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Abstract

In this thesis a mathematical study on the Darwin–Howie–Whelan (DHW) equations is

provided. The equations are commonly used to describe and simulate the scattering of

fast electrons in transmission electron microscopy (TEM). They are a system for infinitely

many envelope functions, derived from the Schrödinger equation. However, for the sim-

ulation of images only a finite set of envelope functions is used, leading to a finite system

of ordinary differential equations in the thickness direction of the specimen. Until now,

there has been no systematic discussion about the accuracy of approximations depending

on the choice of the finite sets used. This question is approached here by studying the

mathematical structure of the system and providing error estimates to evaluate the accu-

racy of special approximations, like the two-beam and the systematic-row approximation.

This way, mathematical guidelines for optimal choices are provided and are justified by

exact error estimates.

Then a mathematical model and a toolchain for the numerical simulation of TEM images of

semiconductor quantum dots (QDs) is developed. This includes elasticity theory to obtain

the strain profile coupled with the Darwin-Howie-Whelan equations. A simulation study

is performed on indium gallium arsenide QDs with different shapes and the resulting TEM

images are compared to experimental ones. This toolchain is used to generate a database

of simulated TEM images, which is a key element of a novel concept for model-based

geometry reconstruction of semiconductor QDs, involving machine learning techniques.

Finally, symmetries observed in TEM images are investigated with respect to the DHW

equations. The motivation for this is that TEM images of strained crystals often exhibit

symmetries, the source of which is not always clear. To understand the source, symme-

tries that occur from the imaging process itself are distinguished from symmetries of the

inclusion that might affect the image. Then, mathematical proofs are given showing that

the intensities of the solutions of the DHW equations are invariant under specific transfor-

mations. A combination of these invariances with specific properties of the strain profile

can then explain symmetries observed in TEM images. The results are demonstrated by

using selected examples in the field of semiconductor nanostructures, such as quantum

wells and quantum dots.
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Zusammenfassung

Diese Arbeit liefert einen Beitrag zur mathematischen Untersuchung der Darwin-Howie-

Whelan (DHW) Gleichungen. Sie werden üblicherweise zur Beschreibung und Simulation

der Diffraktion schneller Elektronen in der Transmissionselektronenmikroskopie (TEM)

verwendet. Sie bilden ein System aus Gleichungen für unendlich viele Enveloppenfunk-

tionen, das aus der Schrödinger-Gleichung abgeleitet werden kann. Allerdings wird

für Simulation von TEM Bildern nur ein endlicher Satz von Enveloppenfunktionen ver-

wendet, was zu einem System von gewöhnlichen Differentialgleichungen in Richtung der

Dicke der Probe führt. Bis jetzt gibt es keine systematische Analyse zur Genauigkeit dieser

Näherungen in Abhängigkeit von der Auswahl der verwendeten endlichen Sätze von En-

veloppenfunktionen. Diese Frage wird hier untersucht, indem die mathematische Struk-

tur des Systems analysiert wird und Fehlerabschätzungen zur Bewertung der Genauigkeit

spezieller Näherungen hergeleitet werden, wie der Zweistrahl-Approximation oder der

sogennanten systematischen Reihe. Auf diese Weise werden mathematische fundierte

Regeln für optimale Auswahl der Enveloppenfunktionen begründet und durch exakte

Fehlerabschätzungen gerechtfertigt.

Anschließend wird ein mathematisches Modell und eine Toolchain für die numerische

Simulation von TEM-Bildern von Halbleiter-Quantenpunkten entwickelt. Dazu gehört

die Elastizitätstheorie zur Bestimmung der Verformung des Kristallgitters und die Kop-

plung an die DHW Gleichungen. Es wird eine Simulationsstudie an Indium-Gallium-

Arsenid-Quantenpunkten mit unterschiedlicher Geometrie durchgeführt und die resul-

tierenden TEM Bilder werden mit experimentellen Bildern verglichen. Diese Toolchain

wird verwendet, um eine Datenbank von simulierten TEM-Bildern zu erzeugen, die ein

Schlüsselelement eines neuartigen Konzepts für die modellbasierte Geometrie Rekon-

struktion von Halbleiter-Quantenpunkten aus TEM-Bildern darstellt, das Techniken des

maschinellen Lernens verwendet.

Schließlich werden die in TEM Bildern beobachteten Symmetrien im Hinblick auf die

DHW Gleichungen untersucht. Die Motivation dafür ist, dass TEM Bilder von verspan-

nten Kristallen oft Symmetrien aufweisen, deren Ursache nicht immer klar ist. Um die

Ursachen zu verstehen, werden Symmetrien, die durch den Abbildungsprozess selbst

entstehen, von Symmetrien des beobachteten Objektes, die beide das TEM Bild beein-
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flussen können, unterschieden. Dazu werden mathematische Resultate formuliert und

bewiesen, die zeigen dass die Intensitäten der Lösungen der DHW Gleichungen unter

bestimmten Transformationen invariant sind. Durch die Kombination dieser Invarianten

mit spezifischen Eigenschaften des Deformationsfeldes können dann die in TEM Bildern

beobachteten Symmetrien erklärt werden. Die Ergebnisse werden anhand ausgewählter

Beispiele aus dem Bereich der Halbleiter-Nanostrukturen wie Quantensichten und Quan-

tenpunkte demonstriert.
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Chapter 1

Introduction

The use of various glass types to make objects look bigger was already known to ancient

Romans and Egyptians. But the invention of the first microscope is traced back to the

16
th

century when Zacharias and Hans Janssen, two Dutch spectacle makers, created the

first compound microscope. Their instrument could achieve a magnification of 3× to

9× bigger. This new instrument, which we now know revolutionised science and our

lifes, was met with a lack of interest from scientists, see [Bal66]. Although impressed

by the ability to observe objects closer, people did not use this new invention in doing

observations in their scientific work, until decades later. The entrance of the microscope

into the scientific world starts in the 17
th

century. In 1609 it was Galileo Galilei who turned

his telescope into a microscope, using lenses with a shorter focal length, and achieved a

magnification of 30× bigger. But the first use of observations made with a microscope to

give scientific explanations was done in 1654 by Peter Borel in Historiarum et Observationum
Medicophysicarum, which is the first medical work using a microscope. Our next stop in

this short trip to the history of microscopy is 1665, when Robert Hooke wrote Micrographia,

in which he includes his observations on fleas and corks using a microscope. It is in this

work that he observed pores on the cork, not realising though that he had just discovered

plant cells. Then, in 1674 Anton van Leeuwenhoek created a microscope that achieved a

higher magnification ranging from 70× to 270× bigger. He observed, among other things,

bacteria for the first time in history.

Since then, the microscope not only entered the scientific world but it became the backbone

of modern science. It opened to us the door for the "micro" world. Many scientific fields,

from life sciences to technology, cannot even be imagined without the microscope. With

mechanical developments and lens improvements, the microscope changed through the

years. What was initially a tube with two lenses at the opposite ends of it evolved

into a much more complicated structure, providing us with so many different types of

microscopes. While the first ones were based on light in the visible part of the spectrum,

limiting their spatial resolution due to the connection between the wavelength of the

1



CHAPTER 1. INTRODUCTION

propagating waves and the minimal size of distinguishable objects, modern microscopes

use other types of waves to image even tinier objects. One example is the transmission

electron microscope (TEM), invented by Ernst Ruska and Max Knoll in 1931. In TEM,

images are created by the propagation of electron waves through the sample, allowing

imaging of the crystallographic structure of materials down to an atomic scale. This made

TEM an indispensable experimental tool to examine objects in life sciences or material

sciences at nanoscales.

In addition to developments in microscopes, we have reached a time where a powerful

computer is much cheaper than an average electron microscope. This can be a powerful

tool for the creation of TEM images, as well as for their interpretation. The image

simulation involves numerical calculations of the image based on first principles and a

detailed description of the microscope and the specimen. The processing of the image

aims at extracting information for the specimen from the simulated image. Both the

creation of the image as well as its interpretation inherently require mathematical theory

to solve the reconstruction problem for a single specimen and to allow for automated

processing of bulks of them. The analysis of the mathematics behind transmission electron

microscopy is the main focus of this thesis. The biggest challenge in this (and at the same

time the most interesting part) is that it requires two communities to work together,

applied mathematicians and experimental physicists. To help this communication, I tried

to write the thesis in a way that both mathematicians and physicists can understand the

results, even though the proofs are more technical and aimed at mathematicians.

Chapter 2 aims at giving an overview of the image formation process and the physical

procedures behind it. While writing it I had in mind what I would like to have known

at the beginning of my PhD. This means that this chapter is written for a mathematician

who is getting started with transmission electron microscopy and needs to learn the

fundamental concepts behind it, in order to be able to communicate with physicists on

the one hand and to understand the derivation of the equations describing the electron

propagation, called the Darwin–Howie–Whelan (DHW) equations, on the other hand.

When someone starts reading about TEM, the amount of information is so big and the

notation used so diverse that it is easy to get lost. I tried to keep it as simple as possible

and included only the minimum knowledge needed to get started. At the same time, this

chapter serves as a smooth introduction to the notation used in the next chapters, which

can get quite complicated.

In Chapter 3 the results from our paper [KMM21] are presented. The work described here

is mainly focused on the mathematical analysis of the Darwin–Howie–Whelan equations.

They are widely used for the numerical simulation of TEM images, e.g. see [Nie19] for

the software package pyTEM. They provide a theoretical basis that allows one to construct

suitable experimental setups for obtaining microscopy data on the one hand, and can

be used to analyze measured data in more details on the other hand. The origins of

this model go back to Darwin in [Dar14] with major generalizations by Howie and Whe-

lan in [HW61]. Currently, many quantitative methods emerge for applications in TEM

2



CHAPTER 1. INTRODUCTION

[Nie19; WS19], holography [LJC+14; JLC+14], scanning electron microscopy [PSC+18;

Pas19], electron backscatter diffraction [WTS+07; ZD20] and electron channelling con-

trast imaging [PHN+18], where quantitative evaluations of micrographs are compared to

simulation results to replace former qualitative observations by rigorous measurements

of embedded structures in crystals. For that reason, it is essential to evaluate the accu-

racy and the validity regime of the chosen modeling schemes and simulation tools. In

electron microscopy, this includes the heuristic approaches to select the relevant beams

in multi-beam approaches [WTS+07; Nie19; WS19]. This chapter is devoted to the theory

behind the DHW equations and thus provides mathematical arguments and refinements

for the beam-selection problem.

In Chapter 4 the results from our paper [MNS+20] are presented. Here, a mathematical

model and a toolchain for the numerical simulation of TEM images for semiconductor

quantum dots (QDs) are provided, see [KMN+19]. This work was motivated by the con-

cept of Model-based geometry reconstruction of quantum dots first introduced in [MKN+18].

As a first step towards this, a simulation study on lens-shaped and pyramidal indium

gallium arsenide QDs embedded in a gallium arsenide matrix is performed and the re-

sulting TEM simulations are compared to experimentally derived images. It is known

that TEM images are very sensitive to strain fields around QDs and these fields are mostly

responsible for the observed contrast. In order to link the contrasts in TEM images with

shapes and concentration of these QDs, it is crucial to combine strain calculations with

TEM image simulations. Previous examples of investigations with combined finite ele-

ment and image calculations include the explanation of surface relaxation contrasts along

quantum wells by [JAB+98] and explanation of the typical coffee-bean contrast around

QDs by [BFAL96]. Previous observations of [LZD+98] showed that, for single excitation

conditions, it is hard to distinguish between effects of shape and crystal symmetries on the

TEM images. By our systematic study of the influence of the shape on the image contrast,

we could identify excitation conditions that allow to distinguish between lens-shaped and

pyramidal QDs.

In Chapter 5 the symmetry properties of the TEM imaging process are analysed via the

DHW equations. This analysis showed that the imaging process is invariant under special

transformations. The most important symmetries are the sign change of the strain field

and the midplane reflection, as well as a symmetry related to the sign change of the

excitation error. The latter can be of particular importance in experiments, since modern

transmission electron microscopes can create series of images by varying the excitation

error, leading to sign changes. In Section 5.2, well chosen examples of symmetries in TEM

images are given. These symmetries can be explained by a combination of the theory

developed and properties of the strain profile. In 5.2.4 the results are stated in a simple

way, while the mathematical proofs of them are in Section 5.3. I think this structure,

while a bit unorthodox, serves the communication between the two communities better

since the reader does not have to go through the proofs in order to understand the results,

unless they want to. At the time of writing, the work presented here has been submitted

for publication and is under peer review. A preprint can be found in [KMM22].
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Finally, a summary of all the results and an outlook of possible future applications is

given in Chapter 6.
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Chapter 2

Transmission Electron Microscopy
imaging

Transmission electron microscopy (TEM) images are formed by transmitting a beam of

electrons through the specimen. The thickness of the specimen is typically below a few

hundred nanometers. The electrons interact with the specimen and due to the periodic

structure of the latter, the beams are diffracted in discrete directions. In Figure 2.1 we

can see a sketch of how a TEM image is created. A parallel electron beam illuminates the

specimen. The diffracted beams, that leave the exit surface of the specimen, are focused

again by the objective into a magnified image. The set of beams forming the image can be

reduced by the objective aperture. If the image that is created includes the undiffracted

beam it is called bright field image, otherwise it is a dark field image.

One of the things that make TEM images interesting is the fact that they are sensitive to

specific components of the displacement. In Figure 2.2 we see experimental dark field

images of two QDs, in the directions (040) and (004). Both images are showing a coffee-

bean-like contrast along the direction of the respective diffraction vector. One use of this

sensitivity to certain components of the displacement field is imaging of dislocations. In

dislocations, depending on the type, the displacement field has vanishing components in

certain directions and these directions can be found by looking for diminishing contrast

under the two-beam conditions for different vectors g. Typically, the contrast vanishes for

directions g perpendicular to the Burger’s vector of the dislocation, i.e. g · b = 0 [De 03].

We will come back to images and displacement fields but for now what is important is

to understand a bit the imaging procedure, because this will be useful for understanding

the mathematical analysis done in the next chapters. We will start with an overview

of crystallography, since the specimen is a crystalline object. This will lead us to the

conditions that need to be satisfied in order for the beams to be diffracted in discrete

directions.

5
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Incoming beams

Specimen

Diffracted beams

Objective lens

Objective aperture

Image

Bright field Dark field

Figure 2.1: Ray path within TEM. In the first case the objective aperture selects all beams, while

in the second the objective aperture only selects the strongly excited beam (dark field image).

Adapted from [MNS+20, Fig.1] and used under CC-BY.

Abbildung 3.4.4:

oben: Dunkelfeldabbildung vom verzerrungssensitiven Reflex (040) –=7,91¶ mit

Intensitätsprofil durch QP4,

unten: Dunkelfeldabbildung vom verzerrungssensitiven Reflex (004) —=10,28¶.

22

Abbildung 3.4.4:

oben: Dunkelfeldabbildung vom verzerrungssensitiven Reflex (040) –=7,91¶ mit

Intensitätsprofil durch QP4,

unten: Dunkelfeldabbildung vom verzerrungssensitiven Reflex (004) —=10,28¶.

22

a) b)

Figure 2.2: Experimental TEM images of InAs QDs: (a) dark field of (040) beam, sensitive to [010]-

component of strain (b) dark field of (004) beam, sensitive to [001]-component of strain, adapted

from [Har11], both showing a coffee-bean-like contrast. © 2018 IEEE. Reprinted, with permission,

from [KMN+18].
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Unit cell

Lattice Periodic structure

a

b

a

b

Figure 2.3: A 2D lattice with basis vectors a,b. Repetition of the motif inside the unit cell creates

the periodic structure.

2.1 Crystallography basics

It would be impossible to continue talking about TEM imaging without some basic knowl-

edge of crystallography. We start by introducing the direct or real space. This will be our

tool to describe the crystal, the positions of atoms in it as well as the distances between

atoms. Next, by introducing the Miller indices, we define the reciprocal space and show

how the same calculations can be done there. There is so much more in crystallography

that is not included here, since the goal is to keep it simple, but fortunately the literature

is extensive and the reader who is interested in learning more has many choices, like

[DM12; De 03; Bor12] or [Sen90; Pri82; Eng86] for a more mathematical approach.

2.1.1 Direct space

We start with the introduction of the primal lattice, which in physics literature is called

direct lattice. Let ai ∈ R𝑑
be independent vectors. The lattice generated by them is:

Λ := {r =
∑

𝑟𝑖ai |𝑟𝑖 ∈ Z.} (2.1)

We call ai the basis vectors. In the case 𝑑 = 3, a vector r ∈ Λ is written as: r = 𝑟1a1+𝑟2a2+𝑟3a3
and it represents a direction in the crystal lattice , which is usually written as [𝑟1𝑟2𝑟3].
For negative components a minus sign above the corresponding component is used, e.g.

[𝑟1𝑟2𝑟3] corresponds to the vector r = 𝑟1a1 − 𝑟2a2 + 𝑟3a3. The volume created by the basis

vectors is called a unit cell. Repetition of the unit cell along the directions of the lattice

creates the crystal structure. An example in 2D is given in Figure 2.3. A lattice can be

described by its lattice parameters, which for a 3 dimensional lattice are {𝑎, 𝑏, 𝑐, 𝛼, 𝛽, 𝛾}
with |a1 | = 𝑎, |a2 | = 𝑏, |a3 | = 𝑐 and 𝛼, 𝛽, 𝛾 the angles between the basis vectors. In 3D

we have 14 unique lattices called Bravais lattices, after Auguste Bravais who introduced

them in 1850 [Bra50]. In Figure 2.4 we see three of them and their lattice parameters.

Next we would like to compute distances and angles between atoms in the unit cell. Two

vectors r, q in physical space R3
have a Euclidean norm and a scalar product. However,

7
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b

a

c

↵�

�

Triclinic
(a) Triclinic unit cell

b

a

c

↵�

�

Cubic

(b) Cubic unit cell

b

a

c

↵
�

�

Tetragonal
(c) Tetragonal unit cell

Figure 2.4: The triclinic lattice in 2.4a is described by {𝑎, 𝑏, 𝑐, 𝛼, 𝛽, 𝛾} with 𝑎 ≠ 𝑏 ≠ 𝑐 and 𝛼 ≠ 𝛽 ≠ 𝛾.

For the cubic lattice 2.4b we have {𝑎, 𝑎, 𝑎, 𝜋
2
, 𝜋

2
, 𝜋

2
} and for the tetragonal 2.4c {𝑎, 𝑎, 𝑐, 𝜋

2
, 𝜋

2
, 𝜋

2
}.

we will mainly use the crystallographic basis {a1 , a2 , a3}. The dot product between two

vectors r, q in a general reference frame is given by r · q ≡ |r| |q|cos𝜃, with 𝜃 being the

angle between the vectors. The length of a vector r = 𝑟1a1 + 𝑟2a2 + 𝑟3a3 is then given by:

|r| =
√∑

𝑖

∑
𝑗

𝑟𝑖(ai · aj)𝑟 𝑗 =
√
𝑟𝑖(ai · aj)𝑟 𝑗 . (2.2)

In the last equality, we used the Einstein summation convention: When a subscript occurs
twice in the same term of an equation, then a summation is implied over all values of this subscript
and the summation sign can be dropped. Now, we introduce the notion of the direct metric

tensor G ∈ R3×3
, which is important in crystallographic computations and is defined as:

G ≡ (ai · aj)𝑖 , 𝑗∈{1,2,3} =

a1 · a1 a1 · a2 a1 · a3
a2 · a1 a2 · a2 a2 · a3
a3 · a1 a3 · a2 a3 · a3

 . (2.3)

All the above quantities now can be described in terms ofG, as we will see in the following

simple example.

Example 2.1.1. For the tetragonal lattice with parameters 𝑎 = 1

3
and 𝑐 = 1

2
, find the dot product

and the angle between the vectors r = [ 1

2
0

1

3
] and q = [ 1

4

1̄

2
0]. We first calculate the direct metric

tensor, which is:

G =


1

9
0 0

0
1

9
0

0 0
1

4

 .
The dot product now can be calculated from:

r · q = 𝑟𝑖ai · 𝑞 𝑗aj = 𝑟𝑖(ai · aj)𝑞 𝑗 =
[

1

2
0

1

3

] 
1

9
0 0

0
1

9
0

0 0
1

4




1

4

−1

2

0

 = 1

72

nm.

To find the angle we need the lengths of the vectors as well, which we find using the expression
(2.2):

|r| =
√

2

6

nm, |q| =
√

5

12

nm.

8
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Then the angle can be calculated from:

cos(𝜃) = r · q
|r| |q| =

1√
10

⇒ 𝜃 = 71.56°.

2.1.2 Miller indices

Before defining the reciprocal lattice, we will introduce a method to label lattice planes,

based on their intercepts with the crystal axes. By lattice plane we mean any plane that

contains at least three non-colinear lattice points. The reason we need this is because the

reciprocal lattice points represent planes in the direct space. A collection of equally spaced

parallel lattice planes is a family of lattice planes. Miller [Mil39] provided a method to

label these families of planes by indices, which are often called Miller indices or (ℎ𝑘𝑙)
indices. The method goes as follows: First we check if the plane goes through the origin.

If yes, then we displace it so that it no longer contains the origin. Then we follow these

three steps:

1. Determine the intercepts of the plane with the three basis vectors. In case the plane

does not intercept one of the axes, the intercept is considered to be ∞.

2. Invert all three intercepts. In the case that the inverts are not integers, say we have

𝑎, 𝑏 and 𝑐 with rational ratios, we can still write them in terms of integer indices by

scaling them appropriately.

3. Reduce all numbers to relative primes.

We write the three numbers surrounded by round brackets, i.e. (hkl), and these are the

Miller indices of the plane. In Figure 2.5 we see two examples. In the first one 2.5a, the

plane intercepts the axes at
1

2
for a,

1

2
for b and

1

3
for c, and inverting these intercepts gives

the millers indices (223). In the second example 2.5b the plane intercepts the b axes at

1 and the c axes at
1

2
. It does not intercept the a axes though. In this case we consider

the intercept to be ∞. By inverting these we get the Millers indices (012). It can happen

that we have irrational Miller indices. In this case we have an aperiodic pattern known as

a quasicrystal. However, here we focus on periodic structures so the Miller indices will

always be integers.

2.1.3 Reciprocal space

The dual lattice Λ∗
, or reciprocal lattice as it is called in physics, is defined as:

Λ∗
:= {g ∈ (R𝑑)∗ | g · r ∈ Z for all r ∈ Λ}. (2.4)

A vector g ∈ Λ∗
(for 𝑑 = 3) is written as:

g = ℎa1
∗ + 𝑘a2

∗ + 𝑙a3
∗ ,

9
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(a) Plane (223) (b) Plane (012)

Figure 2.5: Planes in the unit cell and their Miller indices.

where the dual basis vectors aj
∗

are defined as ai · aj
∗ = 𝛿𝑖 𝑗 , with 𝛿𝑖 𝑗 the Kronecker delta.

How is this connected with the Miller indices? Let r = 𝑥a1+𝑦a2+𝑧a3 ∈ Λ be perpendicular

to the dual lattice vector g. Then we get:

g · r = ℎ𝑥 + 𝑘𝑦 + 𝑙𝑧 = 0, (2.5)

which is the equation of a plane through the origin of the primal lattice. The general

equation of a plane intersecting the basis vectors ai at the points 𝑎𝑖 , see [Spi68], is:

𝑥

𝑎1

+ 𝑦

𝑎2

+ 𝑧

𝑎3

= 1. (2.6)

Translating the plane across its normal will change the value on the right-hand side of the

equation, which becomes zero if the plane goes through the origin. Then by comparing

Equation (2.5) with:

𝑥

𝑎1

+ 𝑦

𝑎2

+ 𝑧

𝑎3

= 0,

we see that ℎ = 1

𝑎1

, 𝑘 = 1

𝑎2

, 𝑙 = 1

𝑎3

, hence the dual lattice vector g with components (ℎ, 𝑘, 𝑙)
is perpendicular to the plane with Miller indices (ℎ𝑘𝑙). This means that the unit normal

to the plane is n =
g
|g| .

The interplanar spacing 𝑑ℎ𝑘𝑙 is defined as the distance between the equally spaced parallel

planes expressed by the Miller indices (ℎ𝑘𝑙). This will be equal to the perpendicular

distance from the origin to the plane intersecting the direct basis vectors at the points
1

ℎ
,

1

𝑘
and

1

𝑙
. This distance is equal to the projection of any vector r ending in the plane onto

the plane normal n:

r · n = r · g
|g| = 𝑑ℎ𝑘𝑙 .

10
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Choosing r = a1
ℎ

, we have:

r · g =
a1
ℎ

· (ℎa1
∗ + 𝑘a2

∗ + 𝑙a3
∗) = 1 = 𝑑ℎ𝑘𝑙 |g|. (2.7)

This shows that the length of a reciprocal lattice vector g is equal to the inverse of the

spacing between the corresponding lattice planes: |g| = 1

𝑑ℎ𝑘𝑙
.

Now to compute angles and distances in the dual space, as we did in real space, we

introduce the dual metric tensor:

G∗ ≡ (ai
∗ · aj

∗)𝑖 , 𝑗∈{1,2,3} =

a1

∗ · a1
∗ a1

∗ · a2
∗ a1

∗ · a3
∗

a2
∗ · a1

∗ a2
∗ · a2

∗ a2
∗ · a3

∗

a3
∗ · a1

∗ a3
∗ · a2

∗ a3
∗ · a3

∗

 = (G)−1. (2.8)

This way we have that the length of a reciprocal lattice vector g is:

1

𝑑ℎ𝑘𝑙
= |g| =

√
𝑔𝑖(ai∗ · aj∗)𝑔𝑗

and the angle between two vectors g, p is given by: 𝜃 = cos
−1( 𝑝𝑖(ai

∗·aj
∗)𝑔𝑗√

𝑝𝑖(ai∗·aj∗)𝑝 𝑗
√

𝑔𝑖(ai∗·aj∗)𝑔𝑗
).

