
February 4, 2014 Connection Science consci2013˙mclaeys

Connection Science
Vol. 00, No. 00, Month 200x, 1–20

RESEARCH ARTICLE

Design and Optimization of a (FA)Q-Learning-based

HTTP Adaptive Streaming Client

Maxim Claeys∗a, Steven Latréb, Jeroen Famaeya, Tingyao Wuc, Werner Van Leekwijckc

and Filip De Turcka

aDepartment of Information Technology, Ghent University - iMinds,

Gaston Crommenlaan 8/201, B-9050 Gent, Belgium
bDepartment of Mathematics and Computer Science, University of Antwerp - iMinds,

Middelheimlaan 1, B-2020 Antwerpen, Belgium
cAlcatel Lucent Bell Labs, Copernicuslaan 50, B-2018 Antwerpen, Belgium

(Received 00 Month 200x; final version received 00 Month 200x)

In recent years, HTTP Adaptive Streaming (HAS) is becoming the de-facto standard for adap-
tive video streaming services. A HAS video consists of multiple segments, encoded at multi-
ple quality levels. State-of-the-art HAS clients employ deterministic heuristics to dynamically
adapt the requested quality level based on the perceived network conditions. Current HAS
client heuristics are however hardwired to fit specific network configurations, making them less
flexible to fit a vast range of settings. In this article, a (Frequency Adjusted)Q-Learning HAS
client is proposed. In contrast to existing heuristics, the proposed HAS client dynamically
learns the optimal behaviour corresponding to the current network environment in order to
optimize the Quality of Experience (QoE). Furthermore, the client has been optimized both
in terms of global performance and convergence speed. Thorough evaluations show that the
proposed client can outperform deterministic algorithms by 11% to 18% in terms of Mean
Opinion Score (MOS) in a wide range of network configurations.

Keywords: HTTP Adaptive Streaming, reinforcement learning, agent systems, Quality of
Experience

1. Introduction

Over the past decades, multimedia services have gained a lot of popularity. This
growth is largely due to video streaming services. These services can gener-
ally be divided into Internet Protocol Television (IPTV), offered by a network
provider and managed through resource reservation, and Over-The-Top (OTT)
services, streamed over a network provider’s network without his intervention (e.g.
YouTube1 and Netflix2). HTTP Adaptive Streaming (HAS) techniques are be-
coming the de-facto standard for OTT video streaming. Large industrial players
such as Microsoft, Apple and Adobe have commercial implementations of the HAS
concept available. These HTTP-based techniques split video content into small
segments of typically 2s to 10s, encoded at multiple quality levels. This approach
allows video clients to dynamically adapt the requested video quality to fit the
perceived network state. Based on the perceived characteristics, such as delay and
throughput, a quality selection heuristic is used at the client side to determine the

∗Corresponding author. Email: maxim.claeys@intec.ugent.be
1http://www.youtube.com
2http://www.netflix.com

ISSN: 0954-0091 print/ISSN 1360-0494 online
c© 200x Taylor & Francis
DOI: 10.1080/09540090xxxxxxxxxxxx
http://www.informaworld.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55705384?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

February 4, 2014 Connection Science consci2013˙mclaeys

2 M. Claeys et al.

quality level to request for the next segment, in order to maximize the Quality of
Experience (QoE).

HAS comes with important advantages. Not only is the video content delivered
reliably over HTTP, HAS also allows seamless interaction through firewalls. On the
downside, delivery over the best-effort Internet makes these techniques prone to
network congestion and large bandwidth fluctuations due to cross traffic, which can
be detrimental for the QoE, the quality as perceived by the end-users. HAS client
behaviour is therefore a crucial factor for the streaming service to be beneficial and
to ensure a sufficient level of QoE for the end user.

Current HAS client heuristics are however hardcoded to fit specific network con-
figurations. This makes current approaches less flexible to deal with a vast range
of network setups and corresponding bandwidth variations. Even though they are
well suited for a specific network configuration, these deterministic approaches
yield unsatisfactory results when the environment changes. This article proposes
a Reinforcement Learning (RL) based HAS client, allowing dynamic adjustment
of streaming behaviour to the perceived network state. RL is a machine learn-
ing technique, designed to operate in situations in which an agent only has limited
knowledge about the environment, leading to a high degree of uncertainty concern-
ing how the environment will react to the performed actions. However, interaction
with the environment is the only way for the agent to learn. At each state in the
environment, the agent perceives a numerical reward, providing feedback to the
agent’s actions. The agent’s goal is to learn which action to take in a given state
of the environment, in order to maximize the cumulative numerical reward (Kael-
bling, Littman, & Moore, 1996). Mapping this RL principle to the HAS scenario,
the agent learns which quality level to request in the perceived network state.

The contributions of this paper are three-fold. First, a Q-Learning-based HAS
client has been designed. This approach, in contrast to traditional heuristics, al-
lows the client to dynamically learn the best actions corresponding to the actual
network environment. Second, a Frequency Adjusted Q-Learning (FAQ-Learning)
approach is proposed to increase the client performance in strongly variable envi-
ronments. Third, an estimation algorithm is presented to incorporate HAS domain
knowledge into the initial Q-Tables in order to boost the client performance during
the learning phase. All of the presented approaches are thoroughly evaluated using
a network-based video streaming simulation framework. The simulation results al-
low comparison with the Microsoft ISS Smooth Streaming algorithm, of which the
original source code is available.

The remainder of this article is structured as follows. First, the basic HAS princi-
ple is discussed in Section 2. Next, Section 3 gives an overview of related work, both
on HAS and RL. Section 4 elaborates on the design of the proposed self-learning
HAS client. Next to a general overview, this section presents the applied RL tech-
niques, exploration policies and the constructed environmental state and reward
function. Furthermore, in Section 5, the initial Q-Table estimation algorithm is
proposed. The evaluations of the presented self-learning HAS client are described
in Section 6. Finally, Section 7 presents some final conclusions.

2. HTTP Adaptive Streaming

HAS is the third generation of HTTP based streaming and is increasingly be-
ing used in OTT video delivery. Several large industrial players have commercial
implementations of the HAS concept, including Microsoft ISS Smooth Stream-

February 4, 2014 Connection Science consci2013˙mclaeys

Connection Science 3

Quality

Segmentation

Requested QualityPerceived Bandwidth

Request Segment x, Quality

Segment x, Quality

Server

Client

t t

HTTP

Communication

Manager

Quality Selection

Algorithm

...

Video

Decoder

Buffer

Figure 1. Schematic overview of the HTTP Adaptive Streaming (HAS) concept.

ing (MSS)1, HTTP Live Streaming (HLS) by Apple2 and Adobe’s HTTP Dynamic
Streaming3. In 2011, MPEG tried to find the common ground between the vast
amount of commercial implementations by standardizing the interfaces and pro-
tocol data in Dynamic Adaptive Streaming over HTTP (DASH) (Stockhammer,
2011). The bitrate adaptation heuristics are, however, not standardized, and thus
implementation specific.

