019; Gounaris et al., 2015). Thanks to advances in
NGS technology, alterations present in precursor CRC lesions can be detected in stool
samples, allowing the development of non-invasive screening tools (Imperiale et al.,
2014). Another example of chemopreventive agent targeting molecular alterations in
pre-malignant lesions is lapatinib, a tyrosine kinase inhibitor used in the treatment of
HER2-positive breast cancer, which was shown to be also effective in preventing the
progression of precursor lesions in mammary tissue (Decensi et al., 2011; Ma et al.,
2017). Smoking-induced lung cancer also develops from precursor dysplastic lesions.
Increased activity of the phosphatidylinositol 3-kinase (PI3K) pathway was observed
in normal-appearing bronchial tissue of subjects with dysplastic lesions. Patients
treated with PI3K-inhibiting myo-inositol showed significant regression of dysplastic
lesions, indicating the chemopreventive potential if this molecule (Gustafson et al.,
2010).

While the characteristics of cancer tissue have been extensively studied, the genomic
an transcriptomic landscape of pre-malignant tissue, and its interaction with the
surrounding microenvironment, are still largely uncharacterized. Identifying the
sequence and effects of events leading from healthy tissue to pre-malignancy, and
ultimately to frank malignancy, will open the possibility to detect cancer, or determine
the risk of developing cancer, before it presents, and thus be able to implement effective
prevention or early intervention strategies.
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1.3 The utility of yeast as a model organism in cancer
research

It is hard to unravel genetic and environmental contributions to complex diseases
like cancer in complex organisms like humans. Cell cycle, transcription, protein
synthesis, mitochondrial function, autophagy and many other basic cellular processes
are conserved between species, even evolutionarily distant ones. Therefore, studying
these processes in simpler model organisms is easier, but still translates well to human
biology. For this, model organisms can be a valuable resource in cancer research
(Dolinski and Botstein, 2007).

Throughout the years, research involving model organisms has led to important discov-
eries which advanced our understanding of cancer, ranging from basic knowledge of
cellular processes to the identification and characterisation of oncogenes and tumour
suppressors to drug discovery and testing. Although more complex organisms such
as fruit fly and mouse allow to study genes, pathways and responses to administered
substances in a systemic context, simple model organisms have played a major role
in biomedical research. A prime example of the utility of simple model organisms
for cancer research is baker’s yeast, Saccharomyces cerevisiae. This organism has
been extensively used as a model for eukaryotic cell processes and in particular for the
study of cancer-related cellular events (Hartwell, 2002). The use of yeast as a model
organism has several advantages. Its unicellular nature and short division time make it
easy and cost-effective to grow and maintain. It is easy for the experimenter to control
its environmental conditions and even modify its genetic background. Moreover, its
basic cellular functions are remarkably similar to those of human cells, with thousands
of genes having corresponding human orthologs (Kachroo et al., 2015; Sonnhammer
and Östlund, 2015). In fact, the genes, phases and checkpoints of the cell division cycle
were first discovered and described in S. cerevisiae by Leland Hartwell, Paul Nurse and
Tim Hunt, and were later found to be very similar to those of human cells (Hartwell,
2002; Hunt; Nurse, 2002). Hartwell’s studies were also the first to provide insight into
the role of DNA repair defects in genome fidelity and cancer susceptibility (Hartwell,
2002). The extensive study of yeast uncovered other aspects that closely match human
cancer-related characteristics. For example, a hallmark of cancer is the reprogramming
of energy metabolism. Hypoxia, mitochondrial dysfunctions and other stress-inducing
stimuli are often associated with metabolic reprogramming in tumour cells (Diaz-Ruiz
et al., 2009). A lot of processes occurring in yeast cells during adaptation to external
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environmental conditions can be compared to the metabolic switch occurring in human
cells during malignant transformation. In yeast, under stress conditions, the ‘retrograde
response’ (RTG) is activated. This is a communication pathway between mitochondria
and the nucleus, an its activation promotes metabolic adaptation and pro-survival
signalling. This system was first characterised in S. cerevisiae (Liu and Butow, 2006),
and it was later found to be comparable to the more specialised NFkB pathway in
mammalian cells (Srinivasan et al., 2010). Yeast switches from oxidative metabolism
to fermentation when glucose supply is high. Ras proteins are involved in this switch,
by activating a response to nutrient availability: when glucose is present, they activate
a pathway that leads to cell growth, differentiation and survival (Rolland et al., 2002).
This metabolic switch is comparable to the Warburg effect in tumour cells, which
consists in increased glycolysis with conversion of glucose primarily to L-lactate,
and is mediated by the direct human homologs of Ras proteins (Liberti and Locasale,
2016). Signalling leading to apoptosis is also similar in yeast and mammalian cells,
with many orthologous genes involved in this process (Carmona-Gutierrez et al., 2010).
These and many other similarities exist between the cellular machinery in yeast and
mammals, which make yeast a perfect model for studying some of the aspects of
tumorigenesis in a simple, easily controllable context.

A very common and effective way to study the effects of mutations in cancer genes is
the use of functional assays in yeast lines. Since many human genes have a homologous
counterpart in yeast, it is possible to "humanise" yeast strains by introducing human
cancer-associated mutations into these genes. A functional assay is based on the
comparison of the phenotype produced by the mutated gene with the phenotype of a
wild-type strain, and it can have several possible readouts (Cervelli et al., 2020). For
instance, the effect of mutations in DNA-repair genes can be investigated with DNA
damage sensitivity assays. In these assays, the effect of a mutation on the phenotype
is tested by exposing the strains carrying the mutation to DNA-damaging agents and
subsequently measuring their growth compared to that of wild-type strains (Kim et al.,
2018; Lee et al., 2012). The function of DNA-repair genes can also be studied using
forward and reverse mutation assays. In both assays, defects in genes leading to an
increase in mutation rate are detected by using reporter genes. In forward mutation
assays, the reporter could be a gene conferring sensitivity to an antibiotic (e.g. CAN1

or URA3). Mutations in the reporter gene that occur in the DNA-repair-defective
strains abolish its function and confer resistance to the antibiotic. The mutation rate
can then be estimated by counting resistant colonies. In reverse mutation assays,
the reporter gene (e.g. lacZ) is initially not functional. An increase in mutations in
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the DNA-repair-defective strains will restore gene function by chance, producing an
observable and quantifiable phenotype (e.g production of β -galactosidase and blue
appearance of colonies) (Gammie et al., 2007; Shimodaira et al., 1998).

Using endogenous genes, as just described, is the preferred approach, as it allows
one to study the effects of mutations occurring in their native genomic context, where
genes are under the control of their natural promoters, and all context-dependent gene
regulation mechanisms are preserved (Cervelli et al., 2020). However, when a direct
homolog to a human gene of interest is missing, it is possible to produce humanised
yeast strains by introducing plasmids carrying the mutated human gene under the
control of a yeast promoter (Hamza et al., 2015; Laurent et al., 2016). This is the case
for the tumour suppressors BRCA1 and BRCA2. Several assays were designed to study
the effects of mutations in these genes, using different readouts such as transcriptional
activation, colony size and protein localisation (Carvalho et al., 2007; Coyne et al.,
2004; Monteiro et al., 2020).

Assays based on reporter genes, such as the ones described above, are very useful
for providing a simplified model in which to explore the function of cancer genes.
They do, however, have limitations. For example, they do not allow to observe
the full spectrum of mutations arising in DNA-repair-defective strains, nor to gain
insight into mutation rate biases due to genomic context. A powerful approach that can
overcome some limitations of reporter assays is the use of mutation accumulation (MA)
experiments (Halligan and Keightley, 2009; Mukai, 1964; Ohnishi, 1977). In these
experiments, several lines are derived from a single ancestor strain and propagated in
parallel for many generations, during which they spontaneously accumulate mutations.
Importantly, all lines are subjected to frequent single-cell bottlenecks, obtained by
picking a single colony (derived from a single cell) and re-streaking it on a fresh
plate. This step drastically reduces the effects of natural selection, allowing all non-
lethal mutations to accumulate in the MA lines, even if their effect reduces fitness.
Although MA experiments allow the effects of mutations arising across the entire
genome to be assessed, in multiple parallel lines at the same time, initially they still
relied on phenotypic readouts for the identification of mutational events (Katju and
Bergthorsson, 2019). This means that only indirect estimation of mutation rates was
possible. Moreover, identification of the full spectrum of mutations was still difficult,
as neutral or nearly neutral mutations do not produce an observable phenotypic change.
The advent of next-generation sequencing opened the possibility of sequencing the
entire genome of MA lines and identifying all mutations that occur in it by comparing it
with the genome of the ancestor strain. This allowed observation of the full spectrum of
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mutations and direct estimation of mutation rates (Serero et al., 2014; Zhu et al., 2014);
it also made it possible to estimate rates for different mutation types (e.g. substitutions,
insertions/deletions, copy-number changes), genomic regions (e.g. exonic, intronic,
intergenic) and cellular compartments (e.g. nuclear, mitochondrial) (Lynch et al., 2008,
2016; Zhu et al., 2014). Sequencing the transcriptome of MA lines can also provide
insight into the transcriptional consequences of mutations (Konrad et al., 2018).

Another aspect of cancer biology that MA experiments can help investigate is the study
of passenger mutations and their contribution to cancer progression. As discussed in
Section 1.1, mutations in driver genes lead to the formation and expansion of clones
during tumour progression. However, driver events are rare and the vast majority
of mutations accumulated in a tumour are passengers (ICGC/TCGA Pan-Cancer
Analysis of Whole Genomes Consortium, 2020). Being non-recurrent alterations,
and not directly leading to clonal expansion, passengers have been assumed to be
phenotypically neutral and play a minor role in tumour progression. However, while
the effect of individual passengers on the phenotype might be negligible, the combined
effects of many mildly advantageous or deleterious mutations could significantly affect
tumour progression (Castro-Giner et al., 2015; Kumar et al., 2020; McFarland et al.,
2013). In particular, the accumulation of deleterious passengers with effects not strong
enough to be eradicated by negative selection can lead to phenomena that slow down
cancer progression, such as proteotoxic stress (Brancolini and Iuliano, 2020) and
neoantigen-induced immune response (Jiang et al., 2019). Events like long dormancy,
slow progression and spontaneous regression might be explained by the presence of
these deleterious passengers mitigating the pro-proliferative and anti-apoptotic effects
of driver mutations. Understanding the phenotypic effects of passenger mutations
might thus have important clinical applications, potentially leading to the development
of cancer treatments that use deleterious passengers to the patient’s advantage, by
enhancing the anti-cancer activity of passengers. With MA experiments it is possible
to observe deleterious mutations with mild effects, and to determine their combined
effects on phenotype.

The type of basic research on simple model organisms described in this section can
have, and has had, a major impact on clinical cancer management. A prominent
example is the history of Lynch syndrome (LS) (Boland and Lynch, 2013). LS was
first qualitatively described as a hereditary predisposition to developing colorectal
cancer in the early 1900s. No information about the causes or mechanisms of the
disease was found until the early 1990s, when LS tumours were associated with the
presence of instability in the length of simple repetitive sequences (microsatellites).
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This phenotype was recognised by basic scientists studying genetics in bacteria and
yeast (Heinen, 2016). Previous studies in these model organisms had described the
DNA mismatch repair system (MMR), and observed that mutations in MMR genes
led to increased microsatellite instability. Research efforts were then focused on
finding and studying the human homolog of the MMR pathway, and eventually led to
improvements in the diagnosis and treatment of LS-associated and MMR-defective
sporadic cancers. The main human MMR genes were characterised, as were the
molecular phenotypes associated with mutations in these genes, such as loss of protein
stability. The diagnosis of LS, previously only based on patient’s age and family history,
could then be aided by molecular tests, such as immunohistochemistry to detect the
presence of the main MMR proteins in a patient’s sample (Li et al., 2020). Molecular
diagnosis also made it possible to identify tumours associated with sporadic alterations
in MMR genes (Heinen, 2016; Li et al., 2020). Basic research on simple models also
had an impact on the choice of treatment for microsatellite-unstable tumours, as it
showed that MMR-defective cells do not respond to certain chemotherapeutic agents
(Aebi et al., 1996; Brown et al., 1997).
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1.4 Thesis outline

In this thesis I will present two projects exploring the genetic and environmental
contributions to cancer-associated phenotypes.

Chapter 2 focuses on the genetic component of cancer by studying the effect of
mutations on cellular growth rate in the model organism S. cerevisiae. Specifically, the
focus is on simple sequence repeats (SSRs), regions particularly prone to mutate, with
a known involvement in normal and pathological eukaryotic biology, including cancer.
By using data from a mutation accumulation experiment conducted in DNA-repair-
deficient yeast strains, we estimated the rate and spectrum of contractions/expansions
occurring in SSRs and measured their effect on cell fitness.

Chapter 3 focuses on a cancer type with a known environmental component: lung can-
cer. Here, I explore the potential use of nasal epithelium as a non-invasive alternative
to deeper airway tissues for improving lung cancer risk stratification. We investigated
cigarette smoke-induced transcriptional alterations in the airways of healthy volunteers
and patients with suspected or diagnosed lung cancer, and used these alterations to
predict lung cancer risk and to gain insight into the mechanisms leading to increased
risk.

Finally, in Concluding remarks I give a brief summary and outlook of the findings
described in the thesis.





Chapter 2

The effect of SSR mutations on growth
phenotype in S. cerevisiae

Contributions

The work presented in this chapter is part of a collaborative project within the MDC-
NYU PhD Exchange Program. It was conducted in collaboration with Eugene Plavskin
(NYU Center for Genomics and Systems Biology, New York, United States), under
the supervision of Roland Schwarz (MDC, Berlin, Germany) and Mark Siegal (NYU
Center for Genomics and Systems Biology, New York, United States). Sequencing of
the MA lines with no previously identified mutations and the spores derived from their
cross, and growth rate assay on these lines were performed by me and Eugene Plavskin.
Additional experiments and modelling of mutation rates were performed by Eugene
Plavskin. Generation of the SSR reference list was performed by me and Eugene
Plavskin. Mutation calling using FreeBayes, including filtration of the raw variant list
to obtain final callsets, was performed by Eugene Plavskin. Mutation calling using
Muver, MSIsensor and GATK, including the preceding processing of raw sequencing
data (quality control, pre-processing, alignment) and subsequent analysis of the results
were performed by me. In the text, the first person plural is used when work was
performed by a collaborator, or jointly with a collaborator.

Part of this work is reported in Plavskin, de Biase et al. (2022), available as a preprint
on bioRxiv.
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2.1 Introduction

2.1.1 Studying the effects of spontaneous mutations in yeast

Cancer is caused by the accumulation of spontaneous or induced mutations in the
genome. Predisposing germline mutations in genes controlling cell growth and DNA
repair and environmental mutagens can increase the rate of mutations. For this reason,
studying the way mutations spontaneously accumulate, and how their rate and spectrum
are influenced by genetic and environmental factors, is key for cancer research.

Mutation accumulation (MA) experiments (Section 1.3) conducted in simple model
organisms such as yeast, in combination with NGS, are a powerful tool for tightly
controlling environmental conditions and genetic background while collecting large
amounts of data from several parallel lines. Since mutations normally appear at a
very slow rate, growing many strains in parallel makes it possible to observe even rare
mutations. Moreover, it is possible to assess the effects of the accumulated mutations
on phenotype by performing functional assays on the final MA lines. Due to the
reduced effect of selection during the MA process, deleterious mutations of moderate
and small effects can be observed, allowing investigation of the cumulative impact of
passenger-like mutations on the cellular phenotype.

In 2014, Zhu et al. (2014) sequenced the whole genome of 145 diploid MA lines
that were propagated for ∼2000 generations. They identified a wide spectrum of
mutations in the MA lines, including substitutions, small insertions and deletions,
and aneuploidies. The large number of lines and generations, and the consequent
high number of mutations identified, allowed the authors to estimate diploid mutation
rates for each class of mutations. Despite the power of combining MA experiments
with NGS, some limitations remain. For instance, certain classes of mutations were
excluded from the analysis by Zhu et al. (2014) due to the challenges associated with
their sequencing and genotyping. This is the case for mutations occurring in repeat
regions, such as simple sequence repeats (SSRs).

Another limiting factor for MA experiments is the availability of appropriate pheno-
typic measurements to assess the effects of the accumulated mutations. Great accuracy
and sensitivity are necessary to measure very small mutational effects, thus there is
a high chance of missing such effects. To overcome this issue, the Siegal lab has
developed a high-throughput assay based on live imaging of micro-colonies, which
allows for very precise estimation of growth rates (Levy et al., 2012; Sartori et al.,
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2021). The Siegal lab expanded the work of Zhu et al. (2014) by measuring the growth
rate changes of 70 of the sequenced MA strains compared to their ancestor. They found
that a few MA strains showed changes in growth rate while apparently harbouring
no mutations. They also performed modelling of the mutational effects of single-
nucleotide mutations (SNMs)(unpublished). The results of their modelling suggested
that an additional class of mutations, not considered in their analysis, contributed
significantly to the observed phenotypic effects.

The aim of my collaboration with the Siegal lab was to identify additional mutations
potentially causing the unexplained growth rate changes observed in the MA lines
from Zhu et al. (2014). We focused particularly on mutations occurring in SSRs, given
the functional significance of these regions in normal and pathological eukaryotic
biology (described in the following section), and as repeat regions were excluded from
the analysis in Zhu et al. (2014).

2.1.2 Simple sequence repeats and their role in human disease

Simple sequence repeats, also known as microsatellites, are tandem repeats of 1-6bp
motifs present in the genome of all organisms, from the simplest prokaryotes to higher
order eukaryotes (Field and Wills, 1996; Tautz and Renz, 1984). SSRs can be "perfect",
when they present as an uninterrupted streak of identical motif repeats, "imperfect", if
one or multiple non-motif nucleotides interrupt the motif repeats, and "composite",
when they consist of adjacent repeats of two distinct motifs (Vieira et al., 2016). A
key characteristic of SSRs is their hyper-variability: they are highly polymorphic in
populations, with several alleles presenting different repeat copy numbers, which leads
to high heterozygosity. Because of this characteristic, for decades they have been
used as polymorphic markers for applications such as genome mapping and DNA
fingerprinting (Ellegren, 2004).

SSRs are found both in coding and non-coding regions of the genome. However, a
depletion of SSRs, with the exception of tri- and hexanucleotide motifs, is observed in
coding regions for several eukaryotic species (Li et al., 2004; Metzgar et al., 2000).
This is an indication of evolutionary pressure aimed at preventing deleterious frameshift
mutations. Trinucleotide repeats are particularly common in coding regions. Excessive
expansion of trinucleotide repeats in genes can lead to the production of a faulty
protein product, a phenomenon associated with several diseases in humans, referred
to as triplet repeat expansion disorders (TREDs). Common examples of TREDs
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are Huntington’s disease and Fragile X syndrome, both associated with neurological
disorders (Budworth and McMurray, 2013).

SSRs were initially considered to be evolutionarily neutral markers. However, later
on, several functional roles for these repeats were discovered, leading to the theory
that SSRs provide a continued source of quantitative genetic variation, thus acting as
drivers of adaptive evolution (Kashi et al., 1997; Kashi and King, 2006). Trinucleotide
repeats are more frequent than expected within coding regions, in particular in genes
involved in transcriptional regulation (Kozlowski et al., 2010; Young et al., 2000).
SSRs in the promoter, intronic, and 5’-UTR regions were found to be actively involved
in regulation of gene expression. In some cases, repeat copy number influences the
strength of expression. An example is the human gene PAX6, for which a nine-fold
increase in expression is observed when the number of repeats of an SSR within
its promoter exceeds a certain threshold (Okladnova et al., 1998). In other cases, a
specific number of motif repeats is required for transcription to happen. This is the
case for the E. coli lacZ gene: expression will occur only when 12-13 copies of a
GAA repeat are present within its promoter, while a lower or higher number of repeats
will result in lack of expression (Liu et al., 2000). The length of an SSR locus can
also influence the interaction with DNA-binding proteins, enhancing or inhibiting
expression (Lue et al., 1989; Winter and Varshavsky, 1989). Other SSR loci within
coding regions are implicated in translational regulation (Timchenko et al., 1999) and
chromatin organisation (Gao et al., 2013).

Due to their repetitive nature, SSRs are inherently unstable, leading to their observed
hyper-variability within populations. The main mutational mechanism for SSRs is
‘replication slippage’ (Eisen, 1999; Strand et al., 1993). During DNA replication, the
lagging strand may shortly separate from the leading strand; when the 2 strands join
again, misalignment may occur, creating a loop of one or more repeats on the leading
or lagging strand, resulting in a contraction or expansion of the repeat number, respec-
tively. Some of these errors are not corrected by DNA mismatch repair mechanisms
or DNA polymerase proofreading, and are thus retained in the replicated sequence.
Replication slippage errors are corrected primarily by the mismatch repair pathway
(MMR), through recognition, excision and synthesis of the erroneous nucleotides (Liu
et al., 2017). The MMR system is highly conserved in all organisms, from bacteria
to humans (Jiricny, 2013). In eukaryotes, mismatches are recognised by one of two
MutS heterodimers: MutSα (msh2/msh6) and MutSβ (msh2/msh3). MutSα primarily
repairs single-base mismatches and very small (1-3 nt) insertions and deletions, while
MutSβ repairs larger (4-13 nt) insertions and deletions (Jiricny, 2013). The MutS
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heterodimers then recruit a MutL heterodimer (encoded by the MLH genes) and form a
complex at the mismatch site, which will perform the repair. Polymerase proofreading
is also involved in DNA repair at SSR loci, but it seems to have a more minor role
(Eisen, 1999; Strand et al., 1993). In addition to replication slippage, recombination,
in particular gene conversion (non-reciprocal transfer of information), is also a source
of SSR instability (Jakupciak and Wells, 1999).

When MMR is deficient, errors generated during DNA replication fail to be corrected,
leading to genomic instability (Loeb, 2001; Strand et al., 1993). SSR length alterations
increase in frequency, leading to a mutator phenotype called microsatellite instability
(MSI). Given their role in maintaining genome integrity, MMR genes are considered
tumour suppressor genes, and the MSI phenotype is a characteristic of several human
cancer types. The first and most known example is colorectal cancer (CRC) (Boland
and Goel, 2010). Fifteen percent of CRC present with MSI. While a small fraction of
these cases is linked with hereditary mutations in MMR genes, the rest are sporadic
cases in which the MMR genes are inactivated, usually through promoter methylation
(Lynch et al., 1993; Toyota et al., 1999). Many other cancer types are associated
with MSI, including melanoma, gastric, ovarian and lung cancer (Bonneville et al.,
2017). The presence of the MSI phenotype has prognostic value: patients with
microsatellite-unstable tumours tend to have longer survival compared to those with
microsatellite-stable tumours (Choi et al., 2014; Guastadisegni et al., 2010). This
apparent paradox could be explained by the fact that MSI tumours, having a higher
mutational burden, produce a larger repertoire of immunogenic neoantigens, leading to
better response to immunotherapy (Lee et al., 2016; McGrail et al., 2020). Therefore,
studying SSR mutations and their phenotypic impact, and understanding the function
of the different components of the MMR complex, is of great interest for translational
cancer research.

A large number of studies in yeast have described the function of the MMR complex
in a wild-type background, and the effect of inactivation of different MMR genes
on SSR mutation rate. Initially, these studies were conducted using reporter gene
assays (Section 1.3), often combined with strains containing MMR gene mutations.
Reporter gene assays led to several observations, such as a bias toward deletions when
certain MMR genes are defective and changes in SSR mutation rate due to repeat
unit size (Sia et al., 1997; Strand et al., 1993, 1995). MA experiments (Section 1.3)
and whole-genome sequencing of the MA strains produced more accurate mutation
rate estimations and the ability to observe full SSR mutational spectra in the desired
genetic background (Katju and Bergthorsson, 2019). MA experiments have been
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used to explore the mutation rate in wild-type and MMR-deficient strains (Haye and
Gammie, 2015; Ma et al., 2012; Serero et al., 2014; Zanders et al., 2010; Zhu et al.,
2014), leading to the estimation that the MMR system is very efficient, repairing >98%
of replication errors (Lujan and Kunkel, 2021).

