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Abstract: In this paper we discuss near-Hagedorn string thermodynamics starting from

the explicit path integral derivation found by [1]. Their result is extended and the validity

is checked by comparing with some known exact results. We compare this approach with

the first-quantized one-loop result from the field theory action and establish correction

terms to the above result.
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1 Introduction

It is an old fact that the behavior of string theory at high temperatures is rather different

than that of a conventional thermodynamic system [2][3][4].

Consider a gas of strings in a box with a fixed total amount of energy (microcanonical

ensemble) [5][6][7][8]. As one increases the energy gradually, nothing special happens until

suddenly most of the strings in the gas coalesce and form highly excited long strings. All

energy pumped into the system goes into the excitation modes of the long string(s) and

not in increasing the temperature. Actually the story is a bit more involved: a single string

at high energy behaves as a long random walk. Whether the entire string gas is dominated
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by one or many long strings depends on the number of non-compact dimensions as is ex-

tensively discussed in [8].1 One can quickly see that long strings are favored for entropic

reasons by using simple random walk arguments (see e.g. [9]).2 Important to note is that

the single string density of states always shows long random walk behavior and it is this

aspect that we will consider. Whether the gas then is dominated by one string is another

problem we shall not consider here.

Now consider the same story, but from a canonical ensemble point of view. Increasing the

temperature to a critical value, causes the partition function to diverge due to the high

density of highly excited string modes. This ultimate temperature is the so-called Hage-

dorn temperature [11] and the canonical ensemble is not useable at higher temperatures.

A few years ago, the authors of [1] made an explicit derivation of the link between these two

approaches by deriving the single string random walk picture directly from the canonical

ensemble using the string path integral at genus one.

This phenomenon also has a third different manifestation. Thermodynamics on any space-

time can be calculated on the so-called ‘thermal manifold’ by Wick rotating the time

coordinate and periodically identifying this coordinate. For particles nothing dramatic

happens when doing this, strings however can wrap this Euclideanized time direction. The

divergence manifests itself here by the masslessness of a winding string state at the critical

temperature (and it becomes tachyonic when further heating the system). This string field

is what is known as the thermal scalar and when nearing the Hagedorn temperature, this

field dominates the thermodynamics in the same way that the single string dominates the

microcanonical picture [2]. This field effectively represents the large density of states of

highly excited string states. One should remark that this field is not a real field correspond-

ing to physical particles but is an effective field theory degree of freedom which dominates

the string thermodynamics at high energy.

This random walk picture also arises in black hole geometries [12][13]. The long string

surrounds the event horizon and forms the stretched horizon (or the black hole membrane

as it is called in the earlier literature3). This work started with the question: ‘Can we

apply the methods developed in [1] to the black hole case?’ In the case of a black hole, the

local temperature increases as one approaches the horizon and at a distance of the order

of the string length
√
α′, it exceeds the flat space Hagedorn temperature. One expects

a condensate of winding tachyons close to the horizon which in the Lorentzian case is

responsible for the appearance of a stretched horizon. Strong evidence for this scenario

was shown using the exactly solvable 2D black hole or cigar [15] appearing in Little String

Theory [16]. A relation between condensed winding modes and black hole entropy has also

been discussed in [17] using C/Zn orbifolds. The idea [18] is that the tachyons condense at

the tip of the cone and relax the cone to flat space. In this case, closed string field theory

can be used because of the localized nature of the winding tachyons [19]. For Schwarzschild

black holes, the situation is less clear [15]. Recently, research on the nature of the stretched

1For 1 or 2 spatial non-compact dimensions, the gas is not dominated by long strings at all.
2See also [10] for scattering amplitude arguments in favor of a random walk interpretation of the highly

excited string.
3See e.g. [14] and references therein.
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horizon has been rekindled in [20] who propose the existence of a firewall.4 As pointed out

in [22][23], the existence of a winding string zero mode close to the horizon is a possible

stringy realization of this idea and deserves further study. Our endeavor is therefore to

develop from the string path integral, a general framework for the thermal scalar in curved

spacetime backgrounds.