Regardless of heuristic details, all of these implementations follow the general
HAS concept, shown in Figure 1. In HAS, a video consists of multiple segments
with a typical length of 2s to 10s, encoded at multiple quality levels. At the client
side, a manifest file, containing information about the segments and quality levels,
is used to link the different segments into a single video stream. Based on the infor-
mation in the manifest file, the HAS client sequentially requests the next segment
upon arrival of the previous segment. Based on the network state, perceived while
downloading previous segments, a quality selection heuristic dynamically adapts
the requested quality level in order to optimize the QoE. Each segment is down-
loaded in a progressive manner, while a buffer at the client side is used to take
care of temporary anomalies such as a late arrival of a video segment. Finally, the
video segments, stored in the buffer, are played back as a single continuous video
stream. Current quality adaptation algorithms for HAS are deterministic and tai-
lored to specific network configurations, hampering the ability to react to a vast
range of highly dynamic network settings. On the contrary, this article proposes a
self-learning HAS client to autonomously react to changing network conditions, as
will be discussed in Section 4.

3. Related work

3.1. HAS client algorithms

As described in Section 2, multiple proprietary HAS algorithms are available.
Akhshabi, Begen, and Dovrolis (2011) compare several commercial and open source
HAS clients and identify their inefficiencies, such as excessive quality switching.
Recently, several new client approaches have been described in literature. Liu,
Bouazizi, and Gabbouj (2011) propose a client heuristic to handle parallel HTTP
connections, based on the segment download time. By comparing the perceived

1http://www.iis.net/downloads/microsoft/smooth-streaming
2http://tools.ietf.org/html/draft-pantos-http-live-streaming-10
3http://www.adobe.com/products/hds-dynamic-streaming.html

February 4, 2014 Connection Science consci2013˙mclaeys

4 M. Claeys et al.

segment download time with the expected segment download time, bandwidth
fluctuations can be estimated appropriately. The opportunities of HAS in the do-
main of live streaming services are investigated by Lohmar, Einarsson, Frojdh,
Gabin, and Kampmann (2011). The work focusses on the influence of client buffer-
ing on the end-to-end delay. Many recent research topics focus on the applicability
of HAS in mobile environments by exploiting additional information. The heuristic
described by Riiser, Vigmostad, Griwodz, and Halvorsen (2011) uses Global Po-
sitioning System (GPS) information to obtain more accurate information on the
available bandwidth. Furthermore, Adzic, Kalva, and Furht (2011) have proposed
content-aware heuristics. These approaches require metadata to be embedded in
the video description. The additional consequences of quality selection in mobile
environments have been shown by Trestian, Moldovan, Ormond, and Muntean
(2012). The research shows that lowering the requested quality can significantly
reduce energy consumption of Android devices. Jarnikov and Özçelebi (2010) dis-
cuss several guidelines on configuring robust HAS clients with regard to changing
network conditions. The authors model the quality selection problem as a Markov
Decision Process (MDP) which is solved offline. The performance is only guaran-
teed when the resulting strategy is applied in the same network environment as was
modelled in the MDP. The same rationale holds for the dynamic programming ap-
proach, proposed by Xiang, Cai, and Pan (2012), where the bandwidth transition
probabilities are needed to calculate the client policy offline.

In contrast to the above described approaches, we focus on an increased adap-
tivity and self-learning behaviour of the client heuristic through the design of a
RL-based client approach. An initial approach to the application of a self-learning
agent for HAS has been presented by Claeys et al. (2013). Even though the pre-
sented approach showed promising results, further experiments have shown that
the performance in a variable networking environment was unsatisfactory. There-
fore, the client has been thoroughly redesigned from the ground by reducing the
environmental state space and reward definition. Furthermore, this article presents
several techniques to further boost the performance and multiple network con-
figurations have been evaluated. The use of a RL agent in HAS clients has also
been proposed by Menkovski and Liotta (2013), applying the SARSA(λ) technique.
Even though convergence of the learning agent is shown, a general evaluation of
the client is infeasible since no comparison to existing approaches is provided.

3.2. Learning in adaptive streaming

Even though learning has not been applied frequently in the area of HAS, multi-
ple RL-based adaptive streaming techniques have been proposed in the literature.
Where our self-learning HAS approach is focused on the client side, existing RL-
based adaptive streaming techniques target server or network side solutions to
Quality of Service (QoS) provisioning for adaptive streaming systems. Fei, Wong,
and Leung (2006) formulate call admission control and bandwidth adaptation for
adaptive multimedia delivery in mobile communication networks as a Markov Deci-
sion Problem (MDP), which they solve using Q-Learning. RL is applied by Charvil-
lat and Grigoras (2007) to create a dynamic adaptation agent, considering both
user behaviour and context information. Furthermore, this generic approach is ap-
plied to solve a ubiquitous streaming problem. Artificial neural networks are used
by McClary, Syrotiuk, and Lecuire (2008) to dynamically adapt the audio transmis-
sion rate in mobile ad hoc networks, considering available throughput, end-to-end
delay and jitter.

February 4, 2014 Connection Science consci2013˙mclaeys

Connection Science 5

3.3. Learning in QoS/QoE optimization

Reinforcement Learning (RL) has previously been successfully applied to various
network management problems. Cao (2011) proposes an agent-based network fault
diagnosis model in which the agent uses RL to improve its fault diagnosis per-
formance. Their research shows this approach can outperform traditional fault
diagnosis models. Bagnasco and Serrat (2009) propose the application of RL to
dynamically adapt a hierarchical policy model to perform autonomous network
management. They argue that an autonomic system must have a degree of flexib-
lity to adapt to changes in goals or resources, which is hard to achieve by means
of static policies. In the area of resource allocation, successfull applications of RL
can be found. Vengerov (2005) presents a general framework for adaptive recon-
figuration of distributed systems using a combination of RL and fuzzy rulebases.
Dynamic resource allocation of entities sharing a set of resources is used as an exam-
ple. On the other hand, Tesauro, Jong, Das, and Bennani (2007) propose a hybrid
approach, gaining performance in the combination of RL and deterministic queuing
models for resource allocation. In this hybrid system, RL is used to train offline on
collected data, hereby avoiding possible performance loss during the online train-
ing phase. Furthermore, multiple approaches have been proposed, focussing on the
resource allocation aspect in wireless mesh networks (Lee, Marconett, Ye, & Yoo,
2007; Niyato & Hossain, 2006). Another area of network management where RL
has been applied previously is QoS routing. Especially in wireless sensor networks,
the network topology may change frequently, yielding inherently imprecise state
information, which impedes QoS routing. Ouferhat and Mellouk (2007) propose a
Q-Learning based formalism to optimise QoS scheduling. Parakh and Jagannatham
(2012) propose a decentralized bandwidth allocation for video streams in wireless
systems, based on game theory. In this system, users are charged for bandwidth
resources proportionally to the requested bit-rate. Mastronarde and van der Schaar
(2011) apply RL to the problem of energy-efficient point-to-point transmission of
delay-sensitive (multimedia)data over a wireless communication channel.