2.2 Results

2.2.1 Growth rate effects of unidentified mutations

As mentioned in Section 2.1.1, the objective of this project was to identify mutations
that could potentially explain the changes in growth rate observed in the apparently
mutation-free MA lines from Zhu et al. (2014), with a particular focus on mutations
occurring in SSR regions.

As a first step, we assessed two MA lines from Zhu et al. (2014) showing unexplained
growth rate changes for the presence of potential unidentified mutations. We reasoned
that, if any mutations were present in the two lines, a progeny derived from their
cross would carry a random re-assortment of the mutations present in the parents,
including potential SSR mutations, and thus exhibit a range of growth rate changes.
The two diploid MA lines were therefore sporulated to produce haploids and crossed to
produce a diploid, which was again sporulated. Twenty haploid spores were selected.
A growth rate assay performed on the cross spores showed a significant difference in
their growth rate compared to a group of strains directly derived from the ancestor
of the MA experiment (thus not harbouring any mutations, Figure 2.1). We also
observed a greater variability in the growth rate of the cross spores compared to the
ancestor-derived strains, likely determined by unidentified mutations present in the
parental strains and randomly segregating in the progeny.

To identify the mutations associated with the observed growth rate changes, we
performed whole-genome sequencing on the haploid parental strains, the 20 spores,
and a haploid ancestor-derived strain. I then performed mutation calling using Muver,
a pipeline specifically designed for mutation calling on data from MA experiments
(Burkholder et al., 2018). I identified 4 previously unobserved substitutions in the
parental strains of the spores (Figure 2.2). I was likely able to identify these mutations
due to the higher coverage of our sequencing experiment (∼30x) compared to Zhu et al.
(2014) (∼10x). As expected, I observed that these mutations randomly segregated
in the cross progeny. Surprisingly, I also found 14 de novo mutations across the
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Fig. 2.1 Growth rate of the cross spores of 2 MA strains from Zhu et al. (2014)
with no identified mutations. Distribution of growth rates measured for 16 cross
spores and 15 control strains derived from the ancestor of the MA experiment. Growth
rate is relative to one strain chosen from the control group.

20 spores, each private to a single spore, and one mutation that was shared by 3
spores, but observed in neither of the parents Figure 2.2). Although these mutations
could have arisen during propagation of the diploid strain that underwent sporulation,
this is rather unlikely given the small number of generations for which this strain
was propagated before sporulation and its reported single-nucleotide mutation rate
(∼ 1 mutation/diploid genome/250 generations, Zhu et al. (2014)). Another possible
explanation for the 14 private mutations could be that they occurred during sporulation.
One possibility was that some of the mutations identified in the parental strains affected
the function of genes involved in DNA-repair or maintenance of genome integrity
during meiosis. To check for this possibility, I looked at the genomic location of the 4
parental mutations. One of them occurred in the body of the NMD2 gene, involved in
the nonsense-mediated decay pathway and telomere maintenance. Defects in this gene
have been shown to increase chromosomal instability (Strome et al., 2008). However,
there was no difference in the number of private mutations in spores harbouring or
not harbouring the NMD2 mutation. Therefore, it is more likely that the higher-than-
expected number of de novo mutations is intrinsic to the meiotic process itself, a
hypothesis corroborated by a previous report showing that the meiotic mutation rate in
yeast is higher than the mitotic rate (Rattray et al., 2015). Although this hypothesis
might explain part of the mutations observed in the cross spores, the meiotic mutation
rate reported in Rattray et al. (2015) is still too low to match our observed rate. It is
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possible that, in combination with the increased meiotic mutation rate, some mutations
were already present in the two haploid colonies used as parental strains, which were
propagated for an unknown number of generations before mating and sporulation.

The newly identified mutations in the two MA lines originally sequenced by Zhu
et al. (2014) could explain the observed changes in their growth rate. These mutations
segregating in the cross progeny, together with the identified de novo mutations, also
explained some of the variability observed in the cross strains. However, it was still
possible that other mutation types, such as SSR mutations, contributed to the effects on
growth rate, although the high rate of de novo mutations that arises when performing
strain crossing complicates the study of these effects.
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Fig. 2.2 Number and type of mutations identified across the 20 cross spores. Mah4
and mah58 are the 2 haploid parents that were crossed to produced the 20 mas spores.
Mutations are classified as Segregating, if they are present in either mah4 or mah58
and passed on to the progeny, Private, if they occur in a single spore and are absent
from both parental strains; one mutation is labelled as Shared, as it is absent from both
parental strains, but harboured by multiple cross spores.

2.2.2 Studying SSR mutations in msh3-deficient strains

To study SSR mutations in a more isolated context, we decided to take advantage of
yeast strains with a defective MMR system, in particular strains missing the msh3 gene,
encoding for one of the components of the MutSβ heterodimer. The MutSβ complex is
primarily responsible for INDEL mutations caused by polymerase slippage, and msh3

mutants have been previously shown, using reporter assays, to have an increased SSR
mutation rate (∼10 times the SNM rate), while the SNM rate appeared not significantly
affected (Harrington and Kolodner, 2007; Haye and Gammie, 2015; Sia et al., 2001).
We reasoned that propagating msh3-mutant strains for ∼200 generations would allow
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SSR mutations to accumulate but would keep the probability of SNMs low, thus
facilitating the evaluation of the effects of these mutations on growth phenotype.

Moreover, most MA studies investigating the function of the MMR system focused on
strains with defects in either both eukaryotic MutS complexes (by using msh2-deficient
strains), or only in MutSα (by using msh6-deficient strains). By using msh3 mutants,
we would be able to investigate the role of the MutSβ complex in SSR mutation
repair, to estimate the SSR mutation rate in msh3-deficient strains and to model its
dependency on several characteristics of the SSR locus.

Therefore, we carried out a mutation accumulation experiment on 39 haploid S. cere-

visiae lines derived from two genetic backgrounds. Five lines were derived from a
wild-type (WT) ancestor, carrying no alterations in the MMR complex genes, while
the remaining 34 were derived from an ancestor carrying a deletion of the msh3 gene
(msh3∆). All lines were propagated for a total of ∼ 200 generations. Bottlenecks were
performed every ∼ 20 generations by picking a randomly chosen, single-cell-derived
colony, and re-streaking it on a fresh plate (Figure 2.3). Whole-genome, 150bp
paired-end sequencing was then performed on the final MA lines.

Ancestor

MA lines

g20 g40 g60 g200

…

…

…

Fig. 2.3 Schematic of the mutation accumulation experiment. Multiple lines were
derived from a single cell of an ancestor strain (either WT or msh3∆) and propagated in
parallel for 200 generations, with single-cell bottlenecks applied by re-plating a single
colony every ∼ 20 generations. Every dot on the plates represents a single-cell colony;
change in colour indicates a colony acquiring a new mutation; asterisks represent
mutations carried on to the new plate after a bottleneck.
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2.2.3 SSR loci in the ancestor strain genome

To be able to correctly call mutations inside and outside simple sequence repeats, we
first created a reference list of SSR loci, by searching for all 1-4 bp motifs repeated
in tandem at least 3 times in the genome of the ancestor strain of the mutation accu-
mulation experiment (Section 2.4). Penta- and hexanucleotide repeats are rare in S.

cerevisiae’s genome (Karaoglu et al., 2005), and previous studies similar to the one
described in this chapter also focused on SSRs with motifs shorter than 5bp (Lang
et al., 2013; Lujan et al., 2015; Lynch et al., 2008). We identified 270,796 SSRs in the
nuclear genome of the ancestor, with the majority of loci being mononucleotide repeats
(Figure 2.4a). Accurate genotyping of SSR loci requires the sequencing reads to span
the entire length of the locus. The mean length of all repeats was 5.1bp, with just 2.6%
of loci longer than 10bp. Only 9 loci were longer than 100bp, making genotyping
feasible for almost all SSRs in the ancestor’s genome using 150bp reads (Figure 2.4b).

Most of the identified SSR loci (68%) were within gene regions. This number is in
line with the fraction of S. cerevisiae’s genome in gene regions (∼73%, (Alexander
et al., 2010)) However, the proportion of SSRs in genes was dependent on motif
length and on total length of the repeat (Figure 2.4c). In particular, trinucleotide
repeats were more frequent than non-trinucleotide repeats inside genes (χ2 test P <
.001). Furthermore, SSRs with repeat copy number of 10 or higher were less frequent
than expected within genes, but this trend was only observable for non-trinucleotide
repeats (χ2 test P < .001). This bias against non-trinucleotide repeats in gene regions
is consistent with the presence of selection against potentially damaging frameshift
mutations, and was observed before by Metzgar et al. (2000).

2.2.4 Single-nucleotide mutations and short INDELs outside SSR
loci

I next performed mutation calling on all WT and msh3∆ MA strains and their ancestor
strains to identify mutations outside repetitive regions. Using Muver, I identified
28 substitutions in non-SSR regions (Section 2.4). Two of these mutations were in
one WT strain, the remaining 26 occurred across 17 msh3∆ strains. We also called
mutations using FreeBayes, a classical variant caller (Garrison and Marth, 2012), using
the genome of the strain from which both MA ancestors were derived as a reference.
We called mutations in the MA strains by selecting loci at which the genotype of the
MA strain was different from the genotype of its ancestor. We observed a very good
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Fig. 2.4 SSRs in the ancestor strain genome. (a) Proportion of SSRs with different
motif sizes; (b) Distribution of total repeat length for SSRs with different motif sizes;
(c) Proportion of trinucleotide and non-trinucleotide SSRs in coding regions of the
genome, as a function of total repeat length.

overlap between Muver’s and FreeBayes’ results. After filtering out low-confidence
mutations and mutations in repetitive regions, including SSRs, FreeBayes identified
27 SNMs (Section 2.4). Of these, 2 were the same mutations identified by Muver in
one of the WT strains, and 24 were the same identified by Muver in the msh3∆ strains.
FreeBayes identified one additional substitution in an msh3∆ strain. It also identified
and 5 INDELs in non-SSR regions; however, upon closer inspection, these mutations
were in fact falling within SSR loci not present in our SSR reference list, likely due to
them having a very small number of motif repeats or a motif length greater than 4bp.
All mutations identified by both tools, the additional mutation identified by FreeBayes,
and the 2 mutations identified by Muver but not by FreeBayes were tested via Sanger



26 The effect of SSR mutations on growth phenotype in S. cerevisiae

sequencing. The 2 mutations identified by Muver were revealed to be erroneous calls.
We thus considered the final non-SSR mutation callset to be the 26 mutations identified
by Muver and the one additional mutation identified by FreeBayes.

To test whether the single-nucleotide mutation rate in msh3∆ strains significantly
differed from that of WT strains, we ran a logistic regression model predicting mutation
status for each position in the genome, in each of the MA strains, based on msh3 status
of the strain (deleted or WT). We then compared this model with an intercept-only
model. There was no significant difference between the two models, and thus between
the WT and msh3∆ SNM rates.

The overall substitution rate across all strains was 3.5×10−10 mutations/bp/generation
(95% CI: 2.3-4.9×10−10) or ∼1 mutation/haploid genome/250 generations.

These results are consistent with those of the reporter assay studies of Sia et al. (2001)
and Harrington and Kolodner (2007) showing that the substitution rate is not affected
in msh3-deficient strains. They also confirm that the MutSβ complex plays a minor
role in the repair of single-nucleotide mutations.

2.2.5 Calling mutations within SSR loci

As mentioned in the introduction to this chapter, calling mutations in SSR regions is
not a trivial task. The repetitive nature of these regions increases the chances of errors
in the alignment of the sequencing reads to the reference genome. Moreover, due to the
main mutational mechanism in SSR regions being DNA polymerase slippage, errors
are also likely to occur during DNA sequencing itself, at the in vitro amplification step,
producing reads differing in length from the original sequence, a phenomenon known
as "PCR stutter" (Ellegren, 2004). For this reason, we decided to test different tools to
call mutations in SSRs, to eventually choose the most suitable one for our purposes.

I first called mutations at all SSR loci in the genome of the MA ancestor strain by using
Genome Analysis Toolkit (GATK) germline short variant discovery pipeline (Poplin
et al., 2018). Although this pipeline is not specifically designed to call mutations in
tandem repeats, its "joint genotyping" mode allows potential mutations to be jointly
called across all input samples, which increases sensitivity over low coverage regions
and improves filtering accuracy (Poplin et al., 2018). As for the non-SSR mutation
calling, I used the genome of the strain from which the WT and msh3∆ MA ancestors
were derived, and called a mutation when the genotype of the MA strain differed
from that of its ancestor. After filtering out variants with poor genotype quality
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(Section 2.4), GATK identified 682 SSR mutations, 95 across the WT strains and
587 across the msh3∆ strains. Of these 682, 125 mutations occurred in a single MA
strain. The remaining 557 mutations occurred across 71 loci, and in all cases the same
locus was mutated in multiple MA strains. Given that all MA lines were propagated
independently, the occurrence of mutations in multiple lines at the same locus is highly
unlikely. This suggests that shared mutations identified by GATK are the product
of unreliable calls, and should not be considered in the final callset. To check for
the accuracy of the 125 private mutations identified, I visually inspected a random
sample of 50 mutations using IGV (Integrative Genome Browser). Only 4/50 inspected
calls appeared to be supported by the data. These observations indicate that the SSR
mutation calling results produced by GATK are unreliable and inaccurate, and thus
not suitable to our aims.

Next, I decided to perform SSR mutation calling using MSIsensor, a tool designed
to detect microsatellite instability caused by replication slippage in tumour samples
compared to matched normal samples (Niu et al., 2014). I ran MSIsensor using on all
possible pairs of ancestor-MA strain, specifying the MA strain as the "tumour" sample
and the ancestor as the "normal" sample. MSIsensor identified no SSR length changes
(INDEL mutations) in the WT strains, and 58 mutations at 56 loci in the msh3∆ strains.
Most mutations were private to one strain, with only 2 mutations shared by two strains.
Upon visual inspection in IGV, all but 2 mutations appeared to be supported by the data.
The 2 mutations shared by 2 strains were also present upon IGV inspection. This might
be a case of shared ancestry: a mutation might have arisen in one of the few initial cell
divisions of the ancestor, and colonies harbouring the same mutation might have been
picked to generate 2 of the MA lines, resulting in them sharing the mutation. While
MSIsensor’s SSR mutation calls appear to be reliable, this tool has some limitations.
Since its intended purpose is to identify microsatellite unstable tumour samples, and
not strictly to produce variant calls, some useful information is missing from the
output, such as the number of repeat units inserted or deleted at the SSR locus in
the MA strain. For the same reason, the only mutations identified by MSIsensor are
expansions and contractions of SSRs, excluding possible single-base substitutions
within SSR loci, which are also of interest for this project. Moreover, MSIsensor only
considers perfect SSR loci, where the repeated stretch of motif units is uninterrupted,
thus missing information about possible mutations occurring in imperfect repeats.

For these reasons, we decided to also look at SSR mutations called by FreeBayes.
FreeBayes is able to call INDEL mutations, including those occurring within SSRs,
although it is not specifically tailored to call mutations in tandem repeats. However,
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we reasoned that FreeBayes would provide the information missing from MSIsensor’s
output, and that a comparison with MSIsensor’s results would increase our confidence
in the calls produced by FreeBayes. We also set up a custom filtering strategy to retain
high-confidence SSR mutation calls from FreeBayes’s results. The extent of PCR
stutter errors directly correlates with repeat number and inversely correlates with motif
length (Shinde et al., 2003). This means that longer loci, which are more likely to
be mutated in vivo, will also have a larger stutter noise, leading to lower-confidence
mutation calls. Moreover, the fact that accurate SSR genotyping requires reads to span
the entire repeat contributes to the lower confidence calls for longer loci, since these
loci are more likely to have fewer spanning reads. Thus, using the same filtration cutoff
for all SSR loci would lead to bias against naturally more mutable loci. In our custom
filtration strategy, we grouped SSR loci based on shared properties which have been
shown to affect the SSR mutation rate, such as length of the locus and AT proportion,
and applied appropriate confidence score cutoffs to each group (see Section 2.4 for a
detailed description of the filtration strategy).

After filtering, we found 35 SSR mutations, distributed across 18 msh3∆ strains (0-5
mutations/strain). One of the mutations was shared by 2 strains. As explained above,
this might be a case of shared ancestry. All identified mutations were confirmed by
visual inspection in IGV. No mutations passed filtration in WT strains.

We then compared the final mutation callset obtained by using FreeBayes and our
custom filtration strategy with the mutations identified by Muver and MSIsensor
within SSR regions. Of the 35 mutations called by FreeBayes, 29 were identified by
Muver and 26 by MSIsensor. There were thus 6 and 9 SSR mutations identified by
FreeBayes but not MSIsensor and Muver, respectively. These differences might be
due to the different methods and filtering steps of the different tools. Indeed, all of the
9 mutations not called by MSIsensor were in loci excluded by MSIsensor’s callset for
technical reasons, such as the presence of an imperfect repeat at the locus (which, as
mentioned above, is not supported by the tool) and 2 of the mutations not identified
by Muver were in regions filtered out because of insufficient coverage according to
Muver’s algorithm. Finally, there were 62 and 31 mutations identified by Muver and
MSIsensor, respectively, (and confirmed visually with IGV) but not FreeBayes. This
might be a result of the more stringent filtering applied to FreeBayes’ results. Although
very stringent and possibly leading to discarding several real mutations, our custom
filtration strategy is based on FreeBayes’ confidence scores for calls at all SSR loci,
including both the reference and alternative allele calls. Thus, it provides us not only
with the number of high-confidence mutation calls at a certain threshold, but also
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with the total number of SSR loci for which there is enough confidence to assign a
genotype, irregardless of whether the genotype is reference or alternative. So, while
not all SSR mutations occurring during MA will be included in the final callset, we
will have high confidence in the ratio of detected mutations over total calls, leading to
consistent, stable estimates of mutation rate that are not very sensitive to the choice of
threshold (Section 2.4). Since our goal was to correctly estimate the SSR mutation
rate, we decided to continue our analysis using the more stringent set of calls produced
by FreeBayes.

2.2.6 Rate and spectrum of SSR mutations in msh3∆ strains

We then sought to estimate the SSR mutation rate in msh3∆ strains, and identify the
properties of SSR loci that contribute most to the mutation rate. To this aim, we built
a logistic regression model predicting mutation probability at each SSR locus based
on AT proportion and motif length. Previous studies of msh2 mutants have shown
that replication errors in short SSRs are usually corrected by polymerase proofreading
rather than the MMR system (Lujan et al., 2015). Thus, we added an additional binary
variable to our model, indicating whether an SSR was longer than 7bp (Section 2.4).
We did not include the 5 INDELs identified in unannotated SSR loci in this model
(Section 2.2.4). Since we did not have a complete list of loci with similar properties
(e.g. with motif size > 4) we would have not been able to apply the same filtering
criteria as for the other SSR mutations, which could have led to incorrect mutation rate
estimate.

The only property with a significant effect on the odds of mutation was whether the
SSR was longer than 7bp: we observed a 32-fold increase in the odds of observing a
mutation in loci longer than 7bp (Table 2.1). Using this model to predict the mutation
rate for each SSR locus in our reference list gave us an estimate for the mutation rate
in msh3∆ strains of ∼1 mutation/genome/120 generations. Because no mutations were
identified in WT strains, not enough data was available to estimate the mutation rate in
these strains. We thus calculated a lower bound (95% CI bound) for the msh3 status
effect on mutation rate, which is a 1.8-fold increase in msh3∆ compared to WT strains
(Table 2.1, Section 2.4). This indicates that defect in MutSβ function significantly
increase the mutation rate at SSR loci.

Next, we looked at the spectrum of SSR mutations accumulated in msh3-deficient
strains. Figure 2.5 shows the distribution of motif-number insertions and deletions
found in homopolymer, dinucleotide and trinucleotide repeats (no mutations were
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p-value fold-change in odds of mutation

msh3∆ 0.003 17×106 (1.8-Inf)

SSR >7 bp <0.001 32 (14-94)

+1 bp motif length 0.5 0.9 (0.6-1.3)

proportion A/T 0.27 0.5 (0.1-1.9)

Table 2.1 Effects of SSR properties and msh3 status on the odds of mutation.
Fold changes in the odds of mutation, with associated p-values and 95% confidence
intervals, for msh3 status and various properties of SSR loci included in our model.
Because no SSR mutations were found in WT strains, we calculated a lower bound
for the effect of msh3 status; the msh3∆ coefficient reported in the table is thus is
arbitrarily large, and has no upper bound.

identified in tetranucleotide repeats). A bias towards deletions can be observed for
all motif lengths, with the most frequent event being deletion of a single motif copy.
The increase in deletion rate compared to insertion rate, however, was only significant
for homopolymers (P = .002) and borderline for trinucleotides (P = .055). We also
observed 4 instances of substitution mutations occurring within SSR loci, but the
estimated difference in substitution rate in SSR and non-SSR loci was not significant.

I then looked at the genomic locations where SSR mutations occurred in the msh3∆

strains. Given that during the MA experiment only weak selection should occur, due
to stringent bottlenecking, we expected to find no bias against mutations falling within
coding regions. Since ∼73% of S. cerevisiae’s genome is genic, we should expect a
similar proportion of the occurring mutations to fall into gene regions. However, Zhu
et al. (2014) observed a bias against INDELs in gene regions, suggesting that some
INDELs are deleterious enough to still be eradicated under reduced selection. I also
observed that SSR mutations are less likely than expected to occur within gene regions,
with only 44% (15/34) falling within genes (χ2 test P < .001). I also tested whether the
frequency of genic mutations was influenced by motif length. Of the 14 SSR mutations
falling within genes, nine were in trinucleotide repeats, 5 in homopolymers and 1 in a
dinucleotide repeat. The bias was only present for non-trinucleotide mutations (χ2 test
P < .001), while trinucleotide mutations had the same frequency inside and outside
gene bodies (χ2 test P = 0.91). However, as mentioned in Section 2.2.3, the proportion
of non-trinucleotide SSRs in genes depends on the total length of the repeat, and on
average only ∼25% of non-trinucleotide SSRs longer than 10bp fall within genes
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(Figure 2.4c). This proportion is close to the proportion of mutations we observe in
non-trinucleotide SSRs and in genic regions (6/21). Since loci longer than 7bp are the
most likely to mutate (as shown above), this dependency of the SSR genic proportion
on repeat length likely explains the observed bias against INDELs in genic regions.
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Fig. 2.5 Spectrum of SSR mutations in msh3∆ strains. Mutations with 0 motifs
inserted or deleted represent substitutions within SSR loci.

2.2.7 Growth rate changes associated with SSR mutations

We then sought to investigate the phenotypic effect of SSR mutations in the MA lines.
We selected 14 strains for which no SNMs were identified. During the MA experiment,
samples of the strains were collected and frozen every 20 generations. This allowed us
to select 4 additional strains at generation 100, when they had not yet acquired those
SNMs. We then performed a growth rate assay on these 18 lines to test for changes
in their growth rate compared to their ancestor (Section 2.4). In the absence of any
known SNMs, potential changes in growth rate in these lines must be caused by other
mutation types, very likely SSR mutations.

