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Abstract

With the aid of the computer algebra system GAP, we show that the glued near
hexagon Q(5, 2) ⊗ Q(5, 2) has 16 isomorphism classes of hyperplanes. We give at
least one explicit construction for a representative of each isomorphism class and
we list several properties of such a representative.
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1 Introduction

A partial linear space S = (P ,L, I) with nonempty point set P , line set L and incidence
relation I ⊆ P×L is called a near polygon if for every point p and every line L, there exists
a unique point on L nearest to p. Here, distances d(·, ·) are measured in the collinearity
graph Γ of S. If d ∈ N is the diameter of Γ, then the near polygon is also called a
near 2d-gon. A near 0-gon is a point and a near 2-gon is a line. Near quadrangles are
usually called generalized quadrangles (GQ’s). A near polygon is called dense if every line
is incident with at least three points and if every two points at distance 2 have at least
two common neighbors. Near polygons were introduced in Shult & Yanushka [18].

A hyperplane of a partial linear space S = (P ,L, I) is a set of points, distinct from P ,
intersecting each line in either a singleton or the whole line. If S admits a full projective
embedding and S is slim (i.e. every line of S is incident with precisely three points), then
by Ronan [17, Corollary 2, p.180], there exists a natural bijective correspondence between
the hyperplanes of S and the hyperplanes of the so-called universal embedding space of
S. This fact makes the study of the hyperplanes of fully embeddable slim partial linear
spaces somewhat special and interesting.

This paper is part of an ongoing project to classify all hyperplanes of all slim dense
near hexagons. By Brouwer et al. [1], there are up to isomorphism eleven such near
hexagons. For three of these near hexagons (namely those which are a direct product of
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a line of size three with one of the three GQ’s of order (2, t)), the classification of the
hyperplanes is a trivial problem. For five other near hexagons, a complete classification
of the hyperplanes is available in the literature, see Brouwer, Cuypers & Lambeck [2] for
the M24 near hexagon E2, Pralle [16] (see also De Bruyn [5]) for the dual polar space
DW (5, 2), De Bruyn & Pralle [7, 8] for the dual polar space DH(5, 4), De Bruyn & Pralle
[9] for the near hexagon H3 on the 2-factors of the complete graph K8 and De Bruyn
& Shpectorov [10] for the U4(3) near hexagon E3. The present paper deals with the
hyperplanes of the glued near hexagon Q(5, 2)⊗Q(5, 2).

In future work [6, 11], we will also deal with the two remaining slim dense near
hexagons, namely the near hexagon E1 related to the extended ternary Golay code and
the near hexagon G3. It should be noted that the slim dense near hexagons are not the
only slim near polygons whose hyperplanes might be worthwhile to classify. In the paper
[14], Frohardt & Johnson classified all hyperplanes of the two generalized hexagons of
order (2, 2).

As told before, the aim of the present paper is to obtain a complete classification of
the hyperplanes of the glued near hexagon Q(5, 2) ⊗ Q(5, 2). The following is our main
result.

Main Theorem. The glued near hexagon Q(5, 2) ⊗ Q(5, 2) has up to isomorphism 16
hyperplanes.

The hyperplanes of the glued near hexagon Q(5, 2)⊗Q(5, 2) will be classified in Section
3 with the aid of the computer algebra system GAP [15]. Some of the basic properties of
the 16 nonisomorphic hyperplanes of Q(5, 2)⊗Q(5, 2) can be found in Table 1 of Section
3.

Another goal that we have is to give at least one explicit representative for each of the 16
isomorphism classes of hyperplanes. We achieve this goal in the following way.

In Section 4 we describe four classes of hyperplanes which we call the basic hyperplanes
of Q(5, 2)⊗ Q(5, 2). These hyperplanes include the singular hyperplanes, the extensions
of the W (2)-subquadrangles of the Q(5, 2)-quads, the so-called hyperplanes of valuation
type and certain hyperplanes with 171 points.

It is well-known that if H1 and H2 are two distinct hyperplanes of a slim partial linear
space, then the complement H1 ∗H2 of the symmetric difference H1∆H2 of H1 and H2 is
again a hyperplane. Using this “∗-operator” (which is commutative and associative), we
will be able in Section 5 to describe the twelve remaining hyperplanes of Q(5, 2)⊗Q(5, 2)
in terms of the basic hyperplanes. For some of the hyperplanes of Q(5, 2) ⊗ Q(5, 2), we
will be able to give more than one construction.

Before we can start the actual classification of the hyperplanes, we need to discuss some
of the basic structural properties of the glued near hexagon Q(5, 2)⊗Q(5, 2). This will be
done in Section 2. An understanding of the structure of the near hexagon Q(5, 2)⊗Q(5, 2)
is indispensable to understand some of the constructions for the hyperplanes.
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2 The glued near hexagon Q(5, 2)⊗Q(5, 2) and its prop-

erties

Let H(5, 4) be a nonsingular Hermitian variety of PG(5, 4). Associated with H(5, 4) there
is a dual polar space DH(5, 4). This is the point-line geometry whose points are the planes
of PG(5, 4) contained in H(5, 4) and whose lines are the lines of PG(5, 4) contained in
H(5, 4), with incidence being reverse containment.

Suppose α is a plane of PG(5, 4) intersecting H(5, 4) in a unital of α. Then the planes
of H(5, 4) meeting α form a subspace Pα of DH(5, 4) and the point-line geometry Sα
induced on Pα is a slim dense near hexagon by Brouwer et al. [1]. This slim dense near
hexagon, which we denote by Q(5, 2) ⊗ Q(5, 2), belongs to the family of the glued near
hexagons introduced in De Bruyn [3]. If ζ is the Hermitian polarity of PG(5, 4) associated
with H(5, 4), then also the plane αζ intersects H(5, 4) in a unital of αζ and we have that
Pα = Pαζ . Indeed, every plane of H(5, 4) that meets α must also meet αζ .