Before we arrive there however, we will first reanalyze the derivation of [1] and extend

and test their result in several situations that are easier to understand than black hole

horizons. We discuss the application to black hole horizons themselves in [24]. Several

other examples will be postponed to a companion paper [25]. We want to analyze the

random walk picture of highly excited strings in general backgrounds from the canonical

ensemble and see if we can get aspects of the above picture out of it.

This paper is organized as follows.

In section 2 we review and extend the path integral derivation of the random walk behavior

in general backgrounds as was put forward by [1]. The beauty of this path integral approach

is the physical picture of a random walk that clearly emerges once the dust settles. We

comment on several of the difficulties that appear in our derivation. The most important

of these is that we seem to miss several terms in the resulting particle action, indicating

that we did not take the near-Hagedorn limit correctly.

In section 3 we compare the results from the second section to some explicitly known flat

spacetime results. We will see in these explicit examples that we do indeed reproduce the

expected results if we include a correction corresponding to the flat space tachyon mass in

the action.

In section 4 we will calculate the correction terms explicitly in flat spacetime while taking a

path integral perspective (i.e. without comparing to known results). This will demonstrate

where the above term comes from.

We take a different point of view in section 5 and try to see whether we can make contact

with one-loop results of field theory actions. The reason we take this approach is because

in this case it is computationally easier to deal with field theory actions than to manipu-

late path integral expressions. We will find a match for flat backgrounds but for general

backgrounds we find other terms as well in the action. These are terms arising from the√
G00 metric component in the measure in the field theory action. We interpret these as

other terms we missed in the derivation of the second section.

Several technical computations are given in the appendices. Examples of these methods

are presented in companion papers [24][25].

2 Path integral approximation for dominance by singly wound strings

The authors of [1] have given an explicit path integral picture of the thermal scalar. In this

section we review and extend their derivation of the random walk picture of highly excited

strings (while making some modifications near the end).

4See [21] for an earlier development in this direction.
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The goal is to derive the free energy of a gas of non-interacting strings in a curved back-

ground in the limit where highly excited strings dominate (in the microcanonical ensemble).

In the canonical ensemble this corresponds to temperatures near the Hagedorn temperature

of the specific background. Let us first remark that the relation between the microcanonical

and canonical ensemble is not entirely clear in string theory: several conceptual problems

arise due to the asymptotic exponential degeneracy of states [6]. In what follows we will

perform our computations in the canonical ensemble and leave further study of this issue

in our case to future work. A partial motivation for this is that the canonical ensemble is

often used as a starting point to compute the relevant microcanonical quantities [26][27].

2.1 The thermal manifold to calculate string thermodynamics

Thermodynamics in a general background depends obviously on the choice of time variable.

So to describe e.g. the free energy we first have to choose a preferred time coordinate and

then calculate the free energy associated to that specific time coordinate.

The starting point of the derivation is the assumption that the free energy of a non-self-

interacting string gas in a certain time-independent background (defined as the sum of the

free energies of the individual particle states in the string spectrum) is proportional to the

torus partition function of a single string on the thermal manifold (same background, but

with X0 Wick-rotated and compactified with length β, the inverse temperature). So

Z1string = −βFstringgas. (2.1)

We say non-self-interacting since the string gas does interact with the background, but it

does not interact with itself (reflected in the fact that we only consider the torus amplitude).

We make the following comments regarding this assumption:

• It holds for the flat bosonic case as proven by Polchinski [28].

• It holds also for toroidal compactifications of the flat bosonic string. As an example,

we prove such a statement in [25].

• In [29] this equality was used in AdS3 to identify the string spectrum with the pro-

posed spectrum obtained from harmonic analysis [30].

• The authors of [31] prove that the analogous statement holds for open strings on the

cylinder worldsheet in a constant background electromagnetic field.

• For flat space superstrings and heterotic strings, such a statement also holds [32] but

one needs to be careful in the interplay between the bosonic boundary conditions and

the fermionic boundary conditions (spin structure), i.e. the GSO projection.