Out of the 18 lines, the majority (13 lines) showed a significant change in growth rate
compared to the ancestor (Figure 2.6). Given the small number of mutations per strain,
this suggests that most SSR mutations are non-neutral. The majority of the observed
changes were decreases in growth rate, with a mean effect of -0.01, which indicates
that SSR mutations have mostly small deleterious effects.
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Fig. 2.6 Phenotypic effects of SSR mutations. Growth rate changes of 18 MA lines
with no SNMs compared to their ancestor (dotted line); four lines (round points) were
derived from frozen colonies isolated at generation 100 of the MA experiment, at
which point they had not accumulated any SNMs.

2.3 Discussion

In this chapter, I presented work aimed at identifying the full spectrum of spontaneously
occurring mutations in a yeast model, and the effects of these mutations on growth
phenotype. In particular, the focus of this chapter was on simple sequence repeat
(SSR) mutations, a class of mutations that is usually excluded by similar studies due
to the challenges associated with sequencing and genotyping of repetitive regions.

In order to study spontaneously occurring SSR mutations in relative isolation, we
performed a mutation accumulation experiment in msh3-deficient S. cerevisiae lines.
This allowed the strains to accumulate mutations in SSR regions faster than WT strains,
as msh3 is a component of the MutSβ heterodimer, involved in eukaryotic mismatch
repair system. It also allowed us to explore the role of msh3 in the repair of mutations
occurring in SSR regions. Before this, only one study investigated the effects of defects
in the msh3 gene on SSR mutation rate using a mutation accumulation experiment
combined with whole-genome sequencing (Haye and Gammie, 2015); this study,
however, was performed on a single msh3-deficient MA line.

We identified single-nucleotide mutations outside SSR regions, and compared mutation
rate in msh3-deficient and wild-type lines. We found no significant difference in
mutation rate, confirming the results of previous reporter assay studies, reporting
that the MutSβ complex, unlike MutSα , is primarily involved in the repair of short
INDELs, but does not play a major role in the repair of substitutions (Harrington and
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Kolodner, 2007). Our estimated substitution rate across all MA lines was 3.5×10−10

mutations/bp/generation (∼ 1 mutation/haploid genome/250 generations), which is
consistent with a previously reported estimate of the haploid mutation rate in yeast
(Sharp et al., 2018).

We then focused on the identification of SSR mutations arising in the MA lines. We
estimated the SSR mutation rate in msh3-deficient strains to be ∼1 mutation/halploid
genome/120 generations. We observed a bias towards deletions in the identified
mutations, which was significant for homopolymers and had borderline significance
for trinucleotide repeats. This bias was observed for msh3-deficient strains in a
reporter assay study (Strand et al., 1995) as well as in a study using oligonucleotide
transformation to introduce repeat INDELs at one locus (Romanova and Crouse, 2013).
Msh2-deficient strains have also been shown to exhibit a similar bias towards deletions,
but only in homopolymer repeats (Lang et al., 2013).

We also observed a very strong effect of repeat length on mutation rate, with loci
longer than 8bp having a 32-fold increase in mutation rate. A similar pattern was
observed by Lujan et al. (2015) in msh2-deficient strains. With an MA experiment,
the authors showed that loci longer than 10bp are much more affected by MMR
defects (msh2-only or msh3+msh6 deletions) than shorter loci. Additionally, they
demonstrated that mutation rate in shorter loci increases when an additional defect in
polymerase proofreading function is introduced. Their results suggest that INDELs
at shorter loci are repaired by polymerase proofreading, while longer loci require the
MMR system to be repaired. Our results support this model, and show that even the
abrogation of the sole MutSβ complex reduces repair efficiency at longer loci.

This is one of the only studies assessing the phenotypic effects of SSR mutations in
MA lines. We measured growth rate in strains free of single-nucleotide mutations
and compared them to their ancestor, and showed that most SSR mutations are likely
non-neutral, and have small deleterious effects. This result has interesting implications
when read in the context of cancer biology. As mentioned in the introduction to this
chapter (Section 2.1.2), microsatellite-unstable cancers are usually less aggressive
and have better prognosis than microsatellite-stable cancers, a phenomenon that is
hypothesised to be linked to increased neoantigen load and consequent enhanced anti-
tumour immune response. Another factor contributing to the less aggressive phenotype
of MSI cancers could be the combined effect of the several mutations accumulated in a
tumour with MMR deficiency. While a few of these mutations might affect the function
of oncogenes and tumour suppressors, the majority will likely be passengers. Our
results indicate that they would likely be mildly deleterious passengers. As discussed
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in McFarland et al. (2013), the joint effects of these passengers might counter-balance
the tumour-promoting effects of driver mutations, and slow down tumour progression.

One factor to consider when interpreting our results is the ploidy of our MA strains.
Our estimated SSR mutation rate, and the observed effects on growth phenotype,
refer to haploid strains. Sharp et al. (2018) showed that substantial differences exist
in the rate, spectrum and effects of spontaneously accumulated mutations between
haploid and diploid S. cerevisiae strains. Haploid strains were more prone to SNMs,
while diploid strains were more prone to structural changes, and mutational effects
appeared to be more deleterious in diploids compared to haploids. It is therefore
possible that diploid S. cerevisiae strains would exhibit different spectrum and effects
of SSR mutations compared to those described in this chapter.

Finally, the focus of the work by Zhu et al. (2014), the subsequent analysis conducted
by the Siegal Lab, and this chapter was on changes in the DNA sequence of the
MA strains. However, previous studies have shown that epigenetic changes also
spontaneously accumulate during MA experiments (van der Graaf et al., 2015). It thus
cannot be excluded that the observed changes in growth rate described in this chapter
and in previous MA studies are at least partially due to epigenetic changes.

2.4 Methods

Derivation and analysis of MAH.58x4 cross spores

To construct the cross to assess the effects of unidentified mutations on the MA lines
from Zhu et al. (2014), haploid strains MAH.58 and MAH.4 were mated. Diploids
derived from this cross were grown and sporulated, and the deriving tetrads were
then dissected. One SNM segregating in this cross was previously identified in the
MAH.4’s diploid parent (ChrIV.831520C>T). This SNM, as well as the mating type
locus, were genotyped within each tetrad, and only complete tetrads segregating all
three alleles for both loci were used. A single a spore per tetrad, without the SNM on
ChrIV, was selected, for a total of 20 spores. Growth rate assay was performed on 16
of these spores and 15 control strains derived from the ancestor strain. Sequencing
was performed on all 20 spores (see below).

After quality control with FastQC (FastQC, 2010), mutation calling was performed
using Muver (see below).
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Mutation accumulation experiment

The parent strain of the MA experiments is a haploid line derived from a single spore
of the MA ancestor, described in Hall et al. (2008); Joseph and Hall (2004), with
genotype ade2, lys2-801, his3-∆D200, leu2–3.112, ura3–52, ho. A single colony
derived from this ancestor founded strain s.EP049, which is the WT ancestral strain
used in this study.

To construct the msh3∆ ancestor, s.EP049 was transformed with a linear construct con-
taining homology upstream and downstream of the msh3 gene flanking a Hygromycin/
5-fluorodeoxyuridine positive/negative selection cassette (Alexander et al., 2014) that
was flanked by two 50-bp internal homology sites; spontaneous recombination between
these sites results in the excision of the selection cassette, leaving behind a single copy
of the internal homology and a Cyc1 terminator sequence. msh3∆ transformants were
selected on hygromycin, genotyped, and re-selected on 50 µg/mL 5-fluorodeoxyuridine
to select for strains with the selection cassette removed. The resulting msh3∆::Cyc1T
strain, founded by a single colony, was designated s.EP060.3.

To perform mutation accumulation, single YPD(Yeast Extract Peptone Dextrose)-
grown colonies of s.EP049 and s.EP060.3 were re-streaked on YPD; each resulting
colony founded a single MA line, with 5 WT lines and 36 msh3∆ lines. Respiring ade2

mutant colonies have a pink tint after two days of growth on YPD, developing a distinct
red colour after an additional two days. As in Hall et al. (2008); Joseph and Hall (2004),
we used this colour difference to ensure selection of respiring non-petites during
mutation accumulation. Petites are lines with mutations affecting aerobic respiration
and thus unable to grow on non-fermentable carbon sources. To facilitate this visual
discrimination, a single WT petite line was passed through mutation accumulation
alongside the others as a reference. Each transfer was performed in duplicate: to avoid
unconscious bias in the subculture procedure, the two pink colonies that were closest
to a pre-marked spot on the plate were chosen at every passage. Colonies of each
line were transferred every two days, and both the two colonies that were re-streaked
were frozen in 50% YPD, 15% glycerol. The two colonies from each line used at each
transfer were designated as ‘primary’ and ‘secondary’, and only the ‘primary’ re-streak
of each line was used in the following transfer, except in cases when it turned out to be
a petite, in which case a colony from the ‘secondary’ streak was used. A single line
was petite in both the primary and secondary transfer near the last generation, and was
removed from further analysis. One additional MA line was excluded due to potential
contamination. After each transfer, a mixture of many yeast colonies from the transfer
plate was also frozen in 50% YPD, 15% glycerol. Transfers were interrupted for 3
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months after the first 6 transfers (∼120 generations) due to the closing of the university
as a result of the COVID pandemic. After re-opening, mutation accumulation was
re-started from frozen whole colonies. A total of 10 transfers (∼200 generations of
mutation accumulation) were performed.

Sequencing

Cultures derived from single frozen colonies from the final MA transfer, as well as from
ancestral MA strains, were grown in SC media and DNA extraction was performed as
in Schwartz and Sherlock (2016). Whole-genome sequencing, with 150bp paired-end
reads, was performed on 34 msh3∆ and 5 WT MA lines.

For both the MA lines and the 20 MAH.58x4 cross spores, Nextera library preparation
was performed as in Baym et al. (2015), but with 14 PCR cycles instead of 13. Bead
cleanup was modified to optimise selection of 500-600 bp fragments: libraries were
initially incubated with 0.53x volume AmpPure beads. Supernatant was saved, beads
were washed with water, and then supernatant was incubated with original beads +
0.1x original volume AmpPure beads, followed by washing beads with 75% Ethanol
and elution of DNA in 10 mM Tris pH 8, 1 mM EDTA, 0.05% Tween-20.

Quality control on the raw sequencing data was performed with FastQC.

Identification of SSR loci in ancestor genome

To identify SSR loci, Tandem Repeat Finder (TRF) (Benson, 1999) v4.09 was run
with suggested parameters, except minimum alignment score, which was set to 3. TRF
fails to identify a large number of short SSRs; therefore, a genome-wide string search
for homopolymers with 4-10 repeats, and di- and tri-nucleotides with 3-10 repeats
was also performed. The results of this search were joined with TRF results. Repeats
were filtered as suggested in Willems et al. (2017). Finally, any overlapping loci with
non-identical motifs were split in such a way as to maximise the combined alignment
score of the two motifs.

SNM and SSR mutation calling with FreeBayes

An ancestral reference genome was built by incorporating the mutations identified
in the MA ancestor strain in Zhu et al. (2014) in the S. cerevisiae S288C reference
genome. Sequencing reads were aligned to this reference using bwa-mem (v0.7.17) (Li,
2013) and duplicate reads were removed using GATK (Van der Auwera and O’Connor,
2020).

FreeBayes (v1.3.4) (Garrison and Marth, 2012) was initially run with the default
parameters (except the parameter min_mapping_quality, which was set to 1). All calls
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with a QUAL value greater than 1 were used in downstream analysis. The output of
FreeBayes was a list of loci (including SSR loci) that were called as mutated in at least
one MA strain compared to the reference genome.

In order to get likelihood values for non-mutant SSR loci, loci called as mutant were
removed from the full list of SSRs; the list was then converted to a VCF, with the
alternative allele at each locus listed as a missing value. FreeBayes was then re-run
to obtain calls at these loci: the non-mutant SSR list was provided as input for the
–variant-input parameter and specified –only-use-input-alleles, –min-alternate-count 0,
–min-alternate-fraction 0, and –min-coverage 0. In this mode (and in the absence of
a provided alternative allele), FreeBayes evaluated the likelihood of each unmutated
SSR locus as compared to a version of the locus one motif repeat shorter than the
original. The resulting calls and likelihood values were joined with the list of calls
from the initial round of FreeBayes analysis.

Any call identified within 100 base pairs of a telomere, centromere, or LTR transposon,
as well as calls falling inside the rDNA-containing regions of chromosome XII, and
in the mitochondrial genome, were removed. Only calls sequenced with a read
depth of at least 10x were retained. A small number of mutations falling in non-
SSR repetitive regions and having low call confidence (differences <20 between
log-likelihood of top calls) were also removed. Some non-SSR mutations passing
filtration were found in multiple MA strains, or in very close loci across multiple
strains (within 50bp distance). These events are highly unlikely to occur, given that
all lines are propagated independently during the MA experiment. These calls were
further examined by grouping SNMs found within 50bp and counting the number of
strains with mutations in these regions, allowing for the identification of recurrently
mutated regions. Unlike mutations found in a single strain, all these loci had a mix
of reads supporting two different alleles, with the proportion of reads supporting the
not-called alleles being >25% of the total mapped reads. This observation suggests
that these calls are unreliable; they were thus removed from the final callset.

For SSR mutations, we applied a custom filtration strategy (Figure 2.7a). One
of FreeBayes’ measures of confidence in its calls is reported as the difference in
genotype likelihood between the two most likely alleles (∆GL). We thus set up filtering
thresholds based on the distribution of ∆GL values for each group of SSR calls with
similar properties. We grouped SSR loci based on three properties: motif length,
repeat copy number, and AT-proportion, which have all been shown to impact SSR
mutation rate (Lang et al., 2013; Lujan et al., 2014). To avoid SSR groups with
small numbers of calls, for each unique motif copy number we considered a window
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of -2.5 - +2.5 repeats around the actual copy number. Moreover, we removed SSR
groups including less than 25 loci. For each ∆GL distribution, we calculated quantile
thresholds corresponding to the removal of 0 to 95% of all group calls. For each given
threshold, we merged the calls passing the threshold in each group and estimated the
mutation rate, producing estimates at different filtration stringency levels. While at
very stringent ∆GL thresholds the low number of mutations passing filtration led to
unstable estimates of mutation rate, for thresholds corresponding to the removal of
35-60% of all calls the calculated mutation rate was largely stable (Figure 2.7b); this
shows that our filtration strategy is not very sensitive to the choice of threshold above
a certain ∆GL value. We thus selected the ∆GL value corresponding to the lowest
stringency in the stable range, and removed the 35% of calls with the lowest ∆GL
values in each SSR group.
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Fig. 2.7 Filtration strategy for SSR mutation calls.(a) Overview of the filtration
strategy; (b) Estimated mutation rate at all possible ∆GL quantile thresholds; the red
dashed line represents the chosen threshold, corresponding to the removal of the lowest
35% of calls in each SSR group.
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Mutation calling with Muver

In addition to FreeBayes, mutation calling was performed for all MA strains using
Muver. Muver’s pipeline includes an alignment step, performed with Bowtie2 (version
2.3.5), and a variant calling step, during which SNMs and small INDELs are identified
using GATK (version 3.8) (Langmead and Salzberg, 2012). Muver allows the user
to indicate the ancestor strain of the experiment and, in a final step, calls mutations
occurring in the MA strains compared to the ancestor. Muver was run on the WT
and msh3∆ strains separately, specifying s.EP049 and s.EP060.3 as the ancestor
strain, respectively. Muver’s results were filtered to exclude mutations called in low
mappability regions of the genome, including centromeric and telomeric regions and
LTRs. Mutations occurring on mitochondrial DNA were also filtered out. Among the
WT strains, only C3 had 3 mutations compared to the ancestor, while Muver identified
117 mutations across the 34 msh3∆ strains. 91 of the called mutations fall into loci that
we classified in our analysis as SSRs, leaving 26 non-SSR loci mutated in the msh3∆

strains.

SSR mutation calling with GATK and MSIsensor

To call mutations in SSR regions with GATK (v4.2.1), sequencing reads were first
aligned to the ancestral reference genome using bwa-mem2 (v2.2.1) (Vasimuddin
et al., 2019). The resulting BAM filed were further processed using picard (v2.25.7)
(Pic, 2019): they were sorted sorted with SortSam, duplicates were marked with
MarkDuplicates, read groups were added with AddOrReplaceReadGroups and an
index was built with samtools (v1.9) index. HaplotypeCaller was ran in GVCF mode
(joint genotyping), providing our SSR reference list as the intervals in which to perform
variant calling, followed by GenomicsDBImport and the final GenotypeGVCFs step.
The ploidy of all samples was specified as 1 (haploid strains). The resulting VCF file
was filtered using VariantFiltration to remove low confidence INDELs according to
the GATK best practices (QD < 2.0, FS > 200.0, ReadPosRankSum < -20.0, SOR >
10.0).

In addition, mutations in SSR regions were identified with MSIsensor (Niu et al.,
2014), a tool designed to identify microsatellite instability in paired tumor-normal
sequence data. First, the scan command was used to identify all SSR regions in the
reference genome, with the following parameters: -l 4, -m 50, -r 3, -s 4. MSIsensor
only considers perfect repeats. The msi command was run on all possible ancestor-MA
strain pairs for both the WT and msh3∆ strains, specifying the following parameters:
-c 15, -l 4, -p 4, -m 120, -q 3, -s 3, -w 120, -f 0.1.
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The resulting files for both tools were filtered to remove loci within LTRs, telomeres,
centromeres, and rDNA repeats on Chrom XII, as well as mutations occurring on
mitochondrial DNA, using bedtools (v2.29.2) (Quinlan and Hall, 2010).

Modelling of SSR mutation rate

All modelling was performed using a binomial generalised linear model in R.

We modelled the per-SSR-locus odds of mutation as a per-base pair odds of mutation
multiplied by the length of the SSR. Per-base-pair odds of mutation are based on three
locus properties: AT proportion, motif length and a binary variable indicating whether
the total repeat length is smaller than 8bp (Equation 2.1). Since no mutations were
found in the WT strains, this modelling was performed on data from the msh3∆ strains
only.

log
[︃

P(mutation)
1−P(mutation)

]︃
= α +β1(AT_proportion)+β2(motif_length)+β3(short_ssr)

+offset(log(repeat_length))

(2.1)

The only property with a significant effect on SSR mutation odds (locus < 8bp) was
then used to build a model on the full dataset, including msh3 status of the strains, in
order to estimate the effect of the msh3 deletion on mutation rate. Since not enough
data was available to estimate the effect of msh3 status directly, we calculated a lower
bound on the fold-difference between the WT and msh3∆ mutations rates, by choosing
an offset for the msh3 status beta coefficient such that the difference in log likelihood
from the model excluding msh3 status was 2.5 (corresponding to the 95% confidence
interval bound) (Equation 2.2).

log
[︃

P(mutation)
1−P(mutation)

]︃
= α +offset(log(repeat_length))+β1(short_ssr)

+offset(msh3_beta_fixed*msh3_status)
(2.2)

Growth rate assay

Strains were randomised into 96-well U-bottom plates and stored frozen at -80°C in
20 µL of 50% YPD + 15% Glycerol. ‘Petite-only’ control strains were included in
each experimental plate. Three days before each growth rate assay, a plate each of
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MA and reference strains was thawed and 180 µL SC media supplemented with an
extra 50 mg/L Adenine (SC+Ade) was added to each well (adding Adenine decreases
selection pressure for Ade+ phenotypes, including [PSI+] cells). After 1 day of growth
in a shaking incubator at 30°C, each strain was diluted 1:10 in SC+Ade in a new plate.
The experiment was performed following an additional 2 days of growth from the
resulting saturated cells of each line. The microscope growth rate assay was performed
largely as described in Sartori et al. (2021). On the day of the growth rate assay, MA
line and reference strains were mixed in a 2:1 ratio and diluted ∼1×10−4-fold with
vigorous mixing. Cells were imaged hourly for 10 hours in brightfield, followed by a
single GFP exposure, as described previously (Levy et al., 2012). Image analysis was
performed using the PIE software (Plavskin et al., 2021).

We calculated the growth rate change in the MA lines compared to their ancestor strain
as:

GR =
µMA

µanc
−1 (2.3)

where µMA and µanc are the mean growth rates of the non-petite colonies in the MA
lines and ancestor strain, respectively.
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The smoking-induced field of injury and
its implications for lung cancer risk
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3.1 Introduction

3.1.1 Lung cancer and its link to cigarette smoke

To date, lung cancer is the leading cause of cancer-related death worldwide (Sung et al.,
2021). Lung cancer is classified into two major groups based on histology: small cell
lung cancer (SCLC), observed in 15% of cases and originating from neuroendocrine
cells, and non-small cell lung cancer (NSCLC), the most frequently observed in the
population (85% of cases), originating from epithelial cells. NSCLC is additionally
classified into three subtypes: lung adenocarcinoma (LUAD), usually originating from
alveolar type II (AT2) epithelial cells, squamous cell carcinoma (SCC), originating
from basal cells, and large cell carcinoma (LCC), originating from various epithelial
cell types.

Lung cancer is a perfect example of neoplasia with a strong environmental component.
Cigarette smoke has long been established as the main risk factor for all lung can-
cer subtypes. The hundreds of carcinogenic chemicals contained in cigarette smoke
cause the accumulation of mutations in lung tissue. The occurrence of mutations in
oncogenes and tumour suppressors such as TP53 and KRAS is the first step towards
the development of a malignancy. In addition, carcinogenic molecules and reactive
oxygen species (ROS) contained in cigarette smoke lead to persistent inflammation,
which in turn leads to the development of lung pathologies such as chronic obstructive
pulmonary disease (COPD) and emphysema (Walser et al., 2008). These diseases
perpetuate the inflammatory environment and therefore further increase the risk of lung
cancer insurgence. Both tobacco carcinogens themselves and the inflammatory media-
tors produced by the host in response to them are linked to epithelial-mesenchymal
transition (EMT), which is involved in early events in carcinogenesis and in determin-
ing invasiveness and metastatic potential (Krysan et al., 2008; Yoshino et al., 2007).
The frequent loss of TP53 and KRAS in the early stages of lung cancer development
also contributes to the creation and maintenance of pulmonary inflammation: p53 is a
suppressor of NF-κB, one of the most prominent mediators of inflammation, while loss
of KRAS has been shown to induce the production of COX-2 and downstream inflam-
matory mediators, which in turn results in increased EMT and immunosuppression
(Walser et al., 2008).

Another important characteristic of the link between smoking and lung cancer is that
smoking cessation, while reducing the risk of developing cancer, never reverts it back
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to baseline. Over 40% of lung cancer cases occur in former smokers more than 15
years after smoking cessation (Siegel et al., 2020; Tindle et al., 2018), suggesting that
the damage to the pulmonary environment caused by smoking could, at least in part,
be irreversible.

The clear link between cigarette smoke and lung cancer risk creates a defined high-risk
population that benefits from regular screening. In fact, great effort was put into the im-
plementation of such screening plans, and monitoring with low-dose CT scans (LDCT)
revealed to be very effective, determining a 26% reduction in mortality (de Koning
et al., 2020; National Lung Screening Trial Research Team et al., 2011). However,
there are several drawbacks to the use of frequent LDCT screening, including the
high costs and the risks associated with cumulative radiation exposure. In addition,
diagnostic procedures following the observation of a suspicious lesion on a CT scan,
most commonly fiber-optic bronchoscopy, are invasive and often do not yield a defini-
tive diagnostic response, especially for peripheral lesions (Rivera et al., 2013). This
leads to further invasive diagnostic procedures, even in the event of a benign lesion.
All these considerations, together with the fact that evident symptoms of lung cancer
present at late stages of the disease, contribute to the low 5-year survival rate which,
today, remains ∼ 19% overall and ∼ 5% for advanced stages (Siegel et al., 2020).