Let G ∼= PΓU(6, 2) denote the automorphism group of DH(5, 4). The setwise sta-
bilizer of Pα in G induces a group of automorphisms of Sα ∼= Q(5, 2) ⊗ Q(5, 2) which
is in fact the full group of automorphisms of Sα. The setwise stabilizer of α in G also
induces a group of automorphisms of Sα, but this group has index 2 in the full group
of automorphisms of Sα. Indeed, there are elements of G that interchange the planes α
and αζ . The automorphism groups of general glued near hexagons were studied in De
Bruyn [4]. An explicit description of the automorphisms of Q(5, 2) ⊗ Q(5, 2) can easily
be extracted from the discussion in [4].

In the rest of this section, we describe some basic properties of the glued near hexagon
Q(5, 2)⊗Q(5, 2) = (P ,L, I) that will be useful later.

The glued near hexagon Q(5, 2) ⊗ Q(5, 2) has 243 points and every point is incident
with precisely nine lines. If i ∈ N and x ∈ P , then Γi(x) denotes the set of points at
distance i from x. We denote {x} ∪ Γ1(x) also by x⊥. If i ∈ N and ∅ 6= X ⊆ P , then
Γi(X) denotes the set of points at distance i from X, i.e. the set of all points y for which
min{d(y, x) |x ∈ X} = i.

As it is the case for every dense near polygon (see Shult and Yanushka [18, Proposition
2.5]) every two points x and y at distance 2 are contained in a unique convex subspace
〈x, y〉 of diameter 2, called a quad. This quad is isomorphic to either the (3 × 3)-grid or
the generalized quadrangle Q(5, 2).

If Q is a Q(5, 2)-quad, then every point of Q(5, 2) ⊗ Q(5, 2) has distance at most 1
from Q. Moreover, for every point x, there exists a (necessarily unique) point πQ(x) ∈ Q
such that d(x, y) = d(x, πQ(x)) + d(πQ(x), y) for every y ∈ Q. The point πQ(x) is called
the projection of x onto Q. If x ∈ Q, then we define RQ(x) := x. If x 6∈ Q, then
d(x, πQ(x)) = 1 and we denote by RQ(x) the point on the line xπQ(x) distinct from x
and πQ(x). The map RQ : P → P defines an automorphism of Q(5, 2)⊗Q(5, 2).

Suppose G is a grid-quad. Then every point x ∈ Γ1(G) is collinear with a unique point
of G which we denote by πG(x). If x ∈ Γ2(G), then Γ2(x) ∩G is an ovoid of G, i.e. a set
of three points meeting each line of G in a unique point.

Every point x ofQ(5, 2)⊗Q(5, 2) is contained in precisely twoQ(5, 2)-quads. These two
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Q(5, 2)-quads meet in a line Lx. The lines Lx, x ∈ P , form a spread S∗ of Q(5, 2)⊗Q(5, 2).
The group of automorphisms of Q(5, 2)⊗Q(5, 2) stabilizing each line of S∗ is a cyclic group
of order 3 and acts regularly on each line of S∗. The glued near hexagon Q(5, 2)⊗Q(5, 2)
has two partitions T1 and T2 in Q(5, 2)-quads. If Q1 ∈ T1 and Q2 ∈ T2, then Q1 ∩Q2 is a
line belonging to S∗. Every line of S∗ is contained in precisely two Q(5, 2)-quads and no
grid-quads. Every line of S not belonging to S∗ is contained in precisely four grid-quads
and a unique Q(5, 2)-quad. For every Q(5, 2)-quad Q, the set SQ of lines of S∗ that are
contained in Q is a regular spread of Q. This means that if L1 and L2 are two distinct
lines of SQ, then the unique line L3 for which L1 ∪ L2 ∪ L3 defines a (3× 3)-subgrid of Q
also belongs to SQ.

3 The hyperplanes of Q(5, 2)⊗Q(5, 2)

In the computer algebra system GAP [15], there are build many models of permutation
groups, including a model of the permutation representation of PΓU(6, 2) on the set
{1, 2, . . . , 891} that is equivalent with the permutation representation of Aut(DH(5, 4)) on
the point set of DH(5, 4). One can easily identify those subsets of size 3 of {1, 2, . . . , 891}
that correspond to the lines of DH(5, 4). In this way, we find a computer model of the
dual polar space DH(5, 4).

Subsequently, we determined a subset X of {1, 2, . . . , 891} that corresponds with a
subspace of DH(5, 4) on which the induced subgeometry is isomorphic to Q(5, 2)⊗Q(5, 2).
There are a number of ways in which this goal can be achieved. One way goes as follows.
Take three quads Q1, Q2 and Q3 of DH(5, 4) for which the corresponding points x1, x2 and
x3 of H(5, 4) generate a plane α intersecting H(5, 4) in a unital of α. Then the smallest
subspace of DH(5, 4) containing Q1 ∪Q2 ∪Q3 consists of all planes of H(5, 4) meeting α
and hence the geometry induced on that subspace is isomorphic to Q(5, 2)⊗Q(5, 2).

Once we found the set X, we have in fact also a computer model for the glued near
hexagon Q(5, 2) ⊗ Q(5, 2). We can also easily implement a permutation representation
of the automorphism group of Q(5, 2) ⊗ Q(5, 2) on the point set P of Q(5, 2) ⊗ Q(5, 2).
Indeed, we just have to ask GAP to calculate the setwise stabilizer of X in PΓU(6, 2).

Now, let V be a vector space over F2 having a basis B indexed by the points of
Q(5, 2) ⊗ Q(5, 2), say B = {v̄x |x ∈ P}. Let W denote the subspace of V generated by
all vectors of the form v̄x1 + v̄x2 + v̄x3 where {x1, x2, x3} is some line of Q(5, 2)⊗Q(5, 2)
and consider the quotient vector space V/W . Then the map x ∈ P 7→ 〈v̄x + W 〉 defines
a full projective embedding ẽ of Q(5, 2)⊗ Q(5, 2) into PG(V/W ) which is isomorphic to
the universal embedding of Q(5, 2)⊗Q(5, 2). If Π is a hyperplane of PG(V/W ), then the
set HΠ := ẽ−1(ẽ(P) ∩ Π) is a hyperplane of Q(5, 2) ⊗ Q(5, 2). By Ronan [17], we know
that the correspondence Π ↔ HΠ defines a bijection between the set of hyperplanes of
PG(V/W ) and the set of hyperplanes of Q(5, 2)⊗Q(5, 2).