4. Reinforcement learning-based HAS client

4.1. Approach

As discussed in Section 2, current deterministic HAS clients only have limited
abilities to react to a vast range of dynamic network settings. We propose the
usage of a learning agent to enable the HAS client to adapt its behaviour by
interacting with the network environment. In this way, the client will be able to
react to network conditions that were not under consideration when designing the
typical deterministic quality selection algorithms.

4.2. Q-Learning

A commonly used RL algorithm is Q-Learning (Sutton & Barto, 1998). Using
Q-Learning, knowledge regarding both reward prospects and environmental state
transitions are obtained through interaction with the environment. In Q-Learning,
Q-values Q(s, a) are used to measure the “Quality” of taking a specific action
a in a certain state s, based on the perceived rewards. By applying eligibility
traces (Sutton & Barto, 1998), current rewards are not only credited to taking
the last action, but also to actions taken further in the past. Therefore, additional
variables e(s, a) are introduced for every state-action pair (s, a), indicating the

February 4, 2014 Connection Science consci2013˙mclaeys

6 M. Claeys et al.

degree to which taking action a in state s is eligible for undergoing learning changes
when a new reward is perceived.

Equations (1) and (2) respectively show how the eligibility traces and the Q-
values are updated when action a is taken in state s, yielding a reward r and
new state s′. In these equations, (s, a) is the state-action pair and α ∈ [0; 1] and
γ ∈ [0; 1] are the learning rate and the discount factor respectively. The parameter
λ is referred to as the trace-decay parameter. Ixy denotes an identity indicator
function, equal to 1 if x = y and 0 otherwise.

e(x, y) = Ixs · Iya +

{
λγe(x, y) : Q(s, a) = maxbQ(s, b)

0 : else
(1)

Q(s, a) = Q(s, a) + αe(s, a)

[
r + γmax

b
Q(s′, b)−Q(s, a)

]
(2)

The action to be performed in a specific state is selected based on the learned
Q-values. The specific selection tactic depends on the used policy (see Section 4.4).

4.3. Frequency Adjusted Q-Learning

One problem that occurred using Q-Learning in preliminary simulations is the slow
reaction to changes in the environment. When an action has a significantly lower
Q-value than another action for a specific state, it has very low probability to be
selected. When the environment changes, the new information on the quality of
the action is only obtained very slowly because the action is unlikely to be selected
and the Q-values are only adapted slowly, especially when using a small learning
rate. To address this issue, we investigated a variant of the FAQ-Learning tech-
nique, proposed by Kaisers and Tuyls (2010) for multi-agent RL. In the proposed
technique, the Q-values are updated as defined by Equation (3) where P (s, a) is
the probability of taking action a in state s.

Q(s, a) = Q(s, a) + min

(
α

P (s, a)
, 1

)
e(s, a)

[
r + γmax

b
Q(s′, b)−Q(s, a)

]
(3)

Using this update rule, updates are percolated faster when an action has low se-
lection probability. The cut-off at 1 is needed to avoid overflow of Q-values.

4.4. Exploration policy

One of the most challenging tasks in RL can be found in balancing between ex-
ploration and exploitation (Tokic & Palm, 2011). An often used approach to this
tradeoff is the ε-greedy method (Watkins, 1989). Using this method, exploration
comes down to random action selection and is performed with probability ε. The
best action with respect to current estimates is thus exploited with probability 1−ε.
Since the optimal configuration of the ε-parameter is very application dependent,
rigorous tuning is required to obtain desirable results.

Another commonly used exporation method is Softmax (Sutton & Barto, 1998).
In contrast to the ε-greedy method, with Softmax, action-selection is always per-
formed in a probabilistic way. A Boltzmann distribution is used to rank the learned
Q-values, based on which selection probabilities P (s, a) are calculated using Equa-
tion (4) for every state-action pair (s, a). The positive parameter β called the

February 4, 2014 Connection Science consci2013˙mclaeys

Connection Science 7

inverse temperature. As with the ε-greedy method, the parameter has to be tuned
to balance the exploration rate for the specific application.

P (s, a) =
eβQ(s,a)∑
b e
βQ(s,b)

(4)

Tokic et. al. propose the Value-Difference Based Exploration with Softmax ac-
tion selection (VDBE-Softmax) policy (Tokic, 2010; Tokic & Palm, 2011). With
VDBE-Softmax, the ε-greedy and the Softmax policy are combined in a way that
exploration is performed, using the Softmax probabilities defined in Equation (4),
with probability ε. Greedy action selection is executed with probability 1− ε. Fur-
thermore, a state-dependent exploration probability ε(s) is used instead of defining
a global parameter. The ε(s) values are updated in every learning step, based on
the difference in Q-values before and after that step, denoted as ∆. In this way,
the agent is guided to be more explorative when knowledge about the environment
is uncertain, indicated by large fluctuations in Q-values. When the agent’s knowl-
edge becomes certain however, the amount of exploration should be reduced. This
behaviour is achieved by updating the ε(s) values according to Equation (5).

ε(s) = δ
1− e

−|∆|
σ

1 + e
−|∆|
σ

+ (1− δ)ε(s) (5)

In this equation, the inverse sensitivity σ influences the exploration in a way that
higher values of σ allow high levels of exploration only when the Q-value changes
are large. Lower σ-values allow exploration even at smaller Q-value changes. The
parameter δ ∈ [0; 1] defines the relative weight of the selected action on the state-
dependent exploration probability. A commonly used value for δ is the inverse of
the number of actions since all actions should contribute equally to ε(s).

The proposed HAS client has been evaluated using both the Softmax and the
VDBE-Softmax exploration policy.

4.5. State & reward definition

In our initial approach to a self-learning HAS client (Claeys et al., 2013), we pro-
posed an environment model with six state variables, yielding over 2.5 million
discrete states in the evaluated scenario. Using this large state definition, con-
vergence issues arose, making the client unapplicable in situations with variable
bandwidth. Based on this experience, the proposed learning agent uses a state def-
inition, constructed of only two parameters: the current client buffer filling level
and the available bandwidth perceived by the client. Both elements are continuous
values and thus need to be discretized in order to apply the previously presented
RL algorithms. The specific value ranges and number of discretization levels are
shown in Table 1. In this table, Bmax and Tseg respectively denote the maximum
client buffer size and the segment duration in seconds. The number of quality levels
and the highest possible throughput, e.g. the physical link capacity, are represented
by N and BWmax respectively. In the considered scenario with a maximum client
buffer size of 20s and a video stream with segments of 2s, available at 7 quality
levels, this yields an environment model with 88 states.

Since the reward function is the fundamental guide for the RL agent to learn
the desired policy, we want the reward function to be a measure for the QoE. For
the construction of this reward function, three aspects of quality are considered, as
identified by Mok, Chan, and Chang (2011): (i) the current video quality level, (ii)

February 4, 2014 Connection Science consci2013˙mclaeys

8 M. Claeys et al.

Table 1. Proposed environmental state definition.