3.1.2 The airway field of injury

The concept of field of injury has its origin in Danely Slaughter’s seminal studies
during the 1950s, where he described the peculiar characteristics of the insurgence and
spread of oral squamous cancers (Slaughter et al., 1953). He observed that oral cancers
tend to have a lateral rather than vertical spread, and that benign epithelium outside the
margins of a cancer lesion also showed abnormalities such as epithelial hyperplasia
and hyperkeratinization. He also observed that pre-invasive lesions were present at
multiple foci within the benign tissue. His observations of what he defined as ‘field
cancerization’ prompted the hypothesis that a pre-conditioned, injured, epithelium
represents a favourable environment for pre-malignancies to arise and eventually
develop into cancer. This hypothesis explains the tendency of squamous cancers to
have multifocal growth, as well as the high frequency of local re-occurrence. Field
cancerization refers to abnormalities in benign tissue in the proximity of a neoplasm.
However, in later studies following Slaughter’s first observations, more widespread
alterations were observed in tissues exposed to damaging agents, even in the absence
of a frank malignancy. These observations expanded the concept of field cancerization



46 The smoking-induced field of injury and its implications for lung cancer risk

to the more general concept of “field of injury”, defined as an array of molecular
alterations observable throughout the tissue exposed to the damaging agent, reflecting
the host’s response to injury (Steiling et al., 2008).

As oral cancer, lung cancer presents a clear causal link to an external damaging agent,
cigarette smoke. The first report suggesting an airway field of injury produced by
the exposure to cigarette smoke is a publication from 1961, in which the authors
described extensive alterations in the bronchial epithelium of smokers and the presence
of multiple independent foci of pre-malignancy, even when death occurred in the
absence of lung cancer (Auerbach et al., 1961). Since then, the airway field of injury
and its link to lung cancer have been thoroughly described. Different studies have
shown that bronchial epithelium of cancer-free current and former smokers exhibits
a wide array of alterations, including point mutations, allelic losses, microsatellite
instability, changes in promoter methylation and altered telomerase activity (Franklin
et al., 1997; Miyazu et al., 2005; Powell et al., 1999; Wistuba et al., 1997). Often these
alterations involve important oncogenes and tumour suppressors; an example is loss of
heterozygosity (LOH) of chromosome 13q (RB gene) and 17p (TP53 gene). Moreover,
identical alterations can be found in lung tumour samples and histologically normal
airway tissue from the same patients (Nelson et al., 1996; Tang et al., 2005).

The plethora of genetic and epigenetic alterations, along with the acute and chronic
inflammation caused by cigarette smoke, produce extensive changes in the airway
transcriptome. Spira et al. (2004) described the gene expression alterations occurring
in bronchial epithelial tissue of smokers without lung cancer. Genes up-regulated in
smokers were involved mainly in secretion, oxidative stress response and xenobiotic
metabolism, while down-regulated genes were involved in regulation of inflammation.
Moreover, Beane et al. (2007) performed a study on the reversibility of the bronchial
injury after smoking cessation, by observing the behaviour of affected genes in former
smokers. The authors found that genes that rapidly returned to normal expression
levels after smoking cessation were mostly involved in the detoxification of tobacco
smoke components, for example the cytochrome p450 genes CYP1A1 and CYP1B1,
the NADPH oxidoreductases genes AKR1B10 and AKR1C1, and the aldehyde dehy-
drogenase gene ALDH3A1. On the other hand, several genes were found to be slowly
reversible or irreversible in former smokers, including ones encoding for adhesion
molecules, such as CEACAM5, metalloproteinases, such as MMP10, and immune-
related molecules, such as CX3CL1. Additional studies showed that smoking-induced
expression changes in the healthy-appearing bronchus of patients with suspected lung
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cancer can serve as a lung cancer biomarker, complementing bronchoscopy results and
potentially avoiding further invasive procedures (Spira et al., 2007).

Corroborating the presence of a field of injury in the airway of smokers, similar
transcriptomic changes to those observed in the bronchus were found in other tissues
exposed to smoke, such as nasal and buccal epithelium (Sridhar et al., 2008; Zhang
et al., 2010). This observation opened the way to studies on the potential use of
easily accessible tissues of the airway as non-invasive proxies to aid lung cancer
diagnosis. Perez-Rogers et al. (2017) investigated the bronchial and nasal epithelium
of current and former smokers with lesions suspicious for lung cancer and found
concordant cancer-associated gene expression changes in the two tissues. The authors
also showed that the use of nasal expression of these genes in a clinico-genomic
classifier improved lung cancer prediction compared to the use of clinical information
only. This first "proof-of-principle" study demonstrated that accessible airway field of
injury alterations can be predictive of the presence of cancer.

Despite the clear link between cigarette smoke, airway field of injury and lung cancer,
only ∼ 15% of smokers develop lung cancer (Shields, 1999), suggesting that the
patient’s genetic background and the way they respond to smoke-induced injury could
play an important role in determining the risk of cancer insurgence. In this chapter,
I will describe a study investigating the airway field of injury in bronchial and nasal
tissue of healthy volunteers and clinic-referred patients with suspected lung cancer,
with a diverse smoking history. I will present a thorough characterisation of the smoke
injury response in the nasal epithelium of the healthy population and compare it to
the response in clinic-referred patients. I will then describe how nasal expression of
these genes affected by smoking, in particular those exhibiting a different behaviour
in healthy and clinic subjects, can potentially be used to improve lung cancer risk
stratification.

3.1.3 The CRUKPAP dataset

The following study was conducted on samples collected as part of the CRUKPAP
study. The CRUKPAP dataset includes 487 subjects, among which 114 healthy
volunteers (HV group) recruited from the Cambridge Bioresource (cam) and 373
patients referred to the out-patient clinic at the Royal Papworth Hospital (Cambridge,
UK) or Peterborough City Hospital on suspicion of lung cancer (clinic group). Within
the clinic group, 72 subjects showed benign conditions (clinic benign) and 301 were
diagnosed with lung cancer (clinic cancer). Nasal epithelial samples were collected by
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Fig. 3.1 Overview of study subjects. Number of individuals with different smoking
status recruited for the study, stratified by donor’s population of origin: healthy
volunteer group and clinic-referred patients with a diagnosis of benign condition or
lung cancer.

mini-curette from all 114 HV donors and 299 Clinic patients, and bronchial brushings
from 236 clinic patients (Section 3.5). Both nasal and bronchial samples were obtained
from 162 of the clinic patients. Smoking history was obtained for all subjects: these
included never smokers (NV), current smokers (CS) and former smokers (FS) with
time-since-quit ranging from less than 1 month to more than 30 years. Within this
study, former smokers were stratified into 3 categories based on their time-since-quit:
former smokers who quit less than one month, 1 to 12 months or more than 1 year
prior to sample collection (Figure 3.1). Smoking intensity was also recorded in
terms of pack-years, and stratified into 4 categories: none, less than 10 years, 1-30
years and more than 30 years. In addition to smoking status, sex, age, lung cancer
subtype and stage and presence of chronic obstructive pulmonary disease (COPD)
were recorded (Table 3.1). While most clinic cancer subjects were diagnosed with
non-small cell lung cancer (NSCLC), 56 subjects presented a metastatic mass in their
lung from a different cancer type, or were diagnosed with small-cell lung cancer
(SCLC): these subjects (annotated as having "ineligible" cancer status) were included
in all analyses investigating smoke injury response, but discarded for lung cancer risk
prediction. Clinic benign patients were followed up for a minimum of 1 year to confirm
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the absence of cancer. Airway samples underwent RNA sequencing using standard
protocols (Section 3.5). Total gene expression was quantified as variance-stabilised
counts and corrected for batch effects in all downstream analyses (Section 3.5).

3.2 Results

3.2.1 Transcriptome exploration of nasal and bronchial tissue
from subjects with different smoking and disease status

First, I explored the contribution of the clinical and environmental variables known
for our study subjects to total gene expression in nasal and bronchial tissue. To do
so, I performed a variance components analysis across all genes and all samples
(Section 3.5). I specifically tested for the contribution of tissue of origin, cancer status,
smoking status, cumulative smoke exposure (measured in pack-years), sex and age.
The proportion of total variance explained across all samples was 22,2%. The large
percentage of unexplained variance is likely due to subject-specific differences. The
variable contributing most to gene expression was tissue of origin (70% of the total
explained variance, Figure 3.2a), followed by the donor’s population of origin (healthy
volunteer or clinic-referred patient, 15% of the total explained variance) and smoking
status (14% of the total explained variance). Cancer status only accounted for 5%
of the total explained variance, following sex and age. Similar results were obtained
when performing the analysis on bronchial and nasal samples separately (Figures 3.2b
and 3.2c). In particular, in nasal samples the proportion of total variance explained
was 4%, the main contributors being again healthy volunteer status and smoking status.

To further explore the nasal epithelial transcriptome of healthy and clinic donors,
I performed a differential expression analysis comparing clinic current and former
smokers to healthy volunteer current and former smokers, correcting for age, sex,
smoking status and pack-years. There were 5359 genes differentially expressed
between clinic patients and healthy volunteers (P < .05, Section 3.5). I performed
Gene Ontology (GO) term enrichment analysis on the list of differentially expressed
genes and found that genes up-regulated in clinic patients enriched in GO terms related
to cilium assembly and organisation and chromatin modification, while down-regulated
genes enriched in oxidative phosphorylation and several immune-related terms, such as
Neutrophil activation, Antigen processing and presentation and Response to interferon

gamma (Figure 3.3 and Supplementary table 1). I then performed the same comparison
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Healthy volunteers Clinic group

Without Cancer With Cancer

Sex

Male 60 52 193

Female 54 20 108

Age

(24.9, 41.5] 9 2 1

(41.5, 58] 38 18 44

(58, 74.5] 64 39 176

(74.5, 91.1] 3 13 80

Smoking status

never 37 5 3

> 12 months 36 33 165

1-12 months 6 8 31

< 1 month 0 1 9

current 35 25 93

Pack-years

None 37 5 3

0-10 19 14 20

11-30 35 20 72

> 30 22 32 206

Unknown 1 1 0

Tissue

Nasal 114 13 125

Bronchial 0 16 58

Both 0 43 119

Cancer status and subtype

No cancer 114 72 0

Adenocarcinoma 0 0 126

Squamous cell carcinoma 0 0 99

Not specified 0 0 20

Ineligible 0 0 56

Cancer Stage

None 114 72 0

Stage 1 0 0 50

Stage 2 0 0 38

Stage 3 0 0 79

Stage 4 0 0 62

Mix or Unknown 0 0 16

Ineligible 56

COPD

None 93 25 103

Mild 9 7 47

Moderate 4 18 66

Severe 2 6 32

Past history 0 5 17

Unknown 6 11 36

Table 3.1 Clinical and demographic characteristics of the study subjects.
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Fig. 3.2 Variance components analysis. Contribution of different clinical variables to
the total explained variance in gene expression calculated using a random model on all
samples (a), nasal samples (b) and bronchial samples (c).

separately in current smokers and former smokers who had quit for more than 1 year,
to identify possible differences in transcriptome alterations in the two populations. For
current smokers, GO enrichment in the genes with increased and reduced expression
in clinic donors was similar to the previous comparison. For former smokers, no
enrichment was found for genes related to ciliary function within the up-regulated
set, but genes with reduced expression were enriched for immune pathways such
as Inflammatory response, Neutrophil activation and Response to interferon gamma.
These results suggest the presence of an immunosuppressed state in subjects from the
clinic group, and that this state can be detected at a distal airway site both during active
smoking and after smoking cessation.

Next, I performed a differential expression analysis comparing clinic donors with and
without cancer. Only 28 genes were significantly altered (P < .05) in the bronchus,
and no genes were significantly differentially expressed in the nose. Among the 28
differentially expressed genes in the bronchus, 3 were up-regulated in patients with
cancer: MMP13, encoding for a metalloproteinase known to increase lung cancer
invasion and metastasis (Merchant et al., 2017), EDA2R, encoding for a member of
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Fig. 3.3 GO enrichment of differentially expressed genes in clinic compared to
healthy subjects. Tree plot showing the top enriched GO terms among up- (red) and
down-regulated (blue) genes in clinic patients compared to healthy volunteers. Dot
size indicates number of genes within a term.

the tumour necrosis factor (TNF) receptor superfamily, members of which modulate
immune response in the tumour microenvironment and might serve as biomarkers
for immunotherapy in lung cancer (Zhang et al., 2020), and CTSL, encoding for a
lysosomal cysteine protease involved in EMT (Sullivan et al., 2009). The 25 genes
down-regulated in cancer patients were enriched in immune-related GO terms, in par-
ticular neutrophil-mediated immunity, consistent with the findings in the comparison
between clinic patients and healthy volunteers in nasal tissue (Supplementary table 2).

Taken together, these results show that the strongest gene expression changes observ-
able in nasal epithelium are between healthy volunteers and clinic patients, while
differences between donors with and without cancer appear to be too subtle to be de-
tected at a distal site such as nasal epithelium with a gene-level differential expression
analysis.

Given the extensive differences in the transcriptome of healthy and clinic subjects
with a similar smoking history, we argued that these individuals could also differ in
their response to smoke injury, and that these differences might reflect on their risk
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of developing lung disease and, in particular, lung cancer. In the next sections, I
characterise and compare the smoke injury response in the two groups of subjects at
the level of nasal epithelium.

3.2.2 Smoke injury response and reversibility of damage in healthy
current and former smokers

In order to investigate the smoke injury response in the nasal epithelium of healthy
subjects, as well as its long-term response after smoking cessation, I employed multi-
variate linear regression. I modelled gene expression changes over smoking status for
each of 18,072 protein-coding genes individually, using gene expression in healthy
never smokers as a baseline. I encoded smoking status into three binary variables
(Figure 3.4a): CS (current smoker status, 0/1), FSS (former smoker status, 0/1) and
FS (former-smoker’s time since quit, 0 for current and never smokers, 1 for ex smokers
1-12 months, 2 for ex smokers > 12 months). Additionally, I included age, sex and
experimental batch as confounding variables (Equation (3.1)).

gxp = α +β1(CS)+β2(FSS)+β3(FS)+β4(sex)+β5(age)+β6(batch)+ ε (3.1)

To classify genes based on their behaviour over smoking status, I employed a Bayesian
approach to model selection. I tested for the inclusion of each of the three variables into
the model and inferred posterior probabilities for all eight possible models to retrieve
the most likely reversibility dynamic of gene expression changes for each gene. Each
combination, or group of combinations, of variables was associated to a gene class.
Each gene was assigned to the class with the highest posterior probability (Figure 3.4b).
Genes with no discernible behaviour over smoking status were classified as unaffected

by smoking (US). Genes for which a difference in expression was observed in current
compared to never smokers were assigned to one of three reversibility classes: rapidly

reversible (RR), if no difference could be observed between former and never smokers;
slowly reversible (SR), if a slope across the current and former smoker categories
showed a trend of returning to never-smoker expression levels; irreversible (IR) if a
difference was observed in former compared to never smokers but no difference is
observed between current and former smokers and across the former smoker categories.
In addition, genes were classified as cessation-associated (CA) if no difference was
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present between current and never smokers, but elevated or reduced expression was
observed in former smokers (Figure 3.4c).
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Fig. 3.4 Smoke injury reversibility analysis. (a) The slope coefficients associated
to the three smoking status variables included in the Bayesian model (CS: current
smoker status, FSS: former smoker status, FS: former smoker’s time since quit); (b)
Description of the model selection procedure used to assign each gene to a reversibility
class: the table shows all possible combinations of inclusion/exclusion of the three
smoking status variables; (c) In blue, yellow and red, schematic of a gene with altered
expression in current compared to never smokers, and the three possible trajectories
after smoking cessation, corresponding to the RR, SR and IR reversibility classes; in
green, schematic of a gene with no expression difference in current compared to never
smokers, but altered expression in former smokers, corresponding to the CA class.
US: not affected; RR: rapidly reversible SR: slowly reversible; IR:irreversible; CA:
cessation-associated; PP: posterior probability.

In total, 5755 genes were found to be affected by smoke in healthy volunteers, of which
513 genes showed a strong difference between never smokers and current smokers,
or former and never smokers in the case of cessation-associated genes (Section 3.5,
Supplementary table 3). The majority (485/513) of the affected genes were classified
as rapidly reversible. This result is in line with a previous study by Beane et al. (2007),
in which a reversibility classification was performed for genes affected by smoke in
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bronchial tissue, and shows that there is a similarity in the reversibility of damage in
bronchial and nasal tissue. Rapidly reversible genes showing up-regulation in current
smokers were involved in cellular detoxification, response to oxidative stress (e.g.
CYP1A1, CYP1B1, AHRR, NQO1, GPX2, ALDH3A1) and keratinization (e.g. KRT6A,
KRT13, KRT17, SPRR1A, SPRR1B, CSTA), while down-regulated genes were involved
in cilium organisation (e.g FOXJ1, DNAH6, IFT81, CEP290, UBXN10), extracellular
matrix organisation (e.g. FN1, COL3A1, COL5A1, COL9A2) and interferon signalling
(e.g. IFI6, IFIT1, IFI44, RSAD2). Genes involved in inflammatory response were
found in both the up-regulated (IL36A, IL36G, S100A8, S100A9, CLU) and down-
regulated (SAA1, SAA2, IL33) genes. Of the remaining 28 genes, 6 were classified
as slowly reversible (CCK, STATH, CXCL13, SRCRB4D, CLU, PLCB2), 2 (SULF1,
FRMD3) as irreversible and 20 as cessation-associated. Among the slowly reversible
genes, of particular interest is CXCL13, which has been shown to play an important
role in carcinogenesis induced by polycyclic aromatic hydrocarbon (Wang et al., 2015).
Both the irreversible genes, SULF1 and FRMD3, showed down-regulation in current
smokers in our study. SULF1 is down-regulated in many cancers and has been shown
to impede angiogenesis and carcinogenesis both in vitro and in vivo (Lai et al., 2008).
FRMD3 is a tumour suppressor frequently silenced in non-small cell lung cancers and
has been shown to reduce clonogenicity (Haase et al., 2007).

3.2.3 Deviations from healthy smoke injury response in clinic sub-
jects

By conducting this analysis in healthy volunteer subjects, I was able to describe
the expected injury response of a population of healthy current and former smokers.
Despite being exposed to the same damaging agent, not all smokers develop lung
cancer, suggesting that the response in higher-risk subjects might deviate from this
expected response. Therefore, I repeated the analysis just described to model the
smoke injury response in patients from the clinic group, aiming at finding differences
from the healthy smoke injury response. As in the previous section, I used healthy
never smokers as the ‘baseline’ group.

There were 4112 genes with smoking-dependent expression changes in the clinic
group, of which 584 showed a large effect size (Section 3.5, Supplementary table 3).

To verify that the model correctly classified the reversibility of the genes affected by
smoking, I performed a principal component analysis (PCA) of nasal samples using
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genes in the different reversibility classes independently. I performed this PCA in both
healthy and clinic subjects, using the respective reversibility classifications. Since only
2 genes were classified as irreversible in healthy subjects, for that group I performed
PCA for slowly reversible and irreversible genes jointly. As expected, the PCA showed
a clear separation of current smokers from all other subjects for rapidly reversible
genes; slowly reversible genes placed patients on a trajectory from never smokers to
current smokers; irreversible genes separated never smokers from former and current
smokers (Figures 3.5a and 3.5b). Additionally, PCA on the bronchial samples of
clinic subjects, using the same set of genes, showed a similar pattern, confirming
that nasal and bronchial epithelium have similar responses to short and long term
smoke-induced injury (Figure 3.5c).

Overall, we observed a shift towards slower reversibility for the smoke-affected genes
in the clinic group compared to the healthy volunteers: 190 genes were found to be
rapidly reversible, 107 slowly reversible, 102 irreversible and 185 cessation associated.
The smoke-injury genes identified in the clinic group also showed a significant overlap
with those found in the healthy volunteer group, with 233 shared genes (χ2 test P <
.001). Within these 233 genes, 227 were rapidly reversible in the healthy volunteer
group; of those 227, only 112 remained rapidly reversible in the clinic group. The
remaining 115 genes were classified differently in the clinic compared to the healthy
group: 22 genes became slowly reversible, 1 gene irreversible and 92 genes cessation-
associated. For example, CYP1B1, a well-known detoxification gene, and BMP7,
a gene previously shown to have a role in immunoregulation (Cortez et al., 2020),
appear to be rapidly reversible in healthy volunteers but slowly reversible in the clinic
group (Figure 3.6b). WNT5A and SUSD2 genes show a similar behaviour. WNT5A

was up-regulated in current smokers; its over-expression has been shown to induce
epithelial-mesenchymal transition and invasiveness in NSCLC (Wang et al., 2017).
SUSD2, down-regulated in current smokers, was identified as a tumour suppressor
in NSCLC (Cai et al., 2015; Cheng et al., 2016). The 92 genes switching their
classification from rapidly reversible in healthy volunteers to cessation-associated in
clinic subjects showed a strong enrichment for cilia structure and function (Figure 3.6c,
Supplementary table 4).

Notably, 351 genes with a smoking-dependent expression change in the clinic group
had no smoking-dependent change in healthy volunteers (Figure 3.6a). These genes
were strongly enriched in extracellular matrix organisation and immune-related genes
(including response to interferon gamma, neutrophil activation, chemotaxis and in-
flammation (Figure 3.6c). For example, the expression of GBP6, an interferon-
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Fig. 3.5 Principal component analysis on the genes belonging to different re-
versibility classes. RR: Rapidly reversible genes, SR: Slowly reversible genes;
IR:irreversible genes. Each small dot is a patient and colours indicate the smok-
ing status of the patient. Large dots represent the mean of all patients for each smoking
class. (a): Nasal samples from healthy volunteers, using the reversibility classes from
the Bayesian model on the healthy volunteer group. (b): Nasal samples from clinic
subjects (cancer + benign), using the reversibility classes from the Bayesian model on
the clinic group. (c): Bronchial samples from clinic subjects (cancer + benign), using
the reversibility classes from the Bayesian model on the clinic group.



58 The smoking-induced field of injury and its implications for lung cancer risk

induced gene, was constant over smoking status in healthy volunteers, while reduced
in smokers in the clinic group and showed a slowly reversible post-cessation dynamic
(Figure 3.6b). Down-regulation of GBP6 was associated with reduced overall survival
in squamous cell carcinoma of the head and neck (Wu et al., 2020). These results
align with the differences between the clinic and healthy volunteer groups observed by
differential expression analysis and again highlight the presence of immune alterations
in clinic subjects.

Overall, a strikingly different response to smoke can be observed in clinic patients
compared to healthy subjects, with altered genes in clinic patients showing slower
reversibility post-cessation. Moreover, a large number of alterations appear to be
specific to the clinic group.

From here on, I define the union of the genes that show smoking-dependent expression
changes in the healthy and clinic groups as smoke-injury genes (N=864).

3.2.4 Reversibility of pathways affected by smoking

In the previous sections I described how I identified a set of genes involved in the
smoke injury response in the healthy volunteer and clinic groups, along with the
major disrupted cellular pathways and functions. Next, I set out to assess the overall
behaviour and post-cessation reversibility of these pathways, in an effort to identify
regulatory mechanisms underlying the different response to smoke in the two donor
groups. Therefore, I performed a pathway analysis by aggregating the expression of
genes belonging to pathways of interest and looking at their behaviour over smoking
status. I calculated geneset metascores by averaging the expression of genes belonging
to each of 8 GO terms: Keratinization, Oxidative stress response, Extracellular matrix

organization, Cilium organization and the immune-related Response to interferon

gamma, Neutrophil-mediated immunity, Antigen processing and presentation and
Inflammatory response. The metascore trends over smoking status mirrored the
gene-level observations described in Section 3.2.2 and Section 3.2.3. Keratinization

showed similar, rapidly reversible, dynamics in the two donor groups, while Oxidative

stress response showed a slower reversibility in the clinic compared to the healthy
group. Cilium organization appeared rapidly reversible in healthy volunteers while
displaying a cessation-associated trajectory in clinic subjects, with seemingly increased
expression in former smokers compared to current and never smokers. All immune-
related genesets had reduced expression and were uniquely disrupted in clinic patients
(Figure 3.7a). In particular, the metascore of Response to interferon gamma and
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Antigen processing and presentation in clinic patients did not revert back to healthy
never-smoker level even longer than 10 years after smoking cessation (Figure 3.7b).