We have implemented the universal embedding in GAP and found that dim(V/W ) =
|P|−dim(W ) = 18. (There are also computer free methods for calculating this dimension.)
So, Q(5, 2) ⊗ Q(5, 2) must have 218 − 1 hyperplanes. Subsequently, we have used the
following method for enumerating all hyperplanes of Q(5, 2)⊗Q(5, 2).
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Step 1. Put N := 0.

Step 2. Let GAP choose a random hyperplane Π of V through W and let GAP calculate
the corresponding hyperplane H of Q(5, 2)⊗Q(5, 2). Calculate the stabilizer SH of H (in
the full automorphism group G of Q(5, 2)⊗Q(5, 2)). Then the total number of hyperplanes

isomorphic to H is equal to NH := |G|
|SH |

. Verify whether H is isomorphic to one of the
previous obtained hyperplanes. If this is not the case, then put N := N +NH .

Step 3. If N < 218 − 1, then go again to Step 2. If N = 218 − 1, then we have found all
hyperplanes and we are done.

In this way, we found that Q(5, 2) ⊗ Q(5, 2) has up to isomorphism 16 hyperplanes. We
have also written various procedures in GAP to find various properties of these hyper-
planes. These properties can be found in Table 1 where we have ordered the hyperplanes
according to the sizes of their orbits and the number of points they contain. Perhaps the
contents of columns [De,Si,Su] and [de,si,ov] still need more explanation.

Suppose Q is a quad and H is a hyperplane of Q(5, 2)⊗Q(5, 2). The quad Q is called
deep with respect to H if Q ⊆ H. It is called singular with respect to H if Q∩H = x⊥∩Q
for some point x ∈ Q. A Q(5, 2)-quad Q is subquadrangular with respect to H is Q∩H is
a W (2)-subquadrangle of Q. A grid-quad Q is called ovoidal with respect to H if Q ∩H
an ovoid of Q. Every Q(5, 2)-quad is deep, singular or subquadrangular with respect to
H. Every grid-quad is deep, singular or ovoidal with respect to H.

4 The basic hyperplanes

4.1 The singular hyperplanes

Since Q(5, 2)⊗Q(5, 2) is a dense near hexagon, the set Hx of points of Q(5, 2)⊗Q(5, 2)
at distance at most 2 from a given point x is a hyperplane of Q(5, 2) ⊗ Q(5, 2). This
hyperplane is called the singular hyperplane of Q(5, 2)⊗Q(5, 2) with deepest point x. The
singular hyperplanes can easily be found in Table 1. (We must have v = 115 and De = 2.)

Description 1a. The hyperplanes of Type 1 occurring in Table 1 are precisely the
singular hyperplanes.

4.2 The extensions of the W (2)-subquadrangles of the Q(5, 2)-
quads

Let Q be a Q(5, 2)-quad and σ a W (2)-subquadrangle of Q. Then the set of points of
Q(5, 2) ⊗ Q(5, 2) at distance at most 1 from σ is a hyperplane Hσ of Q(5, 2) ⊗ Q(5, 2),
the so-called extension of σ. There are precisely three lines in S∗ that are contained in
σ. These three lines form a (3× 3)-grid Gσ. The extensions of the W (2)-subquadrangles
can easily be found in Table 1. (We must have v = 147 and De = 4.)
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Description 4a. The hyperplanes of Type 4 occurring in Table 1 are precisely the
extensions of the W (2)-subquadrangles of the Q(5, 2)-quads.

4.3 The hyperplanes of valuation type

A valuation of Q(5, 2) ⊗ Q(5, 2) is a map f from the point set P of Q(5, 2) ⊗ Q(5, 2) to
the set of nonnegative integers satisfying the following properties.

(V1) There exists a point x with value f(x) = 0.

(V2) Every line L of Q(5, 2)⊗Q(5, 2) is incident with a unique point xL such that f(x) =
f(xL) + 1 for every point x of L distinct from xL.

(V3) Every point x of S is contained in a (necessarily unique) convex subspace Fx for
which the following holds:

• f(y) ≤ f(x) for every point y ∈ Fx;
• if y ∈ Fx and z ∼ y such that f(z) = f(y)− 1, then z ∈ Fx.

Valuations of general dense near polygons was introduced by De Bruyn & Vandecasteele
[12].

If f is a valuation of Q(5, 2)⊗Q(5, 2), then Of denotes the set of points with value 0.
For every point x of Q(5, 2) ⊗ Q(5, 2), the map f : P → N; y 7→ d(x, y) is a valuation of
Q(5, 2)⊗Q(5, 2). Any valuation of Q(5, 2)⊗Q(5, 2) that can be obtained in this way is
called classical.

By De Bruyn & Vandecasteele [13, Section 7.2], the near hexagon Q(5, 2) ⊗ Q(5, 2)
has two types of valuations. There are 243 classical valuations and 648 non-classical valu-
ations. Supposing that Q(5, 2)⊗Q(5, 2) is embedded into the dual polar space DH(5, 4)
as described in Section 2, every non-classical valuation is obtained as follows. If x is one
of the 648 points of DH(5, 4) not belonging to P , then the map P → N; y 7→ d(x, y)− 1
is a non-classical valuation of Q(5, 2)⊗Q(5, 2).

If f is a valuation of Q(5, 2) ⊗ Q(5, 2), then by Property (V2), the set of points of
Q(5, 2) ⊗ Q(5, 2) with non-maximal value is a hyperplane Hf of Q(5, 2) ⊗ Q(5, 2). A
hyperplane of Q(5, 2) ⊗ Q(5, 2) is said to be of valuation type if it is associated with a
non-classical valuation of Q(5, 2)⊗Q(5, 2).