State element Range Levels

Buffer filling [0 ; Bmax]sec Bmax
Tseg

+ 1

Bandwidth [0 ; BWmax]bps N + 1

the switching in quality levels during the video playout and (iii) buffer starvations,
leading to video freezes. The reward components for each of these aspects are
constructed as shown in Equations (6), (7) and (8). For the quality level and
switching components, a linear function is used. The bufferfilling component has
been modelled using a linear function for a non-empty buffer as well, but a large
punishment of -100 is given when the buffer is empty to avoid video freezes.

Rquality = QLi −N (6)

Rswitches = −1.0 ∗ |QLi −QLi−1| (7)

Rbufferfilling =

{
−100 : Bi = 0

Bi −Bmax : Bi > 0
(8)

As shown in Equation (9), the total reward function is defined as the sum of these
components.

R = Rquality + Rswitches + Rbufferfilling (9)

4.6. Action definition

The agent’s action is to select which quality level to download for every video
segment. As described in Section 2, a HAS client selects the quality level for the
next segment upon arrival of the previous segment. The set of available actions
corresponds to the available quality levels of the video sequence and is therefore
static throughout the playout of a video sequence. The concrete number of actions
depends on the video sequence. The quality levels of the video sequence used in
this work are described in Section 6.1.

5. Initial Q-value estimation

5.1. Rationale

When learning starts, the agent has no knowledge about the environment and the
quality of the actions. Therefore, the Q-values Q(s, a) are initialized at a default
value, regularly Q(s, a) = 0. Since the reward function, described in Section 4.5,
produces negative values, unexplored state-action combinations will always be fa-
vorited by the exploration policy since they have the highest Q-values. Using strong
negative default values would have the opposite effect, favoriting previously used
actions.

For the client to be able to react to new, unseen states in an acceptable way,
domain knowledge can be incorporated into the initial Q-Tables. However, care has

February 4, 2014 Connection Science consci2013˙mclaeys

Connection Science 9

to be given to the magnitude of the Q-values in order not to fully restrict learning
steps. When the initial Q-values magnitude is too high, the level of exploration is
too limited, hampering the ability to find an acceptable solution. The goal is to
design an initial Q-Table that allows to achieve higher performance when learning
in unseen states, while reaching similar results as with standard Q-Learning in the
converged state.

5.2. Estimation algorithm

Result: matrix estimates with estimated Q-values
initialize value estimate matrix estimates
foreach discrete buffer filling level buf do

foreach discrete bandwidth level bw do
//Estimate quality and buffer reward
foreach quality level ql do

expectedDur ← bitrate[ql]∗segmentDur
averageBW [bw]

changeProb← expectedDur
300

totReward← 0.0
foreach discrete bandwith level nextBw do

transProb←
{

1.0− changeProb : bw = nextBw
changeProb
numBWs−1 : else

duration← bitrate[ql]∗segmentDur
averageBW [nextBw]

if duration < segmentDur then

expectedChange← b segmentDurduration c
else

expectedChange← −1 ∗ d duration
segmentDure

newBuf ← buf + expectedChange
reward← (ql−maxQl)+((newBuf ∗segmentDur)−maxBuf)
totReward← totReward+ (transProb ∗ reward)

estimates[buf][bw][ql]← totReward

//Estimate the average selected quality level
avgQl← 0.0
foreach quality level ql do

prob← probability of taking action ql in the specified state
avgQl← avgQl + (prob ∗ ql)

//Estimate switch reward
foreach quality level ql do

reward← estimates[buf][bw][ql]
switchReward← −1 ∗ |ql − avgQl|
estimates[buf][bw][ql]← reward+ switchReward

Algorithm 1: Initial Q-value calculation algorithm.

Algorithm 1 estimates the average reward for every state-action pair, to be used
as initial Q-values. The algorithm works as follows. First, for every state-action
pair, the quality and buffer reward component are estimated. Based on the aver-
age bandwidth in the discrete bandwidth level bw and the average segment size
for quality level ql, the estimated download duration expectedDur is calculated.
However, the actual bandwidth, available when downloading the next segment,

February 4, 2014 Connection Science consci2013˙mclaeys

10 M. Claeys et al.

50 Mbit/sServer HAS Client4 Mbit/s

HAS traffic

Cross traffic

Figure 2. Overview of the simulated topology.

could vary. Therefore, we calculate the probability changeProb that the available
bandwidth level will change in the next expectedDur seconds. To calculate this
probability, we make the assumption that the available bandwidth remains stable
for a uniform distributed amount of time between 1s and 300s. With probability
1 − changeProb, the bandwidth level will stay the same, while any other band-
width level has an equal probability changeProb

numBWs−1 to occur. For every bandwidth
level nextBw, the average download duration duration is calculated. Based on
this duration and the segment duration segmentDur, the expected buffer change
and new buffer filling level newBuf can be calculated. Using this information, the
quality and buffer filling reward components when the actual bandwidth is nextBw
are estimated. The influence of this value on the total reward is weighted by the
probability transProb that the available bandwidth level will be nextBw.

The next step in the algorithm is to estimate the average switch reward for every
state-action pair. Therefore, the average quality level, selected in the specified state
is calculated. In this calculation, the probability of taking an action in a certain
state is given by the Softmax action-selection probability, defined in Equation 4.
Knowing the average selected quality level avgQl, the average switch depth when
selecting quality level ql can be estimated as |ql − avgQl|. Using this value, the
estimated switch reward and the resulting total reward is calculated.

It is important to note that this algorithm is based on some assumptions and
approximations. For example, a model for the available bandwidth is assumed
when calculating the bandwidth shifting probability and averages are used when
estimating the download duration. Therefore, the resulting values are only initial
estimates and the self-learning client is needed to adapt the behaviour to the actual
network environment. The complexity of the algorithm is linear in the number of
discrete buffer filling levels and quality levels, and quadratic in the number of
discrete bandwidth levels. Given the limited state-action space and the fact that
the initial Q-values are only calculated once offline, the execution time is negligible.

6. Performance evaluation

6.1. Experimental setup

The experiments have been performed using the NS-31 based simulation framework
described by Bouten et al. (2012). A network topology, shown in Figure 2, has been
modelled, consisting of a single HAS client and server. This topology corresponds
to a typical DSL access network scenario. On the last link on the path between the
server and the client, a bandwidth capacity of 4Mbps is available for video delivery.
At the client side, a maximum of 20s can be buffered.

1http://www.nsnam.org

February 4, 2014 Connection Science consci2013˙mclaeys

Connection Science 11

Table 2. Proposed environmen-

tal state definition.

Quality level Bitrate

1 300kbps
2 427kbps
3 608kbps
4 866kbps
5 1233kbps
6 1636kbps
7 2436kbps

Since the goal of the self-learning HAS client is to be able to deal with variable
network environments, a highly variable bandwidth trace has been constructed by
simulating cross traffic over a 3Mbps link and measuring the available throughput
at the client side. The generated cross traffic is a sequence of bandwidth bursts,
normally distributed between 0kbps and 2640kbps with a granularity of 264kbps.
Each burst persisted for a uniformly distributed amount of time ranging from 1s
to 300s. Using the resulting bandwidth trace not only yields high variability within
an episode, but also across the episodes.