(a) (b)

(c)

Fig. 3.6 Smoke injury dynamics in nasal epithelium. (a) Plot showing a change of
reversibility dynamics for the same genes in the two donor groups; (b) Normalised gene
expression over smoking status for 4 smoke injury genes with different post-cessation
dynamics in the clinic and healthy groups, with line-type and shape representing
donor status and colours representing the reversibility classes assigned to genes; (c)
Proportion of RR, SR and IR genes within different GO categories involved in smoke
injury response. The top row shows the proportions for all smoke-injury genes, and
the numbers in parentheses give the number of smoke-injury genes found in each GO
category. In (a) and (c) genes classified as unaffected by smoking in both donor groups
were removed.
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Fig. 3.7 (previous page) Reversibility of pathways affected by smoking. (a) Geneset
metascore over smoking status for 8 GO terms describing pathways involved in
smoke injury response; the plots show a comparison of pathway metascore dynamics
in healthy and clinic subjects. (b) Pathway metascore for Response to interferon
gamma and Antigen processing and presentation in clinic patients, with >1 year
former smokers divided in subjects who quit more or less than 10 years before sample
collection; black dashed line represents the average metascore value in healthy never
smokers.

3.2.5 Core transcriptional regulators of smoke injury response

Next, I sought a different approach to understand the processes involved in smoke
injury response and their post-cessation reversibility by identifying the transcriptional
regulators orchestrating the observed expression changes in current and former smok-
ers. To this end, I built a transcription factor (TF)-target interaction network specific
to nasal epithelium, and inferred the activity of each TF in the network from nasal
gene expression data (Section 3.5). I then used the Bayesian model selection ap-
proach described in Section 3.2.2 to categorise each TF into reversibility classes (US,
RR, SR, IR, CA), separately in healthy volunteers and clinic subjects. As before, I
used healthy never smokers as the baseline for comparison. I found 155 TFs with
smoking-dependent activity changes in the healthy volunteer group (at the effect size
thresholds defined in Section 3.5). All of them were classified as rapidly reversible.
Similarly to the results at the gene level, in the clinic group I observed a shift towards
slower reversibility: of 171 TFs with smoking-dependent activity changes, 32 were
classified as rapidly reversible, 56 as slowly reversible, 45 as irreversible and 38 as
cessation-associated (Figure 3.8a).

Since the TF-target interaction network was built from gene expression data from nasal
samples, I expected the smoke injury TFs to summarise the expression alterations
observed at the gene level. To confirm this, I performed a hypergeometric test for
over-representation of all 864 smoke injury genes identified in the healthy volunteer
and clinic groups within the targets of each of the 285 smoke injury TFs. Significant
enrichment was observed for 130/285 TFs (P < .05). Notably, ∼70% of the smoke
injury genes (616/864) were contained within the targets of 25 smoke injury TFs
(Figure 3.8b). I defined these TFs as master regulators of the smoke injury response,
as they are likely the drivers of the transcriptional changes caused by cigarette smoke
in nasal epithelium. When visualised in an interaction network where nodes are
TFs and edges represent the overlap of their target genes, the master regulator TFs
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Fig. 3.8 Smoke injury dynamics at TF-level. (a) Plot showing a change of reversibil-
ity dynamics for the same TFs in the two donor groups (TFs classified as unaffected
by smoke in both donor groups were excluded); (b) Accumulation curve showing the
percentage of smoke injury genes (union of genes found in healthy and clinic group,
n=864) covered by an increasing number of smoke injury TFs (union of TFs found
in healthy and clinic group, n=285). The ‘elbow’ of the curve is reached at 25 TFs,
which cover ∼70% of smoke injury genes.

form smaller groups, each regulating one of the main biological functions identified
as disrupted by smoking: ciliary function, keratinization, oxidative stress response,
extracellular matrix organisation and immune response and inflammation (Figure 3.9a,
Supplementary table 5).

I then looked at the activity dynamics over smoking status for the 25 master regulator
TFs (4 examples are shown in Figure 3.9b). Five TFs showed the same dynamic in
healthy and clinic subjects, being rapidly reversible in both groups (2/5 passed the
effect size threshold, Section 3.5). Four of these TFs are involved in the regulation
of keratinization. Keratinization is a mark of squamous metaplasia, a pre-malignant
alteration of the airway epithelium induced by exposure to cigarette smoke (Leube
and Rustad, 1991; Peters et al., 1993). Rapid reversibility of the activity of these TFs
suggests that squamous metaplasia induced by smoke in the airway epithelium, at least
in nasal epithelium, is quickly resolved once the damaging agent is removed. The
remaining TFs showed different dynamics in the healthy and clinic groups. Confirming
gene-level observations, 11 regulators of ciliary function were rapidly reversible in
healthy subjects while cessation-associated in clinic subjects (7/11 passed the effect
size threshold, Section 3.5). Two regulators of xenobiotic detoxification and oxidative
stress response, PIR and LHX6, switched from rapidly to slowly reversible in the
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clinic group, suggesting that alterations of these pathways persist longer in clinic
patients than in healthy subjects. Again, as observed at the gene level, a group of TFs
showed no smoking-dependent change in healthy subjects, while being classified as
slowly reversible or irreversible in the clinic group. All these TFs had lower activity in
clinic current and ex smokers compared to healthy never smokers, and all of them are
regulators of immune functions, including interferon-mediated signalling.

Together with the observations at the gene level and pathway level, these results
indicate smoking-associated immune alterations as a specific response of the clinic
group and a potential contributor to lung cancer risk in both current and former
smokers.

3.2.6 Using slowly reversible genes as a biomarker of past smoke
exposure

Most studies investigating the effects of cigarette smoke on health rely on self-report
for the annotation of patients’ smoking history (Connor Gorber et al., 2009). Several
studies have shown that self-reported information is often inaccurate, which can lead to
misinterpretation of clinical outcomes and contradictory results across studies. Patients
tend to misrepresent or minimise their cigarette use, specially if they belong to certain
populations for which smoking is particularly frowned upon, such as pregnant women
and individuals affected by lung diseases such as COPD and asthma (Aurrekoetxea
et al., 2013; Stelmach et al., 2015). Self-report of smoking habits can be misleading
even for truthful patients, as it does not consider other sources of exposure such as
second-hand smoke. For these reasons, self-reported smoking status is often confirmed
by a biochemical test in which the levels of cotinine, a metabolite of nicotine, are
measured in the patient’s blood or urine (Connor Gorber et al., 2009). However,
cotinine can only be detected for a few days after smoking cessation, making it a valid
biomarker for recent smoke exposure only. Moreover, being a metabolite of nicotine,
cotinine can also be found in the fluids of non-smokers on nicotine-replacement therapy
and of e-cigarette users.

In previous sections I reported a subset of genes affected by smoking whose expression
slowly reverts back to healthy never smoker levels after smoking cessation. When these
slowly reversible genes are used to perform a PCA, they order patients according to
their smoking status, from the most to the least recently exposed to smoke (Figure 3.5).
Therefore, these genes could be used as a biomarker of past smoke exposure, potentially
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Fig. 3.9 (previous page) Master regulators of smoke injury response. (a) Network
representation of the 25 master regulator TFs summarising the smoke injury response
in nasal epithelium. Edge thickness indicates the overlap of TF target genes (Jaccard
coefficient). Nodes are coloured based on their reversibility class in the clinic group;
a lighter colour shade is used for TFs that are classified as RR, SR, IR or CA but do
not pass the effect size thresholds; (b) activity over smoking status for 4 smoke injury
MRs with different post-cessation dynamics in the clinic and healthy groups, with
line-type and shape representing donor status and colours representing the reversibility
classes assigned to genes.

able to detect current or very recent exposure, as well as exposure that occurred months
or even years in the past. Such biomarker could be used to confirm self-reports by
collecting a nasal sample in a non-invasive way.

To confirm this potential of our slowly reversible genes, I performed a pseudotime
analysis (Section 3.5). In this analysis, patients are ordered along a pseudotemporal
trajectory defined by their transcriptional state, usually reflecting the progression
through a biological process. As input for the pseudotime analysis, I provided the nasal
expression of the slowly reversible genes identified in Section 3.2.3. The resulting
pseudotemporal ordering of the patients correlates with the patients’ smoking status,
with never smokers exhibiting the lowest pseudotime values and current smokers and
former smokers who quit for less than 1 month the highest (Figure 3.10).

Smoking history of patients can thus be accurately described by the expression of our
slowly reversible genes, and summarised via pseudotemporal ordering into a single
value representing a "smoke exposure score".

3.2.7 Using nasal expression of smoke injury genes for disease risk
prediction

In the previous sections, I described how I characterised the gene expression alterations
induced by smoke injury at the level of nasal epithelium, and postulated that the
observed differences in injury response in healthy and clinic subjects might explain
their difference in lung cancer risk. In this section and the following, I assess the
potential of using the expression of nasal smoke injury genes with a different behaviour
in healthy and clinic subjects (749 genes, here referred to as "risk genes") to predict
lung cancer risk. If nasal epithelium of current and former smokers contained valuable
information on their disease status, it would be possible to devise a non-invasive lung
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Fig. 3.10 Distribution of pseudotime values stratified by smoking status of the
subjects. Pseudotime was inferred using genes classified as slowly reversible in
Section 3.2.3.

cancer biomarker. Such biomarker could be used to assess the general population of
current and former smokers, to establish a systematic pre-screening to prevent low-risk
individuals from undergoing unnecessary follow-up. In the clinic context, where
patients already show evidence of lung disease, the biomarker would help clinicians in
the identification of patients with the highest need for further investigation.

Thus, we trained two independent classifiers using the 749 risk genes: a "population
classifier" that predicts the donor group from which the samples were taken (clinic
subject or healthy volunteer) and a "clinic classifier" that predicts the cancer status
of each patient. For both classifiers, we used lasso-penalised multivariate logistic
regression controlling for sex, age, smoking status and pack-years (Section 3.5), and
derived a per-subject score from each classifier.

As expected, the population score clearly separated healthy volunteers from clinic
subjects (Figure 3.11a), while the clinic score (Figure 3.11b) additionally distin-
guished cancer patients from patients with benign conditions within the clinic group.
Interestingly, this classifier placed clinic benign subjects between healthy volunteers
and clinic cancer subjects. Both classifiers were still able to separate the donor groups
after regressing out all clinical covariates, showing that nasal gene expression data
improves classification compared to the use of clinical covariates alone (Figures 3.11c
and 3.11d). The two scores were highly correlated (0.88 Pearson correlation, p-value
<1e-16), as expected, since the same set of genes is used as predictors (Figure 3.11e).
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Fig. 3.11 Population and clinic risk scores. Risk score distributions for the population
(a) and clinic (b) classifiers, predicted using clinical variables the expression of smoke
injury ’risk genes’; (c) and (d) show the same distributions after regressing out the
clinical covariates; (e) correlation between the population and clinic risk scores.

For both scores, we performed 10-fold cross-validation and calculated the area under
the curve (AUC) for precision-recall (PR) and receiver operating characteristic curve
(ROC). Both scores have mean AUC values greater than 0.8 over cross-validation
(Figure 3.12). Moreover, we found that models that incorporate the expression of the
risk genes performed significantly better than models built on clinical covariates alone
(Figure 3.12). To confirm the contribution of the 749 risk genes to the predictive power,
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we also compared our model with an equivalent one built using the expression of 749
randomly selected genes. Both the clinic and the population classifiers significantly
outperformed the models based on random genes (Figure 3.12).

Furthermore, I separately looked at the distributions of risk scores in current and former
smokers. The population risk score showed a difference in the score of healthy and
clinic subjects for both smoking groups, observable even after regressing out clinical
covariates (Figures 3.13a and 3.13b). Although the clinic score also separates benign
from cancer patients in both smoking groups, the added value of gene expression
information appears less important, particularly in former smokers (Figures 3.13c
and 3.13d).
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Fig. 3.12 (previous page) Performance of different classification models based on
clinical covariates and nasal gene expression. Distribution of AUC values over 100
rounds of cross-validation for the population (a) and clinic (b) risk classifiers. Perfor-
mance is shown for models including clinical variables only (Clinical), expression of
the 749 risk genes only (Smoke genes) and a combination of clinical variables and
expression of the 749 risk genes (Clinical + smoke genes); Additionally, performance
is shown for a model trained on the expression of a set of 749 randomly selected genes
(Random genes) and a model trained on a combination of clinical variables and a set
of 749 randomly selected genes (Clinical + random genes). For both classifiers, both
the area under the precision-recall (PR) and receiver-operating characteristics curves
are reported.
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Fig. 3.13 Risk score distributions in current and former smokers. Population
and clinic risk score distributions for current smokers (a-c) and former smokers with
time-since-quit longer than 1 year (b-d) after regressing out all clinical covariates.

Additionally, our clinic classifier separates clinic benign from clinic cancer patients re-
gardless of their cancer type (squamous carcinoma or adenocarcinoma, Figure 3.14a),
and both classifiers detect increased risk in subjects who quit smoking even for more
than 10 years (Figure 3.14b).

Finally, the work presented in this chapter is based on the notion that cigarette smoke
produces an extensive field of injury, which is comparable in lower airway tissues,
such as bronchial epithelium, as well as more accessible upper airway tissues, such as
nasal epithelium. Thus, I tested our clinic model on bronchial samples collected from
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Fig. 3.14 Distributions of population and clinic risk scores in different NSCLC
subtypes and in long term ex smokers. Population and clinic risk scores distinguish
cancer patients independently of NSCLC subtype (a) and smoking status (b), including
former smokers with time-since-quit longer than 10 years.

clinic patients. The model separated patients with cancer from patients with benign
conditions in both current and former smokers (Figure 3.15a). Even a model that
included only gene expression information distinguished between the two groups, al-
though the difference was not significant for former smokers (P = .082, Figure 3.15b).
Showing that our classifier works in a deeper airway tissue confirms that gene expres-
sion changes similar to those occurring in the lower airway, closer to the tumour site,
can be observed at the level of the nasal epithelium.
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Overall, our results demonstrate that classifiers based on smoking-induced transcrip-
tional alterations in nasal epithelium have the potential to improve risk stratification
of current and former smokers, both in the context of a population screening and in a
clinical setting.
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Fig. 3.15 Clinic risk score applied to bronchial samples from clinic patients. Dis-
tribution of patients’ risk scores with (a) and without (b) including clinical covariates
in the model.

3.2.8 Immune alterations drive lung cancer risk classification

To better understand the mechanisms leading to increased risk, I identified genes
contributing most to the population and clinic scores. In particular, I looked at genes
that were selected by the lasso procedure in more than 80% of CV rounds Figure 3.16.
Among the risk genes selected most frequently in the population model were the
interferon-regulated IFI44 and SAA2, encoding for a protein found at higher levels in
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Fig. 3.16 Top contributing genes to the population and clinic risk classifiers. The
weight of the genes selected in more than 80% of cross validations in the population
and clinic classifiers; the presented value is the mean over all cross validation and the
error bars represent standard deviation; the annotation track on the right shows the
reversibility classes of the genes in the healthy and clinic groups.
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the blood and tissues of lung cancer patients compared to healthy subjects (Critchley-
Thorne et al., 2009; Sung et al., 2011). Risk genes selected most frequently for the
clinic score included TGM3, a gene involved in EMT in several cancer types (Feng
et al., 2020; Hu et al., 2020; Uemura et al., 2009; Wu et al., 2013) and PDE7A, also
shown to be involved in EMT (Kolosionek et al., 2009). Some of the risk genes
selected most frequently for both population and clinic score were MMP13, encoding
a metalloproteinase known for its involvement in NSCLC (Merchant et al., 2017),
and HLA-DQA2, a member of the major histocompatibility complex (MHC); several
studies have shown the involvement of the MHC in tumour development (Seliger et al.,
2017).

Since all risk genes used as predictors for our classifiers are involved in the response to
smoke injury, it is difficult to gain insight into the mechanisms of risk by only looking
at genes frequently selected by the lasso procedure. In order to identify, among the
cellular processes disrupted by smoking, the ones that contribute most to increased
risk, I used the geneset metascores calculated for the 8 smoking-associated GO terms
mentioned in Section 2.2.4. Then I calculated the correlation between the per-subject
geneset metascores and the population and clinic risk scores. I calculated these corre-
lations for current and former smokers (> 12 months) separately, to be able to identify
differences in geneset contribution to risk in the two groups that might reflect differ-
ences between acute smoke injury response and the long-term consequences of past
smoke exposure (Figures 3.17a and 3.17b). In current smokers, while Keratinization

and Extracellular matrix organization did not significantly correlate with either risk
score, the remaining four genesets tested showed moderate but significant correlation
with both risk scores, pointing to alterations of the xenobiotic detoxification pathways,
ciliary function and immune response as the main contributors to patient-specific
differences in risk. In former smokers, the population risk score correlated with the
same 4 GO terms, indicating that detoxification pathways, ciliary function and immune
response are the main contributors to risk. In contrast, only pathways related to im-
mune alterations, (Response to interferon gamma and Neutrophil-mediated immunity),
correlated with the clinic risk score in former smokers, while no correlation was
observed with Xenobiotic metabolism, and only a very weak correlation with Cilium

organization.

These results indicate that immune alterations are significant contributors to the risk of
cancer in both current and former smokers in the clinic group.
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Fig. 3.17 Correlation of geneset metascore and risk scores. Correlation between
the population (a) and clinic (b) risk score and geneset metascore for 8 genesets
representing biological functions altered by smoking; correlation is shown separately
for current (red) and former (blue) smokers; shaded areas around the fitted line indicate
95% confidence interval.
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3.3 Comparison with existing lung cancer classifiers
based on nasal gene expression

In 2017, Perez-Rogers et al. (2017) described a lung cancer classifier based on gene
expression changes in the nasal epithelium of cancer patients compared to patients
with benign conditions. The classifier was trained on microarray expression profiling
data from the AEGIS study, where nasal epithelial brushings were collected from
current and former smokers undergoing diagnostic procedures for pulmonary lesions
suspicious of lung cancer. The authors found ∼500 genes with differential expression
between cancer patients and patients with benign disease, and built their classifier
using 30 of these genes, in addition to clinical information (age, smoking status, time
since quit, size of lesion).

When applying the classifier from Perez-Rogers et al. (2017) to our cohort, I observed
a clear separation of healthy volunteer subjects from clinic patients, regardless of
cancer status, while only a weak separation of clinic cancer from clinic benign patients
(Figure 3.18a). I hypothesised that the reason lay in the different composition of
the "benign" group in the two cohorts. The AEGIS benign group might be closer
in composition to our healthy volunteer subjects than to our clinic benign patients.
I tested this hypothesis by using gene-set enrichment analysis (GSEA). I ranked all
genes based on their fold-change in clinic compared to healthy subjects, and tested
for enrichment of Perez-Rogers’ cancer signature gene at the top and bottom of the
ranked list. I found a significant enrichment of Perez-Rogers’ up-regulated and down-
regulated cancer genes at the top and bottom of the ranked gene list, respectively.
Moreover, I performed a similar GSEA, ranking genes by their fold-change in clinic
patients, benign only, compared to healthy volunteers. I observed an even stronger
enrichment of Perez-Rogers’ cancer signature genes at the top and bottom of the ranked
list (Figure 3.18b). These results suggest that Perez-Rogers’ cancer signature reflects
differences between healthy current and former smokers and people who developed
smoking-associated respiratory symptoms and pathologies, including lung cancer.

I then tested our population and clinic classifiers on the AEGIS cohort used in Perez-
Rogers et al. (2017). Even though the AEGIS cohort was microarray-based, and the
samples derived from a different clinical context, both classifiers distinguished patients
with and without cancer (Figure 3.18c). The strongest separation was observed with
the population classifier (P = 1.5× 10−9 compared to P = 6× 10−6 for the clinic
classifier), as expected from the observations described above in this section.
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Fig. 3.18 (previous page) Comparison with nasal lung cancer classifier from Perez-
Rogers et al. (2017). (a) Perez-Roger’s classifier applied to the nasal samples in the our
cohort. (b) GSEA plot showing the concordance between Perez-Roger’s nasal cancer
signature (535 genes) and the genes differentially expressed between the CRUKPAP
clinic patients and healthy volunteers (5359 genes); the bottom track represents a list
of all protein-coding genes ranked according to their fold-change in clinic compared
to healthy subjects; vertical bars represent the position in the ranked list of genes
up- (green) and down-regulated (pink) in cancer patients in Perez-Roger’s signature;
pink and green solid lines represent the running enrichment score for Perez-Roger’s
signature genes moving down the ranked list; in the top right corners are reported the
final enrichment scores and the associated p-values. (c) Our population and clinic
classifiers applied to the AEGIS cohort.

3.4 Discussion

In this chapter, I explored the field of injury created in the airway by an environmental
damaging agent, cigarette smoke, and its involvement in determining lung cancer risk.
I focused on the field of injury at the level of nasal epithelium, a tissue of the upper
airway, accessible through non-invasive procedures, and thus potentially useful as a
diagnostic proxy for lower, less accessible, regions of the airway. The cohort analysed
included subjects with a wide range of smoking histories, and it was the first to date
to include healthy subjects, with no indication of lung disease, and clinic-referred
patients, with symptoms suggesting the presence of lung cancer or other lung diseases.
The particular composition of this cohort allowed us not only to study the effects of
smoking in nasal epithelium, and the reversibility of the smoking-associated injury
after smoking cessation, but to compare these dynamics in subjects exposed to the
same insult, but with different outcomes, namely healthy and clinic-referred subjects,
to try to discover differences in the two groups that could explain differences in the
risk of developing lung cancer.

First, I compared the nasal transcriptional landscape of healthy and clinic subjects to
identify overall differences in gene expression between the two groups. I found that
one of the major features distinguishing healthy and clinic subjects is a decrease in the
expression of genes involved in immune response in clinic subjects, which suggests
the presence of immunosuppression in current and former smokers who develop lung
disease.

I then thoroughly characterised the smoke injury response, at the level of nasal ep-
ithelium, in healthy volunteers. The genes identified as affected by smoking, and



78 The smoking-induced field of injury and its implications for lung cancer risk

the biological pathways they were enriched in, were largely consistent with those
from other studies of ‘smoke injury genes’ (Beane et al., 2007). I also showed that
most of the genes whose expression was affected in current smokers reverted back to
never-smoker level rapidly after smoking cessation.

I compared this "healthy" response to smoke injury with the response observable in
clinic patients with symptoms of lung disease. As for the analysis in healthy volunteers,
here we also used healthy never smoker gene expression as the baseline value. While
it might be argued that a group of never smokers from the clinic group would be a
better control group to identify smoking-associated expression changes in the clinic
group, we chose to use healthy never smokers for two reasons. Firstly, only a few never
smokers in our cohort belong to the clinic group, the number being too small to grant
enough power for the analysis. Secondly, and more importantly, even a larger number
of clinic-referred never smokers would not constitute an appropriate control group
for this analysis: although they were never actively smoking, these subjects show
respiratory symptoms typically associated with smoke exposure (including COPD and
cancer), and thus their samples are not representative of healthy airway unaffected
by smoke. Thus, in the absence of longitudinal data, never smokers from the healthy
group best serve as a baseline for this analysis.