We should by now understand that our specimen has a crystal structure and we can

describe this via the direct space. We can find the positions of atoms and the distances

between them. Then we have a second reference frame, the dual space. This corresponds

to the image space. We can go from the direct space to the dual and back, by the duality

relation in (2.8). If this is clear then we are ready to move on. The periodic structure of our

specimen is the reason that the beams are diffracted in discrete directions. So, the next

thing we need to understand is how to find these directions. For this, we need Bragg’s

equation and the notion of the Ewald sphere.

2.2 Bragg’s equation and Ewald sphere

In Figure 2.6 we have an incoming wave with wavevector k0, which is incident to a set

of parallel planes with Miller indices (ℎ𝑘𝑙), and incidence angle 𝜃. Part of the incident

wave will pass through the plane and part will be reflected. Snell’s law states that the

incident and reflected angles are equal and the diffracted beam, the incoming beam and

the normal vector are co-planar. A second wave is shown, with the same incident angle.

These two waves are in phase, when the path difference between the two waves is equal

to an integer multiple of the wavelength 𝜆 [De 03, Ch.2, p 96]:

2𝑑hklsin𝜃 = 𝑛𝜆. (2.9)

This equation describes the 𝑛-th order diffraction from the plane (ℎ𝑘𝑙). Equivalently,

we can talk about the first order diffraction from the plane (ℎ̂𝑘𝑙) = (𝑛ℎ 𝑛𝑘 𝑛𝑙), which

11
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k0n

✓

First wave

Second wave

k0

Figure 2.6: Bragg’s condition in real space: For in-phase arrival of the two waves the path

differences between them must equal to an integral number of wavelengths, leading to Equation

(2.9).

is parallel to the plane (ℎ𝑘𝑙) and has an interplanar spacing 𝑑ℎ̂𝑘𝑙 =
𝑑ℎ𝑘𝑙
𝑛 , and write the

equation as:

2𝑑ℎ̂𝑘𝑙sin𝜃 = 𝜆.

This is Bragg’s equation in real space. It is useful when we want to find the diffraction

angle, but it does not give us any information about the absolute directions of the wave. For

that, we transform the equation into the reciprocal space, which leads to the construction

of the Ewald sphere, see Figure 2.7. As in Figure 2.6, k0 and k′
denote the wavevectors of

the incoming and the diffracted wave respectively. First, we translate the vector k′
parallel

to itself, until its starting point coincides with the starting point of k0, let us call it C. Then

we have:

k′ = k0 + g with g ∈ Λ∗. (2.10)

This is Bragg’s equation in reciprocal space. When this condition is satisfied, it means

that a diffracted wave with wavevector k′
may occur. Diffraction is usually an elastic

scattering event, which means that the incoming beam and the diffracted one have the

same wavelength 𝜆, giving |k0 | = |k′ | = 1

𝜆 (Ewald condition). This implies that the

wavevectors k0 and k′
have to lie on the surface of a sphere, known as the Ewald sphere

[Ewa21]. When a reciprocal lattice point falls on this sphere, the Ewald condition is

satisfied. As seen in Figure 2.7, we can have more than one diffracted beams. So, for an

incoming beam with wavevector k0, we write the Ewald sphere as the set of reciprocal

lattice points satisfying the Ewald condition:

SEw :=
{

g ∈ Λ∗ �� |k0 |2 − |k0+g|2 = 0

}
. (2.11)

In general, SEw ∩ Λ∗
may be trivial, i.e. it only contains g = 0. However, diffraction can

occur even when the Ewald condition is not exactly satisfied, say for lattice points that are

close, in some sense, to the Ewald sphere. The distance of a reciprocal lattice point g from

12
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k0

g

C

k0

Figure 2.7: Ewald sphere construction: The reciprocal points that fall on this sphere satisfy the

Bragg condition.

the Ewald sphere is usually expressed through a quantity called excitation error defined

as:

𝑠g = − g · (2k0+g)
2|k0+g|cos𝛼

=
|k0 |2 − |k0+g|2

2(k0+g) · 𝝂 , (2.12)

where 𝛼 is the angle between the vector k0 + g and the foil normal 𝝂. Maybe the term

error does not sound good to mathematicians since it usually refers to some numerical

error, which is not the case here, and excitation parameter would be better. However, to

keep it consistent with the literature, I will refer to it as the excitation error, even though I

see it more as a coefficient in an ordinary differential equation as we will see later. At the

beginning of this chapter we said that the objective aperture can reduce the set of beams

forming the image. Bragg’s equation tells us which set of beams we should choose. Let

us sum up what we know: We have a periodic structure. This makes beams diffract in

discrete directions. We can find these directions by Bragg’s equation. There is one last

thing we need to know: the column approximation. Then we can fully understand how

a TEM image is created.

2.3 Column approximation

In transmission electron microscopy, we deal with high energy electrons. This means

that the scattering angles for electron diffraction are small. Put in simple words, electrons

will not end up away from the projection of the entrance point on the exit plane. The

13
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Figure 2.8: Column approximation: An incoming beam is assumed not to leave a column centered

at the entering point. For this column, the intensity corresponding to the (𝑖 , 𝑗) pixel is obtained

by propagating the beam along a line scan (blue line) in 𝑧-direction at position (𝑥𝑖 , 𝑦𝑗) to the exit

plane.

diffraction angle becomes smaller with higher acceleration voltage. Because of this,

M. Whelan and coworkers [WHHB57] introduced in 1957 the column approximation.

The column approximation says that, due to the high energy, we can assume that an

electron which enters the sample at one point will never leave a cylindrical column

centered around the axis given by this point. In addition, it is assumed that electrons are

not exchanged between columns. Then, we can solve the dynamical equations for each

column in turn. We are now ready to understand how a TEM image is created. Imagine

we have a rectangular specimen of horizontal dimensions 𝑙𝑦 by 𝑙𝑥 and vertical thickness

𝑧∗, see Figure 2.8. We divide this horizontal surface into squares of edge length 𝑙𝑐 . We

have that the total number of squares 𝑁 created is:

𝑁 =
𝑙𝑦

𝑙𝑐
× 𝑙𝑥

𝑙𝑐
= 𝑁𝑦 × 𝑁𝑥 ,

where 𝑁𝑦 , 𝑁𝑥 are the number of squares in the respective direction. Each square is the

top of a column that we label by pairs (𝑖 , 𝑗). Then, a simulated TEM image is an array of

𝑁𝑦 × 𝑁𝑥 pixels, where every pixel (𝑖 , 𝑗) shows the intensity we calculated by solving the

dynamical diffraction equations for that column, using as parameters the length of the

column ( which is the local thickness 𝑧(𝑖 , 𝑗)) and the orientation of the crystal along the

column ( which is described through the local excitation error 𝑠g(𝑖 , 𝑗)). Our final step is to

use everything we learned until now and derive the equations that describe the electron

propagation through the sample.
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ℏ = ℎ
2𝜋 Planck’s constant ℎ divided by 2𝜋

𝑞 Elementary charge

E Acceleration voltage

𝛾 = 1 + 𝑞𝐸

𝑚0𝑐
2

0

Relativistic mass ratio

𝑚 = 𝑚0𝛾 Electron mass, where 𝑚0 is electron rest mass

𝜆0 = ℎ
/√

2𝑚0𝑞𝐸
(
1+ 𝑞𝐸

2𝑚0𝑐
2

0

)
Electron wavelength

𝑐0 Speed of light

Table 2.1: Coefficients that appear in the Schrödinger Equations (2.13) and (2.14).

2.4 Dynamical electron scattering

We start with the time-dependent Schrödinger equation for the wave function 𝜓(𝑡 , r):

iℏ
𝜕𝜓(𝑡 , r)

𝜕𝑡
= − ℏ2

2𝑚
Δ𝜓(𝑡 , r) − 𝑞𝑉C(r)𝜓(𝑡 , r), (2.13)

where 𝑉C is a possibly complex periodic potential describing the electronic properties of

the crystal. The rest of the coefficients are in Table 2.1. Looking for time-periodic solutions

in the form 𝜓(𝑡 , r) = e
−i4𝜋2 ℏ

2𝑚 |k0 |2𝑡Ψ(r) we obtain the stationary Schrödinger equation:

ΔΨ(r) + (2𝜋|k0 |)2Ψ(r) = −4𝜋2𝒰(r)Ψ(r), (2.14)

where k0 is the wavevector of the incoming beam and 𝒰 is the reduced electrostatic potential
defined as 𝒰(r) = 2𝑚0𝑞

ℎ2
𝛾𝑉C(r) with unit m

−2
. The modulus of the wavevector is related

to the (relativistic) wavelength by |k0 | = 1/𝜆0, with 𝜆0 given in Table 2.1.

We decompose r ∈ R𝑑
into an in-plane component y ∈ R𝑑−1

and a transversal component

𝑧 ∈ R, i.e. after rotating the coordinate axis we have r = (y, 𝑧). The vertical coordinate

𝑧 ∈ [0, 𝑧∗] gives the depth inside the specimen, with 𝑧 = 0 being the entry plane and

𝑧 = 𝑧∗ the exit plane. To comply with physicists convention, the 𝑧 direction is orientated

roughly parallel to the electron beam. The outwards normal to the specimen at the exit

plane 𝑧 = 𝑧∗ is denoted by 𝝂 and is assumed to be:

𝝂 := (0, . . . , 0, 1)⊤.

The direct lattice Λ and the dual lattice Λ∗
are not necessarily aligned with one of the

directions 𝝂 or k0, but we always assume k0 · 𝝂 > 0, see Figure 2.9.

The column approximation restricts the focus to solutions of (2.14) that are exactly periodic

in y and are slow modulations in 𝑧 of a periodic profile in 𝑧. Hence, we seek solutions in

the form:

Ψ(r) = Ψ(y, 𝑧) =
∑
g∈Λ∗

𝜓g(𝑧) e
i 2𝜋k0·r

e
i 2𝜋g·r , (2.15)

15
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𝑧

𝑦𝑧 = 0

𝑧 = 𝑧∗ specimen

k0

k0 k0+g
𝝂

Figure 2.9: The incoming wave with wavevector k0 enters the specimen, is partially transmitted,

and generates waves with nearby wavevectors k0+g. Reprinted with permission from [KMM21,

Fig. 1.1], published by the Society for Industrial and Applied Mathematics (SIAM). Copyright ©
by SIAM.

where 𝜓g is the slowly varying envelope function of the beams in the directions of the

vector g ∈ Λ∗
(multi-beam ansatz). From a physics point of view, this multi-beam ansatz

represents the diffraction of the incoming beam 𝜓0 in different discrete directions g
(Bragg’s law), given by the dual lattice. As was mentioned at the beginning of this chapter,

the use of an objective aperture in TEM allows for restricting the set of transmitted beams

forming the image in the microscope. Bright field and dark field imaging allow us to

access the specific components 𝜓g of the multi-beam ansatz.

The periodicity of the potential 𝒰 is given by the direct lattice Λ ⊂ R𝑑
via 𝒰(r+q) = 𝒰(r)

for all r ∈ R𝑑
and all lattice vectors q ∈ Λ. With this, we are able to write 𝒰 by its Fourier

expansion 𝒰(r) = ∑
g∈Λ∗ e

i 2𝜋g·r 𝑈g. Using the Fourier expansion of 𝒰 we see that Ψ given

in (2.15) solves the Schrödinger equation (2.14) if and only if the following system of ODEs

is satisfied:

..

𝜓g(𝑧) + i4𝜋𝜌g
.

𝜓g(𝑧) + 4𝜋2𝜎g𝜓g(𝑧) = −4𝜋2

∑
h∈Λ∗

𝑈g−h𝜓h(𝑧) for g ∈ Λ∗ ,

where 𝜌g := (k0+g) · 𝝂 and 𝜎g := |k0 |2 − |k0+g|2 = −|g|2−2k0 · g.
(2.16)

To simplify notation, we used the shorthand

.

𝜓g(𝑧) = 𝜕𝑧𝜓g(𝑧) = d

d𝑧
𝜓g(𝑧). Recalling

𝝂 = (0, . . . , 1)⊤, we see that 𝜌g is positive for g ≈ 0, while 𝜎g changes sign in balls around

g = 0.

Next we use the fact that the variation in 𝑧 is small such that 𝜕2

𝑧𝜓g is much smaller than

typical values of 4𝜋𝜌g𝜕𝑧𝜓g. Thus, we will neglect the second derivative (see Remark 2.4.1

for the justification) and are left with an infinite system of first-order ordinary differential

equations, called Darwin–Howie-Whelan (DHW) equation, see e.g. [Dyc76, Eqn. (2.2.1)] or

16
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[MNBL19, Eqn. (1)]:

𝜌g

𝜋

.

𝜓g(𝑧) − i𝜎g𝜓g(𝑧) = i

∑
h∈Λ∗

𝑈g−h𝜓h(𝑧) for g ∈ Λ∗. (2.17)

Usually they are stated in the form:

.

𝜓g(𝑧) − 2i𝜋𝑠g𝜓g(𝑧) = i

𝜋
𝜌g

∑
h∈Λ∗

𝑈g−h𝜓h(𝑧) for g ∈ Λ∗ ,

where 𝑠g = 𝜎g/(2𝜌g) =
|k0 |2 − |k0+g|2

2(k0+g) · 𝝂 the excitation error.

(2.18)

However, we prefer (2.17) because of its mathematical symmetry structure. In experi-

ments, the setup is done in such a way that the incoming beam, which will always be

given by g = 0, is diffracted in a few directions k0+g for g lying in a small subset Λ∗
𝑚 of

Λ∗
, where 𝑚 is used to indicate the number of elements in Λ∗

𝑚 . Replacing Λ∗
in (2.18) by

Λ∗
𝑚 , we arrive at an 𝑚-beam model, which is an ODE for the vector 𝝍 = (𝜓g)g∈Λ∗

𝑚
∈ C𝑚

with the simple initial condition 𝜓g(0) = 𝛿0,g (Kronecker symbol) for the incoming beam.

Of special importance will be the:

two-beam model with Λ∗
2
= {0, g′},

which is widely used. From now on, we will denote by g′
the diffracted beam in the two-

beam approximation and by gap the beam chosen by the objective aperture. For a bright

field image we have gap = 0 and for a dark field image under two-beam approximation

we have gap = g′
.

Taking a closer look on the derivation of the DHW equations, we notice that (2.18) for all
g ∈ Λ∗

is probably ill-posed, in particular, because of 𝜌g changing sign and, even worse,

becoming 0 or arbitrarily close to 0. It is clear that neglecting the term
1

4𝜋2

d
2

d𝑧2
𝜓g(𝑧) cannot

be justified for such g’s. Hence, one should realize that the DHW equation (2.18) is only

useful for g where 𝜌g is close to 𝜌0 = k0 · 𝝂 > 0. The natural questions to occur are: What

do we mean by close and how many beams are needed to obtain a reliable approximation

for the solution of the Schrödinger equation, in particular for high-energy electron beams

(𝐸 ≥ 100 keV)?

These questions will be addressed in the next chapter, where we will investigate the

reduction from the infinite lattice Λ∗
to appropriate finite sets Λ∗

𝑚 ⊂ Λ∗
.

Remark 2.4.1 (Justification of dropping 𝜕2

𝑧𝜓g). In [Dyc76] the full Equation (2.16) including
the second-order derivative with respect to 𝑧 is abstractly written as:

1

4𝜋2

..
𝝍 + i𝑅

.
𝝍 + (Σ+U)𝝍 = 0, 𝝍 = (𝜓g)g∈G ,

where 𝑅 = diag

( 𝜌g
𝜋

)
g∈G ,Σ = diag(𝜎g)g ∈ G and U𝝍 =

( ∑
h∈G 𝑈g−h𝜓h

)
g∈G. The general

solution can be written as the sum:

𝝍(𝑧) = e
𝑀1𝑧𝐶1 + e

𝑀2𝑧𝐶2 , where 1

4𝜋2

𝑀2

𝑗 + i𝑅𝑀 𝑗 + (Σ+U)𝐼 = 0,

17
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with potentially infinite matrices 𝑀 𝑗 and vectors 𝐶 𝑗 . Unfortunately the set G ⊂ Λ∗ of considered
wavevectors is not specified. The boundary conditions are derived in [Dyc76, Sec. 2.4] from the
free equations for 𝑧 < 0 and 𝑧 > 𝑧∗ (i.e. U = 0) such that:

𝝍(0) = 𝜹 +𝝍reflect ,
1

2𝜋2

.
𝝍(0) + i𝑅𝝍(0) = i𝑅𝜹 +

(
i𝑅+2S′

)
𝝍reflect ,

𝝍(𝑧∗) = 𝝍transm ,
1

2𝜋2

.
𝝍(𝑧∗) + i𝑅𝝍(𝑧∗) =

(
i𝑅+2S

)
𝝍transm ,

where S and S′ are suitable scattering matrices. It is then shown that𝝍(𝑧) differs from𝝍DHW(𝑧) =
e

i𝑅−1(Σ+U)𝑧𝜹 only by an amount that is proportional to 1/|k0 |, which is supposed to be negligible
in most experimentally relevant cases.
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Chapter 3

On the Darwin–Howie–Whelan
equations for the scattering of fast
electrons

In the previous chapter, we introduced the Darwin-Howie-Whelan equations (2.17). They

were derived from the Schrödinger equation (2.13) using Bragg’s law (2.10) and the

column approximation (2.15). Doing this step by step we ended up with a system for

infinitely many beam amplitudes 𝜓g with g running through the whole dual lattice Λ∗
.

In practice, for the numerical solution, we select a finite set Λ∗
𝑚 ⊂ Λ∗

of relevant beams,

e.g. the classical two-beam approximation, see Section 3.4.3. The accuracy of such an

approximation depends on the choice of Λ∗
𝑚 . The main goal of this chapter is to provide

mathematical guidelines for optimal choices that are justified by exact error estimates.

The results of this chapter are published in [KMM21] and the structure of the chapter

follows closely the structure of that paper, with only a few changes in notation.

First, we write the equation in an appropriate form, see Section 3.1, in order to keep the

symmetries related to self-adjointness of the Schrödinger equation, which will be useful

for the analysis that follows, and we introduce the main structural assumptions for the

coefficients (3.2). Once the setup is ready, we continue in Section 3.2 by defining two

important sets of admissible beams Λ∗𝑀
and Λ∗𝛾

, see (3.6). These sets are crucial for the

analysis, because the DHW equation is well defined on them, as well as on any finite

subset Λ∗
𝑚 . The mathematical analysis is then done in Section 3.3. We start by defining

the appropriate Hilbert space with a corresponding norm and we prove existence and

uniqueness of solutions in Proposition 3.3.1. In Section 3.3.2, we show that the solutions

can be controlled by an exponentially weighted norm, see Theorem 3.3.4, using our main

assumption that the Fourier coefficients of the potential decay exponentially, see (3.9).

Using this result, we provide a first estimate between solutions in the sets of admissible

beams, see Theorem 3.3.6, as well as any set Λ∗𝑀 ⊂ Λ∗
𝑚𝑗

⊂ Λ∗𝛾
, see Corollary 3.3.7. To
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further reduce the sets of beams, we use energy criteria in Section 3.3.4, that will allow us

to split the setΛ∗𝑀
based on the size of the excitation error and lead us to a reduction on the

Ewald sphere, see Theorem 3.3.10. Then in Section 3.4, we discuss special approximations

that are commonly used in physics, like the two-beam approximation and the systematic-

row approximation. The chapter ends with some numerical simulations in Section 3.5,

where we relate the observed errors with the mathematical estimates developed before.

3.1 Setup of the model

First, we rewrite the equation (2.17) in a matrix-vector form for 𝝍 = (𝜓g)g∈Λ∗ and we get

the system:

𝑅
.

𝝍 = i

(
Σ +U

)
𝝍, where

𝑅 = diag

(𝜌g

𝜋

)
g∈Λ∗ , Σ = diag(𝜎g)g∈Λ∗ , U𝝍 =

( ∑
h∈Λ∗ 𝑈g−h𝜓h

)
g∈Λ∗

. (3.1)

Denoting by 𝜹 := (𝛿0,g)g∈Λ∗ the incoming beam, the solution 𝝍 of the DHW equation can

be written formally as 𝝍(𝑧) = e
i𝑅−1(Σ+U)𝑧𝜹.

The following structural assumptions will be fundamental for the analysis:

∀g ∈ Λ∗
: 𝜌g ∈ R, 𝜎g ∈ R, 𝑈−g = 𝑈g. (3.2)

Hence, the operator U is not only a simple convolution, but it is additionally Hermitian

with respect to the standard complex scalar product. Modelling further effects, like dissi-

pation via absorption or radiation, would break the Hermitian symmetry of (𝑈g−h)g,h∈Λ∗ .

The system (3.1) has a good structure because it keeps the symmetries related to self-

adjointness of the Schrödinger equation. However, as is done in the physical literature

it is often useful, e.g. for computational reasons, to write the system as an explicit first

order equation in the form (2.18), which in a matrix form becomes:

.

𝝍 = i

(
2𝜋𝑆+W)𝝍 with 𝑆 = diag(𝑠g)g∈Λ∗ and (W𝝍)g =

∑
h∈Λ∗

𝑊g,h 𝜓h , (3.3)

where 𝑠g = 𝜎g/(2𝜌g) and 𝑊g,h = 𝜋𝑈g−h/𝜌g.

In this form we see the excitation errors 𝑠g which play a central role in TEM. They drive the

phase of 𝜓g(𝑧) ∈ C and can be interpreted as modulational wave numbers.

The multiplication by the inverse of the diagonal operator 𝑅 = diag(𝜌g/𝜋), however,

destroys two important properties of the operator U. The scattering operator W is not

described by a simple convolution anymore nor is it Hermitian. A serious problem then

occurs because the factor 𝜌g = (k0+g) · 𝝂 may become very small or even exactly 0.
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This happens for g such that k0+g has no component in 𝑧-direction, i.e. the wave travels

orthogonal to 𝝂. Such waves are not relevant in TEM, and next we explain how g is

restricted to exclude this case.

3.2 Sets of admissible beams

The fundamental observation is that the DHW equation for all g ∈ Λ∗
is not really what

is intended. The equation was derived with the aim to understand the behavior of 𝜓g for

g close to g = 0, because in high-energy for reasonably thick specimens the diffraction

remains small, i.e. we should only consider g with |g| ≪ |k0 |.

Moreover, the assumption that the second derivative

..

𝜓g can be dropped in comparison to

the other terms 𝜌g
.

𝜓g, 𝜎g𝜓g, and (U𝝍)g is only justified if the excitation errors 𝑠g = 𝜎g/(2𝜌g)
are small compared to 1. Indeed, ifU is small with respect to |k0 |, which will be one of our

standing assumptions, then ignoring the term with the second derivative in the left-hand

side of:

1

4𝜋𝜌g

..

𝜓g + i

.

𝜓g + 2𝜋𝑠g𝜓g = − 𝜋
𝜌g

(U𝝍)g (3.4)

leads to the explicit homogeneous solution 𝜓g(𝑧) = e
i2𝜋𝑠g𝑧

. The term with the second

derivative with respect to 𝑧 is small relative to the other terms only if:�� 1

4𝜋𝜌g

..

𝜓g
�� = 𝜋𝑠2

g

|𝜌g |
≪ |

.

𝜓g | + |2𝜋 𝑠g𝜓g | = 4𝜋|𝑠g |

⇐⇒ |𝑠g | ≪ |𝜌g | ⇐⇒ |𝜎g | ≪ |𝜌g |2.
(3.5)

An example of typical values of the left term 𝑐𝐿g(𝑧) = | 1

4𝜋𝜌g

..

𝜓g(𝑧)
��

and the right term

𝑐𝑅g (𝑧) = |
.

𝜓g(𝑧)| + |2𝜋 𝑠g𝜓g(𝑧)| in the case of four beams is given Figure 3.1 and Table 3.1

for comparison. The four-beam simulation here is the same as the one in Section 3.5.

From now on, it will be essential that we restrict the DHW equation to a subset Λ∗
𝑚 that is

part of the dual lattice Λ∗
. Two classes of subsets will be used, for technical reasons and

exact mathematical estimates, namely:

Λ∗𝛾
:=

{
g ∈ Λ∗ �� 𝜌g ≥ 𝛾𝜌0

}
and Λ∗𝑀

:= 𝐵𝑀(0) ∩Λ∗ =
{

g ∈ Λ∗ �� |g| ≤ 𝑀
}
. (3.6)

Throughout we will assume 𝛾 ∈ ]0, 1[, such that recalling 𝜌0 = k0 · 𝝂 > 0 we see that Λ∗𝛾

lies above the hyperplane 𝜌g = (k0+g) ·𝝂 = 0 and that 0 ∈ Λ∗𝛾
because of 𝛾 ≤ 1. WhileΛ∗𝛾

depends on k0 and contains infinitely many points, the set Λ∗𝑀
is finite and independent

of k0. However, we will always assume Λ∗𝑀 ⊂ Λ∗𝛾
for some 𝛾 > 0, see Figure 3.2, then the

possible values of 𝑀 range from 0 to 𝑚(𝛾, k0) ≈ (1−𝛾)|k0 |. This way the DHW equation

is well defined on the sets Λ∗𝛾
and Λ∗𝑀

, as well as on any finite subset Λ∗
𝑚 .
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Figure 3.1: Plot of 𝑐𝐿g = | 1

4𝜋𝜌g

..
𝜓g(𝑧)

��
(dotted lines) and 𝑐𝑅g = |

.
𝜓g(𝑧)| + |2𝜋 𝑠g𝜓g(𝑧)| (solid lines) in

logarithmic scale for comparison. The simulation was done for the four beams indicated by the

colors.