Suppose f is a non-classical valuation of Q(5, 2) ⊗ Q(5, 2). Then |Of | = 9 and the
maximal value of f is 2. Every Q(5, 2)-quad contains a unique point of Of and is singular
with respect to Hf . If f(x) = 1, then x is collinear with either one or two points of
Of . If x is collinear with a unique point y ∈ Of , then Fx = xy ∈ S∗. If x is collinear
with two distinct points y1, y2 ∈ Of , then none of the lines xy1, xy2 belongs to S∗ and
Fx = 〈xy1, xy2〉 is a grid-quad. A standard counting now yields that |Hf | = |Of |+ |Of | ·
1 · 2 +

|Of |·8·2
2

= 99. Consulting Table 1, we then have:

Description 3a. The hyperplanes of Type 3 occurring in Table 1 are precisely the
hyperplanes of valuation type.
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4.4 A certain hyperplane with 171 points

Let ẽ denote the universal embedding of Q(5, 2) ⊗ Q(5, 2) into Σ̃ = PG(17, 2). Suppose
{Q1, Q2, Q3, R1, R2, R3} is a set of quads of Q(5, 2) ⊗ Q(5, 2) such that Q1, Q2, Q3 ∈ T1,
R1, R2, R3 ∈ T2, Q3 = RQ2(Q1) and R3 = RR2(R1). Now, A := Q1∪Q2∪Q3∪R1∪R2∪R3

is a subspace of Q(5, 2)⊗Q(5, 2).
We prove that 〈ẽ(A)〉 is 15-dimensional. Let Q4 be a quad of T1 distinct from Q1,

Q2 and Q3. The generating rank of Q(5, 2) is equal to 6 and we can take a generating
set Xi, i ∈ {1, 2, 4}, of Qi containing two points of Qi ∩ R1, two points of Qi ∩ R2 and
two points outside R1 ∪ R2 ∪ R3. Then X1 ∪ X2 ∪ X4 is a generating set of size 18 of
Q(5, 2)⊗Q(5, 2) implying that ẽ(X1 ∪X2 ∪X4) is a set of 18 linearly independent points

of Σ̃. If u and v are the two points of X4 not contained in R1∪R2∪R3, then the subspace
of Q(5, 2)⊗Q(5, 2) generated by the 16 points of (X1 ∪X2 ∪X4) \ {u, v} is precisely A.
So, we must indeed have that 〈ẽ(A)〉 is 15-dimensional.

Since 〈ẽ(A)〉 is 15-dimensional, there are precisely three hyperplanes H1, H2 and H3

containing A. Now, let i ∈ {1, 2, 3}. Obviously, the only Q(5, 2)-quads that can be
contained in Hi are the quads Q1, Q2, Q3, R1, R2 and R3 themselves. (Four distinct quads
of the same Tj, j ∈ {1, 2}, generate the whole of Q(5, 2)⊗Q(5, 2).) So, every Q(5, 2)-quad
distinct from Q1, Q2, Q3, R1, R2 and R3 intersects Hi in a W (2)-subquadrangle. This
implies that Hi contains precisely 3 · 27 + 6 · 15 = 171 points. If L is a line of S∗ not
contained in any of the quads Q1, Q2, Q3, R1, R2 and R3, then Hi ∩ L is a singleton.
So, the group of automorphisms of Q(5, 2)⊗Q(5, 2) stabilizing each line of S∗ (which is
isomorphic to C3) acts regularly on the set {H1, H2, H3}, implying that the hyperplanes
H1, H2 and H3 are mutually isomorphic. The set (Q1∪Q2∪Q3)∩(R1∪R2∪R3) determines
a (3 × 3 × 3)-subcube of Q(5, 2) ⊗ Q(5, 2). This (3 × 3 × 3)-cube is called the base cube
of the hyperplane Hi. Since |Hi| = 171, Table 1 immediately yields:

Description 2a. The hyperplanes of Type 2 occurring in Table 1 are precisely the
hyperplanes with 171 points defined above.

5 Constructions of other hyperplanes

5.1 Introduction

In Section 4, we were already able to give an explicit description for a representative for
four of the sixteen isomorphism classes of hyperplanes of Q(5, 2)⊗Q(5, 2). The aim of the
present section is to achieve the same goal for the remaining twelve isomorphism classes
of hyperplanes.

The procedure we have chosen to achieve this goal is as follows. We consider an
arbitrary hyperplane H whose stabilizer SH has at most ten orbits on the set P of points
of Q(5, 2) ⊗ Q(5, 2). By Table 1, we then know that H has Type i, where i ≤ 6. We
already know what H is if i ∈ {1, 2, 3, 4}. Later we also give explicit constructions for
the hyperplanes of Type 5 and 6. For each of the six possibilities for H, we explicitly
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 18 – – 32 64 – – – – 128 – – – – – –
2 – – – – – – – 72 27 36 108 – – – – –
3 – – 9 – – – 18 – 72 – – – – 144 – –
4 12 – – 15 – – – 48 – 96 – 72 – – – –
5 6 – – – 3 – 36 6 – 84 – 36 – 18 54 –
6 – – – – – 3 – – – – – 48 96 48 48 –
7 – – 2 – 16 – 17 – – 24 16 – – 48 48 72
8 – 4 – 4 2 – – 17 – 36 24 48 36 – 36 36
9 – 1 4 – – – – – 30 – 20 – 48 80 24 36
10 2 1 – 4 14 – 9 18 – 42 18 36 – 18 36 45
11 – 3 – – – – 6 12 15 18 27 24 36 48 36 18
12 – – – 2 4 6 – 16 – 24 16 31 24 36 36 48
13 – – – – – 8 – 8 16 – 16 16 35 56 40 48
14 – – 2 – 1 3 6 – 20 6 16 18 42 54 39 36
15 – – – – 3 3 6 6 6 12 12 18 30 39 54 54
16 – – – – – – 9 6 9 15 6 24 36 36 54 48

Table 2: The “action” of the singular hyperplanes on the hyperplanes of a given type

describe the orbits for the action of SH on P , and for each such orbit O, we determine
which kind of hyperplane H ∗ Hx is where x is an arbitrary point of O. This goal will
be achieved with the aid of GAP, although sometimes purely theoretical arguments can
also yield the desired conclusions. In this way, we are able to give explicit descriptions for
representatives of eleven of the twelve remaining isomorphism classes. Only a description
for the hyperplanes of Type 16 is still missing. Such a description will arise from the
study of those hyperplanes that have the form Hx1 ∗ Hx2 ∗ Hx3 where x1, x2 and x3 are
three mutually opposite points of Q(5, 2)⊗Q(5, 2).