On this topology, the Big Buck Bunny video trace was streamed. A single episode
of the video trace consists of 299 segments, each with a fixed length of 2s. Each
segment has been encoded at 7 different quality levels, with bitrates ranging from
300kbps to 2436kbps, as shown in Table 2. To ensure the learning agent has time
to converge, 400 episodes of the video trace are simulated.

The traditional Microsoft ISS Smooth Streaming (MSS) algorithm1 is used to
compare the behaviour of the learning client to current deterministic HAS algo-
rithms. Using MSS, three buffer thresholds should be tuned to configure the client
behaviour. For the panic, lower and upper buffer thresholds, the values of 25%,
40% and 80%, empirically determined by Famaey et al. (2013), have been used in
our experiments.

To be able to draw meaningful conclusions when comparing the performance
of the different clients, paired t-tests have been performed. Using paired t-tests,
the significance of the difference between two approaches, applied in the same
environment, can be shown. Furthermore, the comparison graphs in Section 6.3
contain error bars, visualizing the standard deviation of the plotted averages.

6.2. Evaluation metrics

The reward function, described in Section 4.5, has been constructed to be a measure
of the quality of a decision on a single segment quality level. To evaluate the
different approaches however, a measure of the total video playout quality has to
be used. The QoE can only be estimated, either by subjective evaluation by a
test panel or using an objective model of the users’ perception. QoE of HAS video
is still an active research topic and only a limited number of objective metrics
are available. De Vriendt, De Vleeschauwer, and Robinson (2013) define the QoE
of HAS video to be dependent on the average segment quality and the standard
deviation of the segment quality. The parameters of the proposed quality level
model were tuned based on the results of a small subjective test.

Next to the average quality level and the switching behaviour, video freezes
are also considered to heavily impact the QoE of video delivery. However, video
freezes are not considered in the model proposed by De Vriendt et al. (2013). The

1Original source code available from:
https://slextensions.svn.codeplex.com/svn/trunk/SLExtensions/AdaptiveStreaming

February 4, 2014 Connection Science consci2013˙mclaeys

12 M. Claeys et al.

Table 3. Overview of evaluated parameter configurations.

Parameter Evaluated values

α Learning rate 0.1 , 0.3 , 0.5 , 0.7 , 0.9
γ Discount factor 0.1 , 0.3 , 0.5 , 0.7 , 0.9
λ Eligibility trace-decay 0.1 , 0.5 , 0.6 , 0.7 , 0.9
β Softmax inverse temperature 0.1 , 0.5 , 1.0 , 5.0

influence of video freezes depends both on the number and the average length of
freezes (Mok et al., 2011). The calculation, proposed by Mok et al. (2011), uses only
three discrete levels of freeze frequency and length. Based on an interpolation of
these levels, a continuous function has been constructed to measure the impact of
video freezes on QoE. The resulting function is shown in Equation (10), where Ffreq
and FTavg represent the freeze frequency and the average freeze time respectively.
Given that this function evaluates to 0 when no freezing occurs, the Mean Opinion
Score (MOS) calculation proposed by De Vriendt et al. (2013) remains valid in a
scenario without freezes.

φ =
7

8
∗max

(
ln(Ffreq)

6
+ 1, 0

)
+

1

8
∗
(

min(FTavg, 15)

15

)
(10)

Combining the quality level, switching and video freezing aspects, the estimated
MOS for the playout of a HAS video, consisting of K segments, playing quality level
QLk for segment k, can be calculated using Equation (11). In this equation, the
average played quality level and its standard deviation are respectively represented

by µ =
∑K
k=1 QLk
K and σ =

√∑K
k=1 (QLk−µ)2

K . One can verify that the theoretical

range of this metric in a scenario with seven quality levels [1; 7] is [0.00; 5.84].
During the simulations however, a practical metric range [0.00; 5.06] was observed,
which corresponds to the typical levels of a MOS.

MOSest = max (0.81 ∗ µ− 0.95 ∗ σ − 4.95 ∗ φ+ 0.17, 0) (11)

6.3. Results discussion

6.3.1. Parameter analysis

As described in Section 4, both the Q-Learning algorithm and the exploration
policies contain multiple parameters that can be tuned to optimize the behaviour.
Given the continuous nature of the parameters and the mutual influence between
them, it is unfeasible to evaluate all configurations to find the optimum. There-
fore, a subset of 500 configurations has been evaluated for both the Softmax and
the VDBE-Softmax policy using the Q-Learning algorithm with default initial Q-
values. Based on preliminary experiments, the VDBE-Softmax inverse sensitivity
parameter has been fixed to σ = 1.0. Using these configurations, the influence of
every parameter can be analysed and an acceptable configuration can be selected.
An overview of the evaluated parameter values can be found in Table 3. For the
learning rate and discount factor, an evenly spaced selection of the value range was
taken. The evaluated values for the eligibility trace-decay were centered around
0.6, empirically found to be a good performing configuration. For the selection of
Softmax inverse temperature values, preliminary experiments have shown that the
influence of the parameter fades out for values above 1.0.

February 4, 2014 Connection Science consci2013˙mclaeys

Connection Science 13

 1.5

 2

 2.5

 3

 3.5

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 M
O

S

Learning rate

Softmax
VDBE-Softmax

MSS

(a) Learning rate α

 1.5

 2

 2.5

 3

 3.5

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 M
O

S

Discount factor

Softmax
VDBE-Softmax

MSS

(b) Discount factor γ

 1.5

 2

 2.5

 3

 3.5

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 M
O

S

Eligibility trace-decay

Softmax
VDBE-Softmax

MSS

(c) Eligibility trace-decay λ

 1.5

 2

 2.5

 3

 3.5

 0 1 2 3 4 5
A

ve
ra

ge
 M

O
S

Softmax inverse temperature

Softmax
VDBE-Softmax

MSS

(d) Softmax inverse temperature β

Figure 3. Analysis of parameter influence.

To consider the converged state, for every configuration, the MOS has been calcu-
lated over the last 50 of 400 episodes. For each parameter, the average MOS of the
best 5 configurations for every evaluated value of that parameter has been calcu-
lated. The results are shown in Figure 3. It is clear that each of the parameters has
similar influence for both exploration policies. While a clear trend is shown for the
learning rate, discount factor and Softmax inverse temperature, the system is rather
insensitive to the eligibility trace-decay value. This behaviour can be explained by
the strong preference of the system to low discount factors, strongly accelerating
the decay, as defined by Equation (1). Since the VDBE-Softmax approach only
applies the Softmax formula when exploring, the VDBE-Softmax approach is less
sensitive to the value of the Softmax inverse temperature β. Finally, a wide range
of parameters is shown to outperform the deterministic MSS algorithm.