𝑧 g = (−1, 0) g = (0, 0) g = (1, 0) g = (2, 0)
20 0.0399943197 0.0499849218 0.0217044982 0.0058000188

40 0.0363582533 0.0435270409 0.0327706370 0.0099685772

60 0.0223780703 0.0331279555 0.0427286059 0.0136603201

80 0.0337702160 0.0225037398 0.0494867897 0.0162111446

𝑧 g = (−1, 0) g = (0, 0) g = (1, 0) g = (2, 0)
20 0.0000008562 0.0000003629 0.0000002329 0.0000000258

40 0.0000008574 0.0000003219 0.0000000283 0.0000000177

60 0.0000008574 0.0000003219 0.0000002838 0.0000000177

80 0.0000008508 0.0000002391 0.0000003708 0.0000003214

Table 3.1: Values of the term 𝑐𝑅 (top table) and 𝑐𝐿 (bottom table) for the four beam simulation

shown in Figure 3.1.
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𝜌g = 0

𝜌g > 0

𝜌g < 0

𝑔𝑦

𝑔𝑧

−k0

k0

Λ∗𝛾 Λ∗𝑀

𝑔𝑦

𝑔𝑧

−k0

Figure 3.2: Ewald sphere SEw (blue) is shown together with the points of the dual lattice. Left: The

areas around the Ewald sphere show the regions where |𝜎g | ≤ 0.1 |𝜌g |2. Only the upper half with

𝜌g > 0 is relevant for the DHW equation. Right: The sets Λ∗𝛾
and Λ∗𝑀

lie above the hyperplane

𝜌g = 0 and contain g = 0. Reprinted with permission from [KMM21, Fig. 2.2], published by the

Society for Industrial and Applied Mathematics (SIAM). Copyright © by SIAM.

From now on, we will use the shorthand “DHWΛ∗
𝑚
” to denote the DHW equation, where

the choice of wave vectors g is restricted to Λ∗
𝑚 , while all other 𝜓h are ignored, i.e. we set

𝜓h ≡ 0 for h ∉ Λ∗
𝑚 :

DHWΛ∗
𝑚
: i

𝜌g

𝜋

.

𝜓g + 𝜎g𝜓g = −
∑

h∈Λ∗
𝑚

𝑈g−h𝜓h for g ∈ Λ∗
𝑚 . (3.7)

We will write this equation also in the compact form:

𝑅Λ∗
𝑚

.

𝝍 = i

(
ΣΛ∗

𝑚
+UΛ∗

𝑚

)
𝝍 for 𝝍 = (𝜓g)g∈Λ∗

𝑚
.

However, whenever possible without creating confusion, we will drop the subscript Λ∗
𝑚

and simply write 𝑅, Σ, and U. Throughout we will assume that 0 ∈ Λ∗
𝑚 ⊂ Λ∗𝛾 ⊂ Λ∗

for some 𝛾 ∈ ]0, 1[. Our estimates below will show that the difference in solutions for

different sets Λ∗
𝑚1

and Λ∗
𝑚2

will be negligible as long as (i) they both contain a suitable ball

𝐵𝑀(0) ∩ Λ∗
around g = 0, (ii) they are both contained in Λ∗𝛾

for some 𝛾 ∈ ]0, 1[, and (iii)

as long as 𝑧∗ is not too big, see Corollary 3.3.7.

3.3 Mathematical estimates

Next, we will replace the infinite system (3.3) by a finite-dimensional one. First we insert a

beam that uses very few modes, usually one or two. This means that the initial condition

𝝍(0) is strongly localized in the wave-vector space near g = 0. Moreover, we may assume

that the scattering kernel 𝑈g−h decays exponentially in the distance |g − h|. Then, in

Section 3.3.2 we will show that the solution 𝝍(𝑧) remains localized on Λ∗
around the

initial beams for all 𝑧 ∈ [0, 𝑧∗]. Thus, we can show that cutting away modes with |g| > 𝑀,

we obtain an error that decays like e
−𝜆𝑀

with 𝜆 > 0.
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The first result concerns the preservation of a specific quadratic form that can be used as a

norm if we restrict the system to a region in Λ∗
where 𝜌g > 0. An additional reduction of

the number of relevant modes is discussed in Section 3.3.4. It concerns averaging effects

that occur by large excitation errors 𝑠g = 𝜎g/(2𝜌g). For this we use the Ewald sphere as

defined in (2.11):

SEw :=
{

g ∈ R𝑑
�� |k0+g|2 = |k0 |2

}
.

For wave vectors g ∈ Λ∗
lying on or near SEw the excitation error 𝑠g is 0 or small,

respectively. The condition 𝑠g = 0 means that the Bragg condition for diffraction holds.

However, for g lying far way from SEw we have |𝑠g | ≥ 𝑠∗ ≫ 1, which leads to fast

oscillations that make the amplitudes of these modes small.

3.3.1 Conservation of norms

We now turn to the analysis of the DHW equation (3.7) for a subset Λ∗
𝑚 which may be a

system of finite or of infinitely many coupled linear ODEs. One major impact of restriction

to Λ∗
𝑚 ⊂ Λ∗𝛾

lies in the fact that all 𝜌g are now positive. Thus, we can introduce the norm:

∥𝜓∥Λ∗
𝑚

:=

( ∑
g∈Λ∗

𝑚

𝜌g |𝜓g |2
)

1/2

=

(〈
𝜋𝑅𝝍,𝝍

〉)1/2

The square ∥𝝍∥2

Λ∗
𝑚

can be related to the wave flux in the static Schrödinger equation, see

Remark 3.3.2. We define the Hilbert spaces:

ℌ(Λ∗
𝑚) :=

{
𝐴 ∈ ℓ 2(Λ∗

𝑚)
�� ∥𝐴∥Λ∗

𝑚
< ∞

}
with scalar product

〈
𝐴, 𝐵

〉
Λ∗

𝑚
:=

∑
g∈Λ∗

𝑚

𝜌g 𝐴g𝐵g.

The following classical result states the existence and uniqueness of solutions for DHWΛ∗
𝑚

together with the property that the associated evolution preserves the Hilbert-space norm

as well as the energy norm.

Proposition 3.3.1 (Existence, uniqueness, and conservation of norms). Assume that 𝜌g and
𝜎g are given as in (2.16) and that U = (𝑈g−h) satisfies 𝑈−g = 𝑈g and |𝑈g | ≤ 𝐶U < ∞. Then,
DHWΛ∗

𝑚
as given in (3.7) has for each 𝝍(0) ∈ ℌ(Λ∗

𝑚) a unique solution 𝝍 ∈ C
0(R;ℌ(Λ∗

𝑚)).
Moreover, the solution satisfies:

∥𝝍(𝑧)∥2

Λ∗
𝑚
= ∥𝝍(0)∥2

Λ∗
𝑚

and ∥𝐻𝝍(𝑧)∥2

Λ∗
𝑚
= ∥𝐻𝝍(0)∥2

Λ∗
𝑚

for all 𝑧 ∈ R, (3.8)

where 𝐻 = 𝑅−1(Σ+U).

Proof. The result is a direct consequence of the standard theory of the generation of

strongly continuous, unitary groups e
i𝑧𝐻

, where 𝐻 = 𝑅−1(Σ+U) is self-adjoint on ℌ(Λ∗
𝑚)

equipped with the scalar product ⟨·, ·⟩Λ∗
𝑚
. □
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The following remark shows that the conservation of the norm ∥𝝍∥Λ∗
𝑚

is not related to

the classical mass conservation in the Schrödinger equation, but should be interpreted as

a wave-flux conservation, which is only approximately true in the Schrödinger equation,

but becomes exact under the DHW approximation, i.e. by ignoring the term involving

d
2

d𝑧2
𝜓g in (3.4).

Remark 3.3.2 (Wave flux in the static Schrödinger equation). For general solutions 𝜓(𝑡 , r) of
the time-dependent Schrödinger equation (2.13), we can introduce the probability density 𝜚(𝑡 , r) =
|𝜓(𝑡 , r)|2 and obtain the conservation law

𝜕𝜌

𝜕𝑡
+ div J = −2𝑞

ℏ
Im(𝑉C)𝜌 with J = ℏ

𝑚
Im

(
𝜓 ∇𝜓

)
∈ R𝑑 ,

where J is called electron-flux vector, see e.g. [De 03, p.125]. Because of our assumption (3.2), we
have Im(𝑉C) ≡ 0, such that for solutions Ψ of the static Schrödinger equation the electron flux
satisfies div J ≡ 0.

Moreover, by column approximation (2.15)Ψ(r) = Ψ(y, 𝑧) is exactly periodic in y = (𝑦1 , ..., 𝑦𝑑−1)
and a slowly varying periodic function in 𝑧. We denote by 𝒫 = 𝒫′

𝑦×[0, 𝑎0] ⊂ R𝑑 the periodicity
cell of the crystal, where 𝑎0 is the lattice constant. Choosing 𝑧1 , 𝑧2 ∈ [0, 𝑧∗] and recalling
𝝂 = (0, ..., 0, 1)⊤, the divergence theorem gives:

0 =

∫ 𝑧2

𝑧1

∫
(0,𝑧)+𝒫

div Jdr d𝑧 =

∫ 𝑧2

𝑧1

∫
(0,𝑧)+𝜕𝒫

J · �̂�d𝑎 d𝑧

=

∫ 𝑧2

𝑧1

( ∫
𝒫𝑦×{𝑧+𝑎0}

J · 𝝂d𝑎 −
∫
𝒫𝑦×{𝑧}

J · 𝝂d𝑎
)

d𝑧 =

∫
(0,𝑧2)+𝒫

J · 𝝂dr −
∫
(0,𝑧1)+𝒫

J · 𝝂dr.

Thus, we conclude that the wave flux WF(𝑧) is independent of 𝑧 ∈ [0, 𝑧∗], where:

WF(𝑧) :=

∫
(0,𝑧)+𝒫

J · 𝝂dr = ℏ

𝑚

∫
(0,𝑧)+𝒫

Im

(
Ψ

𝜕

𝜕𝑧
Ψ
)
dr.

Inserting the Fourier expansion (2.15) into Im

(
Ψ 𝜕

𝜕𝑧Ψ
)

we find that:

𝑚

ℏ
WF(𝑧) =

∫
(0,𝑧)+𝒫

Im

(
Ψ(𝑦, �̂�) 𝜕

𝜕�̂�
Ψ(𝑦, �̂�)

)
d(𝑦, �̂�)

=
∑
g∈Λ∗

Im

(
𝜓g(𝑧)

( .
𝜓g(𝑧) + i 2𝜋(k0+g)𝜓g(𝑧)

) )
= 2𝜋

∑
g∈Λ∗

(k0+g)|𝜓g(𝑧)|2 +
∑
g∈Λ∗

Im

(
𝜓g(𝑧)

.
𝜓g(𝑧)

)
.

We see that the first sum corresponds to our conserved norm ∥𝝍(𝑧)∥2

Λ∗
𝑚

if the contributions of
𝜓g(𝑧) for g ∈ Λ∗\Λ∗

𝑚 are negligible. The second sum is much smaller than the first sum, because
of our assumption of slowly varying amplitudes, namely |

.
𝜓g | ≪ |k0𝜓g |, see (3.5).
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Remark 3.3.3 (Dissipative version of the DHW equation). Often the system (2.18) or (3.3) is
modified on a phenomenological level to account for dissipative effects like absorption by making
𝑉C complex. Hence, 𝑈g is replaced by 𝑈g + i𝑈′

g with a suitable 𝑈′
g. Under this assumption,

the above flux conservation is no longer true, but for most modeling choices (e.g. in the case that
(𝑈′

g−h)g,h∈Λ∗
𝑚

is negative definite) one can achieve the estimate ∥𝝍(𝑧)∥2

Λ∗
𝑚
≤ ∥𝝍(0)∥2

Λ∗
𝑚

for 𝑧 ≥ 0,
i.e. the wave flux decays.

3.3.2 Exponential decay of modes

We first show that the solutions can be controlled in an exponentially weighted norm

∥ · ∥𝛼 with 𝛼 ∈ R, where the case 𝛼 = 0 would correspond to the usual norm ∥ · ∥Λ∗
𝑚

in

ℌ(Λ∗
𝑚). We define:

∥𝝍∥2

𝛼 :=
∑
g∈Λ∗

e
2𝛼 |g|𝜌g |𝜓g |2.

Introducing this norm will destroy the Hamiltonian structure of the system.

Our main assumption is that the potential operator U acts in such a way that the Fourier

coefficients have exponential decay, namely:

∃𝐶U > 0, 𝛼U > 0 ∀g ∈ Λ∗
: |𝑈g | ≤ 𝐶U e

−𝛼U |g| . (3.9)

Indeed, the scattering potential can be approximated by:

𝑈g ∝
∑
𝜈

𝑓𝜈(g)e2𝜋𝑖g·x𝜈
e
−𝑀𝜈 |g|2 , (3.10)

where x𝜈 denotes the position of the atom 𝜈 in the unit cell, 𝑓𝜈 the atomic scattering

factors, and 𝑀𝜈 > 0 is the Debye-Waller factor, see [WK91] and [SRTL09], respectively.

The symbol ∝ indicates proportionality. Thus, assumption (3.9) is automatically satisfied.

Figure 3.3 gives an example for GaAs.

With this assumption, we are now able to control the size of the solutions of (3.3) in the

weighted norm if |𝛼 | < 𝛼U. In the following result, 𝛼 may be positive or negative, but

later on we are interested in 𝛼 > 0.

Theorem 3.3.4 (Weighted norms). Consider the DHWΛ∗
𝑚

as in (3.7) with Λ∗
𝑚 ⊂ Λ∗𝛾 ⊂ Λ∗

with 𝛾 ∈ ]0, 1[. Moreover, assume that 𝒰 satisfies (3.9). Then, for all 𝛼 ∈ ]−𝛼U , 𝛼U[ and all
initial conditions 𝝍0 ∈ ℌ(Λ∗

𝑚) with ∥𝝍0∥𝛼 < ∞ the unique solution 𝝍 of (3.7) with 𝝍(0) = 𝝍0

satisfies the estimate:

∥𝝍(𝑧)∥𝛼 ≤ e
𝜅(𝛼)|𝑧 |∥𝝍0∥𝛼 for 𝑧 ∈ R, (3.11)

where the exponential growth rate 𝜅(𝛼) is explicitly given by:

𝜅(𝛼) = 𝜋𝐶U
𝛾𝜌0

|𝛼 |𝔖1(𝛼U−|𝛼 |), where 𝔖𝑚(𝛽) :=
∑
𝜘∈Λ∗

|𝜘|𝑚e
−𝛽 |𝜘| .
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a) b)

Figure 3.3: Atomic form factors and scattering potential: (a) atomic form factors in dependence

on the wave vector g for Ga, As, and In following [WK91]. The vertical lines indicate positions

of the lattice planes (100), (110), (200) and (400) in GaAs. (b) Fourier coefficients of the scattering

potential for GaAs along the [100]- (red) and [110]-crystallographic directions (blue) as computed

by pyTEM [Nie19] using (3.10). The blue and red lines are only for guiding of the eye. An

exponential decay (solid black) as assumed in (3.9) can be observed with 𝐶 = 10.1 1/nm
2

and

𝛼 = 0.125 nm. Reprinted with permission from [KMM21, Fig. 3.1], published by the Society for

Industrial and Applied Mathematics (SIAM). Copyright © by SIAM.

Proof. Step 1. Transformation of the equation: We introduce the new variables 𝐵g = e
𝛼 |g|𝜓g

such that ∥𝝍∥𝛼 = ∥𝐵∥Λ∗
𝑚
. In terms of 𝐵 we can rewrite DHWΛ∗

𝑚
as:

i𝑅
.

𝐵 + Σ𝐵 = −U(𝛼)𝐵 = −U𝐵 + P(𝛼)𝐵 with P
(𝛼)
g,h =

(
1 − e

𝛼(|g|−|h|))𝑈g−h. (3.12)

Here, we used that 𝑅 and Σ are diagonal operators, and hence commute with the mul-

tiplication of the exponential factor. Using the bound (3.9) for 𝑈g, the coefficients of the

perturbation operator P(𝛼) can be bounded by:

|P(𝛼)g,h | ≤ 𝐶U
(
1 − e

|𝛼 | |g−h| )
e
−𝛼U |g−h| ≤ 𝐶U min{1, |𝛼 | |g−h|} e

−(𝛼U−|𝛼 |)|g−h| . (3.13)

Step 2. Operator norm of 𝑅−1P(𝛼) in ℌ(Λ∗
𝑚). To control the perturbation 𝑅−1P(𝛼)𝐵 in terms

of ∥𝐵∥Λ∗
𝑚
, we employ Lemma 3.3.5 to obtain ∥𝑅−1P(𝛼)𝐵∥Λ∗

𝑚
≤ 𝐶

(𝛼)
P ∥𝐵∥Λ∗

𝑚
with:

𝐶
(𝛼)
P :=

(
sup

g∈Λ∗
𝑚

∑
h∈Λ∗

𝑚

𝜋|P(𝛼)g,h |
|𝜌g𝜌h |1/2

)
1/2

(
sup

h∈Λ∗
𝑚

∑
g∈Λ∗

𝑚

𝜋|P(𝛼)g,h |
|𝜌g𝜌h |1/2

)
1/2

.

Because of 𝜌g , 𝜌h ∈ Λ∗
𝑚 ⊂ Λ∗𝛾

, and (3.13) this yields:

𝐶
(𝛼)
P ≤ 𝜋𝐶U sup

g∈Λ∗
𝑚

∑
h∈Λ∗

𝑚

|𝛼 | |g−h|
𝛾𝜌0

e
−(𝛼U−|𝛼 |)|g−h| ≤ 𝜋𝐶U

𝛾𝜌0

|𝛼 |𝔖1(𝛼U−𝛼) = 𝜅(𝛼).
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Step 3. Gronwall estimate. We now apply the variation-of-constants formula (Duhamel’s

principle) to the solution 𝐵 for (3.12) in the ℌ(Λ∗
𝑚), where 𝐻 = 𝑅−1(Σ−U) is the generator

of the norm-preserving 𝐶0 group e
i𝑧𝐻

:

∥𝐵(𝑧)∥Λ∗
𝑚
≤ ∥e𝑖𝐻𝑧𝐵(0)∥Λ∗

𝑚
+
∫ 𝑧

0

∥e𝑖(𝑧−𝜁)𝐻 ∥Λ∗
𝑚
∥𝑅−1P(𝛼)𝐵(𝜁)∥Λ∗

𝑚
d𝜁

≤ ∥𝝍(0)∥𝛼 +
∫ 𝑧

0

𝜅(𝛼) ∥𝐵(𝜁)∥Λ∗
𝑚

d𝜁.

Now, Gronwall’s estimate gives ∥𝝍(𝑧)∥𝛼 = ∥𝐵(𝑧)∥Λ∗
𝑚

≤ e
𝜅(𝛼)𝑧 ∥𝝍(0)∥𝛼, and the proof is

completed. □

Step 2 of the above proof relies on the following elementary lemma, which will be used

again to calculate the norm of convolution-type operators involving U.

Lemma 3.3.5 (Operator norm). Consider Λ∗
𝑚1

,Λ∗
𝑚2

⊂ Λ∗𝛾 with 𝛾 > 0 and B : ℌ(Λ∗
𝑚1

) →
ℌ(Λ∗

𝑚2

) with (B𝐴)g =
∑

h∈Λ∗
𝑚

1

𝐵gh𝐴h. Setting 𝐵gh =
√
𝜌g/𝜌h 𝐵gh gives:

∥B𝐴∥Λ∗
𝑚

2

≤ 𝐶B∥𝐴∥Λ∗
𝑚

1

, 𝐶B =

(
sup

h∈Λ∗
𝑚

1

∑
g∈Λ∗

𝑚
2

|𝐵gh |
)

1/2
(

sup

g∈Λ∗
𝑚

2

∑
h∈Λ∗

𝑚
1

|𝐵gh |
)

1/2

, (3.14)

which is the square root of the product of the row-sum and column-sum norm.

Proof. With 𝑟g = 𝜌1/2

g the desired result is obtained as follows:

∥B𝐴∥2

Λ∗
𝑚

2

=
∑

g∈Λ∗
𝑚

2

𝑟2

g

( ∑
h∈Λ∗

𝑚
1

𝐵gh𝐴h

)
(B𝐴)g ≤

∑
g∈Λ∗

𝑚
2

∑
h∈Λ∗

𝑚
1

𝑟h |𝐵gh |1/2 |𝐴h |𝑟g |𝐵gh |1/2 |(B𝐴)g |

≤CaSch

( ∑
g∈Λ∗

𝑚
2

∑
h∈Λ∗

𝑚
1

|𝐵gh | 𝑟2

h |𝐴h |2
)

1/2
( ∑

g∈Λ∗
𝑚

2

∑
h∈Λ∗

𝑚
1

|𝐵gh | 𝑟2

g |(B𝐴)g |2
)

1/2

≤
(

sup

h∈Λ∗
𝑚

1

( ∑
g∈Λ∗

𝑚
2

|𝐵gh |
) )1/2

∥𝐴∥Λ∗
𝑚

1

(
sup

g∈Λ∗
𝑚

2

( ∑
h∈Λ∗

𝑚
1

|𝐵gh |
) )1/2

∥B𝐴∥Λ∗
𝑚

2

= 𝐶B∥𝐴∥Λ∗
𝑚

1

∥B𝐴∥Λ∗
𝑚

2

.

Thus, Lemma 3.3.5 is established. □

The importance of Theorem 3.3.4 is that the growth rate 𝜅(𝛼) is completely independent

of the domain Λ∗
𝑚 as long as Λ∗

𝑚 is contained in Λ∗𝛾
. Thus, we will have the option to

compare solutions obtained for different wave-vector sets Λ∗
𝑚 .

28



CHAPTER 3. ON THE DARWIN–HOWIE–WHELAN EQUATIONS

As a first consequence we obtain that for all 𝑧 ∈ [0, 𝑧∗] the solutions 𝝍(𝑧) = (𝜓g(𝑧))g∈Λ∗
𝑚

decay with |g| → ∞. Indeed, recalling that the initial condition is given by the incoming

wave encoded in the 𝜹 = (𝛿0,g)g∈Λ∗
𝑚

(Kronecker symbol) we have:

∥𝝍(0)∥𝛼 = ∥𝝍(0)∥Λ∗
𝑚
= ∥𝜹∥Λ∗

𝑚
=
√
𝜌0 =

√
k0 · 𝝂 ≈

√
|k0 |, (3.15)

which is independent of the exponential weighting by 𝛼. With this and 𝛼 ∈ ]0, 𝛼U[ we

obtain:

|𝜓g(𝑧)| ≤ e
−𝛼 |g|
√
𝜌g

∥𝝍(𝑧)∥𝛼 ≤ e
𝜅(𝛼)|𝑧 |−𝛼 |g|

√
𝜌0

𝜌g
.

Thus, the exponential factor e
𝜅(𝛼)|𝑧 |−𝛼 |g|

shows that the solution 𝝍(𝑧) can only have a

nontrivial effect at g ≠ 0 if |𝑧 | > 𝛼/𝜅(𝛼) |g|. We may consider the quotient 𝛼/𝜅(𝛼) as

a collective scattering length that describes how fast a beam has to travel through the

specimen to generate nontrivial amplitudes at neighboring wave vectors g. In contrast,

the extinction length 𝜉g is defined for each individual g ∈ Λ∗
(see [De 03, p.309]):

𝛼

𝜅(𝛼) =
𝛾 k0 · 𝝂

𝜋𝐶U𝔖1(𝛼U−𝛼)
versus the extinction length 𝜉𝑔 :=

|𝜌g |
|𝑈g |

.

Hence, for doing a reasonable TEM experiment, one wants 𝜅(𝛼)𝑧∗ to be big enough to

see some effect of scattering. However, it should not be too big such that the radius of

possibly activated wave vectors with |𝜓g | ≥ 𝜀 is not too small, namely those with |g| ≤
1

𝛼

(
𝜅(𝛼)𝑧∗ + log(1/𝜀)

)
. In addition we define the excitation length to be ℓexcit(𝑠𝑔) = 1/|𝑠g |,

which describes the period of the phase oscillation of 𝜓g(𝑧).

3.3.3 Error estimates for finite-dimensional approximations

We now compare the DHW equations on different sets Λ∗
𝑚1

and Λ∗
𝑚2

, both contained in

Λ∗𝛾 ⊂ Λ∗
. We denote by𝝍(𝑗)

the solution of DHWΛ∗
𝑚𝑗

with the initial condition𝝍(𝑗)(0) = 𝜹.

Assuming Λ∗
𝑚1

⊂ Λ∗
𝑚2

, we can decompose 𝝍(2)
into two pieces, namely:

𝝍(2) = (𝐵, 𝐶) with 𝐵 = 𝝍(2) |Λ∗
𝑚

1

:= (𝜓g)g∈Λ∗
𝑚

1

and 𝐶 = 𝝍(2) |Λ∗
𝑚

2

\Λ∗
𝑚

1

.

We may rewrite the DHWG(2) in block structure via:

𝑅(1)
.

𝐵 = i

(
Σ(1)𝐵 +U𝐵𝐵𝐵 +U𝐵𝐶𝐶

)
, 𝐵(0) = (𝛿0,g)g∈Λ∗

𝑚
1

, (3.16a)

𝑅(2)\(1)
.