A strikingly different response to smoke was observed in clinic patients compared to
healthy volunteers, with a larger number of affected genes whose expression appeared
slowly reversible or irreversible post-cessation in the clinic group. Notably, most of
the slowly reversible and irreversible genes in the clinic group were unaffected by
smoking in healthy volunteers. This suggests that these genes might be affected by
smoking exclusively in higher-risk subjects, or exhibit an overall expression difference
between individuals in the healthy and clinic groups (maybe determined by germline
variation), or a combination or interaction of the two. Most of these genes showed
reduced expression in current smokers, and pathway analysis showed enrichment for
immune-related genes including response to interferon gamma, neutrophil activation,
chemotaxis and inflammation. Analysis at the level of transcription factor activity
within a nasal epithelium gene regulatory network showed a similar pattern, suggesting
again a role for immune-depression in determining risk of lung disease.

Also interesting to note is the large number of cilia-related genes classified as cessation-
associated in the clinic group. The unusual trajectory of these genes is due to their
conflicting behaviour over smoking status and between healthy and clinic subjects.
Consistent with cigarette smoke damaging airway cilia (Prasetyo et al., 2021), cilia-
related genes were down-regulated in current smokers in both donor groups. However,
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cilia-related genes showed increased expression in the clinic group compared to healthy
volunteers, both in current and former smokers. This increased expression of cilia
genes in the clinic group might be due to the decreased expression of interferon-
gamma-related genes in the same group, as it has been shown that interferon gamma
suppresses ciliogenesis and ciliary movement (Chen et al., 2020).

Finally, by using genes exhibiting a different response to smoke in healthy and clinic
subjects, we devised two lung cancer risk classifiers, with potential application in
different clinical contexts. The population classifier, in particular, is the first to address
lung cancer risk stratification in the healthy current and former smoker population,
and it has an average cross-validated AUC (ROC) of 0.92, meaning that it identifies
95% of high-risk individuals with a false positive rate of ∼40%. We also show that
our population classifier is effective in both current and former smokers. In particular,
in line with evidence indicating persistent cancer risk long after smoking cessation,
clinic patients have an elevated risk score more than 10 years after smoking cessation
(Peto, 2011). The classifier is also equally efficient at identifying individuals with early
or late stage disease and squamous or adenocarcinoma. This classifier, if validated
in an independent group of healthy volunteers with a history of smoking, could help
improve population-level risk stratification with the use of a non-invasive test.

We compared our classifiers with the one described in Perez-Rogers et al. (2017).
Interestingly, our population classifier performed better than our clinic classifier in
separating cancer and benign patients within the AEGIS cohort. At the same time,
Perez-Rogers’ classifier clearly separated our healthy volunteer group from our clinic-
referred patients, but the separation was weaker for benign and cancer patients within
the clinic group. These results might reflect the different composition of the cohorts
compared. The AEGIS cohort is entirely composed of subjects presenting with pul-
monary lesions and referred to clinical investigation for diagnosis. These patients
would thus place within the clinic group, if compared to our CRUKPAP cohort. How-
ever, we could speculate that country-dependent differences in screening frequency
and diagnostic protocols could have had an impact on the composition of these benign
groups, with the AEGIS benign patients being closer to a healthy current/former
smoker population than the CRUKPAP benign patients.

Throughout this study, alteration of certain immune-related functions appeared to
be a key feature of the clinic-referred group of patients, which clearly distinguishes
them from the healthy current and former smokers. Genes involved in these immune
functions were also identified as the main contributors to our risk scores in both current
and former smokers. The two pathways recurrently emerging throughout our analysis
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were Neutrophil mediated immunity, Response to interferon gamma and Antigen

processing and presentation. All these pathways are known for their involvement in
lung cancer development.

Neutrophils play a complex role in the tumour immune microenvironment. There are
two different types of tumour-associated neutrophils, named N1 and N2, that exhibit
opposing pro-tumorigenic and anti-tumorigenic effects (Gonzalez et al., 2018; Mackey
et al., 2019; Rosales, 2018). N1 neutrophils are pro-inflammatory cells, exerting their
anti-tumorigenic function by enhancing cytotoxycity and increasing the secretion of
immuno-activating cytokines. N2 neutrophils were shown to promote proliferation,
extracellular matrix remodelling and angiogenesis and to inhibit anti-tumoral immune
response. Furthermore, these two populations of neutrophils play their roles at different
stages of tumour development. N1 cells are more abundant at early stages and, as the
tumour progresses, they are displaced by N2 cells, a phenomenon known as neutrophil
polarisation. In our study, we observed decreased expression of neutrophil-related
genesets in the clinic group compared to healthy volunteers. Since the tissue examined
is distant from the cancer site, and the decrease is observable also in patients with
benign conditions, we can speculate that the anti-tumour neutrophil population is less
active in clinic-referred patients, making them at higher risk to contract lung cancer.

IFN-γ is a molecule with an important role in anti-tumour immune response. It
activates cellular immunity in an inflammatory environment, has anti-proliferative, pro-
apoptotic properties and it has been shown to inhibit angiogenesis (Jorgovanovic et al.,
2020). The lower expression of IFN-γ we observe in clinic patients might play a role
in increasing their risk of developing lung cancer. A decrease in expression of genes
involved in IFN-γ signalling, as well as in antigen presentation, was also observed
by Pennycuick et al. (2020) in persistent and progressive bronchial premalignant
lesions. The authors concluded that an immunosuppressive microenvironment, which
has been documented before in the presence of lung cancer (Altorki et al., 2019), is
already present during premalignancy, and might promote the progression to invasive
disease. We observe these alterations at an even earlier step of carcinogenesis, in
healthy-appearing, upper airway tissue affected by the smoking-associated field of
injury. Moreover, further work conducted in our group linked known lung cancer
GWAS variants to changes in the expression of 41 genes in our cohort (de Biase,
Massip et al., 2021). These genes overlapped with the list of smoke injury genes
described in this chapter; in particular, they were enriched for genes involved in
response to IFN-γ and antigen presentation. These findings provide a first evidence
of a causal link between germline variants and individual response to smoke, with
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patient-specific genetic background increasing the risk of lung cancer insurgence by
creating an immunosuppressive environment.

3.5 Methods

Cohort and sample collection

487 donors were recruited into the CRUKPAP cohort at Royal Papworth Hospital,
Cambridge (UK), including 114 healthy volunteers (HV) and 337 patients being
investigated for suspicion of lung cancer. From these donors 413 nasal epithelial
curettages were collected using Arlington Scientific ASI Rhino-pro nasal curettes.
Briefly, the nostril is opened with a nasal speculum to identify the inferior turbinate.
Under direct vision the tip of the nasal curette is gently scraped over the turbinate to
obtain a ’peel or curl’ of epithelial tissue. The curl of tissue is then removed by flicking
the curette while the tip is submerged in RNAlater™ collection medium and presence
of the curl floating in the medium is confirmed by visual inspection. This procedure is
repeated twice for each nostril per donor. RNA integrity (RIN) was checked for all
samples and we found >80% of samples to have RIN 6 or better.

Bronchial brushings were collected using 2.0mm brush diameter cytology brushes
(Olympus Medical, UK) from 236 patients undergoing flexible bronchoscopy as part
of investigations for suspected lung cancer.

For 162 donors, both nasal and bronchial samples were available. All samples under-
went short-read total RNA sequencing using Illumina TruSeq library generation for
the Illumina HiSeq 2500 platform. Blood samples were taken from 467 donors and
germline genotyped using the Illumina Infinium Oncoarray platform at 450K tagging
germline variants. Total gene expression levels (TPM and variance stabilised) were
determined for 18,072 protein coding genes for all samples using DeSeq2 v1.26.0
Love et al. (2014). Research ethics approvals for sample collection from participants in
this study were given by East of England Cambridge Central REC 13/EE/0012 and the
National Research Ethics Service Committee South East Coast – Surrey 13/LO/0889.

RNA extraction and sequencing

Tissue samples from bronchial brushings and nasal curettes were stored in 500µl
RNALater overnight at 4 °C, and then at −80 °C for longer-term storage. RNA was
extracted using Qiagen MiRNeasy columns according to the manufacturer’s protocols.
Briefly, bronchial brushes were rinsed in PBS, brushes transferred into 700µl Qiazol
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and cells lysed by vortexing twice for 30 seconds. For nasal samples the RNALater
containing nasal tissue (500µl) was diluted with 2ml of PBS and spun at 10,000 rpm
for 10 min. The cell pellet was lysed by re-suspension in 700µl Qiazol. For both
types of samples, the Qiazol lysate was applied to a QiaShredder tube (#217004) and
spun at 13,000 rpm for 2 mins. The homogenate was kept at room temperature for
5 mins, followed by chloroform extraction using PhaseLock tubes. Nucleic acids in
the aqueous phase were precipitated using 1.5 volumes of 100% ethanol and DNA
was digested using DNAse I. Finally, RNA was isolated from the mixture using
RNAeasy mini spin columns. RNA was quantified using a Qbit measurement and
quality assessed using an Agilent Bioanalyzer. For samples with a RIN greater than 7,
a total of 500ng of RNA was used for Illumina TruSeq Library generation. Sequencing
was carried out on HiSeq 2500 Illumina sequencers. Sequencing was carried out in
two separate multiplexed experiments.

RNA sequencing data processing

Alignment was carried out with TopHat2 (Kim et al., 2013), using as reference the
human genome version GRCh37. Read counts were computed for all protein-coding
genes with subread featureCounts v1.6.0 (Liao et al., 2014). The data was produced
in two experimental batches, producing a strong batch effect that can be observed in
the raw data. Moreover, a group of samples from one batch has lower total counts
compared to the other samples. Raw counts were normalised using DESeq2’s variance-
stabilising transformation, which had the advantage of partially correcting the previ-
ously mentioned batch effects. Genes with across-samples log variance smaller than -4
were discarded from further analysis. Total gene expression levels (variance stabilised)
were determined for 18,072 protein-coding genes for all samples.

Variance components analysis and differential expression analysis

Variance components analysis was performed using R package variancePartition
v1.16.1 (Hoffman and Schadt, 2016). The experimental batch effect was regressed out
of the vst-normalised expression before extracting variance components.
All differential expression analyses were performed with DESeq2 v1.26.0. Age,
experimental batch, sex and pack-years were included as confounding variables. Genes
with multiple-testing-adjusted (Benjamini-Hochberg) p-values < 0.05 were considered
differentially expressed. For differential expression between clinic cancer and clinic
benign in bronchial samples, 8 genes had artificially high (>20) absolute fold-change,
due to their very low average expression across samples. These genes were removed
from the list of differentially expressed genes.
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Modelling time-dependent dynamics of smoke injury in nasal tissue

To identify genes affected by smoke and characterise their post-cessation expression
dynamics, we applied Bayesian linear regression and model selection using R package
BAS v1.5.3 (Clyde, 2018). To identify genes for which smoking has the strongest
effect, we applied a threshold on the beta coefficient and retained only genes with a
beta CS greater than 0.4 for rapidly reversible, slowly reversible and irreversible genes,
and a beta FSS greater than 0.25 for cessation-associated genes.

To model the dynamics of transcription factor activity over smoking status, a context-
specific protein-protein interaction network for nasal epithelium was built using
ARACNe-AP (Lachmann et al., 2016) on the vst-normalised expression data and
a list of 1988 human transcriptional regulators, compiled using information avail-
able in public databases (Ravasi et al., 2010). ARACNe-AP was able to infer nasal
context-specific interactions across 1548 regulators. The activity of each of these
regulators in each nasal sample was inferred using VIPER v1.20.0 (Alvarez et al.,
2016). A Bayesian regression and model selection approach was used, similarly to
what described above, to model transcription factor activity on smoking status and
assign each transcription factor to a reversibility class among unaffected by smoking,
rapidly reversible, slowly reversible, irreversible or cessation-associated. The same
thresholds for effect sizes applied to the gene expression results were applied here.

To test for enrichment of the smoke injury genes within the regulons of smoke injury
TFs, we performed a hypergeometric test; we corrected p-values for multiple testing
using the Benjamini-Hochberg method. Network representations of TF-TF and TF-
targets interactions were produced with Cytoscape v3.8.1 (Shannon et al., 2003).

For the network representation of the 25 smoke injury master regulators, the Jaccard
coefficient was calculated for each pair of TFs as the intersection of the targets of
the pair, divided by their union. Based on the Jaccard coefficient, the TFs appear
to cluster in smaller groups on the network. We manually defined the groups, and
performed functional enrichment analysis (with Gene Ontology terms) on the union of
each group’s target genes to identify the biological functions regulated by each group.

Pseudotime analysis was performed with R package phenopath v1.10.0 (Campbell and
Yau, 2018), using a constant value for the covariate vector.

Derivation of population and clinic risk scores

L1-penalised multivariate logistic regression was performed with R package glmnet
3.0-2 (Simon et al., 2011) using only the nasal gene expression data. Patient status
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was encoded with a binary variable (cancer: 1, no cancer: 0 for the clinic classifier;
clinic patient: 1, healthy volunteer: 0 for the population classifier), and patients with
Ineligible status were excluded from the analysis. In the gene expression classifiers, the
status of each patient was predicted based on the expression of the 749 risk genes and 4
clinical covariates, namely sex, age, smoking status and pack-years, all of which were
encoded as numerical variables (smoking status encoding: Never smoker: 0, former
smoker >1year: 1, former smoker 1-12months: 2, former smoker <1m: 3, current
smoker: 4). For the clinical classifier we also used a lasso regression, using only sex,
age, smoking status and pack-years as predictors. The lasso shrinkage parameter (λ )
was chosen to minimise the mean cross-validated error (“lambda-min” option in the
cv.glmnet function).

Area under the receiver operating characteristic curve and precision recall curves
were computed using R package PRROC (Grau et al., 2015), after 10 rounds of 10-
fold cross validation experiments. To compare performances of the risk genes to
performances on random genes, we randomly drew 20 sets of 749 genes among the
18,072 protein-coding genes retained for all analyses, and cross validations experiments
were conducted on the same test and training set as the one used with the risk genes.

The clinic classifier was applied to bronchial samples by choosing genes selected by
the lasso procedure in >80% of CV rounds, averaging the β coefficients of these genes
across CV, and using these values to calculate the per-patient risk score.

The population and clinic classifiers were applied to the AEGIS cohort as described
for bronchial samples. Age, pack-years, sex and smoking status information reported
for AEGIS were encoded to match as closely as possible our encoding of clinical
variables.

The clinicogenomic classifier described in Perez-Rogers et al. (2017) was applied
to our data as described in the paper, including all clinical variables except "mass
size", which is not available for the CRUKPAP cohort. Since the AEGIS data is
microarray-based, quantile normalisation was performed on the CRUKPAP data. The
R function normalize.quantiles.use.target from the preprocessCore package (Bolstad,
2019) was used on the CRUKPAP data with the AEGIS expression matrix as the target
distribution.

Gene ontology analysis and pathway analysis

All Gene Ontology (GO) enrichment analyses were performed using clusterProfiler
v3.14.3 (Yu et al., 2012). GO terms with adjusted (Benjamini-Hochberg) p-values <
0.05 were considered enriched. Pathway metascores were calculated by averaging
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vst-normalised gene expression of genes belonging to the selected genesets, after
regressing out experimental batch effect.





Concluding remarks

In this thesis, I explored the effects of genetic and environmental factors on cellular
phenotypes associated with cancer risk and development.

In Chapter 2, I showed that mutations occurring in simple sequence repeats have
a significant effect on cell fitness, which is observable in yeast strains as a mildly
negative impact on growth rate. Other mutation accumulation experiments in model
organisms show that only few mutations that spontaneously accumulate in a genome
have strong advantageous effects on cell fitness (Eyre-Walker and Keightley, 2007),
mirroring the tumour landscape, where a multitude of mutations accumulate before
and after malignant transformation, but only a few of them act as drivers. These
studies also assign mainly deleterious effects to the majority of accumulated mutations
Keightley and Lynch (2003).
The majority of mutations observed in cancer genomes are passengers, alterations
which are often considered neutral and inconsequential for tumour development.
However, passengers have the potential to significantly participate in shaping the
tumour landscape, when a large number of their small individual effects are combined
(McFarland et al., 2013). The cumulative deleterious effect of passenger mutations
might help explain the paradox of MSI tumours showing a better prognosis than non-
MSI tumours, despite having an increased genome instability. The main hypothesis
proposed in current literature is that this outcome is associated with the large number
of neoantigens produced by the high mutational load, and the consequent increase
in anti-tumour immune response (Lee et al., 2016; McGrail et al., 2020). However,
McFarland et al. (2017) have shown that a high number of copy-number passenger
alterations reduces fitness in cancer cell lines and slows down cancer progression in
mouse models, even in the absence of enhanced immunity.
Our results thus provide an alternative, or complementary hypothesis, for the favourable
outcome associated with MSI tumours. We showed that most mutations in SSR regions
have an effect on growth rate, although very small; MSI tumours, however, accumulate
a large number of these mutations. We suggest that the load of small deleterious
mutational effects likely present in MSI tumours acts as a counter-balance to the large
effects of few drivers, effectively slowing down tumour growth and spread.
Nevertheless, more investigation is needed to confirm this hypothesis. Mutation rates
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and phenotypic effects of mutations are dependent on many factors, including species,
ploidy and environmental conditions (Liu and Zhang, 2019; Martin and Lenormand,
2006; Sharp et al., 2018). Our results were obtained in yeast, in very controlled
experimental conditions, with free availability of nutrients and resources and under
reduced selective pressure. On the other hand, tumour cells reside in a complex
microenvironment, in constant competition for resources and under strong selective
pressure. Therefore, the results obtained in this simplified model should be verified by
directly measuring the effect of passenger mutations in SSRs in more accurate models
of cancer such as tumour cell lines harbouring MMR mutations, mouse models and
patient-derived cell-lines from MSI tumours.

In Chapter 3 I showed that valuable information regarding the response to smoke
injury and the associated risk of lung cancer can be inferred from gene expression at
the level of an accessible airway tissue: nasal epithelium. Knowledge about the field of
injury caused by cigarette smoke across airway tissues has been proposed as an aid to
cancer diagnosis, for example in patients undergoing bronchoscopy for the evaluation
of suspicious lesions. In this context, a molecular biomarker based on bronchial gene
expression has shown potential to improve the diagnostic sensitivity of bronchoscopy,
a procedure that is often inconclusive and leads to additional invasive and costly
procedures (Spira et al., 2007). Similarly, the potential of nasal gene expression to
improve classification of cancer patients was explored in a clinic-referred population
with suspicious lesions (Perez-Rogers et al., 2017).
The particular composition of our study cohort allowed us to explore another applica-
tion for the information that can be derived from the field of injury: risk stratification
in the general population of smokers and ex smokers. Our results show that there
is a range of responses to smoke injury also within a healthy population, with some
individuals having responses closer to the clinic-referred patients. Currently, high-risk
individuals in the general population are defined by age and history of heavy smoking.
Our results suggest that pre-screening with a nasal gene expression biomarker might
help improve the selection of asymptomatic individuals at risk, who would benefit from
frequent check-ups and LCDT screening. Such an application would require extensive
validation of the results presented in this thesis, ideally with an independent cohort
of healthy volunteers drawn from the general population, with follow-up information
regarding their cancer status.
Even though we found that significant information could be gained from analysis of
protein-coding genes, many other aspects of the airway field of injury remain to be
explored. Non-coding RNAs also have been shown to play a role in lung cancer, during
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tumour progression and in premalignancy (Jiang et al., 2021; Mascaux et al., 2009;
Perdomo et al., 2013; Wu et al., 2019). Cigarette smoke also causes epigenetic alter-
ations, which could be used as well as biomarkers for risk stratification (Zong et al.,
2019). Another topic for future investigation is the link between the transcriptional
alterations observed in the airway, in particular the individual response to smoke injury,
to germline variation, and the possible interactions between genotype and response to
injury.
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Ryszard Słomski, Rodney J Scott, and Andrzej Pławski. Colorectal carcinoma
in the course of inflammatory bowel diseases. Hered. Cancer Clin. Pract., 17:18,
July 2019.

Gabriel E Hoffman and Eric E Schadt. variancepartition: interpreting drivers of
variation in complex gene expression studies. BMC Bioinformatics, 17(1):483,
November 2016.

Louise R Howe, Kotha Subbaramaiah, Clifford A Hudis, and Andrew J Dannenberg.
Molecular pathways: adipose inflammation as a mediator of obesity-associated
cancer. Clin. Cancer Res., 19(22):6074–6083, November 2013.

Jin-Wu Hu, Zhang-Fu Yang, Jia Li, Bo Hu, Chu-Bin Luo, Kai Zhu, Zhi Dai, Jia-Bin
Cai, Hao Zhan, Zhi-Qiang Hu, Jie Hu, Ya Cao, Shuang-Jian Qiu, Jian Zhou, Jia
Fan, and Xiao-Wu Huang. TGM3 promotes epithelial–mesenchymal transition and
hepatocellular carcinogenesis and predicts poor prognosis for patients after curative
resection. Dig. Liver Dis., 52(6):668–676, June 2020.

Hunt. Protein synthesis, proteolysis, and cell cycle transitions: Nobel lecture. See
http://www. nobelprize. org/nobel_prizes/medicine.



References 99

ICGC-ARGO. ICGC ARGO. http://platform.icgc-argo.org, 2019. Accessed: 2022-4-
15.

ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer
analysis of whole genomes. Nature, 578(7793):82–93, February 2020.

Thomas F Imperiale, David F Ransohoff, Steven H Itzkowitz, Theodore R Levin, Philip
Lavin, Graham P Lidgard, David A Ahlquist, and Barry M Berger. Multitarget stool
DNA testing for colorectal-cancer screening. N. Engl. J. Med., 370(14):1287–1297,
April 2014.

J P Jakupciak and R D Wells. Genetic instabilities in (CTG· CAG) repeats occur by
recombination. J. Biol. Chem., 1999.

Jun Jiang, Yuan Lu, Fang Zhang, Jie Huang, Xin-Ling Ren, and Rui Zhang. The
emerging roles of long noncoding RNAs as hallmarks of lung cancer. Front. Oncol.,
11:761582, October 2021.

Tao Jiang, Tao Shi, Henghui Zhang, Jie Hu, Yuanlin Song, Jia Wei, Shengxiang Ren,
and Caicun Zhou. Tumor neoantigens: from basic research to clinical applications.
J. Hematol. Oncol., 12(1):93, September 2019.

Josef Jiricny. Postreplicative mismatch repair. Cold Spring Harb. Perspect. Biol., 5(4):
a012633, April 2013.

James O Jones, William M Moody, and Jacqueline D Shields. Microenvironmental
modulation of the developing tumour: an immune-stromal dialogue. Mol. Oncol.,
15(10):2600–2633, October 2021.

Dragica Jorgovanovic, Mengjia Song, Liping Wang, and Yi Zhang. Roles of IFN-γ in
tumor progression and regression: a review. Biomark Res, 8:49, September 2020.

Sarah B Joseph and David W Hall. Spontaneous mutations in diploid saccharomyces
cerevisiae: more beneficial than expected. Genetics, 168(4):1817–1825, December
2004.

Aashiq H Kachroo, Jon M Laurent, Christopher M Yellman, Austin G Meyer, Claus O
Wilke, and Edward M Marcotte. Evolution. systematic humanization of yeast genes
reveals conserved functions and genetic modularity. Science, 348(6237):921–925,
May 2015.

Haydar Karaoglu, Crystal Man Ying Lee, and Wieland Meyer. Survey of simple
sequence repeats in completed fungal genomes. Mol. Biol. Evol., 22(3):639–649,
March 2005.