Based on the analysis, the best configuration is determined to be α = 0.1, γ =
0.1, λ = 0.6 and β = 5.0 using the Softmax exploration policy. Figure 4 shows
the relative performance of the self-learning HAS client using this configuration
compared to the traditional MSS client on the left axis. A moving average of the
metric values of the last 50 episodes is presented in order to observe the general
trend over the variable bandwidth episodes. The figure shows that after about
100 learning episodes, the client is able to achieve the same level of performance
as the MSS client. The increasing trend stabilizes after about 200 episodes. The
convergence of the learning agent can also be seen in the flattening out of the Q-
value changes, plotted on the right axis. In the converged state, the self-learning
HAS client is able to outperform the traditional MSS client with on average 10.31%
in terms of average MOS in the last 50 episodes in a highly dynamic bandwidth
environment. The performance increase is statistically significant with significance
level 0.05 (two-tail paired t-test: t = 8.5425, tc = 2.0096). With respect to the
individual MOS factors, the MSS client is outperformed by 0.85%, 19.54% and
11.76% in terms of average quality level, average quality standard deviation and

February 4, 2014 Connection Science consci2013˙mclaeys

14 M. Claeys et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 50 100 150 200 250 300 350 400 450

 0

 20

 40

 60

 80

 100

 120

 140

 160

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
ce

Q
-v

a
lu

e
 c

h
a
n
g
e

Episode number

RL Client
MSS Client

RL Client Q-value change

Figure 4. Convergence of the self-learning client performance, relative to the traditional MSS client.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 50 100 150 200 250 300 350 400 450

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
ce

Episode number

Q-Learning
FAQ-Learning

MSS

Figure 5. Relative performance of the FAQ-Learning and default Q-Learning approach compared to the
traditional MSS client.

total freeze time respectively.

6.3.2. Frequency Adjusted Q-Learning

In Section 4.3, we argued that FAQ-Learning could possibly increase the per-
formance of standard Q-Learning in strongly variable environments. To allow fair
comparison between the performance of the FAQ-Learning and the standard Q-
Learning client, both techniques have been applied in a highly dynamic bandwidth
environment, using the parameter configuration selected in the previous section.
In these simulations, again default initial Q-values have been used.

Figure 5 shows the relative performance of both clients compared to the tra-
ditional MSS client. The proposed FAQ-Learning approach clearly outperforms
default Q-Learning, both in terms of convergence speed and absolute values. The
performance increase is largely due to the smaller amount of freeze time. In Table 4,
the performance of the FAQ-Learning client in the last 50 episodes is compared
to the standard Q-Learning and MSS client in terms of average MOS and total
freeze time. Using the proposed FAQ-Learning technique, the self-learning HAS
client is able to outperform the traditional MSS client by 13.69% in terms of av-
erage MOS. This performance increase is statistically significant with significance
level 0.05 (two-tail paired t-test: t = 11.7688, tc = 2.0096). For the average quality
level, average quality standard deviation and total freeze time, the achieved gain
amounts 0.23%, 26.41% and 66.60% respectively.

February 4, 2014 Connection Science consci2013˙mclaeys

Connection Science 15

Table 4. Performance comparison of the MSS, Q-Learning and FAQ-Learning client in terms

of MOS and freeze time.

Client
Average σMOS

MOS Total Freeze time
MOS Change∗ Freeze time Change∗

MSS 2.94986 0.65923 – 13.975s –
Q-Learning 3.25403 0.63482 +10.31% 12.332s -11.75%

FAQ-Learning 3.35369 0.59948 +13.69% 4.667s -66.60%

∗Compared to the traditional MSS client.

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

 0 50 100 150 200 250 300 350 400 450

A
v
e
ra

g
e
 r

e
w

a
rd

Episode number

MSS
Q-Learning

FAQ-Learning

Figure 6. Reward performance of the FAQ-Learning and default Q-Learning approach compared to the
traditional MSS client.

Compared to the approach using standard Q-Learning, a statistically significant
(two-tail paired t-test: t = 3.6382, tc = 2.0096) average MOS increase of 3.06% is
obtained when applying FAQ-Learning. Despite of the performance gain in terms
of QoE, the learning behaviour in terms of reward values is inferior to the approach
using standard Q-Learning. As shown in Figure 6, lower reward values are obtained
when applying FAQ-Learning, compared to the default Q-Learning approach. The
explanation for these conflicting results can be found by analyzing the resulting
quality selection behaviour of the three clients.

The quality selection behaviour of the MSS, Q-Learning and FAQ-Learning
clients in episode 375 is illustrated in Figure 7. The resulting average reward com-
ponent values for this episode are shown in Table 5. Both Figure 7 and Table 5
show that even though the MSS client is able to reach higher quality levels at some
points, the Q-Learning client achieves overall higher average quality, lower stan-
dard deviation of quality level and higher average buffer filling. The Q-Learning
client thus results in more stable behaviour. Moreover, it can be seen that using the
FAQ-Learning client further increases the average quality level and decreases the
quality level standard deviation. However, this comes at the cost of a lower buffer
filling level, resulting in an overall lower reward value. Since buffer filling level is
not directly influencing the QoE, the resulting MOS is not affected as long as the
buffer is not fully depleted. As previously shown in Table 4, the lower buffer filling
level does not introduce additional freezing time. Since the MOS is the aspect we
aim to optimize in this use-case, the FAQ-Learning approach is preferred over the
Q-Learning approach, despite of the lower average reward.

6.3.3. Initial Q-value estimation

In Section 5, we proposed an algorithm to incorporate HAS domain knowledge
into the initial Q-Table. Using this Q-Table, we target to drasticly improve the
client performance in the learning phase while maintaining a similar performance

February 4, 2014 Connection Science consci2013˙mclaeys

16 M. Claeys et al.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500 600

B
it

ra
te

 [
kb

p
s]

Time [s]

Available bandwidth
Selected quality

(a) Microsoft ISS Smooth Streaming

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500 600

B
it

ra
te

 [
kb

p
s]

Time [s]

Available bandwidth
Selected quality

(b) Q-Learning

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500 600

B
it

ra
te

 [
kb

p
s]

Time [s]

Available bandwidth
Selected quality

(c) FAQ-Learning

Figure 7. Behaviour comparison of the MSS, Q-Learning and FAQ-Learning HAS clients in episode 375
of the variable bandwidth scenario.

Table 5. Reward components of the MSS, Q-Learning and FAQ-Learning

clients in episode 375 of the variable bandwidth scenario.

Client
Reward component

Quality Switches Bufferfilling Total

MSS -1.826 -0.365 -5.438 -7.629
Q-Learning -1.632 -0.318 -4.294 -6.244

FAQ-Learning -1.512 -0.278 -6.916 -7.950

level as with default Q-Tables in the converged state. The use of pre-calculated
Q-Tables has been evaluated on four bandwidth traces with different levels of
variability, using the Q-Learning technique.

• Fixed: throughout the entire simulation, a fixed bandwidth level of 2Mbps is
maintained.

• Sinus: the bandwidth level is modelled by a sine function with a period of 600s
and a codomain of [1Mbps;2Mbps].