𝐶 = i

(
Σ(2)\(1)𝐵 +U𝐶𝐵𝐵 +U𝐶𝐶𝐶

)
, 𝐶(0) = 0. (3.16b)

Here, we used that the initial condition 𝝍(0) is localized in the incoming beam such that

𝜓g(0) = 0 for g ∈ Λ∗
𝑚2

\ Λ∗
𝑚1

. Moreover, the DHWΛ∗
𝑚

1

is given by (3.16a) if we omit the

coupling term “ +U𝐵𝐶𝐶 ”:

𝑅(1)
.

𝝍
(1)

= i

(
Σ(1) +U𝐵𝐵

)
𝝍(1) , 𝝍(1)(0) = (𝛿0,g)g∈Λ∗

𝑚
1

. (3.17)
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The following result provides a first estimate between the solution 𝝍(2) = (𝐵, 𝐶) on the

larger wave-vector set Λ∗
𝑚2

and 𝝍(1)
on the smaller set Λ∗

𝑚1

by exploiting the exponential

decay estimates established in Theorem 3.3.4. In this first case, we consider only the

model sets Λ∗
𝑚1

= Λ∗𝑀
and Λ∗

𝑚2

= Λ∗𝛾
with Λ∗𝑀 ⊂ Λ∗𝛾

, see (3.6).

Theorem 3.3.6 (Control of approximation errors). Assume that the assumptions (3.2) and
(3.9) hold and that k0, 𝑀 and 𝛾 ∈ ]0, 1[ are such that Λ∗𝑀 ⊂ Λ∗𝛾. Then, for 𝛼 ∈ ]0, 𝛼U[ the
solutions 𝝍𝛾 and 𝝍𝑀 of DHWΛ∗𝛾 and DHW

Λ∗𝑀 with initial condition 𝜹 satisfy the estimates

𝝍𝑀(𝑧) −𝝍𝛾(𝑧)|
Λ∗𝑀




Λ∗𝑀 ≤ 𝔖0(𝛼U) − 1

𝛼𝔖1(𝛼U−𝛼)
e
𝜅(𝛼)|𝑧 |−𝛼𝑀 ∥𝜹∥ and (3.18a)

𝝍𝛾(𝑧)|

Λ∗𝛾\Λ∗𝑀



Λ∗𝛾\Λ∗𝑀 ≤ e

𝜅(𝛼)|𝑧 |−𝛼𝑀 ∥𝜹∥ for all 𝑧 ∈ R, (3.18b)

where as before 𝔖𝑚(𝛽) :=
∑

𝜘∈Λ∗ |𝜘|𝑚 e
−𝛽 |𝜘|.

Proof. We denote by Λ∗
O

:= Λ∗𝛾 \Λ∗𝑀
the set of outer wave vectors.

Step 1: Estimate of 𝐶. The solution 𝝍𝛾 = (𝐵, 𝐶) satisfies all assumptions of Theorem 3.3.4.

Hence, we can rely on the exponential estimate and obtain:

∥𝐶(𝑧)∥2

Λ∗
O

=
∑

h∈Λ∗
O

𝜌h |𝜓h(𝑧)|2 ≤ e
−2𝛼𝑀

∑
g∈Λ∗𝛾

𝜌g e
2𝛼 |g| |𝜓g(𝑧)|2

= e
−2𝛼𝑀 ∥𝝍𝑀(𝑧)∥2

𝛼 ≤ e
2𝜅(𝛼)|𝑧 |−2𝛼𝑀 ∥𝝍𝑀(0)∥2

𝛼 = e
2𝜅(𝛼)|𝑧 |−2𝛼𝑀 ∥𝜹∥2 ,

which is the desired result (3.18b).

Step 2. Estimate between 𝐵 and 𝝍𝑀 . For comparing 𝐵 and 𝝍𝑀
, we define 𝐴 = 𝐵 −𝝍𝑀

and

see that 𝐴 satisfies:

𝑅𝑀

.

𝐴(𝑧) = i

(
Σ𝑀𝐴(𝑧) +U𝐵𝐵𝐴(𝑧) +U𝐵𝐶𝐶(𝑧)

)
, 𝐴(0) = 0, (3.19)

where now the initial condition is 0. Using the unitary group e
i𝑧𝐻𝑀

on ℌ(Λ∗𝑀) defined

via 𝐻𝑀 = 𝑅−1

𝑀
(Σ𝑀+U𝐵𝐵), the solution is given in terms of Duhamel’s principle via 𝐴(𝑧) =∫ 𝑧

0

e
i(𝑧−𝜁)𝐻𝑀𝑅−1

𝑀
U𝐵𝐶𝐶(𝜁)d𝜁. Taking the norm in ℌ(Λ∗𝑀), we arrive at:

∥𝐴(𝑧)∥
Λ∗𝑀 ≤

∫ 𝑧

0

∥𝑅−1

𝑀U𝐵𝐶𝐶(𝜁)∥Λ∗𝑀 d𝜁 ≤ ∥𝑅−1

𝑀U𝐵𝐶 ∥ℌ(Λ∗
O
)→ℌ(Λ∗𝑀 )

∫ 𝑧

0

∥𝐶(𝜁)∥Λ∗
O

d𝜁.

Using Lemma 3.3.5, the operator norm 𝑁cpl = ∥𝑅−1

𝑀
U𝐵𝐶 ∥ can be estimated by:

𝑁cpl ≤
(

sup

h∈Λ∗𝑀

∑
g∈Λ∗

O

𝜋|𝑈g−h |√
𝜌g𝜌h

)
1/2

(
sup

g∈Λ∗
O

∑
h∈Λ∗𝑀

𝜋|𝑈g−h |√
𝜌g𝜌h

)
1/2

≤ 𝜋
𝛾𝜌0

sup

g∈Λ∗

∑
h∈Λ∗\{g}

𝐶Ue
−𝛼U |g−h| ,

where we used g ∈ Λ∗𝛾
and (3.9). We also increased the sets Λ∗𝑀

and Λ∗
O

but kept the

information that they are disjoint by summing only over h different from g. Thus, we find

𝑁cpl ≤ 𝜋𝐶U
(
𝔖0(𝛼U) − 1

)
/(𝛾𝜌0).
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Inserting this into the bound for ∥𝐴(𝑧)∥
Λ∗𝑀 and integrating the bound (3.18b) for 𝐶(𝜁) we

see cancellations in the factor 𝑁cpl/𝜅(𝛼), and the result (3.18a) follows. □

The next result is dedicated to the case of two general sets Λ∗
𝑚1

and Λ∗
𝑚2

both of which

satisfy Λ∗𝑀 ⊂ Λ∗
𝑚𝑗

⊂ Λ∗𝛾
for 𝑗 = 1, 2. Denoting by 𝝍(𝑗)

: [0, 𝑧∗] → ℌ(Λ∗
𝑚𝑗
) the solutions

of DHW𝐷𝐿𝐿𝑚𝑗
, we will see that their restrictions to Λ∗𝑀

will be exponentially close with

a factor e
−𝛼𝑀

. This explains why the exact choice of the subset Λ∗
𝑚 of the wave vectors is

not relevant as long as it contains a sufficiently large subset Λ∗𝑀
.

Corollary 3.3.7 (Arbitrary sets Λ∗
𝑚𝑗

of wave vectors). Consider k0, 𝛾, and 𝑀 as in Theorem
3.3.6 and consider two subsets Λ∗

𝑚𝑗
⊂ Λ∗ satisfying Λ∗𝑀 ⊂ Λ∗

𝑚𝑗
⊂ Λ∗𝛾 for 𝑗 = 1, 2. Then, the

solutions 𝝍(𝑗) of DHWΛ∗
𝑚𝑗

with initial condition 𝝍(𝑗)(0) = 𝜹 satisfy the estimate:

𝝍(1)(𝑧)|
Λ∗𝑀 −𝝍(2)(𝑧)|

Λ∗𝑀



Λ∗𝑀 ≤

2

(
𝔖0(𝛼U) − 1

)
𝛼𝔖1(𝛼U−𝛼)

e
𝜅(𝛼)|𝑧 |−𝛼𝑀 ∥𝜹∥ for all 𝑧 ∈ R .

Proof. The proof follows simply by observing that Theorem 3.3.6 can easily be generalized

by replacing the bigger set Λ∗𝛾
by any set Λ∗

𝑚 between Λ∗𝑀
and Λ∗𝛾

. Hence, we can

compare the two solutions 𝝍(𝑗)
on Λ∗𝑀

with the solution 𝝍𝑀
of DHW

Λ∗𝑀 . Now the result

follows by:

∥𝝍(1) |
Λ∗𝑀 −𝝍(2) |

Λ∗𝑀 ∥
Λ∗𝑀 ≤ ∥𝝍(1) |

Λ∗𝑀 −𝝍𝑀 ∥
Λ∗𝑀 + ∥𝝍𝑀 −𝝍(2) |

Λ∗𝑀 ∥
Λ∗𝑀 ,

and applying (3.18a) with ∥𝝍(0)∥𝛼 = ∥𝜹∥ = 𝜌1/2

0 . □

From now on we will always choose 𝛼 = 𝛼U/2, which is the intermediate value that makes

all sums 𝔖𝑚

(
𝛼U/2

)
finite. Thus, the critical exponential error term takes the form:

e
𝜅(𝛼U/2)𝑧−𝑀𝛼U/2

for 𝑧 ∈ [0, 𝑧∗].

From a practical perspective, there is no reason of doing a calculation in a set Λ∗
𝑚 bigger

than Λ∗𝑀
, since increasing the number of ODEs without a gain in accuracy is useless.

Moreover, it is desirable to reduce 𝑀 as much as possible as the number of ODEs in

DHW
Λ∗𝑀 with 𝑀 = 𝜇|k0 | is proportional to 𝑀𝑑

. However, in a true experiment we want

to see the effect of scattering such that 𝜅(𝛼)𝑧∗ needs to be big enough. The way to make

this work is to choose 𝑀 proportional to a small power of |k0 |:

𝑀 ∼ |k0 |𝜂 with 𝜂 ∈ ]0, 1[.

For instance, the first few Laue zones (see below) can be obtained by 𝜂 = 1/2.

While in a ball Λ∗𝑀
of radius 𝑀 the number of wave vectors scales with 𝑀𝑑

, there are

further physical reasons that many of these wave vectors are not relevant, as they cannot

be activated because of energetic criteria as discussed next.
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3.3.4 Averaging via conservation of the energy norm

The relevance of the Ewald sphere lies in the fact that on SEw the excitation error 𝑠g =

𝜎g/(2𝜌g) equals 0. This means that beams propagating with wave vectors g ∈ SEw

have much lower energy, because they have only little phase oscillations. Beams with

wave vectors that are not close to the Ewald sphere will necessarily have much smaller

amplitudes, because they have much larger phase oscillations than beams with wave

vectors near the Ewald sphere. Mathematically, this can be manifested by conservation

of suitable energies. Another way of obtaining this result would be by performing a

temporal averaging for the functions 𝜓g with large |𝑠g |.

We return to the DHW equation on Λ∗
𝑚 = Λ∗𝑀 ⊂ Λ∗𝛾

. The linear finite-dimensional

Hamiltonian system:

𝑅
.

𝝍 = i

(
Σ+U

)
𝝍, 𝝍(0) = 𝜹 ∈ ℌ(Λ∗𝑀), (3.20)

can be rewritten via the transformation 𝑅 = 𝑅1/2 = diag

(
(𝜌g/𝜋)1/2

)
g∈Λ∗

𝑚
. Setting 𝐴 = 𝑅𝝍,

system (3.20) takes the standard Hamiltonian form:

.

𝐴 = iH𝐴 with H = 𝑅−1
(
Σ+U

)
𝑅−1 , (3.21)

whereH is now a Hermitian operator on ℓ 2(Λ∗𝑀), now using the standard scalar product.

This provides the explicit solution 𝐴(𝑧) = e
i𝑧H𝐴(0) via the unitary group 𝑧 ↦→ e

i𝑧H
. An

easy consequence is the invariance of the hierarchy of norms:

∀ 𝑘 ∈ N0 ∀ 𝑧 ∈ R :

〈
H𝑘𝐴(𝑧), 𝐴(𝑧)

〉
=
〈
H𝑘𝐴(0), 𝐴(0)

〉
.

For 𝑘 = 0 this is the simple wave-flux conservation established in Proposition 3.3.1. The

result for 𝑘 = 1 is not useful, because the operator H is indefinite, since U is bounded

and Σ has many positive (associated with g inside the Ewald sphere) and many negative

eigenvalues (associated with g outside the Ewald sphere).

Hence, we concentrate on the case 𝑘 = 2, where:

0 ≤ H2 = Σ̃2 + ŨΣ̃ + Σ̃Ũ + Ũ2 , with Σ̃ := 𝑅−1Σ𝑅−1 = 𝑅−1Σ and Ũ := 𝑅−1U𝑅−1.

The following, rather trivial result highlights that H2
has suitable definiteness properties

that will then be useful for estimating the solutions of the DHW equation.

Lemma 3.3.8 (Energy estimate). Let H = Σ̃ + Ũ where Σ̃ and H are Hermitian, then we have
the estimate:

∥H𝐴∥2 =
〈
H2𝐴, 𝐴

〉
≥ 1

2

∥Σ̃𝐴∥2 − ∥Ũ𝐴∥2 for all 𝐴 ∈ ℓ 2(Λ∗𝑀). (3.22)
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Proof. We expand H2
in a suitable way:

H2 = (Σ̃ + Ũ)2 =
1

2

Σ̃2 +
(1
2

Σ̃2 + Σ̃Ũ + ŨΣ̃ + 2Ũ2
)
− Ũ2

=
1

2

Σ̃2 +
(

1√
2

Σ̃ +
√

2Ũ
)

2

− Ũ2 ≥ 1

2

Σ̃2 − Ũ2.

This is the desired result. □

It is instructive to transform estimate (3.22) back to the original variable𝝍 and the operator

𝐻 = 𝑅−1(Σ+U), which yields:

∥𝑅−1Σ𝝍∥2

Λ∗𝑀 ≤ 2 ∥𝐻𝝍∥2

Λ∗𝑀 + 2 ∥𝑅−1U𝝍∥2

Λ∗𝑀 . (3.23)

Since along solutions 𝑧 ↦→ 𝝍(𝑧) ∈ ℌ(Λ∗𝑀) of DHW
Λ∗𝑀 the energy ∥𝐻𝝍(𝑧)∥2

Λ∗𝑀 is constant,

see (3.8), we can use this for bounding ∥𝑅−1Σ𝝍(𝑧)∥2

Λ∗𝑀 .

Proposition 3.3.9 (Energy bound for solutions). Consider k0, 𝛾, and 𝑀 such thatΛ∗𝑀 ⊂ Λ∗𝛾.
Let 𝝍 be the solution of DHW

Λ∗𝑀 with initial condition 𝝍(0) = 𝜹. Then, 𝝍 satisfies the estimate:

∥𝑅−1Σ𝝍(𝑧)∥
Λ∗𝑀 ≤ 2𝜋𝐶U𝔖0(𝛼U)

𝛾𝜌0
∥𝜹∥

Λ∗𝑀 for all 𝑧 ∈ R.

Proof. Lemma 3.3.5 yields ∥𝑅−1U𝝍∥
Λ∗𝑀 ≤ 𝑁1∥𝝍∥

Λ∗𝑀 with 𝑁1 = 𝜋 𝐶U𝔖0(𝛼U)/(𝛾𝜌0). Ex-

ploiting (3.23) and the conservation of ∥𝐻𝝍(𝑧)∥2

Λ∗𝑀 and ∥𝝍(𝑧)∥2

Λ∗𝑀 we find

∥𝑅−1Σ𝝍(𝑧)∥2

Λ∗𝑀 ≤ 2∥𝐻𝝍(𝑧)∥2

Λ∗𝑀+2𝑁2

1
∥𝝍(𝑧)∥2

Λ∗𝑀

= 2∥𝐻𝝍(0)∥2

Λ∗𝑀+2𝑁2

1
∥𝝍(0)∥2

Λ∗𝑀 = 2∥𝑅−1U𝜹∥2

Λ∗𝑀+2𝑁2

1
𝜌0 ≤ 4𝑁2

1
𝜌0 ,

where we used 𝝍(0) = 𝜹 and 𝜎0 = 0. This shows the desired assertion. □

Using the energy bound, we can split the set Λ∗𝑀
according to the size of the excitation

errors 𝑠g = 𝜎g/(2𝜌g) using a cut-off value �̃�∗ to be chosen later:

Λ∗𝑀 = Λ∗𝑀
Ew

.
∪ Λ∗𝑀

far
with Λ∗𝑀

Ew
:=

{
g ∈ Λ∗𝑀 �� |𝜎g |/(2𝜌g) < �̃�∗

}
and Λ∗𝑀

far
:=

{
g ∈ Λ∗𝑀 �� |𝜎g |/(2𝜌g) ≥ �̃�∗

}
.

Of course, we always have g = 0 ∈ Λ∗𝑀
Ew

, as 𝜎0 = 0 and �̃�∗ > 0.

Using the energy bound from Proposition 3.3.9 and𝑅−1Σ = diag(𝜋𝜎g/𝜌g), we immediately

see that solutions 𝝍 of DHW
Λ∗𝑀 satisfy:

∥𝝍𝑀(𝑧)|
Λ∗𝑀

far

∥
Λ∗𝑀

far

≤ 1

�̃�∗

𝐶U𝔖0(𝛼U)
𝛾𝜌0

∥𝜹∥
Λ∗𝑀 for all 𝑧 ∈ R. (3.24)
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SEw

Λ∗𝑀
Ew

Λ∗𝑀

𝑔𝑦

𝑔𝑧

Figure 3.4: Ewald sphere SEw (blue), dual lattice Λ∗
(black dots), and the decomposition of Λ∗𝑀

(light red ball) into Λ∗𝑀
Ew

(red annular arc, for �̃�∗ = 3𝜋) and Λ∗𝑀
far

. The boxes indicate the Laue

zones: lowest order (yellow) to third order (green). Reprinted with permission from [KMM21,

Fig. 4.1], published by the Society for Industrial and Applied Mathematics (SIAM). Copyright ©
by SIAM.

The factor in front of ∥𝜹∥
Λ∗𝑀 = 𝜌0 is small if the “cut-off" excitation length ℓexcit(𝑠∗) = 1/̃𝑠∗

is small with respect to the global scattering length ℓscatt = 𝜌0/𝐶U. In such a case, it may

be reasonable to neglect these wave vectors and solve DHW on the much smaller set Λ∗𝑀
Ew

instead in all of Λ∗𝑀
. The error is controlled in the following result.

Theorem 3.3.10 (Reduction to Ewald sphere). Under the above assumptions consider the
solutions 𝝍𝑀 and 𝝍𝑀

Ew
of DHW

Λ∗𝑀 and DHW
Λ∗𝑀

Ew

with initial condition 𝜹, respectively. If Λ∗𝑀
Ew

is given by �̃�∗, then for all 𝑧 ∈ R we have the error estimate:

∥𝝍𝑀
Ew

(𝑧) −𝝍𝑀(𝑧)|
Λ∗𝑀

Ew

∥
Λ∗𝑀

Ew

≤ |𝑧 | 𝜋
�̃�∗

𝐶2

U (𝔖0(𝛼U)−1)𝔖0(𝛼U)
𝛾2 𝜌2

0
∥𝜹∥

Λ∗𝑀 . (3.25)

Proof. We proceed exactly as in the proof of Theorem 3.3.6, but the nested couple

(Λ∗𝑀 ,Λ∗𝛾) is replaced here by the nested couple (Λ∗𝑀
Ew

,Λ∗𝑀). The bound in Step 1 is

replaced by the bound for 𝝍𝑀(𝑧)|
Λ∗𝑀

far

in (3.24). In Step 2 the norm of the coupling

operator can be estimated by the same constant 𝑁cpl. Now:

∥𝝍𝑀
Ew

(𝑧) −𝝍𝑀(𝑧)|
Λ∗𝑀

Ew

∥
Λ∗𝑀

Ew

≤
∫ 𝑧

0

𝑁cpl∥𝝍𝑀(𝜁)|
Λ∗𝑀

far

∥
Λ∗𝑀

far

d𝜁

gives the desired result. □

Estimate (3.25) for 𝑧 ∈ [0, 𝑧∗] contains the main error term
𝑧∗

ℓscatt

ℓexcit (̃𝑠∗)
ℓscatt

. Because of 𝑧∗ ≈ ℓscatt,

it is important to have �̃�∗ big enough to obtain ℓexcit(̃𝑠∗) = 1/̃𝑠∗ ≪ ℓscatt.

However, using the fact that |𝜎g | ≈ 2|k0 | dist(g, SEw) and |𝜌g | ≈ |k0 |, we see that the

number of wave vectors in Λ∗𝑀
Ew

is proportional to 𝑂 (̃𝑠∗𝑀𝑑−1), while the number of wave
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vectors in Λ∗𝑀
scales like 𝑂(𝑀𝑑). Thus, it is desirable to make �̃�∗ even less than 1, which

means one spacing in Λ∗
perpendicular to SEw (recall that �̃�∗ has the physical dimension

of |k0 | which is an inverse length).

3.4 Special approximations

Here, we discuss approximations that are commonly used in the physical literature to

interpret TEM measurements, see [Jam90; De 03; Kir20]. We start with an easy case

where only the incoming beam is considered, see 3.4.1. Then we consider the cases of the

lowest-order Laue zone 3.4.2, the two-beam approximation 3.4.3 and the systematic-row

approximation 3.4.4.

3.4.1 Free-beam approximation

For a mathematical comparison, it is instructive to consider the trivial approximation,

where only the incoming beam is considered, i.e. we use Λ∗
1
= {0}, i.e. the equation

DHW{0} consists of the single ODE:

𝜌0

𝜋

.

𝜓0 = i(𝜎0+𝑈0)𝜓0 , 𝜓0(0) = 1. (3.26)

Using 𝜎0 = 0, we obtain the trivial solution𝜓0(𝑧) = e
i𝑧𝜋𝑈0/𝜌0

and obtain that the intensity 𝐼0
remains constant: 𝐼0(𝑧) = |𝜓0(𝑧)|2 = 1. We will see that this is a reasonable approximation

for 𝑧 ∈ [0, 𝑧∗], if 𝑧∗𝐶U/|k0 | = 𝑧∗/ℓscatt ≪ 1, which means that the scattering length is small

compared to the thickness 𝑧∗ of the specimen.

Lemma 3.4.1 (Free beam). Choose 𝛾 ∈ ]0, 1[ and consider Λ∗
𝑚 ⊂ Λ∗𝛾 with 0 ∈ Λ∗

𝑚 . Let the
solution 𝝍 = (𝜓g)g∈Λ∗

𝑚
of DHWΛ∗

𝑚
with initial condition 𝝍(0) = 𝜹 and let 𝜓0 be the solution of

(3.26). Then we have the approximation errors:

|𝜓0(𝑧) − 𝜓0(𝑧)| ≤ min{𝑁cpl |𝑧 |, 2} with 𝑁cpl =
𝜋𝐶U(𝔖0(𝛼U)−1)

𝛾𝜌0
, (3.27a)

∥𝝍(𝑧)|Λ∗
𝑚\{0}∥Λ∗

𝑚\{0} ≤ min{𝑁cpl |𝑧 |, 1}∥𝜹∥Λ∗
𝑚

for all 𝑧 ∈ R . (3.27b)

Proof. This result follows exactly as in Theorem 3.3.10, where we now use the a pri-

ori estimate ∥𝝍(𝑧)|Λ∗
𝑚\{0}∥Λ∗

𝑚\{0} ≤ ∥𝝍(𝑧)∥Λ∗
𝑚

= ∥𝜹∥Λ∗
𝑚

= |𝜌0 |1/2
. Then, the analog to

(3.25) gives |𝜌0 |1/2 |𝜓0(𝑧) − 𝜓0(𝑧)| ≤ 𝑁cpl |𝜌0 |1/2 |𝑧 |. Together with the trivial bounds

|𝜌0 |1/2 |𝜓0(𝑧)| ≤ ∥𝝍(𝑧)∥Λ∗
𝑚
= |𝜌0 |1/2

we arrive at (3.27a).

To obtain the second equation we set𝐵(𝑧) = 𝝍(𝑧)|Λ∗
𝑚\{0} ∈ ℌ(Λ∗

𝑚\{0}) and apply Duhamel’s
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principle to i𝑅
.

𝐵 + Σ𝐵 −U𝐵𝐵𝐵 = U𝐵,{0}𝜓0(𝑧) and obtain:

∥𝝍(𝑧)|Λ∗
𝑚\{0}∥Λ∗

𝑚\{0} ≤
∫ 𝑧

0

∥U𝐵,{0}∥ ∥𝜓0(𝜁)∥{0} d𝜁 ≤
∫ 𝑧

0

𝑁cpl |𝜌0 |1/2

d𝜁 = 𝑁cpl |𝜌0 |1/2 |𝑧 |.

Together with the trivial bound ∥𝝍(𝑧)|Λ∗
𝑚\{0}∥Λ∗

𝑚\{0} ≤ ∥𝝍(𝑧)∥Λ∗
𝑚
= |𝜌0 |1/2

we find (3.27b).

□

Thus, this trivial result provides a rigorous quantitative estimate for the obvious fact

that the incoming beam stays undisturbed only if the thickness 𝑧∗ of the specimen is

significantly shorter than the scattering length |k0 |/𝐶U, i.e. 𝑁cpl𝑧∗ ≪ 1.