The procedure sketched in the previous paragraph will often lead to several equivalent
descriptions of the same hyperplane. It should be mentioned that the above procedure
could also be applied to hyperplanes H whose stabilizer SH has more than ten orbits on
P . Our general feeling is however that the description of the orbits will then be more
complicated as well as the descriptions for the corresponding hyperplanes. The procedure
sketched in the previous paragraph is already sufficient to achieve all our goals.

One extremely helpful tool in our investigations is the information provided by Table
2. With the aid of GAP, we determined for each hyperplane H of Type i the number of
points x for which H ∗Hx is a hyperplane of Type j. This number can be found as entry
(i, j) in Table 2. In almost all cases, the information given by Table 2 provides a clue on
how to construct a particular hyperplane.
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5.2 Hyperplanes of the form Hx1
∗ Hx2

where x1 and x2 are two
distinct points

Let x1 and x2 be two distinct points of Q(5, 2) ⊗ Q(5, 2). By Table 1, the stabilizer of
Hx1 has six orbits on the points of Q(5, 2) ⊗ Q(5, 2). This leads to the following five
possibilities for x2:
• d(x1, x2) = 1 and x1x2 ∈ S∗;
• d(x1, x2) = 1 and x1x2 6∈ S∗;
• d(x1, x2) = 2 and 〈x1, x2〉 is a grid-quad;
• d(x1, x2) = 2 and 〈x1, x2〉 is a Q(5, 2)-quad;
• d(x1, x2) = 3.

If d(x1, x2) = 1 and x3 is the third point on the line x1x2, then Hx1 ∗ Hx2 = Hx3 . If
d(x1, x2) = 2 and Q := 〈x1, x2〉 is a Q(5, 2)-quad, then the complement (in Q) of the
symmetric difference of x⊥1 ∩Q and x⊥2 ∩Q is a W (2)-subquadrangle σ and we have that
Hx1 ∗ Hx2 = Hσ. So, we have the following alternative construction for one of the basic
hyperplanes.

Description 4b. The hyperplanes of Type 4 occurring in Table 1 are precisely the
hyperplanes of the form Hx1 ∗Hx2 where x1 and x2 are two points at distance 2 from each
other such that 〈x1, x2〉 is a Q(5, 2)-quad.

The remaining two possibilities for the point x2 give rise to two new hyperplanes.

Description 5a. The hyperplanes of Type 5 occurring in Table 1 are precisely the
hyperplanes of the form Hx1 ∗Hx2 where x1 and x2 are two points of Q(5, 2)⊗Q(5, 2) at
distance 2 from each other such that 〈x1, x2〉 is a grid-quad.

Description 10a. The hyperplanes of Type 10 occurring in Table 1 are precisely the
hyperplanes of the form Hx1 ∗Hx2 where x1 and x2 are two opposite points of Q(5, 2) ⊗
Q(5, 2).

5.3 Hyperplanes of the form Hf ∗Hx where f is a non-classical
valuation and x is a point

Let f be a non-classical valuation and x be a point of Q(5, 2) ⊗ Q(5, 2). By Table 1,
the stabilizer of Hf has four orbits on the points of Q(5, 2) ⊗ Q(5, 2). This leads to the
following four possibilities for x:
• f(x) = 0;
• f(x) = 1 and Fx ∈ S∗;
• f(x) = 1 and Fx is a grid-quad;
• x 6∈ Hf .

Suppose f is induced by a point y of DH(5, 4) into which Q(5, 2)⊗Q(5, 2) is isometrically
embedded. If f(x) = 0 then y ∼ x and Hf ∗Hx is the hyperplane of valuation type induced
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by the point z of the line yx distinct from x and y. The three other possibilities for x
give rise to new hyperplanes.

Description 7a. The hyperplanes of Type 7 occurring in Table 1 are precisely the
hyperplanes of the form Hf ∗Hx where f is a non-classical valuation of Q(5, 2)⊗Q(5, 2)
and x is a point of Q(5, 2)⊗Q(5, 2) for which f(x) = 1 and Fx ∈ S∗.

Description 9a. The hyperplanes of Type 9 occurring in Table 1 are precisely the
hyperplanes of the form Hf ∗Hx where f is a non-classical valuation of Q(5, 2)⊗Q(5, 2)
and x is a point of Q(5, 2)⊗Q(5, 2) for which f(x) = 1 and Fx is a grid-quad.

Description 14a. The hyperplanes of Type 14 occurring in Table 1 are precisely the
hyperplanes of the form Hf ∗Hx where f is a non-classical valuation of Q(5, 2)⊗Q(5, 2)
and x is a point of Q(5, 2)⊗Q(5, 2) not belonging to Hf .

5.4 Hyperplanes of the form Hσ ∗Hx where x is a point and σ a
W (2)-subquadrangle

Let σ be a W (2)-subquadrangle of a Q(5, 2)-quad Q of Q(5, 2) ⊗ Q(5, 2) and let x be
a point of Q(5, 2) ⊗ Q(5, 2). Recall that the three lines of S∗ contained in σ define a
(3 × 3)-grid Gσ. By Table 1, the stabilizer of Hσ has six orbits on the set of points of
Q(5, 2)⊗Q(5, 2). This leads to the following six possibilities for x:
• x ∈ Gσ;
• x ∈ σ \Gσ;
• x ∈ Q \ σ;
• x 6∈ Q and πQ(x) ∈ Gσ;
• x 6∈ Q and πQ(x) ∈ σ \Gσ;
• x 6∈ Q and πQ(x) ∈ Q \ σ.

If x ∈ σ, then the complement (in Q) of the symmetric difference of x⊥ ∩ Q and σ is
a W (2)-subquadrangle σ′ and we have that Hx ∗ Hσ = Hσ′ . If x ∈ Q \ σ, then the
complement (in Q) of the symmetric difference of x⊥ ∩ Q and σ is equal to y⊥ ∩ Q for
some point y ∈ (Γ2(x)∩Q)\σ, and we have that Hx ∗Hσ = Hy. For one other possibility,
we already encountered the corresponding hyperplane.