• Stepfunction: every 20s, the bandwidth level switches between 1Mbps and
2Mbps.

• Variable: the highly variable bandwidth trace, as described in Section 6.1.

Figure 8 shows the performance of both approaches and the MSS client in the
learning and converged state for each of the four bandwidth configurations. As in
the rest of this article, we refer to the converged state as the last 50 episodes of the
simulation of 400 episodes. The learning phase is defined as the first 50 episodes.
In each of the bandwidth configurations, the self-learning client is shown to benefit
from using the calculated Q-Tables in the learning phase. The statistical signifi-
cance of the average MOS changes is presented in Table 6. The slight performance
decrease in the converged state is caused by the reduced learning possibilities, intro-
duced by the domain knowledge. However, the converged results are comparable to

February 4, 2014 Connection Science consci2013˙mclaeys

Connection Science 17

 0

 1

 2

 3

 4

 5

Fixed Sinus Stepfunction Variable

A
v
e
ra

g
e
 M

O
S

Bandwidth configuration

Learning Converged
MSS

Calculated Q-Table
Default Q-Table

Figure 8. Performance comparison of the traditional MSS client and the self-learning client using default
and calculated initial Q-Tables in the learning and converged phase.

Table 6. Statistical significance of average MOS differences using calculated initial Q-Tables.

Significance results are obtained by two-tail paired t-testing with significance level 0.05.

Bandwidth
Phase

Default Calculated T-test Statistically
Configuration Q-Table Q-Table Result Significant∗

Fixed
Learninga 4.21272 4.21582 0.1362

Convergedb 4.69312 4.64692 83.4822 3

Sinus
Learninga 3.00777 3.2242 2.8279 3

Convergedb 3.76258 3.68460 7.6924 3

Stepfunction
Learninga 3.23553 3.42564 2.8127 3

Convergedb 4.06532 4.00774 6.3059 3

Variable
Learninga 2.20202 2.66074 4.7204 3

Convergedb 3.25403 3.27974 0.9528

∗Critical t-value: tc = 2.0096.

aFirst 50 of 400 episodes.

bLast 50 of 400 episodes.

the performance when using default Q-Tables. Furthermore, the figure shows that
the self-learning client, once converged, is able to outperform the deterministic MSS
client on average by 11.18% (for the variable bandwidth configuration) to 18.89%
(for the sinus bandwidth configuration) in terms of average MOS, depending on
the bandwidth configuration. For the variable network configuration, the average
quality level, average quality standard deviation and total freeze time have gained
1.52%, 20.38% and 5.45% respectively.

Besides from increasing the performance in terms of average MOS, compared to
default initial Q-Tables, incorporating domain-knowledge in the initial Q-Tables
strongly decreases the total freeze time in the learning phase. A comparison in terms
of both MOS and total freeze time is given in Table 7 for the variable bandwidth
configuration. The table shows that using pre-calculated initial Q-Tables compared
to default values strongly boosts the client performance in the learning phase while
reaching a similar performance level when converged. Even though an additional
freeze time of about 900ms is introduced in the coverged state, the overall MOS,
incorporating the freezes, is not affected. The increased freeze time is compensated
by higher average quality level and lower quality standard deviation.

6.3.4. Results summary

Table 8 summarizes the results of the self-learning client approaches, compared to
the traditional Microsoft ISS Smooth Streaming (MSS) client, in terms of both the
average MOS and the individual quality components. It is shown that a Q-Learning

February 4, 2014 Connection Science consci2013˙mclaeys

18 M. Claeys et al.

Table 7. Performance comparison of the Q-Learning-based client using default and calculated initial Q-

Tables in terms of average MOS and total freeze time for the variable bandwidth configuration.

Phase
Initial Average σMOS

MOS Total Freeze time
Q-Table MOS Change∗ Freeze time Change∗

Learninga
Default 2.20202 1.30955 – 526.075s –

Calculated 2.66074 1.15649 +20.83% 252.460s -52.01%

Convergedb Default 3.25403 0.63482 – 12.332s –
Calculated 3.27974 0.65199 +0.79% 13.214s +7.15%

∗Compared to the client using default Q-Tables.

aFirst 50 of 400 episodes.

bLast 50 of 400 episodes.

Table 8. Performance summary of the self-learning approaches in the variable bandwidth con-

figuration, compared to the traditional MSS client, in terms of the quality components.

Technique
Initial MOS Quality Switching Freeze time

Q-Table Change∗ Change∗ Change∗ Change∗

Q-Learning Default +10.31% +0.85% -19.54% -11.76%
FAQ-Learning Default +13.69% +0.23% -26.41% -66.60%

Q-Learning Calculated +11.18% +1.52% -20.38% -5.45%

∗Compared to the traditional MSS client.

based HAS client outperforms the deterministic MSS client for each of the qual-
ity aspects. Using the proposed Frequency Adjusted Q-Learning (FAQ-Learning)
technique, further improvement is obtained. Furthermore, the use of pre-calculated
initial Q-Tables strongly boosts the performance in the learning phase and reaches
similar results as with default Q-Tables in the converged state.

7. Conclusions

In this article, we designed a Reinforcement Learning (RL)-based HTTP Adap-
tive Streaming (HAS) client, dynamically adjusting its behaviour to the perceived
networking environment. We presented an extended parameter analysis to fine-
tune the client configuration to operate in a dynamic network environment. Next,
we proposed using a Frequency Adjusted Q-Learning (FAQ-Learning) approach to
strongly increase the client performance in variable environments. Furthermore, we
presented an estimation algorithm to incorporate domain knowledge into the initial
Q-Tables. Using these estimations, we were able to drasticly improve the clients
performance during its learning phase, both in terms of average Mean Opinion
Score (MOS) and total freeze time. The resulting self-learning HAS client is shown
to outperform the deterministic traditional Microsoft ISS Smooth Streaming (MSS)
client in terms of average MOS by 11% to 18% in all of the evaluated bandwidth
scenarios with different degrees over variability, while increasing the performance
for each of the identified MOS components.

Acknowledgments

M. Claeys is funded by grant of the Agency for Innovation by Science and Tech-
nology in Flanders (IWT). The research was performed partially within the ICON
MISTRAL project (under grant agreement no. 10838). This work was partly funded
by Flamingo, a Network of Excellence project (318488) supported by the Euro-
pean Commission under its Seventh Framework Programme. The Alcatel-Lucent
research was performed partially within IWT project 110112.

February 4, 2014 Connection Science consci2013˙mclaeys

REFERENCES 19

References

Adzic, V., Kalva, H., & Furht, B. (2011). Optimized adaptive HTTP streaming for
mobile devices. Applications of Digital Image Processing XXXIV , 81350T.

Akhshabi, S., Begen, A. C., & Dovrolis, C. (2011). An experimental evaluation of
rate-adaptation algorithms in adaptive streaming over HTTP. In Proceedings
of the second annual ACM conference on Multimedia systems (pp. 157–168).