Y Kashi, D King, and M Soller. Simple sequence repeats as a source of quantitative
genetic variation. Trends Genet., 13(2):74–78, February 1997.

Yechezkel Kashi and David G King. Simple sequence repeats as advantageous mutators
in evolution. Trends Genet., 22(5):253–259, May 2006.

Vaishali Katju and Ulfar Bergthorsson. Old trade, new tricks: Insights into the spon-
taneous mutation process from the partnering of classical mutation accumulation
experiments with High-Throughput genomic approaches. Genome Biol. Evol., 11
(1):136–165, January 2019.

http://platform.icgc-argo.org


100 References

Andrew M Kaz, William M Grady, Matthew D Stachler, and Adam J Bass. Genetic
and epigenetic alterations in barrett’s esophagus and esophageal adenocarcinoma,
2015.

Peter D Keightley and Michael Lynch. Toward a realistic model of mutations affecting
fitness. Evolution, 57(3):683–5; discussion 686–9, March 2003.

Hiroyuki Kida, Yuki Takano, Ken Yamamoto, Masaki Mori, Katsuhiko Yanaga, Jun-
Ichi Tanaka, Shin-Ei Kudo, and Koshi Mimori. A single nucleotide polymorphism
in fibronectin 1 determines tumor shape in colorectal cancer. Oncol. Rep., 32(2):
548–552, August 2014.

Changshin Kim, Jinmo Yang, Su-Hyun Jeong, Hayoung Kim, Geun-Hee Park,
Hwa Beom Shin, Myungja Ro, Kyoung-Yeon Kim, Youngjoon Park, Keun Pil
Kim, and Kyubum Kwack. Yeast-based assays for characterization of the functional
effects of single nucleotide polymorphisms in human DNA repair genes. PLoS One,
13(3):e0193823, March 2018.

Daehwan Kim, Geo Pertea, Cole Trapnell, Harold Pimentel, Ryan Kelley, and Steven L
Salzberg. TopHat2: accurate alignment of transcriptomes in the presence of inser-
tions, deletions and gene fusions. Genome Biol., 14(4):R36, April 2013.

Felisha L Kitchen and Christina M Cox. Papanicolaou smear. In StatPearls. StatPearls
Publishing, Treasure Island (FL), October 2021.

A G Knudson, Jr. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl.
Acad. Sci. U. S. A., 68(4):820–823, April 1971.

Ewa Kolosionek, Rajkumar Savai, Hossein Ardeschir Ghofrani, Norbert Weissmann,
Andreas Guenther, Friedrich Grimminger, Werner Seeger, Gamal Andre Banat,
Ralph Theo Schermuly, and Soni Savai Pullamsetti. Expression and activity of
phosphodiesterase isoforms during epithelial mesenchymal transition: the role of
phosphodiesterase 4. Mol. Biol. Cell, 20(22):4751–4765, November 2009.

Anke Konrad, Stephane Flibotte, Jon Taylor, Robert H Waterston, Donald G Moerman,
Ulfar Bergthorsson, and Vaishali Katju. Mutational and transcriptional landscape of
spontaneous gene duplications and deletions in caenorhabditis elegans. Proc. Natl.
Acad. Sci. U. S. A., 115(28):7386–7391, July 2018.

B P Kopnin. Targets of oncogenes and tumor suppressors: key for understanding basic
mechanisms of carcinogenesis. Biochemistry, 65(1):2–27, January 2000.

Erika Korobeinikova, Rasa Ugenskiene, Ruta Insodaite, Viktoras Rudzianskas, Evelina
Jaselske, Lina Poskiene, and Elona Juozaityte. Association of angiogenesis and
inflammation-related gene functional polymorphisms with early-stage breast cancer
prognosis. Oncol. Lett., 19(6):3687–3700, June 2020.

Piotr Kozlowski, Mateusz de Mezer, and Wlodzimierz J Krzyzosiak. Trinucleotide
repeats in human genome and exome. Nucleic Acids Res., 38(12):4027–4039, July
2010.



References 101

B Madhu Krishna, Samir Jana, Aditya K Panda, David Horne, Sanjay Awasthi, Ravi
Salgia, and Sharad S Singhal. Association of TGF-β1 polymorphisms with breast
cancer risk: A Meta-Analysis of Case–Control studies. Cancers, 12(2):471, Febru-
ary 2020.

Nathan A Krump and Jianxin You. Molecular mechanisms of viral oncogenesis in
humans. Nat. Rev. Microbiol., 16(11):684–698, November 2018.

Kostyantyn Krysan, Jay M Lee, Mariam Dohadwala, Brian K Gardner, Karen L
Reckamp, Edward Garon, Maie St John, Sherven Sharma, and Steven M Dubinett.
Inflammation, epithelial to mesenchymal transition, and epidermal growth factor
receptor tyrosine kinase inhibitor resistance. J. Thorac. Oncol., 3(2):107–110,
February 2008.

Sushant Kumar, Jonathan Warrell, Shantao Li, Patrick D McGillivray, William Mey-
erson, Leonidas Salichos, Arif Harmanci, Alexander Martinez-Fundichely, Calvin
W Y Chan, Morten Muhlig Nielsen, Lucas Lochovsky, Yan Zhang, Xiaotong Li,
Shaoke Lou, Jakob Skou Pedersen, Carl Herrmann, Gad Getz, Ekta Khurana, and
Mark B Gerstein. Passenger mutations in more than 2,500 cancer genomes: Overall
molecular functional impact and consequences. Cell, 180(5):915–927.e16, March
2020.

Erika M Kwon, Claudia A Salinas, Suzanne Kolb, Rong Fu, Ziding Feng, Janet L
Stanford, and Elaine A Ostrander. Genetic polymorphisms in inflammation pathway
genes and prostate cancer risk. Cancer Epidemiol. Biomarkers Prev., 20(5):923–933,
May 2011.

Alexander Lachmann, Federico M Giorgi, Gonzalo Lopez, and Andrea Califano.
ARACNe-AP: gene network reverse engineering through adaptive partitioning
inference of mutual information. Bioinformatics, 32(14):2233–2235, July 2016.

Jin-Ping Lai, Dalbir S Sandhu, Abdirashid M Shire, and Lewis R Roberts. The tumor
suppressor function of human sulfatase 1 (SULF1) in carcinogenesis. J. Gastrointest.
Cancer, 39(1-4):149–158, 2008.

Peter-Laszlo Lakatos and Laszlo Lakatos. Risk for colorectal cancer in ulcerative
colitis: changes, causes and management strategies. World J. Gastroenterol., 14(25):
3937–3947, July 2008.

Gregory I Lang, Lance Parsons, and Alison E Gammie. Mutation rates, spectra, and
Genome-Wide distribution of spontaneous mutations in mismatch repair deficient
yeast, 2013.

Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with bowtie 2.
Nat. Methods, 9(4):357–359, March 2012.

Jon M Laurent, Jonathan H Young, Aashiq H Kachroo, and Edward M Marcotte.
Efforts to make and apply humanized yeast. Brief. Funct. Genomics, 15(2):155–163,
March 2016.

J Lee, V Taneja, and R Vassallo. Cigarette smoking and inflammation: cellular and
molecular mechanisms. J. Dent. Res., 91(2):142–149, February 2012.



102 References

Valerie Lee, Adrian Murphy, Dung T Le, and Luis A Diaz, Jr. Mismatch repair
deficiency and response to immune checkpoint blockade. Oncologist, 21(10):1200–
1211, October 2016.

R E Leube and T J Rustad. Squamous cell metaplasia in the human lung: molecular
characteristics of epithelial stratification. Virchows Arch. B Cell Pathol. Incl. Mol.
Pathol., 61(4):227–253, 1991.

Sasha F Levy, Naomi Ziv, and Mark L Siegal. Bet hedging in yeast by heterogeneous,
age-correlated expression of a stress protectant. PLoS Biol., 10(5):e1001325, May
2012.

Heng Li. Aligning sequence reads, clone sequences and assembly contigs with BWA-
MEM. March 2013.

Kai Li, Haiqing Luo, Lianfang Huang, Hui Luo, and Xiao Zhu. Microsatellite
instability: a review of what the oncologist should know. Cancer Cell Int., 20:
16, January 2020.

You-Chun Li, Abraham B Korol, Tzion Fahima, and Eviatar Nevo. Microsatellites
within genes: structure, function, and evolution. Mol. Biol. Evol., 21(6):991–1007,
June 2004.

Yang Liao, Gordon K Smyth, and Wei Shi. featurecounts: an efficient general purpose
program for assigning sequence reads to genomic features. Bioinformatics, 30(7):
923–930, April 2014.

Maria V Liberti and Jason W Locasale. The warburg effect: How does it benefit cancer
cells? Trends Biochem. Sci., 41(3):211–218, March 2016.

Dekang Liu, Guido Keijzers, and Lene Juel Rasmussen. DNA mismatch repair and
its many roles in eukaryotic cells. Mutat. Res. - Rev. Mut. Res., 773:174–187, July
2017.

Haoxuan Liu and Jianzhi Zhang. Yeast spontaneous mutation rate and spectrum vary
with environment. Curr. Biol., 29(10):1584–1591.e3, May 2019.

L Liu, K Dybvig, V S Panangala, and others. GAA trinucleotide repeat region regulates
M9/pMGA gene expression in mycoplasma gallisepticum. Infection, 2000.

Zhengchang Liu and Ronald A Butow. Mitochondrial retrograde signaling. Annu. Rev.
Genet., 40:159–185, 2006.

L A Loeb. A mutator phenotype in cancer. Cancer Res., 61(8):3230–3239, April 2001.

Stacy Loeb, Marc A Bjurlin, Joseph Nicholson, Teuvo L Tammela, David F Penson,
H Ballentine Carter, Peter Carroll, and Ruth Etzioni. Overdiagnosis and overtreat-
ment of prostate cancer. Eur. Urol., 65(6):1046–1055, June 2014.

Michael I Love, Wolfgang Huber, and Simon Anders. Moderated estimation of fold
change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15(12):550,
2014.



References 103

N F Lue, A R Buchman, and R D Kornberg. Activation of yeast RNA polymerase II
transcription by a thymidine-rich upstream element in vitro. Proc. Natl. Acad. Sci.
U. S. A., 86(2):486–490, January 1989.

Scott A Lujan, Anders R Clausen, Alan B Clark, Heather K MacAlpine, David M
MacAlpine, Ewa P Malc, Piotr A Mieczkowski, Adam B Burkholder, David C
Fargo, Dmitry A Gordenin, and Thomas A Kunkel. Heterogeneous polymerase
fidelity and mismatch repair bias genome variation and composition. Genome Res.,
24(11):1751–1764, November 2014.

Scott A Lujan, Alan B Clark, and Thomas A Kunkel. Differences in genome-wide
repeat sequence instability conferred by proofreading and mismatch repair defects.
Nucleic Acids Res., 43(8):4067–4074, April 2015.

Scott Alexander Lujan and Thomas A Kunkel. Stability across the whole nuclear
genome in the presence and absence of DNA mismatch repair. Cells, 10(5), May
2021.

H T Lynch, T C Smyrk, P Watson, S J Lanspa, J F Lynch, P M Lynch, R J Cavalieri,
and C R Boland. Genetics, natural history, tumor spectrum, and pathology of
hereditary nonpolyposis colorectal cancer: an updated review. Gastroenterology,
104(5):1535–1549, May 1993.

Michael Lynch, Way Sung, Krystalynne Morris, Nicole Coffey, Christian R Landry,
Erik B Dopman, W Joseph Dickinson, Kazufusa Okamoto, Shilpa Kulkarni,
Daniel L Hartl, and W Kelley Thomas. A genome-wide view of the spectrum
of spontaneous mutations in yeast. Proc. Natl. Acad. Sci. U. S. A., 105(27):9272–
9277, July 2008.

Michael Lynch, Matthew S Ackerman, Jean-Francois Gout, Hongan Long, Way Sung,
W Kelley Thomas, and Patricia L Foster. Genetic drift, selection and the evolution
of the mutation rate. Nat. Rev. Genet., 17(11):704–714, October 2016.

Xin Ma, Maria V Rogacheva, K T Nishant, Sarah Zanders, Carlos D Bustamante,
and Eric Alani. Mutation hot spots in yeast caused by long-range clustering of
homopolymeric sequences. Cell Rep., 1(1):36–42, January 2012.

Zhikun Ma, Amanda B Parris, Zhengzheng Xiao, Erin W Howard, Stanley D Kosanke,
Xiaoshan Feng, and Xiaohe Yang. Short-term early exposure to lapatinib confers
lifelong protection from mammary tumor development in MMTV-erbB-2 transgenic
mice. J. Exp. Clin. Cancer Res., 36(1):6, January 2017.

John B G Mackey, Seth B Coffelt, and Leo M Carlin. Neutrophil maturity in cancer.
Front. Immunol., 10:1912, August 2019.

Guillaume Martin and Thomas Lenormand. The fitness effect of mutations across
environments: a survey in light of fitness landscape models. Evolution, 60(12):
2413–2427, December 2006.

C Mascaux, J F Laes, G Anthoine, A Haller, V Ninane, A Burny, and J P Sculier. Evo-
lution of microRNA expression during human bronchial squamous carcinogenesis.
Eur. Respir. J., 33(2):352–359, February 2009.



104 References

Christopher D McFarland, Kirill S Korolev, Gregory V Kryukov, Shamil R Sun-
yaev, and Leonid A Mirny. Impact of deleterious passenger mutations on cancer
progression. Proc. Natl. Acad. Sci. U. S. A., 110(8):2910–2915, February 2013.

Christopher D McFarland, Julia A Yaglom, Jonathan W Wojtkowiak, Jacob G Scott,
David L Morse, Michael Y Sherman, and Leonid A Mirny. The damaging effect
of passenger mutations on cancer progression. Cancer Res., 77(18):4763–4772,
September 2017.

Daniel J McGrail, Jeannine Garnett, Jun Yin, Hui Dai, David J H Shih, Truong
Nguyen Anh Lam, Yang Li, Chaoyang Sun, Yongsheng Li, Rosemarie Schmandt,
Ji Yuan Wu, Limei Hu, Yulong Liang, Guang Peng, Eric Jonasch, David Menter,
Melinda S Yates, Scott Kopetz, Karen H Lu, Russell Broaddus, Gordon B Mills,
Nidhi Sahni, and Shiaw-Yih Lin. Proteome instability is a therapeutic vulnerability
in mismatch Repair-Deficient cancer. Cancer Cell, 37(3):371–386.e12, March 2020.

Neha Merchant, Ganji Purnachandra Nagaraju, Balney Rajitha, Saipriya Lammata,
Kishore Kumar Jella, Zachary S Buchwald, Sajani S Lakka, and Arif N Ali. Matrix
metalloproteinases: their functional role in lung cancer. Carcinogenesis, 38(8):
766–780, August 2017.

A Merlo, J G Herman, L Mao, D J Lee, E Gabrielson, P C Burger, S B Baylin, and
D Sidransky. 5’ CpG island methylation is associated with transcriptional silencing
of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat. Med., 1(7):
686–692, July 1995.

D Metzgar, J Bytof, and C Wills. Selection against frameshift mutations limits
microsatellite expansion in coding DNA. Genome Res., 10(1):72–80, January 2000.

Yuka Matsuoka Miyazu, Teruomi Miyazawa, Keiko Hiyama, Noriaki Kurimoto, Yasuo
Iwamoto, Hiroo Matsuura, Koji Kanoh, Nobuoki Kohno, Masahiko Nishiyama,
and Eiso Hiyama. Telomerase expression in noncancerous bronchial epithelia
is a possible marker of early development of lung cancer. Cancer Res., 65(21):
9623–9627, November 2005.

Alvaro N Monteiro, Peter Bouwman, Arne N Kousholt, Diana M Eccles, Gael A
Millot, Jean-Yves Masson, Marjanka K Schmidt, Shyam K Sharan, Ralph Scully,
Lisa Wiesmüller, Fergus Couch, and Maaike P G Vreeswijk. Variants of uncertain
clinical significance in hereditary breast and ovarian cancer genes: best practices in
functional analysis for clinical annotation. J. Med. Genet., 57(8):509–518, August
2020.

T Mukai. THE GENETIC STRUCTURE OF NATURAL POPULATIONS OF
DROSOPHILA MELANOGASTER. i. SPONTANEOUS MUTATION RATE OF
POLYGENES CONTROLLING VIABILITY. Genetics, 50:1–19, July 1964.

El Mustafa, Sat Parmar, and Prav Praveen. Premalignant lesions and conditions of the
oral cavity. In Krishnamurthy Bonanthaya, Elavenil Panneerselvam, Suvy Manuel,
Vinay V Kumar, and Anshul Rai, editors, Oral and Maxillofacial Surgery for the
Clinician, pages 1845–1852. Springer Singapore, Singapore, 2021.

National Lung Screening Trial Research Team, Denise R Aberle, Amanda M Adams,
Christine D Berg, William C Black, Jonathan D Clapp, Richard M Fagerstrom,



References 105

Ilana F Gareen, Constantine Gatsonis, Pamela M Marcus, and Jorean D Sicks.
Reduced lung-cancer mortality with low-dose computed tomographic screening. N.
Engl. J. Med., 365(5):395–409, August 2011.

M A Nelson, J Wymer, and N Clements, Jr. Detection of k-ras gene mutations in
non-neoplastic lung tissue and lung cancers. Cancer Lett., 103(1):115–121, May
1996.

Atsuya Nishiyama and Makoto Nakanishi. Navigating the DNA methylation landscape
of cancer. Trends Genet., 37(11):1012–1027, November 2021.

Beifang Niu, Kai Ye, Qunyuan Zhang, Charles Lu, Mingchao Xie, Michael D McLel-
lan, Michael C Wendl, and Li Ding. MSIsensor: microsatellite instability detection
using paired tumor-normal sequence data. Bioinformatics, 30(7):1015–1016, April
2014.

Paul Nurse. Cyclin dependent kinases and cell cycle control (nobel lecture). Chem-
biochem, 3(7):596–603, July 2002.

O Ohnishi. Spontaneous and ethyl methanesulfonate-induced mutations controlling
viability in drosophila melanogaster. i. recessive lethal mutations. Genetics, 87(3):
519–527, November 1977.

Olga Okladnova, Yana V Syagailo, Michael Tranitz, Gerald Stöber, Peter Riederer,
Rainald Mössner, and Klaus-Peter Lesch. A Promoter-Associated polymorphic re-
peat ModulatesPAX-6Expression in human brain. Biochem. Biophys. Res. Commun.,
248(2):402–405, July 1998.

Adam Pennycuick, Vitor H Teixeira, Khalid AbdulJabbar, Shan E Ahmed Raza, Tom
Lund, Ayse U Akarca, Rachel Rosenthal, Lukas Kalinke, Deepak P Chandrasekha-
ran, Christodoulos P Pipinikas, Henry Lee-Six, Robert E Hynds, Kate H C Gowers,
Jake Y Henry, Fraser R Millar, Yeman B Hagos, Celine Denais, Mary Falzon,
David A Moore, Sophia Antoniou, Pascal F Durrenberger, Andrew J Furness,
Bernadette Carroll, Claire Marceaux, Marie-Liesse Asselin-Labat, William Lar-
son, Courtney Betts, Lisa M Coussens, Ricky M Thakrar, Jeremy George, Charles
Swanton, Christina Thirlwell, Peter J Campbell, Teresa Marafioti, Yinyin Yuan,
Sergio A Quezada, Nicholas McGranahan, and Sam M Janes. Immune surveillance
in clinical regression of preinvasive squamous cell lung cancer. Cancer Discov., 10
(10):1489–1499, October 2020.

Catalina Perdomo, Joshua D Campbell, Joseph Gerrein, Carmen S Tellez, Carly B
Garrison, Tonya C Walser, Eduard Drizik, Huiqing Si, Adam C Gower, Jessica
Vick, Christina Anderlind, George R Jackson, Courtney Mankus, Frank Schembri,
Carl O’Hara, Brigitte N Gomperts, Steven M Dubinett, Patrick Hayden, Steven A
Belinsky, Marc E Lenburg, and Avrum Spira. MicroRNA 4423 is a primate-specific
regulator of airway epithelial cell differentiation and lung carcinogenesis. Proc.
Natl. Acad. Sci. U. S. A., 110(47):18946–18951, November 2013.

Joseph F Perez-Rogers, Joseph Gerrein, Christina Anderlind, Gang Liu, Sherry Zhang,
Yuriy Alekseyev, Kate Porta Smith, Duncan Whitney, W Evan Johnson, David A
Elashoff, Steven M Dubinett, Jerome Brody, Avrum Spira, Marc E Lenburg, and for
the AEGIS Study Team. Shared gene expression alterations in nasal and bronchial
epithelium for lung cancer detection. J. Natl. Cancer Inst., 109(7), February 2017.



106 References

Luciana Santos Pessoa, Manoela Heringer, and Valéria Pereira Ferrer. ctDNA as a
cancer biomarker: A broad overview. Crit. Rev. Oncol. Hematol., 155:103109,
November 2020.

E J Peters, R Morice, S E Benner, S Lippman, J Lukeman, J S Lee, J Y Ro, and
W K Hong. Squamous metaplasia of the bronchial mucosa and its relationship to
smoking. Chest, 103(5):1429–1432, May 1993.

J Peto. That lung cancer incidence falls in ex-smokers: misconceptions 2. Br. J.
Cancer, 104(3):389, February 2011.

Yevgeniy Plavskin, Shuang Li, Hyun Jung, Federica M O Sartori, Cassandra Buzby,
Heiko Müller, Naomi Ziv, Sasha F Levy, and Mark L Siegal. High-throughput
microcolony growth analysis from suboptimal low-magnification micrographs. June
2021.

Plavskin, de Biase, Roland F Schwarz, and Mark L Siegal. The rate of spontaneous
mutations in yeast deficient for MutSβ function. August 2022.

Ryan Poplin, Valentin Ruano-Rubio, Mark A DePristo, Tim J Fennell, Mauricio O
Carneiro, Geraldine A Van der Auwera, David E Kling, Laura D Gauthier, Ami
Levy-Moonshine, David Roazen, Khalid Shakir, Joel Thibault, Sheila Chandran,
Chris Whelan, Monkol Lek, Stacey Gabriel, Mark J Daly, Ben Neale, Daniel G
MacArthur, and Eric Banks. Scaling accurate genetic variant discovery to tens of
thousands of samples. July 2018.

C A Powell, S Klares, G O’Connor, and J S Brody. Loss of heterozygosity in epithelial
cells obtained by bronchial brushing: clinical utility in lung cancer. Clin. Cancer
Res., 5(8):2025–2034, August 1999.

Awal Prasetyo, Udadi Sadhana, and Jethro Budiman. Nasal mucociliary clearance
in smokers: A systematic review. Int Arch Otorhinolaryngol, 25(1):e160–e169,
January 2021.

Aaron R Quinlan and Ira M Hall. BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics, 26(6):841–842, March 2010.

Alison Rattray, Gustavo Santoyo, Brenda Shafer, and Jeffrey N Strathern. Elevated
mutation rate during meiosis in saccharomyces cerevisiae. PLoS Genet., 11(1):
e1004910, January 2015.