3.4.2 Approximation via the lowest-order Laue zone

The lowest-order Laue zone (LOLZ) is defined if the wave vectors in the tangent plane

Tk0 :=
{
𝜂 ∈ R𝑑

�� 𝜂 · k0 = 0

}
to the Ewald sphere SEw at g = 0 form a lattice of dimension

𝑑 − 1. Denoting by 𝜅∗ the minimal distance between different points in Λ∗
we define:

Λ∗
LOLZ

:=
{

g ∈ Λ∗ ∩ Tk0

��
dist(g, SEw) ≤ 𝜅∗/2

}
,

see Figure 3.4 for an illustration. Because the Ewald sphere can be approximated by the

parabola 𝑔𝑧 = −|𝑔𝑥 |2/(2|k0 |), the set Λ∗
LOLZ

is contained in a circle of radius 𝑀 := 𝑚∗ |k0 |1/2

inside Tk0 , where 𝑚∗ = 𝜅1/2

∗ . (To include higher-order Laue zones up to order 𝑛 one

chooses 𝑚∗ =
(
(2𝑛+1)𝜅∗

)
1/2

.)

This observation allows us to assess the approximation error for the solution 𝝍LOLZ
that is

obtained by solving the DHW equation on ℌ(Λ∗
LOLZ

). For this, we first use Theorem 3.3.6

to reduce to the set Λ∗𝑀
with 𝑀 = 𝑚∗ |k0 |1/2

, and then we reduce to the set Λ∗
LOLZ

= Λ∗𝑀
Ew

using Theorem 3.3.10 with a suitable �̃�∗ ∼ 𝜅∗. In the following result, we give the exact

formulas for the constants in the error estimate. In particular, we will drop the dependence

on 𝛼U, which we consider to be fixed. However, we keep the dependence on |k0 | and

𝐶U to the influence of the energy and the scattering. To achieve formulas with correct

physical dimensions, we sometimes use the length scale 𝛼∗, which could be chosen as the

lattice constant of Λ, as 1/𝜅∗, or simply 𝛼U. We will use generic, dimensionless constants

𝑁 and 𝑁𝑗 that may change from line to line and will depend on 𝛼∗ and 𝛼U, but do not

depend on |k0 | and 𝐶U.

Theorem 3.4.2 (LOLZ approximation). Consider the solution 𝝍𝛾 of DHWΛ∗𝛾 with 𝛾 = 1/2

and the solution 𝝍LOLZ of DHWΛ∗
LOLZ

for the initial condition 𝜹. Given a constant 𝑁0 > 0, there
exists constants 𝑘∗ and 𝑁1 such that the following holds:

If |k0 | ≥ 𝑘∗ and 𝑧∗ ≤ 𝑁0 |𝛼∗k0 |1/3
|k0 |
𝐶U

, then for all 𝑧 ∈ [0, 𝑧∗] we have (3.28a)

∥𝝍LOLZ(𝑧) −𝝍𝛾(𝑧)|Λ∗
LOLZ

∥Λ∗
LOLZ

≤ 𝑁1

(
1

|𝛼∗k0 |2
+

𝛼∗𝐶2

U

|k0 |2
𝑧∗
)
∥𝜹∥ . (3.28b)
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Proof. Step 1. Reduction to Λ∗𝑀 . Using 𝑀 = 𝑚∗ |k0 |1/2
and |k0 | ≥ 𝑘∗ we have Λ∗𝑀 ⊂ Λ∗𝛾

,

and Theorem 3.3.6 with 𝛼 = 𝛼U/2 provides the error estimate:

∥𝝍𝑀(𝑧) −𝝍𝛾(𝑧)|
Λ∗𝑀 ∥

Λ∗𝑀 ≤ 𝑁2 e
𝑁3𝐶U𝑧/|k0 |−𝑁4 |𝛼∗k0 |1/2 ∥𝜹∥ .

Step 2. Reduction to Λ∗
LOLZ

. The theory in Section 3.3.4 reduces to the Ewald sphere. In

particular, because of our given radius 𝑀 = 𝑚∗ |k0 |1/2
the set Λ∗𝑀

Ew
exactly equals Λ∗

LOLZ
if

we choose the cut-off value �̃�∗ suitably.

For this, we have to identify the smallest value of |𝜎g/𝜌g | in Λ∗𝑀\Λ∗
LOLZ

. Because 𝜌g =

k0 · 𝝂 + 𝑂(|k0 |1/2) in Λ∗𝑀
, it suffices to minimize |𝜎g | in Λ∗𝑀

far
= Λ∗𝑀\Λ∗

LOLZ
, or simply

minimize the distance to SEw. Hence, the points in the interior of the Ewald balls in the

lattice layer right below Λ∗
LOLZ

⊂ T are most critical. All of them have distance 𝜅∗ to T
and thus their distance to the Ewald sphere is bigger or equal 𝜅∗ −𝑀2/(2|k0 |) = 𝜅∗/2 > 0.

From this, for g ∈ Λ∗𝑀
far

one has |𝑠g | ≥ 𝜅∗
2
|k0 |, and with 𝜌0 ≈ |k0 | we are able to apply

Theorem 3.3.10 with �̃�∗ = 𝜅∗/3, which is independent of |k0 | and CU. With this we

conclude ∥𝝍LOLZ(𝑧) −𝝍𝑀(𝑧)|Λ∗
LOLZ

∥Λ∗
LOLZ

≤ |𝑧 |𝑁4𝐶
2

U∥𝜹∥/|k0 |2 for all 𝑧 ∈ R.

Step 3. Combined estimate. We observe that the second relation in (3.28a) allows us to

simplify the estimate in Step 1. For 𝑧 ∈ [0, 𝑧∗] the exponent can be estimated via:

𝑁3𝐶U𝑧/|k0 | − 𝑁4 |𝛼∗k0 |1/2 ≤ 𝑁3𝑁0 |𝛼∗k0 |1/3 − 𝑁4 |𝛼∗k0 |1/2 ≤ 𝑁5 − 𝑁4

2
|𝛼∗k0 |1/2.

Now, the final result follows e
−𝑁6 |k0 |1/2 ≤ 𝑁7/|k0 |2 and the previous two steps. □

3.4.3 Two-beam approximation and beating

The most simple nontrivial approximation is obtained by assuming that the incoming

beam at g = 0 interacts mainly with one other wave vector g′
. The energy exchange

between 𝜓0 and 𝜓g′ is called beating and occurs on a well controllable length scale. Thus,

it can be used effectively for generating contrast in microscopy, see [Dar14] or [MNS+20,

Sec. 4].

The theory is often explained by the following two-equation approximation of DHW with

Λ∗
2
= {0, g′}, but even though it turns out that this model nicely predicts certain qualitative

features it is not accurate enough for quantitative predictions. For a typical microscopical

experiment, one chooses k0 such that g = 0 and g = g′
are the only two wave vectors on

the Ewald sphere:

𝜎0 = 𝜎g′ = 0 and 𝜌0 = 𝝂 · k0 = 𝜌g′ . (3.29)

Assuming g′ = (0, 𝑛, 0) ∈ Λ∗
2

with a small integer 𝑛, this can be achieved by setting

k0 = (𝜃,−𝑛/2, 𝑘) with 𝑘 ≈ |k0 | ≫ 1 and |𝜃 | < 1, see Figure 3.5. Then, the two-equation
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g′

SEwk0 k0+g′

Λ∗𝑀

𝑔𝑦

𝑔𝑧

Figure 3.5: A typical setup for the two-beam conditions: g = 0 and g = g′
are the only two points

in SEw ∩ Λ∗
. Reprinted with permission from [KMM21, Fig. 4.2], published by the Society for

Industrial and Applied Mathematics (SIAM). Copyright © by SIAM.

model for g = 0 and g = g′
reads:

𝜌0

𝜋

.

𝜓0 = i

(
𝜎0𝜓0 +𝑈0𝜓0 +𝑈g′𝜓g′

)
,

𝜌g′

𝜋

.

𝜓g′ = i

(
𝜎g′𝜓g′ +𝑈g′𝜓0 +𝑈0𝜓g′

)
. (3.30)

This complex two-dimensional and real four-dimensional system can be solved explicitly

leading to quasi-periodic motions with the frequencies 𝜔1,2 = 𝜋(𝑈0 ± |𝑈g′ |)/𝜌0, where we

used (3.29) to simplify the general expression.

Recalling the wave-flux conservation from Proposition 3.3.1, we obtain the relation

𝜌0 |𝜓0(𝑧)|2 + 𝜌g′ |𝜓g′(𝑧)|2 = 𝜌0 (3.31)

by using the initial condition 𝝍(0) = 𝜹. A direct, but lengthy, calculation gives:

𝐼0(𝑧) := |𝜓0(𝑧)|2 =
(
cos(

𝜋|𝑈g′ |
𝜌0

𝑧)
)
2

and 𝐼g′(𝑧) := |𝜓g′(𝑧)|2 =
(
sin(

𝜋|𝑈g′ |
𝜌0

𝑧)
)
2

, (3.32)

which clearly displays the energy exchange, also called beating.

We do not give a proof for the validity of the two-beam approximation, but rather address

its limitations. However, we refer to the systematic-row approximation in the next section,

which includes the two-beam approximation as a special case. To see the limitation, we

simply argue that having the beams in g = 0 and g = g′ = (0, 𝑛, 0), we also have scattering

from g = 0 to the neighbors (0, 𝑗 , 0). This scattering must be small if the two-beam

approximation should be good. The smallness can happen if one of the following reasons
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occurs: (i) the scattering coefficient 𝑈(0, 𝑗 ,0) is 0 or very small or (ii) the excitation error

𝑠(0, 𝑗 ,0) is already big. The first case may indeed occur, e.g. for symmetry reasons, however,

because beating needs a reasonably large 𝑈g′ = 𝑈(0,𝑛,0) we also have that 𝑈(0,−𝑛,0) = 𝑈g′

is reasonably large. Hence, in this case only the reason (ii) can be valid, i.e. we need

|𝑠(0,−𝑛,0) | ≫ 𝜋|𝑈(0,−𝑛,0) |/𝜌(0,−𝑛,0) ≈ 3|𝑈g′ |/|k0 |. Using 𝜎0 = 𝜎g′ = 0, the excitation error

has the expansion 𝑠(0, 𝑗 ,0) ≈ (𝑛𝑗−𝑗2)/(𝑛 |k0 |), which leads with 𝑗 = −𝑛 to the condition

3|𝑈g′ | ≪ |𝑛 |, which is not easily satisfied.

Indeed, in [MNS+20] TEM imaging is done under two-beam conditions for g′ = (0, 4, 0),
where 𝑈(0, 𝑗 ,0) = 0 for odd 𝑗 and 𝑈(0,2,0) ≈ −0.05𝑈(0,4,0). In particular, 𝑗 = 4 was chosen,

because it gives the biggest value for |𝑈(0, 𝑗 ,0) | for 𝑗 ≠ 0. Nevertheless, it was necessary to

base the analysis of the TEM images in the solution 𝝍 of DHWΛ∗
𝑚

for Λ∗
𝑚 = Λ∗𝑀

Ew
obtained

via the software package pyTEM. The simple usage of the approximations in (3.32) would

not be sufficient.

We will see in Section 3.5 that even in simple examples the two-beam approximation is

only a very rough approximation, see e.g. Figure 3.4.

3.4.4 Systematic-row approximation

We choose:

Λ∗
syrow

=
{
𝑛 g∗

�� 𝑛min ≤ 𝑛 ≤ 𝑛max

}
,

where g∗ is small and almost perpendicular to k0, such that the convex hull of the set

Λ∗
syrow

is roughly tangent to the Ewald sphereSEw. Of course, this set should coincide with

Λ∗𝑀
Ew

of Section 3.3.4, which can be achieved by choosing an appropriate k0. In particular,

the case of two-beam conditions of Section 3.4.3 can always be seen as embedded into a

systematic-row case.

Indeed, consider the simple dual lattice Λ∗ = Z3
and choose k0 = (𝑘𝑥 , 0, 𝑘𝑧) where now

1 ≪ 𝑘𝑥 ≪ 𝑘𝑧 ≈ |k0 |, i.e. the incoming wave has a small, but nontrivial angle to the normal

𝝂 of the specimen. Assuming 𝑘𝑥 = 𝑐∗ |k0 |2/3
and considering only g ∈ Λ∗𝑀 = 𝐵𝑀(0) ∩ Z3

with 𝑀 = |k0 |1/4
, we see that:

𝜎g = |k0 |2 − |k0+g|2 ≈ −𝑔2

𝑥 − 𝑔2

𝑦 − 𝑔2

𝑧 − 2𝑐∗ |k0 |2/3𝑔𝑥 − 2|k0 |𝑔𝑧 ,

can only take values smaller than 𝑂(|k0 |1/2) if the wave vectors satisfy 𝑔𝑥 = 𝑔𝑧 = 0, i.e.

g = 𝑛(0, 1, 0) with |𝑛 | ≤ |k0 |1/4
, which is a finite row of wave vectors.

Moreover, in Λ∗𝑀
we have 𝜌g = (k0+g) · 𝝂 = |k0 | + 𝑂(|k0 |1/2) and conclude:

Λ∗
syrow

:=
{
(0, 𝑛, 0)

�� |𝑛 | ≤ |k0 |1/4

}
= Λ∗𝑀

Ew
:=

{
g ∈ Λ∗𝑀 �� |𝑠g |/(2𝜌g) < �̂�∗

}
with 𝑀 = 𝜅3/4

∗ |k0 |1/4

and �̂�∗ = 𝜅3/2

∗ |k0 |−1/2.

Thus, as for the case of the lowest-order Laue zone we obtain an error estimate.
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approximation Laue zone systematic row

(𝑀, �̃�) (|k0 |1/2 , 1 ) (|k0 |1/4 , |k0 |−1/2)

number of points |k0 | |k0 |1/4

thickness restriction 𝑧∗ ≤ 𝑁0 |k0 |1/3ℓscatt 𝑧∗ ≤ 𝑁0 |k0 |1/5ℓscatt

first error term |𝛼∗k0 |−2 |𝛼∗k0 |−2

second error term

𝛼∗𝑧∗
ℓ 2

scatt

𝛼3/2

∗ |k0 |1/2𝑧∗
ℓ 2

scatt

Table 3.2: Comparison of the Laue approximation in Section 3.4.2 and the systematic-row ap-

proximation. Reprinted with permission from [KMM21, Fig. 4.3], published by the Society for

Industrial and Applied Mathematics (SIAM). Copyright © by SIAM.

Theorem 3.4.3 (Systematic-row approximation). Under the above assumptions, consider the
solutions 𝝍𝛾 and 𝝍syrow of DHWΛ∗𝛾 with 𝛾 = 1/2 and DHWΛ∗

syrow

, respectively. Then, for all
𝑁0 there exists 𝑘∗ and 𝑁1 such that the following holds:

If |k0 | ≥ 𝑘∗ and 𝑧∗ ≤ 𝑁0 |𝛼∗k0 |1/5
|k0 |
𝐶U

, then for all 𝑧 ∈ [0, 𝑧∗] we have (3.33a)

∥𝝍syrow(𝑧) −𝝍𝛾(𝑧)|Λ∗
syrow

∥Λ∗
syrow

≤ 𝑁1

(
1

|𝛼∗k0 |2
+

𝛼3/2

∗ 𝐶2

U

|k0 |3/2

𝑧∗
)
∥𝜹∥ . (3.33b)

Proof. Step 1. Reduction to Λ∗𝑀 . Using 𝑀 = 𝜅3/4 |k0 |1/4
and |k0 | ≥ 𝑘∗ we have Λ∗𝑀 ⊂ Λ∗𝛾 =

G
1/2

, and Theorem 3.3.6 with 𝛼 = 𝛼U/2 provides the error estimate:

∥𝝍𝑀(𝑧) −𝝍𝛾(𝑧)|
Λ∗𝑀 ∥

Λ∗𝑀 ≤ 𝑁2 e
𝑁3𝐶U𝑧/|k0 |−𝑁4 |𝛼∗k0 |1/4 ∥𝜹∥G .

Step 2. Reduction to Λ∗
syrow

. Applying Theorem 3.3.10 with �̃�∗ = 𝜅3/2

∗ |k0 |−1/2
, we obtain the

error bound:

∥𝝍syrow(𝑧) −𝝍𝑀(𝑧)|Λ∗
syrow

∥Λ∗
syrow

≤ 𝑁5

𝑧∗

𝜅3/2

∗

𝐶2

U

|k0 |3/2

∥𝜹∥
Λ∗𝑀 . (3.34)

Step 3. Combined estimate. We conclude as in Step 3 of the proof of Theorem 3.4.2. □

In contrast to the cut-off choice �̃�∗ ∼ 1 for the Laue-zone approximation, we have now

chosen �̃�∗ ∼ |k0 |−1/2
. This reduces the number of points in the systematic-row approxima-

tion, i.e. the number of coupled ODEs to be solved is proportionally |k0 |1/4
, whereas for

the Laue-zone approximation, the number of ODEs is proportional to |k0 |. However, the

gain in computation power is accompanied by a loss of accuracy and a smaller domain of

applicability, see Table 3.2.
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�̃�𝑧 \ �̃�𝑦 -2 -1 0 1 2 3

-2 -14.07 -14.24 -14.33 -14.33 -14.24 -14.07

-1 -6.87 -7.04 -7.12 -7.12 -7.04 -6.87

0 0.25 0.08 0 0 0.08 0.25

1 7.28 7.12 7.04 7.04 7.12 7.28

2 14.24 14.09 14.00 14.00 14.08 14.24

Table 3.3: Excitation errors 𝑠g = 𝜎g/(2𝜌g) for every point g = 4

𝑎0

(�̃�𝑦 , �̃�𝑧) ∈ Λ∗
30

. The middle row

corresponds to beams of the systematic-row approximation. Reprinted with permission from

[KMM21, Fig. 5.1], published by the Society for Industrial and Applied Mathematics (SIAM).

Copyright © by SIAM.

3.5 Simulations for TEM experiments

Here, we provide a numerical example of the DHW equations, compare the solutions

for different choices of the wave-vector set Λ∗
𝑚 , and relate the observed errors with the

mathematical bounds established above.

In order for our simulations to be as close as possible to values used in real TEM, we choose

a lattice constant of 𝑎0 = 0.56503 nm, which is a typical value for GaAs. The specimen

thickness is equal to 𝑧∗ = 200𝑎0 = 113.006 nm. At 400 k eV, as is the case in TEM, the wave

length is 𝜆 = 1/|k0 | = 1.644 pm, which in normalized dimensions is 𝜆 = 0.00294𝑎0. This

gives us a wavevector of |k0 | = 608.293 nm
−1

. We consider the full system to consist of 30

beams:

Λ∗
30

=
{

g =
4

𝑎0

(�̃�𝑦 , �̃�𝑧)
�� �̃�𝑦 ∈ {−2, . . . , 3} and �̃�𝑧 ∈ {−2, . . . , 2}

}
.

One would expect to use a beam list of the form

{
g = 1

𝑎0

(�̃�𝑦 , �̃�𝑧)
�� �̃�𝑦 , �̃�𝑧 ∈ Z

}
. But

for GaAs, the scattering potential has significant contributions 𝑈g only for beams of the

form in Λ∗
30

, while the other 𝑈g are small or even 0, see Figure 3.3.4. This is due to the

face-centered cubic lattice of the crystal and the properties of the Ga and As atomic form

factors. Therefore, we restrict our beam list to that case in our example.

For the potential we use 𝑈(0,0) = 10 nm
−2

, 𝑈(±1,0) = 𝑈(0,±1) = 3 nm
−2

, and 𝑈(±1,±1) =

𝑈(±1,∓1) = 2 nm
−2

and 𝑈g̃ = 0 for the rest. We consider strong beam excitation (�̃�𝑦 , �̃�𝑧) =
(1, 0) corresponding to g = 1

𝑎0

(4, 0) and k0 = (−2/𝑎0 , 608.293).

We first solve the DHW equations for Λ∗
30

with 30 beams as a reference solution. Note

that in 2D there is no distinction between Laue zone and systematic-row approximation.

Table 3.3 displays the excitation errors 𝑠g: In the middle row, which corresponds to the

points close to the Ewald sphere, the entries have a modulus that is more than a factor of

10 smaller than in the rows above and below. We have a zero excitation error at (0, 0) and

(1, 0), due to our strong beam excitation condition.

Figure 3.6 shows that the amplitudes of the numerical solutions are related to the excitation
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component �̃�𝑦 of g ∈ Λ∗
30

c
o
m

p
o
n

e
n

t
𝑔
𝑥

o
f

g
∈
Λ

∗ 3
0

Figure 3.6: The radius of the circles correspond to the amplitudes |𝜓g(𝑧∗)|. Close to the Ewald

sphere (boundary of light green area), the excitation errors are significantly smaller and the

amplitudes are much larger. All simulations are done in Julia. Reprinted with permission from

[KMM21, Fig. 5.2], published by the Society for Industrial and Applied Mathematics (SIAM).

Copyright © by SIAM.

errors. For each beam g, we plot a circle with center (�̃�𝑦 , �̃�𝑧) and radius proportional to

|𝜓g(𝑧∗)|. We see that near the Ewald sphere, where the excitation error is small, the

amplitude is significantly higher. It becomes obvious that there are four main modes,

corresponding to the beams (−1, 0), (0, 0), (1, 0), and (2, 0).

Next, we reduce the beam list Λ∗
30

to observe how the errors of the solutions change. We

create three sets corresponding to the systematic-row approximation:

Λ∗
2
=
{

g =
4

𝑎0

(�̃�𝑦 , �̃�𝑧)
�� �̃�𝑦 ∈ {0, 1} and �̃�𝑧 ∈ {0}

}
,

Λ∗
4
=
{

g =
4

𝑎0

(�̃�𝑦 , �̃�𝑧)
�� �̃�𝑦 ∈ {−1, · · · , 2} and �̃�𝑧 ∈ {0}

}
,

Λ∗
6
=
{

g =
4

𝑎0

(�̃�𝑦 , �̃�𝑧)
�� �̃�𝑦 ∈ {−2, · · · , 3} and �̃�𝑧 ∈ {0}

}
,

where the set Λ∗
2

corresponds to the two-beam case, shown in Figure 3.7. For comparison,

we also create a set including beams above and below the Ewald sphere:

Λ∗
18

=
{

g =
4

𝑎0

(�̃�𝑦 , �̃�𝑧)
�� �̃�𝑦 ∈ {−2, · · · , 3} and �̃�𝑧 ∈ {−1, · · · , 1}

}
.
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Figure 3.7: Beam amplitudes |𝜓g(𝑧)| of solutions for the three choices Λ∗
2
, Λ∗

4
, and Λ∗

6
. The same

beating of the two main modes is observed in all the cases. Reprinted with permission from

[KMM21, Fig. 5.3], published by the Society for Industrial and Applied Mathematics (SIAM).

Copyright © by SIAM.

System (0, 0) mode (1, 0) mode digits

Λ∗
2

−0.16153606468 − 0.07740830300 i 0.42515771142 − 0.88721717658 i 1

Λ∗
4

−0.16446909478 − 0.06766454587 i 0.37790257701 − 0.90775029000 i 4

Λ∗
6

−0.16445260546 − 0.06764875833 i 0.37789496977 − 0.90775362575 i 4

Λ∗
18

−0.16444252690 − 0.06764808597 i 0.37791410830 − 0.90774683865 i 7

Λ∗
30

−0.16444251537 − 0.06764807576 i 0.37791412093 − 0.90774682391 i —

Table 3.4: Comparison of solutions for �̃� = (0, 0) and �̃� = (1, 0). The underlined decimals indicate

which numbers are already correct (up to rounding) with respect to the last line, i.e. we take the

Λ∗
30

system as reference. Reprinted with permission from [KMM21, Fig. 5.4], published by the

Society for Industrial and Applied Mathematics (SIAM). Copyright © by SIAM.

From Figure 3.7 we have a first qualitative comparison for the systematic-row cases. We

see that the qualitative features, meaning the beating and the two main modes, namely

(0, 0) and (1, 0), are captured in every case. The two-beam case however fails to capture

the other two main modes, for (−1, 0) and (2, 0).

To obtain a quantitative comparison of the different models, we show the numerical values

of 𝜓(1,0)(𝑧∗) and 𝜓(2,0)(𝑧∗) in Figure 3.4. As a first observation we see that the two-beam

case has only one significant digit correct, making it a very rough approximation. Moving

to Λ∗
4

with four beams gives an accuracy of 4 significant digits, while increasing the size

of the systematic-row approximation further does not bring higher accuracy as Λ∗
6

with

six beams still has only four significant digits. The accuracy of the solutions is however

further improved to 7 significant digits by adding the layer above and below the Ewald

sphere in the Λ∗
18

system, which has 18 beams.

For comparing numerical errors with the mathematical error bounds in Figure 3.2, we

observe that the scattering length is ℓscatt =
|k0 |
|𝐶𝑈 | = 60.83 nm ≈ 𝑧∗/2. Choosing 𝛼∗ = 𝑎0 =

0.565 nm and using |k0 | = 0.608 · 10
12

m
−1

, we find the error terms:

|𝛼∗k0 |−2 = 0.0000084647989≪ 1 and

𝛼∗𝑧∗
ℓ 2

scatt

= 0.01735570 ≪ 1,

which are indeed small for the chosen setup.
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For many practical purposes, like the simulation of TEM images with pyTEM as in

[Nie19], an accuracy of 4 significant digits is certainly good enough. However, for other

applications higher accuracy may be needed, e.g. for detecting phase differences for beams

of low amplitudes like in electron holography, see e.g. [Lic13].

In fact, the software pyTEM creates a beam list Λ∗
𝑚 in the following way. It first restricts to

the LOLZ or systematic-row approximation by setting 𝑔𝑧 = 0. Next, a minimum for |𝑈g |
is chosen to restrict to the sublattice generated by those g with |𝑈g | ≥ 𝑢min. For instance,

the coefficients displayed in Figure 3.3(b) lead to the sublattice

{
g = 1

𝑎0

(0, 2𝑚, 0)
��𝑚 ∈ Z

}
.