Description 10b. The hyperplanes of Type 10 occurring in Table 1 are precisely the
hyperplanes of the form Hσ ∗ Hx where σ is a W (2)-subquadrangle of a Q(5, 2)-quad Q
and x is a point not belonging to Q for which πQ(x) 6∈ σ.

The two other possibilities give rise to new hyperplanes.

Description 8a. The hyperplanes of Type 8 occurring in Table 1 are precisely the
hyperplanes of the form Hσ ∗ Hx where σ is a W (2)-subquadrangle of a Q(5, 2)-quad Q
and x is a point not belonging to Q for which πQ(x) ∈ σ \Gσ.
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Description 12a. The hyperplanes of Type 12 occurring in Table 1 are precisely the
hyperplanes of the form Hσ ∗ Hx where σ is a W (2)-subquadrangle of a Q(5, 2)-quad Q
and x is a point not belonging to Q for which πQ(x) ∈ Gσ.

5.5 Hyperplanes of the form H ∗Hx where x is a point and H a
basic hyperplane with 171 points

Let H be a basic hyperplane with 171 points and x a point of Q(5, 2)⊗Q(5, 2). By Table
1, the stabilizer of H has four orbits on the set of points of Q(5, 2)⊗Q(5, 2). This leads
to the following four possibilities for the point x:
• x belongs to the base cube of H;
• x belongs to precisely one deep quad of H (and hence not to the base cube of H);
• x ∈ H and x does not belong to any of the six deep quads of H;
• x 6∈ H.

Three of the four possibilities for x give rise to hyperplanes we already considered. The
other possibility gives rise to a new hyperplane.

Description 8b. The hyperplanes of Type 8 occurring in Table 1 are precisely the
hyperplanes of the form H ∗Hx where H is a basic hyperplane with 171 points and x is
a point not belonging to H.

Description 9b. The hyperplanes of Type 9 occurring in Table 1 are precisely the
hyperplanes of the form H ∗Hx where H is a basic hyperplane with 171 points and x is
a point of H belonging to its base cube.

Description 10c. The hyperplanes of Type 10 occurring in Table 1 are precisely the
hyperplanes of the form H ∗Hx where H is a basic hyperplane with 171 points and x is
a point of H not belonging to any of the 6 deep quads.

Description 11a. The hyperplanes of Type 11 occurring in Table 1 are precisely the
hyperplanes of the form H ∗Hx where H is a basic hyperplane with 171 points and x is
a point of H belonging to precisely one deep quad of H.

5.6 Hyperplanes of the form Hx1
∗Hx2

∗Hx3
where x1, x2 and x3

are three points for which 〈x1, x2〉 is a grid-quad

Suppose x1, x2 and x3 are three points of Q(5, 2) ⊗ Q(5, 2) such that d(x1, x2) = 2 and
G := 〈x1, x2〉 is a grid-quad. Let a1 and a2 denote the two common neighbors of x1 and
x2, let b1, b2, b3 and b4 denote the four points of 〈x1, x2〉 at distance 1 from one of x1, x2

and distance 2 from the other, and let c denote the unique point of 〈x1, x2〉 at distance 2
from x1 and x2. Without loss of generality, we may suppose that {a1, b1, x2}, {b2, c, b4},
{x1, b3, a2}, {a1, b2, x1}, {b1, c, b3} and {x2, b4, a2} are the six lines that are contained in
G.
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We know that Hx1 ∗ Hx2 is a hyperplane of Type 5. The points x1 and x2 are not
uniquely determined by the hyperplaneHx1∗Hx2 . Indeed, we haveHx1∗Hx2 = (Hx1∗Ha2)∗
(Ha2 ∗Hx2) = Hb3 ∗Hb4 . Similarly, Hx1 ∗Hx2 = (Hx1 ∗Ha1)∗(Ha1 ∗Hx2) = Hb1 ∗Hb2 . There
are precisely 2592 hyperplanes of Type 5 while there are 7776 unordered pairs {y1, y2} of
points for which 〈y1, y2〉 is a grid-quad. So, if Hy1 ∗Hy2 = Hx1 ∗Hx2 , then {y1, y2} is equal
to either {x1, x2}, {b1, b2} and {b3, b4}.

By Table 1, the stabilizer of Hx1 ∗Hx2 has nine orbits on the points of Q(5, 2)⊗Q(5, 2).
This leads to the following nine possibilities for x3:
• x3 ∈ {x1, x2, b1, b2, b3, b4};
• x3 ∈ {a1, a2, c};
• x3 ∈ Γ1(G), πG(x3) ∈ {x1, x2, b1, b2, b3, b4} and x3πG(x3) ∈ S∗;
• x3 ∈ Γ1(G), πG(x3) ∈ {x1, x2, b1, b2, b3, b4} and x3πG(x3) 6∈ S∗;
• x3 ∈ Γ1(G), πG(x3) ∈ {a1, a2, c} and x3πG(x3) ∈ S∗;
• x3 ∈ Γ1(G), πG(x3) ∈ {a1, a2, c} and x3πG(x3) 6∈ S∗;
• x3 ∈ Γ2(G) and Γ2(x3) ∩G = {a1, a2, c};
• x3 ∈ Γ2(G) and Γ2(x3) ∩G is equal to {x1, b1, b4} or {x2, b2, b3};
• x3 ∈ Γ2(G) and Γ2(x3) ∩G is equal to either {x1, x2, c}, {a2, b1, b2} or {a1, b3, b4}.

If x3 ∈ {x1, x2, b1, b2, b3, b4}, then Hx1 ∗ Hx2 ∗ Hx3 must be a singular hyperplane. If
x3 ∈ {a1, a2, c}, then Hx1 ∗Hx2 ∗Hx3 must be a hyperplane of Type 5, and if x3 ∈ Γ1(G)
and πG(x3) ∈ {x1, x2, b1, b2, b3, b4}, then Hx1 ∗ Hx2 ∗ Hx3 must be a hyperplane of Type
10. The other five possibilities give rise to four alternative descriptions and one new
description for certain hyperplanes of Q(5, 2)⊗Q(5, 2).