Timothy Ravasi, Harukazu Suzuki, Carlo Vittorio Cannistraci, Shintaro Katayama,
Vladimir B Bajic, Kai Tan, Altuna Akalin, Sebastian Schmeier, Mutsumi Kanamori-
Katayama, Nicolas Bertin, Piero Carninci, Carsten O Daub, Alistair R R Forrest,
Julian Gough, Sean Grimmond, Jung-Hoon Han, Takehiro Hashimoto, Winston
Hide, Oliver Hofmann, Atanas Kamburov, Mandeep Kaur, Hideya Kawaji, Atsutaka
Kubosaki, Timo Lassmann, Erik van Nimwegen, Cameron Ross MacPherson, Chi-
hiro Ogawa, Aleksandar Radovanovic, Ariel Schwartz, Rohan D Teasdale, Jesper
Tegnér, Boris Lenhard, Sarah A Teichmann, Takahiro Arakawa, Noriko Ninomiya,
Kayoko Murakami, Michihira Tagami, Shiro Fukuda, Kengo Imamura, Chikatoshi
Kai, Ryoko Ishihara, Yayoi Kitazume, Jun Kawai, David A Hume, Trey Ideker,
and Yoshihide Hayashizaki. An atlas of combinatorial transcriptional regulation in
mouse and man. Cell, 140(5):744–752, March 2010.



References 107

Christopher Ricketts, Maurice P Zeegers, Jan Lubinski, and Eamonn R Maher. Analy-
sis of germline variants in CDH1, IGFBP3, MMP1, MMP3, STK15 and VEGF in
familial and sporadic renal cell carcinoma. PLoS One, 4(6):e6037, June 2009.

M Patricia Rivera, Atul C Mehta, and Momen M Wahidi. Establishing the diagnosis of
lung cancer: Diagnosis and management of lung cancer, 3rd ed: American college
of chest physicians evidence-based clinical practice guidelines. Chest, 143(5 Suppl):
e142S–e165S, May 2013.

F Rolland, J Winderickx, and J Thevelein. Glucose-sensing and -signalling mecha-
nisms in yeast, 2002.

Nina V Romanova and Gray F Crouse. Different roles of eukaryotic MutS and MutL
complexes in repair of small insertion and deletion loops in yeast. PLoS Genet., 9
(10):e1003920, October 2013.

Carlos Rosales. Neutrophil: A cell with many roles in inflammation or several cell
types? Front. Physiol., 9:113, February 2018.

Rohini Roy, Jarin Chun, and Simon N Powell. BRCA1 and BRCA2: different roles in a
common pathway of genome protection. Nat. Rev. Cancer, 12(1):68–78, December
2011.

Bríd M Ryan and Jessica M Faupel-Badger. The hallmarks of premalignant conditions:
a molecular basis for cancer prevention. Semin. Oncol., 43(1):22–35, February
2016.

Federica M O Sartori, Cassandra Buzby, Yevgeniy Plavskin, and Mark L Siegal. High-
Throughput live imaging of microcolonies to measure heterogeneity in growth and
gene expression. J. Vis. Exp., (170), April 2021.

Rosalyn W Sayaman, Mohamad Saad, Vésteinn Thorsson, Donglei Hu, Wouter Hen-
drickx, Jessica Roelands, Eduard Porta-Pardo, Younes Mokrab, Farshad Farshidfar,
Tomas Kirchhoff, Randy F Sweis, Oliver F Bathe, Carolina Heimann, Michael J
Campbell, Cynthia Stretch, Scott Huntsman, Rebecca E Graff, Najeeb Syed, Laszlo
Radvanyi, Simon Shelley, Denise Wolf, Francesco M Marincola, Michele Ceccarelli,
Jérôme Galon, Elad Ziv, and Davide Bedognetti. Germline genetic contribution to
the immune landscape of cancer. Immunity, 54(2):367–386.e8, February 2021.

Katja Schwartz and Gavin Sherlock. Preparation of yeast DNA sequencing libraries.
Cold Spring Harb. Protoc., 2016(10), October 2016.

Barbara Seliger, Matthias Kloor, and Soldano Ferrone. HLA class II antigen-processing
pathway in tumors: Molecular defects and clinical relevance. Oncoimmunology, 6
(2):e1171447, February 2017.

Alexandre Serero, Claire Jubin, Sophie Loeillet, Patricia Legoix-Né, and Alain G
Nicolas. Mutational landscape of yeast mutator strains, 2014.

Sahar Shahamatdar, Meng Xiao He, Matthew A Reyna, Alexander Gusev, Saud H
AlDubayan, Eliezer M Van Allen, and Sohini Ramachandran. Germline features
associated with immune infiltration in solid tumors. Cell Rep., 30(9):2900–2908.e4,
March 2020.



108 References

Paul Shannon, Andrew Markiel, Owen Ozier, Nitin S Baliga, Jonathan T Wang, Daniel
Ramage, Nada Amin, Benno Schwikowski, and Trey Ideker. Cytoscape: a software
environment for integrated models of biomolecular interaction networks. Genome
Res., 13(11):2498–2504, November 2003.

Nathaniel P Sharp, Linnea Sandell, Christopher G James, and Sarah P Otto. The
genome-wide rate and spectrum of spontaneous mutations differ between haploid
and diploid yeast. Proc. Natl. Acad. Sci. U. S. A., 115(22):E5046–E5055, May 2018.

P G Shields. Molecular epidemiology of lung cancer. Ann. Oncol., 10 Suppl 5:S7–11,
1999.

H Shimodaira, N Filosi, H Shibata, T Suzuki, P Radice, R Kanamaru, S H Friend,
R D Kolodner, and C Ishioka. Functional analysis of human MLH1 mutations in
saccharomyces cerevisiae. Nat. Genet., 19(4):384–389, August 1998.

D Shinde, Y Lai, F Sun, and N Arnheim. Taq DNA polymerase slippage muta-
tion rates measured by PCR and quasi-likelihood analysis: (CA/GT)n and (A/T)n
microsatellites. Nucleic Acids Res., 2003.

E A Sia, R J Kokoska, M Dominska, P Greenwell, and T D Petes. Microsatellite
instability in yeast: dependence on repeat unit size and DNA mismatch repair genes.
Mol. Cell. Biol., 17(5):2851–2858, May 1997.

E A Sia, M Dominska, L Stefanovic, and T D Petes. Isolation and characterization of
point mutations in mismatch repair genes that destabilize microsatellites in yeast.
Mol. Cell. Biol., 21(23):8157–8167, December 2001.

Rebecca L Siegel, Kimberly D Miller, and Ahmedin Jemal. Cancer statistics, 2020.
CA Cancer J. Clin., 70(1):7–30, January 2020.

Noah Simon, Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization
paths for cox’s proportional hazards model via coordinate descent. J. Stat. Softw.,
39(5):1–13, March 2011.

D J Slamon, B Leyland-Jones, S Shak, H Fuchs, V Paton, A Bajamonde, T Fleming,
W Eiermann, J Wolter, M Pegram, J Baselga, and L Norton. Use of chemother-
apy plus a monoclonal antibody against HER2 for metastatic breast cancer that
overexpresses HER2. N. Engl. J. Med., 344(11):783–792, March 2001.

D P Slaughter, H W Southwick, and W Smejkal. Field cancerization in oral stratified
squamous epithelium; clinical implications of multicentric origin. Cancer, 6(5):
963–968, September 1953.

Erik L L Sonnhammer and Gabriel Östlund. InParanoid 8: orthology analysis between
273 proteomes, mostly eukaryotic. Nucleic Acids Res., 43(Database issue):D234–9,
January 2015.

Avrum Spira, Jennifer Beane, Vishal Shah, Gang Liu, Frank Schembri, Xuemei Yang,
John Palma, and Jerome S Brody. Effects of cigarette smoke on the human airway
epithelial cell transcriptome. Proc. Natl. Acad. Sci. U. S. A., 101(27):10143–10148,
July 2004.



References 109

Avrum Spira, Jennifer E Beane, Vishal Shah, Katrina Steiling, Gang Liu, Frank
Schembri, Sean Gilman, Yves-Martine Dumas, Paul Calner, Paola Sebastiani, Sri-
ram Sridhar, John Beamis, Carla Lamb, Timothy Anderson, Norman Gerry, Joseph
Keane, Marc E Lenburg, and Jerome S Brody. Airway epithelial gene expression in
the diagnostic evaluation of smokers with suspect lung cancer. Nat. Med., 13(3):
361–366, March 2007.

Sriram Sridhar, Frank Schembri, Julie Zeskind, Vishal Shah, Adam M Gustafson,
Katrina Steiling, Gang Liu, Yves-Martine Dumas, Xiaohui Zhang, Jerome S Brody,
Marc E Lenburg, and Avrum Spira. Smoking-induced gene expression changes in
the bronchial airway are reflected in nasal and buccal epithelium. BMC Genomics,
9:259, May 2008.

Visish Srinivasan, Andres Kriete, Ahmet Sacan, and S Michal Jazwinski. Comparing
the yeast retrograde response and NF-κB stress responses: implications for aging.
Aging Cell, 9(6):933–941, December 2010.

Katrina Steiling, John Ryan, Jerome S Brody, and Avrum Spira. The field of tissue
injury in the lung and airway. Cancer Prev. Res., 1(6):396–403, November 2008.

Rafael Stelmach, Frederico Leon Arrabal Fernandes, Regina Maria Carvalho-Pinto,
Rodrigo Abensur Athanazio, Samia Zahi Rached, Gustavo Faibischew Prado, and
Alberto Cukier. Comparison between objective measures of smoking and self-
reported smoking status in patients with asthma or COPD: are our patients telling
us the truth? J. Bras. Pneumol., 41(2):124–132, March 2015.

M Strand, T A Prolla, R M Liskay, and T D Petes. Destabilization of tracts of simple
repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature, 365
(6443):274–276, September 1993.

M Strand, M C Earley, G F Crouse, and T D Petes. Mutations in the MSH3 gene pref-
erentially lead to deletions within tracts of simple repetitive DNA in saccharomyces
cerevisiae. Proc. Natl. Acad. Sci. U. S. A., 92(22):10418–10421, October 1995.

Erin D Strome, Xiaowei Wu, Marek Kimmel, and Sharon E Plon. Heterozygous
screen in saccharomyces cerevisiae identifies dosage-sensitive genes that affect
chromosome stability. Genetics, 178(3):1193–1207, March 2008.

Shane Sullivan, Miriam Tosetto, David Kevans, Alan Coss, Laimun Wang, Diar-
muid O’Donoghue, John Hyland, Kieran Sheahan, Hugh Mulcahy, and Jacintha
O’Sullivan. Localization of nuclear cathepsin L and its association with disease
progression and poor outcome in colorectal cancer. Int. J. Cancer, 125(1):54–61,
July 2009.

Hye-Jin Sung, Jung-Mo Ahn, Yeon-Hee Yoon, Tai-Youn Rhim, Choon-Sik Park,
Jae-Yong Park, Soo-Youn Lee, Jong-Won Kim, and Je-Yoel Cho. Identification
and validation of SAA as a potential lung cancer biomarker and its involvement in
metastatic pathogenesis of lung cancer. J. Proteome Res., 10(3):1383–1395, March
2011.

Hyuna Sung, Jacques Ferlay, Rebecca L Siegel, Mathieu Laversanne, Isabelle So-
erjomataram, Ahmedin Jemal, and Freddie Bray. Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185
countries. CA Cancer J. Clin., 71(3):209–249, May 2021.



110 References

Ximing Tang, Hisayuki Shigematsu, B Nebiyou Bekele, Jack A Roth, John D Minna,
Waun Ki Hong, Adi F Gazdar, and Ignacio I Wistuba. EGFR tyrosine kinase domain
mutations are detected in histologically normal respiratory epithelium in lung cancer
patients. Cancer Res., 65(17):7568–7572, September 2005.

D Tautz and M Renz. Simple sequences are ubiquitous repetitive components of
eukaryotic genomes. Nucleic Acids Res., 12(10):4127–4138, May 1984.

Ying-Hock Teng, Te-Hsiung Liu, Hsien-Chun Tseng, Tsung-Te Chung, Chia-Ming
Yeh, Yu-Chiung Li, Yu-Hsiang Ou, Long-Yau Lin, Hsiu-Ting Tsai, and Shun-Fa
Yang. Contribution of genetic polymorphisms of stromal cell-derived factor-1 and
its receptor, CXCR4, to the susceptibility and clinicopathologic development of oral
cancer, 2009.

N A Timchenko, A L Lu, X Welm, and L T Timchenko. CUG repeat binding protein
(CUGBP1) interacts with the 5’ region of C/EBP mRNA and regulates translation
of C/EBP isoforms, 1999.

Hilary A Tindle, Meredith Stevenson Duncan, Robert A Greevy, Ramachandran S
Vasan, Suman Kundu, Pierre P Massion, and Matthew S Freiberg. Lifetime smoking
history and risk of lung cancer: Results from the framingham heart study. J. Natl.
Cancer Inst., 110(11):1201–1207, November 2018.

M Toyota, N Ahuja, M Ohe-Toyota, J G Herman, S B Baylin, and J P Issa. CpG island
methylator phenotype in colorectal cancer. Proc. Natl. Acad. Sci. U. S. A., 96(15):
8681–8686, July 1999.

Norihisa Uemura, Yukihiro Nakanishi, Hoichi Kato, Shigeru Saito, Masato Nagino,
Setsuo Hirohashi, and Tadashi Kondo. Transglutaminase 3 as a prognostic biomarker
in esophageal cancer revealed by proteomics, 2009.

Geraldine A Van der Auwera and Brian D O’Connor. Genomics in the Cloud: Using
Docker, GATK, and WDL in Terra. “O’Reilly Media, Inc.”, April 2020.

Adriaan van der Graaf, René Wardenaar, Drexel A Neumann, Aaron Taudt, Ruth G
Shaw, Ritsert C Jansen, Robert J Schmitz, Maria Colomé-Tatché, and Frank Jo-
hannes. Rate, spectrum, and evolutionary dynamics of spontaneous epimutations.
Proceedings of the National Academy of Sciences, 112(21):6676–6681, 2015.

Md Vasimuddin, Sanchit Misra, Heng Li, and Srinivas Aluru. Efficient Architecture-
Aware acceleration of BWA-MEM for multicore systems. In 2019 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), pages 314–324,
May 2019.

Michiel C Verboom, Jacqueline S L Kloth, Jesse J Swen, Tahar van der Straaten, Judith
V M Bovée, Stefan Sleijfer, Anna K L Reyners, Ron H J Mathijssen, Henk-Jan
Guchelaar, Neeltje Steeghs, and Hans Gelderblom. Genetic polymorphisms in
angiogenesis-related genes are associated with worse progression-free survival of
patients with advanced gastrointestinal stromal tumours treated with imatinib, 2017.

Maria Lucia Carneiro Vieira, Luciane Santini, Augusto Lima Diniz, and Carla de Fre-
itas Munhoz. Microsatellite markers: what they mean and why they are so useful.
Genet. Mol. Biol., 39(3):312–328, August 2016.



References 111

Tonya Walser, Xiaoyan Cui, Jane Yanagawa, Jay M Lee, Eileen Heinrich, Gina Lee,
Sherven Sharma, and Steven M Dubinett. Smoking and lung cancer: the role of
inflammation. Proc. Am. Thorac. Soc., 5(8):811–815, December 2008.

Biao Wang, Zhen Tang, Huiyuan Gong, Li Zhu, and Xuegang Liu. Wnt5a promotes
epithelial-to-mesenchymal transition and metastasis in non-small-cell lung cancer.
Biosci. Rep., 37(6), December 2017.

Gui-Zhen Wang, Xin Cheng, Bo Zhou, Zhe-Sheng Wen, Yun-Chao Huang, Hao-Bin
Chen, Gao-Feng Li, Zhi-Liang Huang, Yong-Chun Zhou, Lin Feng, Ming-Ming
Wei, Li-Wei Qu, Yi Cao, and Guang-Biao Zhou. The chemokine CXCL13 in lung
cancers associated with environmental polycyclic aromatic hydrocarbons pollution.
Elife, 4, November 2015.

John N Weinstein, Eric A Collisson, Gordon B Mills, Kenna R Mills Shaw, Brad A
Ozenberger, Kyle Ellrott, Ilya Shmulevich, Chris Sander, and Joshua M Stuart. The
cancer genome atlas Pan-Cancer analysis project. Nat. Genet., 45(10):1113–1120,
September 2013.

Thomas Willems, Dina Zielinski, Jie Yuan, Assaf Gordon, Melissa Gymrek, and
Yaniv Erlich. Genome-wide profiling of heritable and de novo STR variations. Nat.
Methods, 14(6):590–592, June 2017.

E Winter and A Varshavsky. A DNA binding protein that recognizes
oligo(dA).oligo(dT) tracts. EMBO J., 8(6):1867–1877, June 1989.

I I Wistuba, S Lam, C Behrens, A K Virmani, K M Fong, J LeRiche, J M Samet,
S Srivastava, J D Minna, and A F Gazdar. Molecular damage in the bronchial
epithelium of current and former smokers. J. Natl. Cancer Inst., 89(18):1366–1373,
September 1997.

Kuan-Li Wu, Ying-Ming Tsai, Chi-Tun Lien, Po-Lin Kuo, Hung, and Jen-Yu. The
roles of MicroRNA in lung cancer. Int. J. Mol. Sci., 20(7), March 2019.

Xiangbing Wu, Wei Cao, Xu Wang, Jianjun Zhang, Zhongjing Lv, Xing Qin, Yadi Wu,
and Wantao Chen. TGM3, a candidate tumor suppressor gene, contributes to human
head and neck cancer. Mol. Cancer, 12(1):151, December 2013.

Zeng-Hong Wu, Fucheng Cai, and Yi Zhong. Comprehensive analysis of the expression
and prognosis for GBPs in head and neck squamous cell carcinoma. Sci. Rep., 10
(1):6085, April 2020.

Yuzo Yamamoto, Chikako Kiyohara, Saiko Suetsugu-Ogata, Naoki Hamada, and
Yoichi Nakanishi. Biological interaction of cigarette smoking on the association
between genetic polymorphisms involved in inflammation and the risk of lung
cancer: A case-control study in japan. Oncol. Lett., 13(5):3873–3881, May 2017.

Ichiro Yoshino, Takuro Kometani, Fumihiro Shoji, Atsushi Osoegawa, Taro Ohba,
Hidenori Kouso, Tomoyoshi Takenaka, Tomofumi Yohena, and Yoshihiko Maehara.
Induction of epithelial-mesenchymal transition-related genes by benzo[a]pyrene in
lung cancer cells. Cancer, 110(2):369–374, July 2007.



112 References

E T Young, J S Sloan, and K Van Riper. Trinucleotide repeats are clustered in
regulatory genes in saccharomyces cerevisiae. Genetics, 154(3):1053–1068, March
2000.

Guangchuang Yu, Li-Gen Wang, Yanyan Han, and Qing-Yu He. clusterprofiler: an
R package for comparing biological themes among gene clusters. OMICS, 16(5):
284–287, May 2012.

Sarah Zanders, Xin Ma, Arindam Roychoudhury, Ryan D Hernandez, Ann Demogines,
Brandon Barker, Zhenglong Gu, Carlos D Bustamante, and Eric Alani. Detection of
heterozygous mutations in the genome of mismatch repair defective diploid yeast
using a bayesian approach. Genetics, 186(2):493–503, October 2010.

Chaoqi Zhang, Guochao Zhang, Nan Sun, Zhen Zhang, Zhihui Zhang, Yuejun Luo,
Yun Che, Qi Xue, and Jie He. Comprehensive molecular analyses of a TNF family-
based signature with regard to prognosis, immune features, and biomarkers for
immunotherapy in lung adenocarcinoma. EBioMedicine, 59:102959, September
2020.

Wei Zhang, Sabine C Glöckner, Mingzhou Guo, Emi Ota Machida, David H Wang,
Hariharan Easwaran, Leander Van Neste, James G Herman, Kornel E Schuebel,
D Neil Watkins, Nita Ahuja, and Stephen B Baylin. Epigenetic inactivation of the
canonical wnt antagonist SRY-box containing gene 17 in colorectal cancer. Cancer
Res., 68(8):2764–2772, April 2008.

Xiaoling Zhang, Paola Sebastiani, Gang Liu, Frank Schembri, Xiaohui Zhang,
Yves Martine Dumas, Erika M Langer, Yuriy Alekseyev, George T O’Connor,
Daniel R Brooks, Marc E Lenburg, and Avrum Spira. Similarities and differences
between smoking-related gene expression in nasal and bronchial epithelium. Physiol.
Genomics, 41(1):1–8, March 2010.

Yuan O Zhu, Mark L Siegal, David W Hall, and Dmitri A Petrov. Precise estimates
of mutation rate and spectrum in yeast. Proc. Natl. Acad. Sci. U. S. A., 111(22):
E2310–8, June 2014.

Dandan Zong, Xiangming Liu, Jinhua Li, Ruoyun Ouyang, and Ping Chen. The role
of cigarette smoke-induced epigenetic alterations in inflammation. Epigenetics
Chromatin, 12(1):65, November 2019.



List of publications

Yevgeniy Plavskin∗, Maria Stella de Biase∗, Roland F. Schwarz, Mark L. Siegal, The
rate of spontaneous mutations in yeast deficient for MutSβ function. bioRxiv (2022),
doi:10.1101/2022.08.25.505291

Maria Stella de Biase∗, Florian Massip∗, Tzu-Ting Wei, Federico M. Giorgi, Rory
Stark, Amanda Stone, Amy Gladwell, Martin O’Reilly, Ines de Santiago, Kerstin
Meyer, Florian Markowetz, Bruce A.J. Ponder, Robert C. Rintoul, Roland F. Schwarz,
Smoking-dependent expression alterations in nasal epithelium reveal immune impair-
ment linked to germline variation and lung cancer risk. bioRxiv (2021),
doi:10.1101/2021.11.24.21266740.

Hananeh Aliee∗, Florian Massip∗, Cancan Qi∗, Maria Stella de Biase∗, Jos van
Nijnatten∗, Elin T.G. Kersten∗, Nazanin Z. Kermani∗, Basil Khuder∗, Judith M. Vonk,
Roel C.H. Vermeulen, U-BIOPRED study group, Cambridge Lung Cancer Early
Detection Programme, INER-Ciencias Mexican Lung Program, Margaret Neighbors,
Gaik W. Tew, Michele Grimbaldeston, Nick H.T. Ten Hacken, Sile Hu, Yike Guo,
Xiaoyu Zhang, Kai Sun, Pieter S. Hiemstra, Bruce A.J. Ponder, Mika J. Makela,
Kristiina Malmstrom, Robert C. Rintoul, Paul A. Reyfman, Fabian J. Theis, Corry-
Anke Brandsma, Ian Adcock, Wim Timens, Cheng J. Xu, Maarten van den Berge,
Roland F. Schwarz, Gerard H. Koppelman, Martijn C. Nawijn, Alen Faiz, Determinants
of expression of SARS-CoV-2 entry-related genes in upper and lower airways. Allergy.
77, 690–694 (2022), https://doi.org/10.1111/all.15152

∗ indicates co-first authorship





Appendix A

List of supplementary tables

All supplementary tables are available as part of the digital supplementary material.

Supplementary table 1: GO terms enriched in the list of genes differentially
expressed in clinic-referred patients compared to healthy volunteers.

Supplementary table 2: GO terms enriched in the list of genes differentially
expressed in bronchial samples from clinic cancer compared to clinic benign
patients.

Supplementary table 3: List of genes classified as affected by smoking in healthy
volunteers, clinic-referred patients, or both groups (Sections 3.2.2 and 3.2.3). The
Change_HV and change_Clinic columns report the direction of the expression change
in current smokers relative to healthy never smokers; for CA genes, the columns report
whether there is an increase or decrease of expression in ex smokers. The class_HV

and class_Clinic columns report the reversibility class to which the gene has been
assigned in healthy and clinic subjects.

Supplementary table 4: GO terms enriched in genes changing classification from
RR in healthy volunteers to CA in clinic-referred patients.

Supplementary table 5: GO terms enriched in the targets of the 25 smoke injury
master regulator TFs. Enrichment analysis was performed on the list of target genes
of the 4 TF groups appearing in the network representation in Figure 3.9a.
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