Finally, a maximum value �̃�∗ is chosen for the excitation error 𝑠g, which leads to a final

systematic row approximation with 12 beams with 𝑚 ∈ {−5, . . . , 6}. In the next chapter,

we will use the software package pyTEM to create a database of simulated TEM images

of quantum dots. To do so, the DHW equations are coupled with the strain profile, which

is calculated using elasticity theory.
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Chapter 4

Simulated TEM Images of Quantum
Dots

Quantum dots (QD) are semiconductor nanostructures with interesting optoelectronic

properties that are determined by their geometry and are used in many different fields, like

lasers, quantum cryptography and quantum metrology. The growth of semiconductor

QDs with desired electronic properties would highly benefit from the assessment of QD

geometry, distribution and strain profile in a feedback loop between epitaxial growth and

analysis of their properties. TEM can in principle be used to assist such an optimization

loop of QDs. However, the reconstruction of the geometric properties of QDs from TEM

images is a difficult problem due to the limited image resolution (0.5-1nm), the highly

nonlinear behavior of the dynamic electron scattering, non-local effects due to strain and

strong stochastic influences due to uncertainties in the experiment. In contrast to what is

common for images from light microscopy, for TEM imaging of QDs there is no simple

one-to-one correspondence between the TEM image, which rather shows the so-called

coffee-bean contrast, and the shape of the QD.

Here, we present a mathematical model and a toolchain for the numerical simulation of

TEM images of semiconductor quantum dots (QDs). This includes elasticity theory to

obtain the strain profile coupled with the Darwin-Howie-Whelan equations, describing

the propagation of the electron wave through the sample. We perform a simulation

study on indium gallium arsenide QDs with different shapes and compare the resulting

TEM images to experimental ones. This toolchain is used to generate a database of

simulated TEM images, which is a key element for a model-based geometry reconstruction

of semiconductor QDs, involving machine learning techniques. The work presented here

was published in [MNS+20] and the chapter follows closely the structure of that paper,

with some additional explanation of the theory behind the simulation in Sections 4.2 and

4.3.
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Zoo of Quantum Dots Database of TEM images

Inverse problem

Simulation

Figure 4.1: MBGR approach: By the numerical simulation of the imaging process, a database of

simulated TEM images spanning the image space for a large number of possible QD configurations

and image acquisition parameters is generated. This simulated image space can then be explored

by means of statistical methodology, for example by shape space methods, functional data analysis,

or deep learning. Such methods can then be used for inferring the geometry of QDs from

experimental TEM images.

4.1 Model based geometry reconstruction approach

In [KMN+18; MKN+18], we introduced a novel concept for 3D model-based geometry
reconstruction (MBGR) of QDs from TEM imaging. The approach was based on (a) an

appropriate model for the QD configuration in real space, including a categorization

of QD shapes (e.g. pyramidal or lens-shaped) and continuous parameters (e.g. size,

height), (b) a database of simulated TEM images covering a large number of possible QD

configurations and image acquisition parameters (e.g. bright field/dark field, sample tilt),

as well as (c) a statistical procedure for the estimation of QD properties and classification

of QD types based on acquired TEM image data. The idea is illustrated in a simple way

in Figure 4.1. First, we simulate TEM images of as many QD configurations as possible.

Then, we use this simulated database for the QD classification and properties estimation.

This second part, the inverse problem, is still work in progress so we will not focus on that

here. The first part, the simulation process, is completed and the results are published in

[MNS+20] as mentioned before.

To simulate the TEM images, we combined two software packages. First the WIAS-pdelib

software [FS+19] is used in order to calculate the displacement (also the strain and stress)

for a specific geometry and indium concentration. The output from this then enters the

pyTEM software [Nie19], which simulates a TEM image for chosen excitation conditions

by solving the DHW equations numerically. The database we created concerns indium

gallium arsenide QDs embedded in a gallium arsenide matrix. The simulation process

is shown in Figure 4.2. To have a better understanding of the simulation process we

will explain next how the displacement enters the equations and how we calculate this

displacement using elasticity theory.
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Figure 4.2: Simulation of TEM images: First the displacement is calculated from WIASpdelib

solver for a specific geometry and indium concentration. Then this enters the pyTEM solver,

which creates a simulated TEM image for chosen excitation conditions.

4.2 Influence of strain in the DHW equation

TEM imaging is widely used for the study of defects in crystalline materials, see [PHN+18;

WS19; SS93; ZD20]. By defects we mean perturbations of the crystal symmetry, in the

sense that the atoms are displaced from their original position in the perfect crystal. If an

atom was at position r, its new position will be r′ = r+u(r), where u(r) is the displacement

field, see Figure 4.3 a). In the next section, we will describe how the displacement field

is calculated in WIAS-pdelib, but for now we give an elementary example in order to

understand how a strained crystal looks likes. We consider a spherical particle with

radius 𝑟0 and lattice parameter 𝑎𝑝 inside a matrix with lattice parameter 𝑎𝑚 , as is done in

[De 03, Ch.8, p.479]. The displacement field is given by:

u(r) = 𝐶(𝛿)
(
min{|r|, 𝑟0}

)
3

|r|3 r, (4.1)

where 𝐶(𝛿) is a constant that depends on the elastic properties of the isotropic matrix and

𝛿 the matrix misfit given by 𝛿 = (𝑎𝑝 − 𝑎𝑚)/𝑎𝑚 . In this case, the displacement inside the

particle is proportional to r = (𝑥, 𝑦, 𝑧), whereas outside it decays as 1/|r|2, see Figure 4.3.

The displacement field u is only valid for small isotropic inclusions where the particle

diameter is significantly smaller than one extinction distance.

For small deformations the displacement will modify the Fourier coefficients of the po-

tential in the DHW equations (3.4) by a phase factor:

𝑈g → 𝑈ge
−2i𝜋g·u(r).
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Using this and letting 𝜓g = 𝜑ge
−2ig·u(r)

in (3.4), we get the DHW equations for a strained

crystal [De 03, Ch.8]:

d

d𝑧
𝜑g(𝑧) = 2i𝜋

(
𝑠g +

d

d𝑧
(g · u(r))

)
𝜑g(𝑧) +

i𝜋
𝜌g

∑
h∈Λ∗

𝑚

𝑈g−h𝜑h(𝑧) (4.2)

and 𝜑g(0) = 𝛿0,g for g ∈ Λ∗
𝑚 . (4.3)

6

a) b)

z
g

g ⋅ u
projected displacement

depth

Figure 4.3: Crystal lattice with spherical inclusion: a) Deformation of the lattice b) Variation of

the projection of the displacement u on the g vector along the line scan in z-direction (red) in the

crystal.

The set Λ∗
𝑚 is a subset of the dual lattice Λ∗

containing 𝑚−beams. To simulate a TEM

image with defects, the displacement u(r) in (4.2) is evaluated as u(𝑧; 𝑥𝑖 , 𝑦𝑗), for each

horizontal position (𝑥𝑖 , 𝑦𝑗), where (𝑖 , 𝑗) denotes the image pixel. If this is constant, then

the defect will not be visible. Another important fact for the imaging of defects is that the

projection of the displacement to the reciprocal lattice vector g is what really matters, see

Figure 4.3 b). If g · u(r) is constant, then again the defect is not visible. This means that by

choosing different vectors gap we get different information about the defect. In [MNS+20]

we also took into account the indium content 𝑐(r), which enters the Fourier coefficients

as:

𝑈g →
[
𝑐(r)𝑈 InAs

g + (1 − 𝑐(r))𝑈GaAs

g
]
e
−2𝜋𝑖u(r)·g. (4.4)

More on how the displacement influences the TEM images will be discussed in the next

chapter. Now we give a brief introduction to elasticity theory to have a better picture of

the simulation process shown in Figure 4.2.
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Figure 4.4: Eshelby’s method briefly described in four steps. Step 1: Remove inclusion from the

matrix. Step 2: Allow deformation to take place. Step 3: Apply traction to bring the inclusion to

its original form. Step 4: Put inclusion back in the matrix and apply an equal and opposite force.

4.3 Elasticity theory and Eshelby’s method

The dynamical electron scattering in crystalline solids, e.g. semiconductor nanostruc-

tures, is influenced by spatial variations in the material composition and by local defor-

mations of the lattice due to elastic strain. In order to model the TEM images, we need to

use elasticity theory to obtain the strain profile and couple this with the Darwin-Howie-

Whelan equations (4.2).

The indium gallium arsenide QDs under consideration and the surrounding GaAs matrix

have different lattice constants. This induces mechanical stresses in the nanostructure.

The strain tensor is defined as 𝜀(u) = 1

2

(
∇u + (∇u)𝑇

)
, where u is the displacement and

the stress 𝜎 is linked to the strain by Hooke’s law 𝜎 = C𝜀. Here, C is the elastic stiffness

tensor, see Appendix A.

We model the elastic relaxation of the misfit-induced strain following the concept of

Eshelby’s inclusion [Esh57]. The approach was developed for the description of the elas-

tic relaxation within and around inclusions of a solid surrounded by a matrix. The GaAs

matrix provides a global reference for measuring displacements and strains. For simplic-

ity, we assume that both matrix and inclusion (QD) exhibit cubic symmetry. Eshelby’s

approach was the following: First, remove the inclusion from the matrix and let the un-

constrained transformation take place. Now the inclusion will assume a uniform strain

𝜀∗ and experience zero stress. This strain under zero stress is called eigenstrain. From the

eigenstrain the eigenstress 𝜎∗
is defined as:

𝜎∗ = C𝜀∗. (4.5)

Next, apply surface tractions such that the inclusion is restored to its original form. Put

the inclusion back in the matrix and rejoin the material across the cut. Now, the stress in

the matrix is zero and has a known value in the inclusion. The applied surface tractions

form a layer of body force over the interface between inclusion and matrix. To remove this

unwanted layer, apply an equal and opposite layer of body force. Figure 4.4 illustrates

these steps.

If we remove the inclusion from the matrix, it is stress-free, if the strain 𝜀 of the reference

system equals the eigenstrain 𝜀∗. Assuming a stress-strain relation according to Hooke’s
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law, we can mimic the stress-free condition for 𝜀 = 𝜀∗ in the reference system of the matrix

by incorporating the eigenstress in the momentum balance:

∇ · (𝜎 − 𝜎∗) = 0. (4.6)

The boundary condition on the Neumann part of the boundary (stress-free relaxation)

has to be modified accordingly:

(𝜎 − 𝜎∗) · n = 0. (4.7)

We will not expand further into Eshelby’s method or elasticity, but the interested reader

is encouraged to read the original paper from Eshelby [Esh57] or a relevant book like

[Mur82].

4.4 Numerical simulation of TEM images for different geome-
tries

A simulated TEM image is generated by propagating the beams through the specimen for

every pixel (𝑖 , 𝑗), 𝑖 , 𝑗 = 1, . . . , 𝑁 . This is done numerically by solving the Darwin-Howie-

Whelan equations (4.2) using displacements u obtained from the elasticity problem (4.6)

for a given geometry.

The excitation errors 𝑠g, entering the Darwin-Howie-Whelan equations, depend on the

orientation of the crystallographic lattice with respect to the beam direction. The specimen

can be oriented such that only a small number of beams g with amplitudes 𝜙g are

excited. For two-beam conditions, the Ewald sphere only cuts two reciprocal lattice

points. Thereby, most of the intensity is contained within the undiffracted 𝜙0 and a single

diffracted beam 𝜙g′ while the other beams remain largely unexcited.

In imaging conditions, where the objective aperture selects only a single beam gap, the

image contrast is simply obtained by taking the square of the modulus of the beam’s

amplitude at the exit plane 𝑧 = 𝑧∗:

𝐼gap(𝑖 , 𝑗) = |𝜙gap(𝑧∗; 𝑥𝑖 , 𝑦𝑗)|2. (4.8)

For example, for excitation of (040)-two-beam conditions, the bright field is given by 𝐼0(𝑖 , 𝑗)
while the dark field image is given by 𝐼g′(𝑖 , 𝑗) with g′ = (040).

4.4.1 Toolchain for simulation of TEM images

The simulation toolchain starts with a parametric geometry description of the QD shape,

e.g. using base length and height of the pyramidal QD. A representation of the geometry
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by a tetrahedralization is created using the 3D mesh generator TetGen [Si15], see Figure

4.7a. The generated mesh enters a FEM-based elasticity solver of WIAS-pdelib [FS+19]

which computes the strain profile and the displacement field u in the QD and in the

sample. Finally, the multi-beam solution is obtained by the Darwin-Howie-Whelan solver

pyTEM [Nie19] depending on excitation conditions and the sample orientation and results

in the simulated TEM image. For the examples shown in the following, we assumed an

acceleration voltage of 300 kV. The 𝑥 and 𝑦 range of the simulated TEM images is -50 nm

to 50 nm around the center of the quantum dot, sampled with 101 points. The beams

used are chosen from (020) systematic row for the (040) reflection and (002) systematic

row for the (004) reflection. From these, the beams with the smallest excitation error were

used (6 beams in our case).

4.4.2 Spherical QD

As a first example, we consider a spherical InAs QD with radius 10 nm embedded in

a GaAs matrix. Figure 4.5b shows the dark field TEM image under (040)-two-beam

conditions, revealing a coffee-bean like contrast which looks similar to the experimental

results shown in Figure 2.2. For comparison Figure 4.5a shows a simulated TEM image

using in Eq. (4.4) the effect of the material contrast only, neglecting strain effects. Even

the qualitative behavior differs strongly from the results of the fully-coupled simulation

(Figure 4.5b) and from the experimental observations (Figure 2.2). This demonstrates

that the TEM contrast is dominated by the strain profile around the QD, shown in Figure

4.5c, and the nonlocal behavior of the mapping QD geometry (sphere) to TEM image

(coffee-bean).

Figure 4.5: Simulated TEM images: (a) dark field for material contrast only (b) dark field also

including influence of strain. The image contrast in (a) is strongly increased for better visualization.

Due to the excitation under (040)-two-beam conditions, the image contrast is sensitive to the [010]-

component of the displacement field, shown in (c) along a cross-section through the center of a

spherical InAs QD as obtained by FEM.© 2018 IEEE. Reprinted, with permission, from [KMN+18].
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4.4.3 Pyramidal and lens-shaped QDs

For more realistic QD TEM images, we study QDs with two different shapes: lens-shaped

QDs with circular base (diameter of 15 nm) and (truncated) pyramidal QDs (baselength

of 15 nm) with different vertical aspect ratios, respectively, and a thin wetting layer, see

Figure 4.6 and Figure 4.7a. We assume an indium content of 80% for all cases.

Figure 4.6: 3D view of the geometry of a lens-shaped and a pyramidal quantum dot. The shadow

indicates the cutting plane for the cross sections shown in Figure 4.7. Reprinted from [MNS+20]

under CC-BY.

For comparison with the experimental TEM images shown in Figure 2.2, we simulated

TEM images for the same excitation conditions, namely (040)- and (004)-two-beam con-

ditions, see Figure 4.7c and Figure 4.7e, respectively. Consequently, the image contrast is

sensitive to the 𝑦- and 𝑥-component of the displacement field, shown in Figure 4.7b and

Figure 4.7d along a 𝑦𝑥-cross section through the center of the QDs, respectively.

For both, pyramidal and lens-shaped QDs, a coffee-bean like contrast can be found for

(040)-two-beam conditions as it is also observed in the experimental data, see Figure 2.2.

However, for (004)-two-beam conditions we observe a striking difference between the

images: The pyramidal QDs produce more a crescent-like contrast, whereas the contrast

for the lens-shaped QDs resembles the coffee-bean contrast again. This can be explained

by the different behavior of the elastic relaxation of the misfit induced strain: For lens-

shaped structures the relaxation takes place in the QD as well as below and above it, while

for pyramidal ones it is mainly concentrated in the QD itself and above, see Figure 4.7d.

Another observation we can make from the simulated images is a line of no contrast

across the center of lens-shaped QDs only. This characteristic feature is also observed

experimentally, see Figure 2.2. Therefore, even on the basis of the four different QD

shapes we studied, one can already conclude that a lens-shaped structure matches the

experimental observations much better than pyramidal structures (truncated or not), see
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Figure 4.7: InGaAs (green) quantum dots (indium content 80%) embedded in a GaAs (red) matrix

with different shapes: Lens-shaped QDs with circular base (two left columns) and pyramidal

QDs (two right columns) with different vertical aspect ratios, respectively. FEM simulation of the

elastic relaxation of the misfit induced strain: (a) Geometry and FEM mesh, where we made a cut

through the mesh by cell removal, so the colour changes occur due to light reflections from the

remaining tetrahedra. (b) 𝑢𝑦 component and (d) 𝑢𝑧 component of the displacement field along

a 𝑦𝑧-cross-section through the center of the QDs in Å. The strain fields are not fully symmetric

because we used an unstructured and coarse mesh. Simulated TEM images for two different

excitations: (c) Dark field for (040) beam for excitation under (040) two-beam conditions and (e)

Dark field for (004) beam for excitation under (004) two-beam conditions. The sample thickness is

150 nm and for the wavevector we have |k0 | = 507.93 nm
−1

. All images show the same 60 nm x 60

nm field of view. Reprinted from [MNS+20] under CC-BY.
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comparison in Figure 4.8.

Abbildung 3.4.4:

oben: Dunkelfeldabbildung vom verzerrungssensitiven Reflex (040) –=7,91¶ mit

Intensitätsprofil durch QP4,

unten: Dunkelfeldabbildung vom verzerrungssensitiven Reflex (004) —=10,28¶.
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Figure 4.8: Experimental images (a, b) from Figure 2.2 compared to simulated images (c, d) of

InGaAs quantum dots (indium content 80%) embedded in a GaAs matrix from Figure 4.7. From

top left to bottom right the shapes are lens-shaped, flat lens, full pyramid and truncated pyramid.

Dark field images are shown for the (040) beam (a, c) and the (004) beam (b, c). The yellow boxes

indicate the same areas in both experimental and simulated TEM images. For the wavevector we

have |k0 | = 507.93 nm
−1

. Reprinted from [MNS+20] under CC-BY.

4.5 Database of TEM images

Using the toolchain described above, we generated a database of TEM images for initially

two classes of geometries: Pyramidal and lense-shaped QDs, see Figure 4.6. This database

contains images for different QD geometry parameters (baselength, aspect-ratio, concen-

tration, position) and excitation parameters (acceleration voltage, beam directions). As

an example, we show a series of specimen parameter variations for a lens-shaped InGaAs

quantum dot embedded in a GaAs matrix: different values of the sample thickness in

Figure 4.9a, the size of the QD in Figure 4.9b, the indium content in Figure 4.9c and

the position of the QD in the matrix relative to the top surface in Figure 4.9d. A SQL-

database is used to store the metadata of the images including the actual values of the

parameters, the numerical parameters controlling the solvers, and the file locations. The
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consistency of parameters and data across the toolchain is ensured by using portable

metadata descriptions in JavaScript Object Notation (JSON).

Here, it is worth mentioning that our computational toolchain is not restricted to QDs,

but can be applied also to other epitaxial heterostructures or coherent precipitates. This

includes the surface relaxation of thin TEM lamellas or structures with spatially varying

material composition, e.g. the QDs with varying indium content in our case.

Our study on four different QD shapes showed a strong sensitivity of image contrast to

the characteristic profiles of the strain field. The influence of the strain profile on the

TEM image will be the subject of our next chapter, where we will focus on symmetries

observed in TEM images.
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a)

b)

c)

d)

20nm

Figure 4.9: InGaAs lens-shaped quantum dots embedded in a GaAs matrix. Dark field images for

(040) two-beam conditions: (a) thickness variation 120 nm, 130 nm, 140 nm, 150 nm, size of QD

15 nm, indium content 80%, position of QD at 75 nm (b) size variation 10 nm, 15 nm, 20 nm, 25

nm, sample thickness 150 nm, indium content 80%, position of QD at 75 nm (c) indium content

variation 20%, 40%, 60%, 80%, sample thickness 150 nm, QD size 15 nm, position of QD at 75

nm (d) position variation along the beam direction 45 nm, 55 nm, 65 nm, 75 nm, size of QD 15

nm, indium content 80%, sample thickness 150 nm. All images have the same gray scaling. Black

corresponds to no intensity while white corresponds to the intensity of the incoming beam. For

the wavevector we have |k0 | = 507.93 nm
−1

. Reprinted from [MNS+20] under CC-BY.
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Chapter 5

Symmetries in TEM imaging of
strained crystals

The main goal of transmission electron microscopy is to extract information on the speci-

men from the generated TEM images. This is particularly used for detecting shapes, sizes

and composition of defects or inclusions like quantum wells and quantum dots in a larger

specimen consisting of a regular crystalline material. However, there is no direct way to

infer the inclusion properties from the TEM image. Hence, a commonly taken approach

that was described in the previous chapter is to simulate the TEM imaging process with

inclusions being described by parametrized data. Then, the comparison with experimen-

tal pictures can be used to fit the chosen parameters and deduce the desired data of the

experimental inclusions.

A main feature in this process are symmetries for two reasons; first the inclusions may have

certain symmetries and second the TEM images may display symmetries that are related

but not identical. The latter arise from the fact that the experimental setup may have its

own intrinsic symmetry properties. In this chapter, we will analyze these symmetries

and explain why sometimes TEM images look more symmetric than the inclusion under

investigation, or as the Curie’s principle is stated in [CI16] (a3): the effect is more symmetric
than its cause.

The interest in TEM image symmetries dates back to the 1960’-70’s, cf. [HW61; ISW74],

with the work focused mainly on the Reciprocity Theorem. It states that the amplitude at a
point B of a wave originating from a source at point A and scattered by a potential 𝑉 is equal to the
scattered amplitude at point A originating from the same source at B. Many papers have been

written for alternative proofs of this theorem, cf. [BFT+64; PT68; Moo72; QG89], as well

as applications of it in the interpretation of TEM images, e.g. in connection with imaging

of dislocations, cf. [FTK+72; HWM62; Kat80].
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While some of our results can also be deduced from the reciprocity theorem, like mid-

plane reflection, there are more symmetries in the imaging process which can be proven

mathematically by assuming the column approximation and focusing on the Darwin–

Howie–Whelan equations. Combining the symmetry properties of the imaging process

with symmetry properties of the inclusion explains extra symmetries observed in TEM

images of strained crystals. The work presented in this chapter is currently under review

and a preprint can be found in [KMM22].

The structure of this chapter is as follows: In Section 5.1 we provide a short introduction

of what we mean by image symmetries related to the DHW equations. In Section 5.2

we discuss all issues concerning symmetries in TEM imaging by considering well-chosen

examples. In particular, we highlight the relevance of the symmetries for the detection of

shapes of inclusions. The mathematically rigorous treatment of the symmetries for the

𝑚-beam model is given in Section 5.3, where the notion of weak and strong symmetries is

introduced to provide a coherent structure of the symmetry properties, which also reveals

why the two-beam case is different from the 𝑚-beam case with 𝑚 > 2.

5.1 Image symmetries via the DHW equations

The Darwin–Howie–Whelan equations, describing the propagation of electron beams

through crystals, were already introduced in Section 2.4. While these equations are

typically formulated for infinitely many beams in the dual lattice Λ∗
, for all practical

purposes it is sufficient to use only a few important beams, because at high energy and for

thin specimens only very few beams are excited by scattering of the incoming beam. A

mathematical analysis of the corresponding beam selection was given in Chapter 3, which

was based on the work published in [KMM21]. This theoretical work was restricted to

perfect crystals without inclusions. Here, we stay with finitely many beams, i.e. with so-

called 𝑚-beam models with wave vectors g ∈ Λ∗
𝑚 , but generalize the analysis to crystals

with inclusions. The main assumption is, however, that the crystallographic lattice stays

approximately intact and can be modeled as a strained crystal where the positions of the

lattice points undergo a displacement u(r). Then, the DHW equation for strained crystals

reads:

d

d𝑧
𝜑g(𝑧) = 2i𝜋

(
𝑠g + g · d

d𝑧
u(𝑧; 𝑥, 𝑦)

)
𝜑g(𝑧) +

i𝜋
𝜌g

∑
h∈Λ∗

𝑚

𝑈g−h𝜑h(𝑧) for g ∈ Λ∗
𝑚 , (5.1)

as was explained in Section 4.2. Here, 𝜑g denotes the wave function of the beam associated

with g ∈ Λ∗
𝑚 , where g = 0 denotes the incoming beam. The vertical coordinate 𝑧 ∈ [0, 𝑧∗]

gives the depth inside the specimen (𝑧 = 0 entry plane and 𝑧 = 𝑧∗ exit plane), whereas the

horizontal coordinates (𝑥, 𝑦) are fixed and correspond to the image pixel, see Figure 2.8.
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After a minor transformation the above system will take the vectorial form:

.

𝜙 :=
d

d𝑧
𝜙 = i

(
𝑉 + Σ + 𝐹(𝑧)

)
𝜙 and 𝜙(0) = √

𝜌0 𝑒0 ∈ C𝑚 , (5.2)

where 𝜙 = (𝜙g)g∈Λ∗
𝑚
∈ C𝑚 contains the relevant wave functions. The Hermitian matrix

𝑉 corresponds to the electrostatic interaction potential, the diagonal matrix Σ = diag(𝑠g)
contains the so-called excitation errors and 𝐹(𝑧) = diag(g · d

d𝑧
u(𝑥, 𝑦, 𝑧)) ∈ R𝑑×𝑑

contains

the projections of the strains to the individual wavevectors g ∈ Λ∗
𝑚 . We will call 𝐹 the

strain profile.