Description 8c. The hyperplanes of Type 8 occurring in Table 1 are precisely the
hyperplanes of the form Hx1 ∗Hx2 ∗Hx3 where x1, x2 and x3 are points such that G :=
〈x1, x2〉 is a grid-quad, x3 ∈ Γ1(G), πG(x3) ∈ (Γ1(x1) ∩ Γ1(x2)) ∪ (Γ2(x1) ∩ Γ2(x2)) and
x3πG(x3) ∈ S∗.

Description 12b. The hyperplanes of Type 12 occurring in Table 1 are precisely the
hyperplanes of the form Hx1 ∗Hx2 ∗Hx3 where x1, x2 and x3 are points such that G :=
〈x1, x2〉 is a grid-quad, x3 ∈ Γ1(G), πG(x3) ∈ (Γ1(x1) ∩ Γ1(x2)) ∪ (Γ2(x1) ∩ Γ2(x2)) and
x3πG(x3) 6∈ S∗.

Description 14b. The hyperplanes of Type 14 occurring in Table 1 are precisely the
hyperplanes of the form Hx1 ∗Hx2 ∗Hx3 where x1, x2 and x3 are points such that G :=
〈x1, x2〉 is a grid-quad, x3 ∈ Γ2(G) and Γ2(x3)∩G = (Γ1(x1)∩Γ1(x2))∪(Γ2(x1)∩Γ2(x2)∩G).

Description 7b. The hyperplanes of Type 7 occurring in Table 1 are precisely the
hyperplanes of the form Hx1 ∗Hx2 ∗Hx3 where x1, x2 and x3 are points such that G :=
〈x1, x2〉 is a grid-quad, x3 ∈ Γ2(G) and |Γ2(x3) ∩G ∩ {x1, x2}| = 1.

Description 15a. The hyperplanes of Type 15 occurring in Table 1 are precisely the
hyperplanes of the form Hx1 ∗Hx2 ∗Hx3 where x1, x2 and x3 are points such that G :=
〈x1, x2〉 is a grid-quad, x3 ∈ Γ2(G) and Γ2(x3) ∩ G is the unique ovoid of G through
{x1, x2}.
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5.7 Hyperplanes of the form Hσ1
∗ Hσ2

and Hσ1
∗ Hσ2

∗ Hx where
x is a point and σ1, σ2 are two distinct W (2)-subquadrangles
intersecting in a line

Suppose σ1 and σ2 are two distinct W (2)-subquadrangles of Q(5, 2)⊗Q(5, 2) intersecting
in a line L, and let x be an arbitrary point of Q(5, 2) ⊗ Q(5, 2). Let Qi, i ∈ {1, 2}, be
the unique Q(5, 2)-quad of Q(5, 2)⊗Q(5, 2) containing σi. Then Q1 ∩Q2 = L ∈ S∗. One
can easily prove that the hyperplane Hσ1 ∗Hσ2 has precisely two deep Q(5, 2)-quads and
|P| − |Hσ1| − |Hσ2|+ 2 · |Hσ1 ∩Hσ2| = 243− 147− 147 + 2 · 99 = 147 points. Consulting
Table 1, we then know the following.

Description 6a. The hyperplanes of Type 6 occurring in Table 1 are precisely the
hyperplanes of the form Hσ1 ∗Hσ2 where σ1 and σ2 are two distinct W (2)-subquadrangles
intersecting in a line.

Suppose L = {x1, x2, x3}. For every i ∈ {1, 2, 3}, we have Hxi∗Hσ1 = H
σ

(i)
1

and Hxi∗Hσ2 =

H
σ

(i)
2

for certain W (2)-subquadrangles σ
(i)
1 ⊆ Q1 and σ

(i)
2 ⊆ Q2 through L. We have

Hσ1 ∗Hσ2 = (Hσ1 ∗Hxi) ∗ (Hσ2 ∗Hxi) = H
σ

(i)
1
∗H

σ
(i)
2

. Put σ
(0)
1 := σ1 and σ

(0)
2 := σ2. The

number of unordered pairs of W (2)-subquadrangles intersecting in a line is precisely 11664
while there are only 2916 hyperplanes of Type 6. So, if σ and σ′ are W (2)-subquadrangles

intersecting in a line such that Hσ ∗Hσ′ = Hσ1 ∗Hσ2 , then {σ, σ′} is equal to {σ(i)
1 , σ

(i)
2 }

for precisely one i ∈ {0, 1, 2, 3}. For every point y ∈ Q1 \ L, there exists a unique
i ∈ {0, 1, 2, 3} such that y ∈ G

σ
(i)
1

. So, without loss of generality, we may suppose that

the following holds:

(∗) if x 6∈ Q1 ∪Q2, then πQ1(x) ∈ Gσ1 .

By Table 1, the stabilizer of the hyperplane Hσ1 ∗ Hσ2 has five orbits on the points of
Q(5, 2) ⊗ Q(5, 2). These orbits correspond to the following choices for x (taking into
account that assumption (∗) holds):
• x ∈ L;
• x ∈ (Q1 ∪Q2) \ L;
• x 6∈ Q1 ∪Q2, x ∈ Hσ1 ∗Hσ2 and πQ2(x) ∈ Gσ2 ;
• x 6∈ Q1 ∪Q2, x ∈ Hσ1 ∗Hσ2 and πQ2(x) ∈ σ2 \Gσ2 ;
• x 6∈ Hσ1 ∗Hσ2 .

If x ∈ L, then Hσ1 ∗Hσ2 ∗Hx is a hyperplane of Type 6 since it is equal to the hyperplane
H
σ

(i)
1
∗Hσ2 where i ∈ {1, 2, 3} such that x = xi. One of remaining four possibilities leads

to a new type of hyperplane.

Description 13a. The hyperplanes of Type 13 occurring in Table 1 are precisely the
hyperplanes of the form Hσ1 ∗ Hσ2 ∗ Hx where σ1 and σ2 are two W (2)-subquadrangles
intersecting in a line and x is a point not contained in Hσ1 ∗Hσ2 .
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For the other possibilities, we can say the following (verified with GAP).