Bagnasco, R., & Serrat, J. (2009). Multi-agent Reinforcement Learning in Network
Management. In Scalability of Networks and Services (Vol. 5637, pp. 199–
202). Springer Berlin Heidelberg.

Bouten, N., Famaey, J., Latré, S., Huysegems, R., De Vleeschauwer, B., Van Leek-
wijck, W., & De Turck, F. (2012). QoE optimization through in-network
quality adaptation for HTTP Adaptive Streaming. In 2012 8th International
Conference on Network and Service Management (CNSM) (pp. 336–342).

Cao, J. (2011, June). Using reinforcement learning for agent-based network fault
diagnosis system. In 2011 IEEE International Conference on Information
and Automation (ICIA) (pp. 750–754).

Charvillat, V., & Grigoras, R. (2007). Reinforcement learning for dynamic mul-
timedia adaptation. Journal of Network and Computer Applications, 30 (3),
1034 - 1058.

Claeys, M., Latré, S., Famaey, J., Wu, T., Van Leekwijck, W., & De Turck, F.
(2013). Design of a Q-Learning-based Client Quality Selection Algorithm
for HTTP Adaptive Video Streaming. In 2013 Workshop on Adaptive and
Learning Agents (ALA).

De Vriendt, J., De Vleeschauwer, D., & Robinson, D. (2013). Model for estimating
QoE of Video delivered using HTTP Adaptive Streaming. In 1st IFIP/IEEE
Workshop on QoE Centric Management, QCMAN 2013.

Famaey, J., Latré, S., Bouten, N., Van de Meerssche, W., De Vleeschauwer, B.,
Van Leekwijck, W., & De Turck, F. (2013). On the Merits of SVC-Based
HTTP Adaptive Streaming. In 2013 12th IFIP/IEEE International Sympo-
sium on Integrated Network Management (IM).

Fei, Y., Wong, V. W. S., & Leung, V. C. M. (2006, February). Efficient QoS
provisioning for adaptive multimedia in mobile communication networks by
reinforcement learning. Mobile Networks and Applications, 11 (1), 101–110.

Jarnikov, D., & Özçelebi, T. (2010, July). Client intelligence for adaptive streaming
solutions. In 2010 IEEE International Conference on Multimedia and Expo
(ICME) (pp. 1499–1504).

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement Learning:
A Survey. Journal of Artificial Intelligence Research, 4 , 237-285.

Kaisers, M., & Tuyls, K. (2010). Frequency adjusted multi-agent Q-learning. In
Proceedings of the 9th International Conference on Autonomous Agents and
Multiagent Systems: volume 1 - Volume 1 (pp. 309–316).

Lee, M., Marconett, D., Ye, X., & Yoo, S. (2007). Cognitive Network Management
with Reinforcement Learning for Wireless Mesh Networks. In IP Operations
and Management (Vol. 4786, pp. 168–179). Springer Berlin Heidelberg.

Liu, C., Bouazizi, I., & Gabbouj, M. (2011, August). Parallel Adaptive HTTP
Media Streaming. In Proceedings of the 20th International Conference on
Computer Communications and Networks (ICCCN) (pp. 1–6).

Lohmar, T., Einarsson, T., Frojdh, P., Gabin, F., & Kampmann, M. (2011, June).
Dynamic adaptive HTTP streaming of live content. In 2011 IEEE Interna-
tional Symposium on a World of Wireless, Mobile and Multimedia Networks
(WoWMoM) (pp. 1–8).

February 4, 2014 Connection Science consci2013˙mclaeys

20 REFERENCES

Mastronarde, N., & van der Schaar, M. (2011). Fast Reinforcement Learning
for Energy-Efficient Wireless Communication. IEEE Transactions on Signal
Processing , 59 (12), 6262-6266.

McClary, D. W., Syrotiuk, V. R., & Lecuire, V. (2008). Adaptive audio streaming
in mobile ad hoc networks using neural networks. Ad Hoc Networks, 6 (4),
524 - 538.

Menkovski, V., & Liotta, A. (2013). Intelligent control for adaptive video streaming.
In 2013 IEEE International Conference on Consumer Electronics (ICCE)
(p. 127-128).

Mok, R., Chan, E., & Chang, R. (2011, May). Measuring the Quality of Experience
of HTTP video streaming. In 2011 IFIP/IEEE International Symposium on
Integrated Network Management (IM) (pp. 485–492).

Niyato, D., & Hossain, E. (2006, June). A Radio Resource Management Frame-
work for IEEE 802.16-Based OFDM/TDD Wireless Mesh Networks. In IEEE
International Conference on Communications, 2006. ICC ’06. (Vol. 9, pp.
3911–3916).

Ouferhat, N., & Mellouk, A. (2007, May). A QoS Scheduler Packets for Wireless
Sensor Networks. In IEEE/ACS International Conference on Computer
Systems and Applications, 2007. AICCSA ’07. (pp. 211–216).

Parakh, S., & Jagannatham, A. (2012). Game theory based dynamic bit-rate
adaptation for H.264 scalable video transmission in 4G wireless systems. In
2012 International Conference on Signal Processing and Communications
(SPCOM) (p. 1-5).

Riiser, H., Vigmostad, P., Griwodz, C., & Halvorsen, P. (2011, July). Bitrate and
video quality planning for mobile streaming scenarios using a GPS-based
bandwidth lookup service. In 2011 IEEE International Conference on Mul-
timedia and Expo (ICME) (pp. 1–6).

Stockhammer, T. (2011). Dynamic adaptive streaming over HTTP: standards and
design principles. In Proceedings of the second annual ACM conference on
Multimedia systems (pp. 133–144).

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction
(Adaptive Computation and Machine Learning). The MIT Press. Hardcover.

Tesauro, G., Jong, N. K., Das, R., & Bennani, M. N. (2007, September). On
the use of hybrid reinforcement learning for autonomic resource allocation.
Cluster Computing , 10 (3), 287–299.

Tokic, M. (2010). Adaptive ε-greedy exploration in reinforcement learning based
on value differences. In Proceedings of the 33rd annual German conference
on Advances in artificial intelligence (pp. 203–210). Springer-Verlag.

Tokic, M., & Palm, G. (2011). Value-difference based exploration: adaptive con-
trol between epsilon-greedy and softmax. In Proceedings of the 34th An-
nual German conference on Advances in artificial intelligence (pp. 335–346).
Springer-Verlag.

Trestian, R., Moldovan, A.-N., Ormond, O., & Muntean, G.-M. (2012, April).
Energy consumption analysis of video streaming to Android mobile devices.
In Network Operations and Management Symposium (NOMS), 2012 IEEE
(pp. 444–452).

Vengerov, D. (2005). A Reinforcement Learning Approach to Dynamic Resource
Allocation (Tech. Rep.). Sun Microsystems Laboratories.

Watkins, C. (1989). Learning from Delayed Rewards (Unpublished doctoral dis-
sertation). University of Cambridge, England.

Xiang, S., Cai, L., & Pan, J. (2012). Adaptive scalable video streaming in wireless
networks. In Proceedings of the 3rd Multimedia Systems Conference.