Image symmetries are now easily understood as changing the image pixel (𝑥, 𝑦) to another

pixel (�̃� , �̃�) having the same strains throughout the whole thickness, i.e. u(𝑧; 𝑥, 𝑦) =

u(𝑧; �̃� , �̃�) for all 𝑧 ∈ [0, 𝑧∗], which implies 𝐹(𝑧) = 𝐹(𝑧). Such a situation is related to a

symmetry of the inclusion generating a symmetric strain field. As we will see, additional

symmetries may occur in (5.2) in three distinct cases:

1. if 𝐹(𝑧) is replaced by −𝐹(𝑧), a so-called sign change;

2. if 𝐹 is reflected at the midplane 𝑧 = 𝑧∗/2, i.e. 𝐹(𝑧) is replaced by 𝐹(𝑧∗−𝑧);

3. if Σ is replaced by −Σ.

The latter symmetry is relevant when a series of images is done while varying the excita-

tion error 𝑠g along the series.

These symmetries are observed experimentally (cf. [MNBL19]) but occur for the ODE

system (5.2) only under additional conditions. Typically, the symmetries are exact only

for the case of the two-beam model with Λ∗
2
= {0, g′}. Nevertheless, the symmetries are

approximately true in 𝑚-beam models if the intensities of the two strong beams (bright

field and dark field intensities) are much higher than those of the weak beams. Next, we

will see examples of symmetries in TEM images and explain these observations via the

DHW equations.

5.2 Symmetries in TEM images

In this section, we study observed symmetries in TEM images of strained crystals and dis-

cuss their interpretation. To this purpose, we introduce selected examples demonstrating

different kinds of symmetries, e.g. images that are pixelwise symmetric, like c) and e) in

Figure 5.1. This kind of symmetry occurs when there is a sign change in the displacement

component, see Section 5.2.1, or when the inclusion is shifted from the center, see Section

5.2.2. In Section 5.2.3, symmetries of a series of TEM images for varying excitation errors 𝑠g
and varying positions are discussed. These examples show the importance to distinguish
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Figure 5.1: Simulation of TEM images for pyramidal QD: a) QD geometry indicating the crys-

tallographic directions b) 𝑢𝑥 component and d) 𝑢𝑦 component of displacement field along a

cross-section in the center of the structure. c) and e) corresponding TEM images for strong beam

conditions as indicated by the direction of the chosen vectors g. The images in the figure are

adapted from [MNS+20, Fig. 5] used under CC-BY.

different kind of symmetries that can occur and to examine which ones are connected to

specific properties of the displacement or strain profile and which are independent of it.

To understand the origin of these symmetries, we performed an analysis on the symmetry

properties of solutions of the DHW equations. The main results are explained in Section

5.2.4, while the formal proofs are given in Section 5.3. This analysis revealed three

important symmetry principles, stated in Section 5.2.4.3. By combining these principles

with specific properties of the strain profiles, we can explain all the observed symmetries

introduced in Sections 5.2.1-5.2.3. The capability of our approach to explain symmetries in

TEM images beyond these examples is demonstrated in Section 5.2.6, where the developed

theory is applied to a more complex problem featuring general displacement profiles.

5.2.1 Symmetry with respect to the sign of the displacement

In Figure 5.1 c) and e) we see two simulated TEM images for different choices of the

vectors gap. Each image is pixelwise symmetric, in the sense that for two different pix-

els (𝑥0 , 𝑦0) and (𝑥1 , 𝑦1) we have the same intensities: 𝐼gap(𝑥0 , 𝑦0) = |𝜑gap(𝑧∗; 𝑥0 , 𝑦0)|2 =

|𝜑gap(𝑧∗; 𝑥1 , 𝑦1)|2 = 𝐼gap(𝑥1 , 𝑦1). For image 5.1 e) this in not surprising since the profile of

the vertical component of the displacement along the column related to pixel (𝑥0 , 𝑦0) is

the same as the one for pixel (𝑥1 , 𝑦1), namely 𝑢𝑦(𝑧; 𝑥0 , 𝑦0) = 𝑢𝑦(𝑧; 𝑥1 , 𝑦1) for 𝑧 ∈ [0, 𝑧∗],
due to the symmetry of the pyramid. However, the pixelwise symmetry in image 5.1

c) is interesting: the profiles of the horizontal displacement component, which are re-

sponsible for the image contrast, have opposite values 𝑢𝑥(𝑧; 𝑥0 , 𝑦0) = −𝑢𝑥(𝑧; 𝑥1 , 𝑦1). This

indicates that there might be some symmetry in TEM images with respect to the sign of

the displacement.

In (5.1), we see that it is the product of the strain
𝑑
𝑑𝑧

u with the reciprocal lattice vector g that

enters the equations. This term will from now on be expressed as 𝐹g(𝑧) = 𝑑
𝑑𝑧
(g ·u(𝑧; 𝑥𝑖 , 𝑦𝑗))
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Figure 5.2: TEM imaging of inclined quantum well: a) illustration of a specimen for an inclined

quantum well showing the 𝑧-direction and two line scans (purple dotted lines). b) The displace-

ment (red) and strain (black) profiles projected to the reciprocal vector gap. c) Intensity values

for different positions and different excitation errors 𝑠gap for a beam propagating in 𝑧 direction.

Adapted from [MNBL19, Fig.5] used under CC-BY. d) Strain profile for the different positions

corresponding to a shift of the strain across the 𝑧 direction.

and the influence of the strain to a𝑚-beam system will be represented by the matrix-valued

function 𝐹(𝑧) = diag

(
𝐹g
)
g∈Λ∗

𝑚
. So, we want to know if the transformation 𝐹(𝑧) { −𝐹(𝑧)

gives the same intensity. If it does, then the question that arises is whether it is for a

specific shape of the strain profile 𝐹(𝑧) or it is independent of it and applies to general

strain profiles.

5.2.2 Symmetry with respect to the center of the sample

Our next example is inspired by images provided in [MNBL19], where TEM imaging of

an inclined strained semiconductor quantum well, like the one in Figure 5.2 a), has been

studied. A quantum well is a planar heterostructure consisting of a thin film, forming the

quantum well, sandwiched between barrier material layers forming the matrix. Due to

the lattice mismatch between the materials, the lattice of the quantum well is deformed.

For pseudomorphically grown quantum wells with perfect interfaces, it can be assumed

that the displacement grows linearly within the quantum well region and has a constant

value outside, resulting in a strain profile similar to an indicator function, see Figure 5.2

b).

The intensity values of the dark field for such a structure are shown in Figure 5.2 c), for

different values of the excitation error and for different positions. Due to the incline angle

between the planar interface and the imaging direction, the different positions correspond

to different depths of the quantum well as measured from the surface of the specimen,

see 5.2 a). An interesting first observation here is that the intensity seems to be symmetric

with respect to a shift in the position from the center of the sample and for every excitation
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Figure 5.3: TEM imaging of spherical quantum dot: a) illustration of the specimen in (𝑥, 𝑦)
projection showing the direction of the chosen beam gap. b) Propagating the beam across 𝑧 for a

chosen (𝑥0 , 𝑦0) gives the intensity at the corresponding pixel. The displacement (red) and strain

(black) profiles projected to the reciprocal vector gap. c) Intensity values for different positions

and different excitation errors 𝑠gap . Adapted from [Nie21, Fig. 5.13] used under CC-BY. d) Strain

profile for the different positions corresponding to a shift of the strain across the 𝑧 direction.

error 𝑠gap . A natural question that occurs is whether this shifting symmetry is a general

property of TEM imaging. The answer is negative and this can be seen in Figure 5.3 c)

which shows the dark field intensities for a spherical quantum dot (Figure 5.3 a) again

for different excitation errors and different positions. Shifting the quantum dot from the

center, for an excitation error 𝑠gap ≠ 0, does not give the same intensity. However, if we

choose 𝑠gap = 0 then we observe again a symmetry with respect to shifting. To analyze

these observations. we take a closer look into the shape of the strain in each case. For the

quantum well in Figure 5.2, the strain profile is an even function (Figure 5.2 b)) while for

the quantum dot in Figure 5.3, it is an odd function (Figure 5.3 b)). The latter is due to

the symmetry of the sphere, cf. displacement field for spherical inclusion (4.1). Shifting

the inclusion would correspond to shifting the strain in both cases as seen in Figures 5.2

d) and 5.3 d), respectively. The questions to be answered here are i) what is special in the

case 𝑠gap = 0 that makes shifting a symmetry, ii) how does shifting an even or odd strain

profile affect the intensities and iii) what happens for a general strain profile?

5.2.3 Symmetry with respect to the sign of 𝑠g

In the previous examples, we considered pixelwise symmetry for one specific image.

This was expressed as 𝐼gap(𝑥0 , 𝑦0) = 𝐼gap(𝑥1 , 𝑦1). In this section we talk about pixelwise

symmetry between images. This means that if 𝐼gap corresponds to the intensity of an image

and �̃�gap to the intensity of another image, then the two images are pixelwise symmetric if

𝐼gap(𝑥𝑖 , 𝑦𝑗) = �̃�gap(𝑥𝑖 , 𝑦𝑗) for every pixel (𝑖 , 𝑗).
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Figure 5.4: Series of TEM images for a spherical quantum dot: a) schematics of the position of

quantum dot in the sample. b) simulated TEM images for different depths of the quantum dot

and for different excitation errors 𝑠gap . For 𝑠gap = 0 the TEM images show a pixelwise symmetry

with respect to the center (red boxes). For 𝑠gap ≠ 0 the TEM images are symmetric with respect

to the center if in addition the sign of the excitation error is changed (green boxes). The images

are mirrored to each other with respect to the center for the same excitation error (𝛼 and 𝛽 blue

boxes) or with respect to the sign of the excitation error for a fixed position (𝛼 and 𝛾 blue boxes).

Adapted from [Nie21, Fig.5.12] used under CC-BY.

In Figure 5.4, we have TEM images, adapted from [Nie21], of a spherical quantum dot

at different positions and for different excitation errors. The observations we made for

shifting at the previous section apply here as well. Shifting the quantum dot for an

excitation error 𝑠gap = 0 creates images that are pixelwise symmetric with each other (red

boxes), while for 𝑠gap ≠ 0 they are not symmetric (𝛼 and 𝛽 blue boxes). Shifting for an

𝑠gap ≠ 0, however, seems to create mirrored images, in the sense that the image 𝛼 is a

mirrored version of image 𝛽 with respect to the symmetry axis of the sphere.

Interestingly though, we see that if we shift the quantum dot from the center and addi-

tionally change the sign of the excitation error 𝑠gap , then the two images are pixelwise

symmetric (green boxes or blue 𝛽 and 𝛾 boxes). Again, the question that arises here is

whether these observations are connected to a specific property of the strain profile or

is there a symmetry connected to shifting and sign change of 𝑠gap that occurs for general

profiles?

5.2.4 Symmetries explained via DHW equations

To understand the symmetries in TEM images we described above, we studied the prop-

erties of the beam propagation through the specimen using the DHW equations. It turned

out, that the intensity at the exit plane is invariant under specific transformations of the
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strain field. In the following, we give an introduction to our approach and an overview

of the different types of symmetries formally defined and proved in mathematically rig-

orous terms in Section 5.3. We conclude the section with an explanation of the observed

symmetries using the theory we developed.

5.2.4.1 Transformation to Hermitian form

To begin with, it is essential to use the self-adjoint structure that is somehow hidden in

the DHW equations. This can either be done as in Chapter 3, where C𝑚 is equipped with

the scalar product

〈
𝑎, 𝑏

〉
=
∑

g∈Λ∗
𝑚
𝜌g𝑎g𝑏g, or by the simple transformation:

𝜙g =
√
𝜌g 𝜑g for g ∈ Λ∗

𝑚 ,

which will be used in this chapter. This has the advantage that C𝑚 is equipped with the

standard (complex) Euclidean scalar product, but the intensities take the form 𝐼g(𝑥𝑖 , 𝑦𝑗) =
|𝜑g(𝑧∗; 𝑥𝑖 , 𝑦𝑗)|2 = |𝜙g(𝑧∗; 𝑥𝑖 , 𝑦𝑗)|2/𝜌g.

In terms of 𝜙 =
(
𝜙g

)
g∈Λ∗

𝑚
∈ C𝑚 , the system (4.2) is rewritten in matrix form as follows:

.

𝜙 :=
d

d𝑧
𝜙 = i

(
𝐴 + 𝐹(𝑧)

)
𝜙 and 𝜙(0) = √

𝜌0 𝑒0 ∈ C𝑚 . (5.3a)

Subsequently, we will omit the normalizing factor

√
𝜌0 in the initial condition𝜙(0), because

it is not relevant in TEM imaging, where gray-scale pictures are created using relative

intensities only. The system matrix 𝐴 = 𝑉 + Σ and the influence 𝐹(𝑧) of the strain are

given via:

𝑉 =

(𝜋𝑈g−h√
𝜌g𝜌h

)
g,h∈Λ∗

𝑚

, Σ = diag(2𝜋𝑠g)g∈Λ∗
𝑚
, 𝐹(𝑧) = diag

(
2𝜋

d

d𝑧
(g · u(𝑧))

)
g∈Λ∗

𝑚
, (5.3b)

where𝑉 describes the interaction of the beams via the scattering potential andΣ is related

to the excitation conditions. As the Fourier coefficients of the scattering potential satisfy

𝑈−g = 𝑈g, we see that 𝑉 ∈ C𝑚×𝑚
is indeed a Hermitian matrix, while Σ and 𝐹(𝑧) are

real-valued diagonal matrices.

What is important in TEM imaging is the intensity of the strongly excited beams at the exit

plane 𝑧 = 𝑧∗ and not all components of 𝜙. Our theory is developed in such a way that it

focuses on the amplitude of the undiffracted beam, |𝜙0(𝑧∗)|, which corresponds to a bright-

field image. The point is that this generates a potential reflection symmetry 𝑧 { 𝑧∗ − 𝑧,

because the initial condition 𝜙(0) = 𝑒0 and the exit measurement 𝜙0(𝑧∗) = 𝜙(𝑧∗) · 𝑒0 use

the same vector 𝑒0.

Intensities of solutions for different choices of the pair (𝐴, 𝐹(𝑧)) are compared to see which

replacements of (𝐴, 𝐹) by (𝐴, 𝐹(𝑧)) lead to the same (measurement) results. Such trans-

formations are then called symmetries. Changes in 𝐹(𝑧) correspond to transformations

in the strain, while changes in the matrix 𝐴 can correspond to transformations in the

excitation errors (given by Σ) or the potential (given by 𝑈).
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(a) System (𝐴, 𝐹(𝑧)) (b) System (𝐴,−𝐹(𝑧))

(c) System (𝐴, 𝐹(𝑧∗ − 𝑧)) (d) System (𝐴,−𝐹(𝑧∗ − 𝑧))

Figure 5.5: Strong and weak symmetry in four-beam approximation: (a) Intensities for system

(𝐴, 𝐹(𝑧)) used as reference (b) Intensities for system (𝐴, 𝐹(𝑧)) = (𝐴,−𝐹(𝑧)). The solution 𝜙 has

a strong symmetry compared to the solution 𝜙 of (a). (c) Intensities for system (�̂�, ˆ𝐹(𝑧)) =

(𝐴, 𝐹(𝑧∗ − 𝑧)). The solution �̂� has a weak symmetry compared to the solution 𝜙 of (a). (d)

Intensities for system (�̃�, ˜𝐹(𝑧)) = (𝐴,−𝐹(𝑧∗ − 𝑧)) showing a strong symmetry to case (c) and weak

symmetry to (a) and (b).

5.2.4.2 Strong and weak symmetries

Two kinds of symmetries are defined in Section 5.3.1: strong and weak symmetries. For

strong symmetry, the intensity of the beam along the whole column [0, 𝑧∗] is invariant

under the transformation (𝐴, 𝐹) → (𝐴, 𝐹). This means, the corresponding solutions 𝜙

and 𝜙 satisfy |𝜙0(𝑧)| = |𝜙0(𝑧)| for all 𝑧 ∈ [0, 𝑧∗]. For weak symmetry, this invariance holds

for the intensity of the beam at the exit plane only, namely |𝜙0(𝑧∗)| = |𝜙0(𝑧∗)|. In TEM

imaging, this distinction is not visible since we only see the intensity at the exit plane.

For the mathematical analysis, however, this distinction is highly relevant because of

the different underlying mechanisms. Of course, any composition of weak and strong

symmetries provides a weak symmetry again.

We illustrate strong and weak symmetries by numerical simulations of the DHW equa-

tions using four beams and a displacement field as given by (4.1), see Figure 5.5. In

this example, we also observe a dark field symmetry, namely |𝜙gap(𝑧)| = |𝜙gap(𝑧)| (strong

symmetry) or |𝜙gap(𝑧∗)| = |𝜙gap(𝑧∗)| (weak symmetry) with gap = (1, 0). In Table 5.1, we

see the intensities for all four beams at the exit plane. While Figure 5.5 suggests an exact
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g (𝐴, 𝐹(𝑧)) (𝐴,−𝐹(𝑧)) (𝐴, 𝐹(𝑧∗ − 𝑧)) (𝐴,−𝐹(𝑧∗ − 𝑧))
(−1, 0) 0.00012040357 0.00330035539 0.00004461419 0.00230899563

(0, 0) 0.15359073146 0.15209371434 0.15359073146 0.15209371434

(1, 0) 0.84539398729 0.84447759832 0.84447759832 0.84539398729

(2, 0) 0.00089487769 0.00012833195 0.00188705604 0.00020330274

Table 5.1: Comparison of intensities at the exit plane for the four-beam model in Figure 5.5. For

both bright field (g = (0, 0)) and dark field (g = (1, 0)) we observe an approximate symmetry with an

error of about 1%.

g (𝐴, 𝐹(𝑧)) (𝐴,−𝐹(𝑧)) (𝐴, 𝐹(𝑧∗ − 𝑧)) (𝐴,−𝐹(𝑧∗ − 𝑧))
(0, 0) 0.15309988945 0.15309988945 0.15309988945 0.15309988945

(1, 0) 0.84690011055 0.84690011055 0.84690011055 0.84690011055

Table 5.2: Comparison of intensities at the exit plane for the systems in Figure 5.5 and under

two-beam approximation. Both bright and dark field show a perfect symmetry in this case (up to

some numerical error).

symmetry, Table 5.1 reveals that the symmetry is only approximate with an error up to

1%. The reason is that the four-beam model does not enjoy the symmetries, however the

solutions stay close to the solutions of the two-beam model, see Table 5.2 which has the

desired symmetries. This simple example demonstrates the importance of the two-beam

approximation in the study of symmetries for both bright field and dark field.

5.2.4.3 Three important symmetry facts

Here, we give an overview of the necessary results from Section 5.3 that help us explain

the symmetries in TEM imaging observed at the beginning of the section. The results

are stated as facts and put into physical terms, while the formal versions of them and the

proofs can be found in the next section.

The first fact concerns the change in the sign of the strain, which corresponds to changing

the sign of 𝐹(𝑧), and is proved in Corollary 5.3.3.

Fact 5.2.1. In the two-beam approximation Λ∗
2
= {0, g′} and under strong beam conditions, i.e.

𝑠0 = 𝑠g′ = 0, changing the sign of the strain (𝐹(𝑧){ −𝐹(𝑧)) is a strong symmetry.

The next fact concerns reflections at the midplane of the specimen given by the transfor-

mation 𝐹(𝑧){ 𝐹(𝑧∗−𝑧) and is proved in Corollary 5.3.5 part (W3).

Fact 5.2.2. In the two-beam approximation Λ∗
2
= {0, g′} a midplane reflection of the strain

(𝐹(𝑧){ 𝐹(𝑧∗−𝑧)) is a weak symmetry.

Here, it is important to notice that Fact 5.2.2 does not require strong beam conditions,
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so it can be applied for excitation errors 𝑠g′ ≠ 0. This result is equivalent to the Type II

symmetry in [PT68] or to [HW61] who showed this symmetry for bright field images. In

the general 𝑚-beam case the midplane reflection symmetry holds under the assumption

that all relevant 𝑈g are real, see part (W2) of Corollary 5.3.5.

In the next fact, we combine the first two facts with an additional sign change of the

excitation error 𝑠g′, proved in Corollary 5.3.6.

Fact 5.2.3. In the two-beam approximation Λ∗
2
= {0, g′}, combining the sign change of the strain

with a midplane reflection (𝐹(𝑧) { −𝐹(𝑧∗ − 𝑧)) and changing the sign of the excitation error
𝑠g′ { −𝑠g′ is a weak symmetry.

The Type I symmetry in [PT68] is a special case of this results for 𝑠g′ = 0. All results

are derived for a general strain profile. The strain profiles in the examples we discussed

before have an additional symmetry, namely they are even or odd functions which are

shifted relative to the center of the specimen, see Figures 5.2d) and 5.3d). In the next

subsection, we will show how the above observations interact with the parity of the strain

profile 𝑧 ↦→ 𝐹(𝑧).

5.2.4.4 Explanation of observed symmetries

With the symmetries that we have in hand, we are now able to answer all the questions

that arose from the observations we made before. We start with the symmetry with

respect to the sign of the strain (𝐹(𝑧) { −𝐹(𝑧)), that was discussed in Section 5.2.1

using the example of the pyramidal quantum dot in Figure 5.1. We can now say that

this is a direct application of Fact 5.2.1 to every pair of pixels (𝑖 , 𝑗) and (𝑖′, 𝑗′) such that

𝐹(𝑧; 𝑥𝑖 , 𝑥 𝑗) = −𝐹(𝑧; 𝑥𝑖′ , 𝑦𝑖′) and 𝐹(𝑧) being a general strain profile.

For the symmetry with respect to the center of the sample discussed in Section 5.2.2, a

combination of the Facts 5.2.1 and 5.2.2 with the parity of the strain profile can explain the

observations. We take each case separately. For the inclined quantum well the strain has

an even profile, as in Figure 5.6 a). From Fact 5.2.2, we know that we can apply midplane

reflection (𝐹(𝑧){ 𝐹(𝑧∗−𝑧)) and get the same pixel intensity. For an even profile midplane

reflection and shifting coincide, see Figure 5.6 a). This is the reason why the image shows

a pixelwise symmetry with respect to shifting. In the case of the spherical quantum dot,

the strain has an odd profile, as in Figure 5.6 b). Applying midplane reflection we don’t

get the same result as shifting, see Figure 5.6 b). We would need to apply the sign change

as well, as stated in Fact 5.2.1. This, however, can not be done unless we have strong beam

conditions (meaning 𝑠gap = 0). This is the reason why, for 𝑠gap = 0, we observe a symmetry

with respect to shifting while for 𝑠gap ≠ 0 we don’t.

The observations concerning the sign change of the 𝑠g made in Section 5.2.3, see e.g.

green and red boxes in Figure 5.4, can be explained from Fact 5.2.3: it says that a midplane

reflection combined with a sign change in the strain (𝐹(𝑧){ −𝐹(𝑧∗−𝑧) ) is a symmetry if we
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Figure 5.6: Plot of a shifted even function 𝐹(𝑧) (black) and the midplane reflection of it 𝐹(𝑧∗ − 𝑧)
(red) illustrating that the midplane reflection corresponds to shifting 𝐹(𝑧) a). Plot of a shifted odd

function 𝐹(𝑧) (black) and the midplane reflection of it (red) illustrating that shifting (black dotted)

needs an additional sign change to correspond to midplane reflection b).

also change the sign of the excitation error (Σ{ −Σ). In this case, strong beam condition

(𝑠gap = 0) is not a requirement. This means that we can apply midplane reflection plus

sign change of the strain, which for the odd strain profile in Figure 5.4 would correspond

to shifting the strain profile with respect to the center, and then change the sign of the

excitation error. This explains the symmetric images in Figure 5.4 indicated by the green

and red boxes. The images in Figure 5.4 indicated by the blue boxes can also be explained

now but we will do this in the next section, since they are not pixelwise symmetric as the

previous examples but they have a mirror like symmetry.

5.2.5 Mirrored TEM images induced by strain

Here, we will focus on explaining the images in Figure 5.4 that are indicated by the blue

boxes. First, we start with the TEM images 𝛼 and 𝛽, see also Figure 5.7. This means

we have two images of a spherical quantum dot using the same excitation error, here

𝑠gap = 12
1

𝜇𝑚 , but placed in different positions, symmetrical to the center of the sample, see

Figure 5.7 a) and b).

To analyze the images pixelwise, we make two line scans in the 𝑧 direction, A and B. The

corresponding pixels for each image are indicated in Figure 5.7 a) (image 𝛼) and b) (image

𝛽), using the same notation A and B. We can see in Figure 5.7 a) that the pixel intensities

corresponding to the line scans A and B in image 𝛼 are not the same. So, the image itself

does not have pixelwise symmetry. Comparing the pixels between the images 𝛼 and 𝛽,

though, shows that the pixel in the image 𝛼 that corresponds to the line scan A (or B) is
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Figure 5.7: Mirrored images: a) Spherical quantum dot positioned at 𝑧 = 3

8
𝑧∗ and the correspond-

ing TEM image (𝛼). Solving the equations across the line scans A and B gives the corresponding

pixels in 𝛼, denoted also by A and B. b) Spherical quantum dot positioned at 𝑧 = 5

8
𝑧∗ and the

corresponding TEM image (𝛽), showing again the pixels A and B that correspond to the same line

scans. c) Strain profiles across the line scans A and B. The solid black and red profiles correspond

to the TEM image 𝛼, while the dotted black and red profiles to TEM image 𝛽. The TEM images

are adapted from [Nie21, Fig.5.12] used under CC-BY, cf. Figure 5.4.

the same as the pixel in the image 𝛽 that corresponds to the line scan B (or A).