Description 12c. The hyperplanes of Type 12 occurring in Table 1 are precisely the hy-
perplanes of the form Hσ1∗Hσ2∗Hx where σ1 and σ2 are two distinct W (2)-subquadrangles
intersecting in a line L and x 6∈ L is a point belonging to the Q(5, 2)-quad that contains
σ1.

Description 14c. The hyperplanes of Type 14 occurring in Table 1 are precisely the
hyperplanes of the form Hσ1 ∗Hσ2 ∗Hx where σi, i ∈ {1, 2}, is a W (2)-subquadrangle of
some Q(5, 2)-quad Qi and x is a point such that σ1 ∩ σ2 = Q1 ∩Q2 is a line, x 6∈ Q1 ∪Q2,
πQ1(x) ∈ Gσ1 and πQ2(x) ∈ Gσ2 .

Description 14d. The hyperplanes of Type 14 occurring in Table 1 are precisely the
hyperplanes of the form Hσ1 ∗Hσ2 ∗Hx where σi, i ∈ {1, 2}, is a W (2)-subquadrangle of
some Q(5, 2)-quad Qi and x is a point such that σ1 ∩ σ2 = Q1 ∩Q2 is a line, x 6∈ Q1 ∪Q2,
πQ1(x) ∈ σ1 \Gσ1 and πQ2(x) ∈ σ2 \Gσ2 .

Description 15b. The hyperplanes of Type 15 occurring in Table 1 are precisely the
hyperplanes of the form Hσ1 ∗Hσ2 ∗Hx where σi, i ∈ {1, 2}, is a W (2)-subquadrangle of
some Q(5, 2)-quad Qi and x is a point such that σ1 ∩ σ2 = Q1 ∩Q2 is a line, x 6∈ Q1 ∪Q2,
πQ1(x) ∈ Gσ1 and πQ2(x) ∈ σ2 \Gσ2 .

The following description of the Type 12 hyperplanes can be deduced from Description
12c given above.

Description 12d. The hyperplanes of Type 12 occurring in Table 1 are precisely the
hyperplanes of the form Hσ1 ∗ Hσ2 where σi, i ∈ {1, 2}, is a W (2)-subquadrangle of a
Q(5, 2)-quad Qi such that Q1 ∩Q2 is a line contained in σ2 but not in σ1.

5.8 Hyperplanes of the form Hx1
∗Hx2

∗Hx3
where x1, x2 and x3

are three mutually distinct points

Suppose x1, x2 and x3 are three mutually distinct points of Q(5, 2)⊗Q(5, 2). We wish to
determine which kind of hyperplane Hx1 ∗Hx2 ∗Hx3 is. If two of these points lie at distance
1 from each other, then Hx1 ∗ Hx2 ∗ Hx3 is of the form Hy1 ∗ Hy2 , a type of hyperplane
we already examined. If two of these points lie at distance 2 and are contained in a
Q(5, 2)-quad, then Hx1 ∗Hx2 ∗Hx3 is of the form Hσ ∗Hy, a type of hyperplane we have
also already examined. Also the case where there are two points at distance 2 contained
in a grid-quad has already been examined. It remains to consider the case where x1, x2

and x3 are mutually opposite points.
For every i ∈ {1, 2}, let Qi and Ri be the unique Q(5, 2)-quads through xi. Without

loss of generality, we may suppose that Q1, Q2 ∈ T1 and R1, R2 ∈ T2. Then Q1 ∩ Q2 =
R1 ∩ R2 = ∅. Put Q3 := RQ2(Q1) = RQ1(Q2) ∈ T1 and R3 := RR2(R1) = RR1(R2) ∈ T2.
The line Q3 ∩R3 contains a unique point opposite to x1 and x2. We denote this point by
µ(x1, x2). We also define Ω1(x1, x2) = {Q1, Q2, Q3, R1, R2, R3} and Ω2(x1, x2) = {Q3, R3}.
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There are three Q(5, 2)-quads Q ∈ T1 for which {πQ(x1), πQ(x2), πQ(µ(x1, x2))} is a
line. Indeed, the points x1, πR1(x2) and πR1(µ(x1, x2)) form an ovoid of the (3×3)-subgrid
R1 ∩ (Q1 ∪Q2 ∪Q3) and if u is one of the three common neighbors of these three points,
then the unique Q(5, 2)-quad Qu of T1 through u satisfies this condition since πQu(x1) = u,
πQu(x2) = πR2(u) and πQu(µ(x1, x2)) = πR3(u). Each of the three Q(5, 2)-quads of T1 that
arise in this way must be deep with respect to the hyperplane Hx1 ∗ Hx2 ∗ Hµ(x1,x2). In
a similar fashion, one can show that there are three Q(5, 2)-quads R ∈ T2 that are deep
with respect to Hx1 ∗ Hx2 ∗ Hµ(x1,x2). This implies that Hx1 ∗ Hx2 ∗ Hµ(x1,x2) is a basic
hyperplane with 171 points. In this way, we obtain a more direct construction for these
basic hyperplanes, i.e. a construction that does not rely on the universal embedding ẽ of
Q(5, 2)⊗Q(5, 2).

Description 2b. The hyperplanes of Type 2 occurring in Table 1 are precisely the
hyperplanes of the form Hx1 ∗ Hx2 ∗ Hx3 where x1 and x2 are two opposite points and
x3 = µ(x1, x2).

The following more direct construction for the Type 11 hyperplanes can be given.

Description 11b. The hyperplanes of Type 11 occurring in Table 1 are precisely the
hyperplanes of the form Hx1 ∗Hx2 ∗Hx3 where x1 and x2 are two opposite points and x3

is a point of Γ3(x1)∩Γ3(x2) \ {µ(x1, x2)} contained in one of the two quads of Ω2(x1, x2).

We have not yet considered the case where the point x3 is not contained in any quad of
Ω1(x1, x2). This possibility leads to our final type of hyperplane.

Description 16a. The hyperplanes of Type 16 occurring in Table 1 are precisely the
hyperplanes of the form Hx1 ∗Hx2 ∗Hx3 where x1, x2 and x3 are mutually opposite points
of Q(5, 2)⊗Q(5, 2) such that x3 is not contained in any of the six quads of Ω1(x1, x2).
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