To understand these properties using the theory we developed, we study the strain profile

for each line scan, shown in Figure 5.7 c). First, we focus on why the image itself is not

pixelwise symmetric. For the quantum dot in image 𝛼, the strain profile across the two

line scans is shown in Figure 5.7 c) by the solid black and red lines. We see that the

difference between these two profiles is the sign. Changing the sign of the strain though

is a symmetry only under strong beam conditions (Fact 5.2.1) but in this case we have

𝑠gap ≠ 0. The same exact argument applies to image 𝛽.

Next, we compare the two images with each other. The strain profile for the spherical

quantum dot in image 𝛽 is given in Figure 5.7 c) by the dotted black and red lines. The

reason that the pixel corresponding to the line scan A in image 𝛼 is equal to the one that

corresponds to line scan B in image 𝛽 is Fact 5.2.2, since the strain profile for the first case

(solid black line in Figure 5.7 c)) is a midplane reflection of the strain profile in the second

case (dotted red line in Figure 5.7 c)). This is due to the fact that for an odd function

shifting the strain (black dotted line) plus sign change correspond to midplane reflection,

see also Figure 5.6 b).

Additionally, from Fact 5.2.3, we know that image 𝛽 is symmetric to the image 𝛾 in Figure

5.4. Combining all the above we can see why also the images corresponding to the same

position but with opposite excitation errors are mirrored images of each other, see Figure
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Figure 5.8: Pyramidal quantum dot with a rhomboidal base : a) 3D geometry showing the

𝑧 direction and two line scans A and B. b) Simulated TEM image for gap = (004) showing a

pixelwise symmetry. c) Displacement component responsible for the image contrast at the cut

(white dotted lines) in a) and the line scans A and B. d) Displacement profiles across the line scans

A (black solid) and B (red solid). We see that the displacement profile is not even nor odd and

that the displacement in B is the midplane reflection of the displacement in A (black dashed).

5.4. This mirror-like symmetry is induced by the parity of the strain profile.

5.2.6 Symmetries for general profiles

The examples discussed until now were for a strain profile with odd or even parity.

However, this parity is not the essential cause for the symmetries observed between two

pixels. What is important is the symmetry between the strain profiles with respect to sign

change and midplane reflection. To make this clear, we consider the case of a general

strain profile without a specific parity. For this purpose, we examine TEM images of

a pyramidal quantum dot with a rhomboid as a base instead of a square. We assume

that the quantum dot is placed at the center of the sample. To create these TEM images,

we used the computational method described in Chapter 4 and the toolchain employed

therein. First, a 3D mesh is generated to represent the geometry of the quantum dot

using TetGen [Si15], see Figure 5.8 a). Then, the generated mesh enters the FEM based

solver WIAS-pdelib [FS+19], in order to find the displacement u, see Figure 5.8 c). Finally,

the relevant displacement component enters the DHW solver PyTEM [Nie19] in order

to simulate the corresponding TEM image, see Figure 5.8 b). For this set up two TEM

images are computed, corresponding to different vectors gap using strong beam excitation

conditions.

For an excitation corresponding to gap = (004), the TEM image is shown in 5.8 b). The

(projected) component of the displacement, which is responsible for the image contrast

in this case, is shown in 5.8 c). This was taken in a cross-section parallel to the base

of the pyramid, as indicated by the white dotted lines in 5.8 a). Next, we analyze the

displacement profile along the two line scans A and B evolving in 𝑧-direction, as indicated

in Figures 5.8 a) and c) by the black and red dotted lines. The displacement profiles

across these line scans are shown in 5.8 d), where we can see that they are not even or

odd. However, we observe a pixelwise symmetry in the TEM image. The displacement
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Figure 5.9: Pyramidal quantum dot with different lateral aspect ratio: a) 3D geometry showing

the 𝑧 direction and the two line scans A and B. b) Simulated TEM image for gap = (040) showing

a pixelwise symmetry. c) Displacement component responsible for the image contrast at the cut

(white dotted lines) in a) and the line scans A and B. d) Displacement profiles across the line scans

A (black solid) and B (red solid). We see that the displacement profile is not even nor odd and

that the displacement in B is the midplane reflection (black dotted) plus sign change of the strain

in A.

𝑢𝐴(𝑧) across line A is a midplane reflection of the displacement 𝑢𝐵(𝑧) across line B:

𝑢𝐴(𝑧∗− 𝑧) = 𝑢𝐵(𝑧). This means that the strain across A differs with the strain across B by a

sign plus midplane reflection,
𝑑
𝑑𝑧
𝑢𝐵(𝑧) = − 𝑑

𝑑𝑧
𝑢𝐴(𝑧∗ − 𝑧). Then, the symmetry we observe

in the TEM image follows from Fact 5.2.3 and due to the strong beam condition (𝑠g𝑎𝑝 = 0).

For an excitation corresponding to gap = (040), the TEM image is shown in 5.9 b). Under

this excitation the imaging is sensitive to a different component of the displacement field

as in the case before. The corresponding displacement field in the cross-section is shown

in 5.9 c). We can see that the displacement obeys the sign change symmetry with respect

to the center of the structure, as also observed for the pyramidal quantum dot with

square base, see Figure 5.1. As in the example before, we plot the displacement profile

across lines A and B as shown in 5.9 d). Here again we see that it is not even or odd.

However, midplane reflection and sign change of the displacement profile in A equals

the displacement in B: 𝑢𝐵(𝑧) = −𝑢𝐴(𝑧∗ − 𝑧). This gives for the corresponding strain that

𝑑
𝑑𝑧
𝑢𝐵(𝑧) = 𝑑

𝑑𝑧
𝑢𝐴(𝑧∗ − 𝑧). Then, Fact 5.2.2 explains the pixelwise symmetry we observe.

These two examples demonstrate that the results from Section 5.2.4.3 are indeed valid for

a general displacement profile.

5.3 Mathematical treatment of the symmetries

We now provide the mathematics underlying the symmetry considerations for the solu-

tions of the DHW equations. For this we use the general 𝑚-beam model in the Hermitian

form derived in (5.3). To study the symmetries, we consider the system matrix 𝐴 = 𝑉 +Σ

and the strain function 𝐹 as data specified to lie in the following spaces:

𝑉 ∈ C𝑚×𝑚
herm

, Σ ∈ D𝑚 := R𝑚×𝑚
diag

, 𝐹 ∈ C
0([0, 𝑧∗];D𝑚).
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The typical measurements for generating TEM images do not involve all components of

𝜙(𝑧∗) ∈ C𝑚 at the exit plane, but only the intensity of beam gap ∈ Λ∗
𝑚 selected by the

objective aperture, see Figure 2.1, namely 𝐼ap(𝑥𝑖 , 𝑦𝑗) = |𝜙gap
(𝑧∗; 𝑥𝑖 , 𝑦𝑗)|2. As mentioned

above, the so-called bright field, which is given by the choice gap = 0, plays a special

mathematical role. The reason for this is the double appearance of the vector 𝑒0, namely

(i) in the initial condition 𝜙(0) = 𝑒0 and (ii) in the exit measurement 𝜙gap
(𝑧∗) = 𝜙0(𝑧∗) =

𝜙(𝑧∗) · 𝑒0.

The double appearance of 𝑒0 can even be used for symmetries in the dark field where

gap ≠ 0 under the assumption that we have a two-beam model, i.e. Λ∗
2
= {0, g′} and

gap = g′
. In this case, we can exploit the Hermitian structure of (5.3) which provides the

simple conservation of the Euclidean norm, namely |𝜙(𝑧)| = |𝜙(0)| = 1 for all 𝑧 ∈ [0, 𝑧∗].
This property was first derived in [KMM21, Sec. 3.1], where it was related to a wave-flux

conservation in the Schrödinger equation. In this case, we have |𝜙g′(𝑧)|2 = 1− |𝜙0(𝑧)|2 for

all 𝑧 ∈ [0, 𝑧∗]. Thus, if |𝜙0(𝑧∗)| is preserved by a symmetry, then so is |𝜙g′(𝑧∗)|.

In light of the above discussions, we are interested in the question whether

• (sign change) flipping the function 𝐹 into −𝐹 or

• (midplane reflection) flipping 𝐹( · ) into 𝐹(𝑧∗−· )

lead to the same value of |𝜙0(𝑧∗)| or not.

To analyze these two symmetries and their joint effect, for both 𝑚-beam models and

the two-beam model, we consider more general classes of transformations involving also

changes of 𝐴 = 𝑉 + Σ and not only of the strain related part 𝐹. This will uncover the

proper mathematical structure of the symmetries and show why the case 𝑚 = 2 is special.

For this, we define two types of symmetries.

Definition 5.3.1 (Strong and weak symmetries). We say that replacing the pair (𝐴, 𝐹) ∈
C𝑚×𝑚

herm
×C

0([0, 𝑧∗];D𝑚) by the pair (𝐴, 𝐹) is a strong symmetry if the corresponding solutions 𝜙
and 𝜙 of (5.3a) satisfy |𝜙0(𝑧)| = |𝜙0(𝑧)| for all 𝑧 ∈ [0, 𝑧∗].

We call the replacement a weak symmetry if we have |𝜙0(𝑧∗)| = |𝜙0(𝑧∗)|.

Throughout this section, we will denote by U𝐴+𝐹(𝑧) ∈ C𝑚×𝑚
the evolution operator

solving:

.

U = i

(
𝐴+𝐹(𝑧)

)
U, U(0) = 𝐼.

As 𝐴 + 𝐹(𝑧) is Hermitian for all 𝑧, the evolution operators U𝐴+𝐹 are unitary, i.e.

U𝐴+𝐹(𝑧)−1 =
(
U𝐴+𝐹(𝑧)

)∗
= U𝐴+𝐹(𝑧)

⊤
. (5.4)
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In particular, this implies that the Euclidean norm |𝜙 | =
( ∑

g∈Λ∗
𝑚
|𝜙g |2

)
1/2

is preserved

for solutions 𝜙(𝑧) of (5.3). Of course, we have a general transformation rule for arbitrary

unitary matrices Q ∈ C𝑚×𝑚
(i.e. Q∗Q = 𝐼), namely:

UQ(𝐴+𝐹)Q∗(𝑧) = QU𝐴+𝐹(𝑧)Q∗. (5.5)

The first result concerns the set of all strong symmetries.

Proposition 5.3.2 (Strong symmetries). Any of the following transformations and any compo-
sition of them are strong symmetries:

(S1) simultaneous linear phase factor: (𝐴, 𝐹) = (𝐴+𝛿𝐼 , 𝐹)

(S2) complex conjugation: (𝐴, 𝐹) = (−𝐴,−𝐹)

(S3) constant phase factors: (𝐴, 𝐹) = (𝑄𝜓𝐴𝑄
∗
𝜓 , 𝐹) with 𝑄𝜓 = diag(1, ei𝜓2 , ..., ei𝜓𝑚 ),

where 𝛿,𝜓 𝑗 ∈ R.

Proof. In all three cases, the result follows easily by writing down the corresponding

evolution operators.

(S1) U𝛿𝐼+𝐴+𝐹(𝑧) = e
i𝛿𝑧U𝐴+𝐹(𝑧) giving 𝜙0(𝑧) = e

i𝛿𝑧𝜙0(𝑧).

(S2) By complex conjugation of (5.3a), we easily obtain U−𝐴−𝐹(𝑧) = U𝐴+𝐹(𝑧). As the initial

condition 𝜙(0) = 𝑒0 is real, we conclude 𝜙(𝑧) = 𝜙(𝑧) and hence 𝜙0(𝑧) = 𝜙0(𝑧).

(S3) For this case, we use the transformation rule (5.5) with Q = 𝑄𝜓 and observe that

𝑄𝜓𝐹(𝑧)𝑄∗
𝜓 = 𝐹(𝑧) because 𝐹 is diagonal. Hence, we have 𝜙0(𝑧) = 𝜙0(𝑧). □

As a first nontrivial result, we now reduce to the case 𝑚 = 2 with the additional restriction

𝐴00 = 𝐴g′g′. Indeed, the condition:

𝐴00 = 𝐴g′g′ , which means

𝑈0
𝜌0

+ 2𝑠0 =
𝑈0
𝜌g′

+ 2𝑠g′ ,

is typically satisfied (in high enough accuracy) in the case of the strong two-beam condi-

tions, because one usually chooses 𝑠g′ = 𝑠0 = 0 and one has 𝜌0 = k0 · 𝝂 ≈ 𝜌g′. This holds

automatically if g′ · 𝝂 = 0 or it is approximately true in the case of high energy electrons,

i.e. |k0 | ≫ |g′ |.
Corollary 5.3.3 (Sign change using 𝑚 = 2 and 𝐴00 = 𝐴g′g′). In the case 𝐴 = 𝑉 + Σ ∈ C2×2

Herm

with𝐴00 = 𝐴g′g′, the transformation (𝐴, 𝐹) = (𝐴,−𝐹) is a strong symmetry, i.e. |𝜙g(𝑧)| = |𝜙g(𝑧)|
for 𝑧 ∈ [0, 𝑧∗] and g ∈ Λ∗

2
= {0, g′}.
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Proof. The result follows by combining the three strong symmetries (S1)–(S3). We write:

𝐴 =

(
𝑎 𝑏

𝑏 𝑎

)
with 𝑎 ∈ R and 𝑏 = |𝑏 |ei𝛽 .

Applying first (S2), we find a strong symmetry with (𝐴1 , 𝐹1) = (−𝐴,−𝐹). Next, we apply

(S1) with 𝛿 = 2𝑎 such that (𝐴2 , 𝐹2) = (2𝑎𝐼 −𝐴,−𝐹) is again a strong symmetry. Finally, we

apply (S3) with 𝜓2 = 𝜋 − 2𝛽 and observe that e
i𝜓2 = −e

−i2𝛽
, which gives:

diag(1,−e
i2𝛽)

(
2𝑎𝐼−𝐴

)
diag(1,−e

−i2𝛽) = 𝐴.

Hence, (𝐴3 , 𝐹3) = (𝐴,−𝐹) is a strong symmetry giving |𝜙0(𝑧)| = |𝜙0(𝑧)| for all 𝑧 ∈ [0, 𝑧∗].

Finally, the assumption 𝑚 = 2 and the unitarity (5.4) give, for 𝜂 = 𝜙 or 𝜙, the relation:

|𝜂0(𝑧)|2
𝑚=2

= |𝜂(𝑧)|2 − |𝜂g′(𝑧)|2
unit.

= |𝑒0 |2 − |𝜂g′(𝑧)|2.

Hence, we obtain |𝜙g′(𝑧)| = |𝜙g′(𝑧)| from the corresponding result for g = 0. □

To study the midplane reflection we introduce the

flip operator 𝑅(𝑧) = 𝑧∗−𝑧,

acting on C
0([0, 𝑧∗];D𝑚) via (𝐹◦𝑅)(𝑧) = 𝐹(𝑅(𝑧)) = 𝐹(𝑧∗−𝑧). The following identity will

be crucial for the understanding of the flip symmetry as a weak symmetry. Of course,

one cannot expect that flipping gives rise to a strong symmetry. To see this, we consider

a nontrivial strain profile 𝐹 with 𝐹(𝑧) = 0 for 𝑧 ∈ [𝑧∗/2, 𝑧∗], i.e. the perturbation acts

only in the upper half of the specimen. The flipped case 𝐹 = 𝐹◦𝑅 then corresponds

to a perturbation acting only in the lower half of the specimen. In such a case, one

cannot expect that the bright-field intensities |𝜙0(𝑧)|2 and |𝜙0(𝑧)|2 are the same inside

the specimen. However, because of the double occurrence of the vector 𝑒0 there is some

chance that the intensities match for 𝑧 = 𝑧∗ only.

Lemma 5.3.4 (Reversal of direction). For all 𝐴 ∈ C𝑚×𝑚
herm

and 𝐹 ∈ C
0([0, 𝑧∗];C𝑚×𝑚

herm
) we have

the identity:

U−𝐴−𝐹◦𝑅(𝑧∗) =
[
U𝐴+𝐹(𝑧∗)

] ∗
. (5.6)

Proof. We set Ũ(𝑧) = U𝐴+𝐹(𝑧∗−𝑧), which obviously satisfies Ũ(𝑧∗) = 𝐼 and

.

Ũ(𝑧) = −
.

U𝐴+𝐹(𝑧∗−𝑧) = −i

(
𝐴+𝐹(𝑧∗−𝑧)

)
U𝐴+𝐹(𝑧∗−𝑧) = i

(
−𝐴−(𝐹◦𝑅)(𝑧))Ũ(𝑧).

Thus, Ũ satisfies the same ODE as U−𝐴−𝐹◦𝑅, but the initial conditions are different. This

observation, Ũ(𝑧∗) = 𝐼, and the unitarity relation (5.4) imply:

U−𝐴−𝐹◦𝑅(𝑧) = U𝐴+𝐹(𝑧∗−𝑧)
[
U𝐴+𝐹(𝑧∗)

]−1

= U𝐴+𝐹(𝑧∗−𝑧)
[
U𝐴+𝐹(𝑧∗)

] ∗
.

Restricting to the case 𝑧 = 𝑧∗ gives the desired assertion. □
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Of course, all compositions of a strong symmetry with a weak symmetry again provide

a weak symmetry. Hence, combining the above lemma with Proposition 5.3.2 gives

the following result that relies on the double occurrence of 𝑒0 in the definition of weak

symmetries.

Corollary 5.3.5 (Flipping with𝑅 as weak symmetry). For all𝐴 ∈ C𝑚×𝑚
herm

and 𝐹 ∈ C
0([0, 𝑧∗];D𝑚)

the following transformations are weak symmetries:

(W1) (𝐴, 𝐹) = (−𝐴,−𝐹◦𝑅)

(W2) (𝐴, 𝐹) = (𝐴, 𝐹◦𝑅)

(W3) (𝐴, 𝐹) = (𝐴, 𝐹◦𝑅) in the case 𝑚 = 2.

Proof. We use that weak symmetry is defined in terms of:

𝜙0(𝑧∗) =
〈
𝜙(𝑧∗), 𝑒0

〉
=
〈
U

𝐴+𝐹(𝑧∗)𝑒0 , 𝑒0
〉
,

where 𝑒0 occurs as initial condition as well as test vector at 𝑧 = 𝑧∗.

For (W1), we exploit the relation (5.6) from the previous lemma, which gives:

𝜙0(𝑧∗) =
〈
U−𝐴−𝐹◦𝑅(𝑧∗)𝑒0 , 𝑒0

〉
=
〈
U𝐴+𝐹(𝑧∗)∗𝑒0 , 𝑒0

〉
=
〈
𝑒0 ,U𝐴+𝐹(𝑧∗)∗𝑒0

〉
= 𝜙0(𝑧∗).

This immediately implies |𝜙0(𝑧∗)| = |𝜙0(𝑧∗)| as desired. For (W2) we simply apply the

complex conjugation (S2) and use that 𝐹 is real-valued.

For (W3), we start from (W2) and use 𝑚 = 2 to replace 𝐴 by 𝐴 using (S3) as for Corollary

5.3.3. □

From symmetry (W2) follows that, under the assumption that all relevant Fourier coef-

ficients of the scattering potential 𝑈g are real, the midplane reflection symmetry is also

valid for the general m-beam model and not only for the two-beam approximation. This

property may be satisfied for specifc crystal structures. One example are centrosymmetric

materials, such as Al, Cu, and Au obeying a face-centered cubic lattice, see [De 03, Ch.

6.5].

Our last result concerns a symmetry in the two-beam model when one changes the sign

of the excitation error 𝑠g′. This is relevant in experimental observations, where 𝑠g′ can

easily be varied, cf. [Nie21]. In particular, we refer to the Figures 5.2, 5.3, and 5.4.

Corollary 5.3.6 (Excitation-error symmetry for 𝑚 = 2). Consider Λ∗
2

= {0, g′}, 𝐹 ∈
C

0([0, 𝑧∗];D2), and 𝐴 = 𝑉 + Σ ∈ C2×2

Herm
with 𝑉00 = 𝑉g′g′. Then, the transformation (𝐴, 𝐹) =

(𝑉−Σ,−𝐹◦𝑅) is a weak symmetry.
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Proof. The result follows by combining Corollary 5.3.3 and part (W3) of Corollary 5.3.5.

More precisely, we first observe U𝐴+𝐹 = U𝑉+(Σ+𝐹). Applying Corollary 5.3.3 with (𝐴, 𝐹)
replaced by (𝑉,Σ+𝐹) yields that (𝐴1 , 𝐹1) = (𝑉,−(Σ+𝐹)) is a strong symmetry. Combining

this with part (W3) of Corollary 5.3.5 shows that (𝐴2 , 𝐹2) = (𝑉,−(Σ+𝐹)◦𝑅) is a weak

symmetry.

To conclude, we observe that Σ◦𝑅 = Σ because Σ is constant. Moving −Σ into 𝐴 = 𝑉 −Σ,

we see that (𝐴, 𝐹) = (𝑉−Σ,−𝐹◦𝑅) is indeed a weak symmetry. □
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Chapter 6

Summary and Outlook

The work presented in this thesis focused on the Darwin–Howie–Whelan equations. The

structure of this system was analyzed mathematically and error estimates were provided

to evaluate the accuracy of special approximations. In addition to this, the symmetry

properties of the TEM imaging process were analyzed via the DHW equations. This anal-

ysis showed that the imaging process is invariant under special transformations. The most

important symmetries are the sign change of the strain field and the midplane reflection,

as well as a symmetry with respect to the sign change of the excitation error. Combin-

ing these results with specific properties of the strain profile of the inclusion explained

extra symmetries observed in TEM images. This distinction between symmetries of the

strain field and symmetries of the imaging process is particularly important to extract

information for the inclusion, e.g. shape or size. A toolchain was also presented for the

simulation of TEM images for quantum dots with realistic parametrized 3D geometries.

This toolchain is not restricted to quantum dots but can also be applied to other epitaxial

heterostructures or coherent precipitates. Using this toolchain, a study was performed

on four different quantum dots shapes, which showed a strong sensitivity of the image

contrast to the characteristics profiles of the strain field. FEM investigations showed that

the strain field in the growth direction allows to distinguish between pyramidal and

lens-shaped QDs. Therefore, TEM images of QDs under strong beam conditions in the

growth direction are suitable for the classification of QDs shapes. From comparison with

experimental data, a pyramidal structure (truncated or not) was excluded for InGaAs

QDs, assuming a constant homogeneous indium content.

The results from the above mentioned work may find interesting applications in future

studies of the DHW equations or TEM imaging. The analysis performed on the symmetry

properties of TEM images could be applied to imaging of dislocations, since the TEM

images are sensitive to the strain field they induce. Interesting questions like how would

an external potential affect the symmetries or how can we explain symmetries observed

in the phase could be approached by the theory developed here. From an application
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point of view, the database created by the toolchain described in this work could be used

as a training set to apply deep learning techniques. Furthermore, statistical procedures

might be useful to estimate continuous parameters such as height or base length of the

QD. In any case, these and more interesting questions that may occur will require the

collaboration of scientists from different fields in order to be answered.
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Appendix A

Lattice and elastic constants

For calculating the elastic strains in Section 4.3 we need the elastic stiffness tensor C for

the distorted crystal, which for a material with cubic crystal system is:

𝐶 =

©­­­­­­­«

𝐶11 𝐶12 𝐶12 0 0 0

𝐶12 𝐶11 𝐶12 0 0 0

𝐶12 𝐶12 𝐶11 0 0 0

0 0 0 𝐶44 0 0

0 0 0 0 𝐶44 0

0 0 0 0 0 𝐶44

ª®®®®®®®¬
. (A.1)

The parameters 𝐶11, 𝐶12 and 𝐶44 are the elastic constants, see Tab. A.1 for 𝐼𝑛𝐴𝑠 and 𝐺𝑎𝐴𝑠.

GaAs InAs

𝑎 (Å) 5.653 6.058

𝐶11 (GPa) 122.1 83.3

𝐶12 (GPa) 56.6 45.3

𝐶44 (GPa) 60.0 39.6

Table A.1: Lattice and elastic constants of GaAs and InAs taken from [VMR01].

For 𝐼𝑛1−𝑥𝐺𝑎𝑥𝐴𝑠, with 𝑥 being the indium content, the lattice and elastic constants are

approximated in the following way:

𝑎𝐼𝑛𝐺𝑎𝐴𝑠 = 𝑎𝐺𝑎𝐴𝑠 · 𝑥 + 𝑎𝐼𝑛𝐴𝑠 · (1 − 𝑥)
𝐶 𝐼𝑛𝐺𝑎𝐴𝑠

11
= 𝐶𝐺𝑎𝐴𝑠

11
· 𝑥 + 𝐶 𝐼𝑛𝐴𝑠

11
· (1 − 𝑥),

𝐶 𝐼𝑛𝐺𝑎𝐴𝑠
12

= 𝐶𝐺𝑎𝐴𝑠
12

· 𝑥 + 𝐶 𝐼𝑛𝐴𝑠
12

· (1 − 𝑥),
𝐶 𝐼𝑛𝐺𝑎𝐴𝑠

44
= 𝐶𝐺𝑎𝐴𝑠

44
· 𝑥 + 𝐶 𝐼𝑛𝐴𝑠

44
· (1 − 𝑥).
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x=0.2 x =0.7

𝑎 (Å) 5.977 5.7745

𝐶11 (GPa) 91.06 110.4

𝐶12 (GPa) 47.56 53.2

𝐶44 (GPa) 43.68 53.8

Table A.2: Lattice and elastic constants of 𝐼𝑛1−𝑥𝐺𝑎𝑥𝐴𝑠 in GaAs for x=0.2 and x=0.7.

Table A.2 shows the values for 𝑥 = 0.2 and 𝑥 = 0.7. The lattice misfit for an inclusion with

lattice constant 𝑎𝐼 inside a matrix with lattice constant 𝑎𝑀 is defined via:

𝛿 =
𝑎𝐼 − 𝑎𝑀

𝑎𝑀
.
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