2.2 Deriving the thermal scalar

We will now explore the thermodynamics of closed strings at the one loop level (genus 1).

We must first be a bit more precise on the relation (2.1). The modular integration of

the torus amplitude is chosen to be the entire strip [28] and we restrict the Euclidean time
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coordinate to winding around only one torus cycle. In a second stage, in flat space, one

can use the theorem by [33][34] to relate this to a modular integral over the fundamental

domain, while replacing the zero-mode sum over a single quantum number by a double

sum over both momenta and winding. For superstrings, an extension of this theorem needs

to be used. The logic is basically the same: if we start with the fundamental domain, we

restrict the double sum to a single sum and extend the modular domain to the entire strip

(see e.g. [16] for an example of such a procedure). In what follows we view the strip domain

as the relevant one for thermodynamics and restrict the Euclidean time coordinate to a

single torus cycle. For now, we also assume that no other coordinates are compactified.

We will extend this assumption in [25].

We are interested in the dominant contribution and so we restrict ourselves to winding

±1 around the Euclidean time direction. At least in spaces where the thermal circle is

topologically stable, we expect strings that are wrapped multiple times to be more mas-

sive. Indeed, in the flat space string spectrum, the winding ±1 mode becomes massless at

the Hagedorn temperature [2] and strings with higher winding numbers are massive. The

zero-winding modes correspond to the zero-temperature vacuum energy and we are not

interested in this here.

This intuition is well-founded for spaces with topologically stable thermal circles, but what

about other spaces? We know Euclidean black hole backgrounds are cigar-shaped and

the thermal circle shrinks to zero size at the horizon. Is there still a dominating wind-

ing mode present? For now we will assume that indeed winding ±1 modes are dominant

and we focus on them. We present examples of these phenomena in a companion paper [25].

We start from the following torus path integral in an external field Gµν in D spacetime

dimensions:

ZT2 =

∫ ∞
0

dτ2

2τ2

∫ 1/2

−1/2
dτ1∆FP

∫
[DX]

√
G exp− 1

4πα′

∫
d2σ
√
hhαβ∂αX

µ∂βX
νGµν(X).

(2.2)

where ∆FP denotes the Faddeev-Popov determinant from the (Diff × Weyl) gauge-fixing

procedure. We choose Euclidean signature for both the worldsheet and the target space

manifold. The worldsheet metric has been fixed to

hαβ =

[
1 τ1

τ1 τ
2
1 + τ2

2

]
, (2.3)

and the torus worldsheet is represented by a square with sides equal to 1. We consider

strings that are singly wound around the Euclidean time direction:

Xµ(σ1 + 1, σ2) = Xµ(σ1, σ2), µ = 0 . . . D − 1,

Xi(σ1, σ2 + 1) = Xi(σ1, σ2), i = 1 . . . D − 1,

X0(σ1, σ2 + 1) = X0(σ1, σ2)± β. (2.4)

where the wrapping is around the temporal worldsheet coordinate. The Hagedorn diver-

gence is due to the τ2 → 0 (ultraviolet) behavior of the torus path integral (as shown in
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figure 1(a)). The essential idea of the thermal scalar is that this ultraviolet divergence

for τ2 → 0 can be described through a UV/IR connection as an infrared divergence for

τ2 → ∞. In standard approaches [2], one uses the link between the strip and the fun-

damental domain to make this correspondence. The divergence appears there as a string

state that becomes massless at precisely the Hagedorn temperature (see figure 1(b)). How-

ever, we follow [1] and instead use a modular transformation on the strip domain (figure

1(c)). This will enable us to deal with the integral over τ1 later on. So, qualitatively, the

ultraviolet divergence becomes an infrared divergence (due to the massless thermal scalar).

More precisely, we perform the transformation τ → − 1
τ in the modular integral and then

swap the roles of σ1 and σ2. As a consequence, the string wraps the thermal circle along

the spatial worldsheet coordinate σ1:

Xµ(σ1, σ2 + 1) = Xµ(σ1, σ2), µ = 0 . . . D − 1,

Xi(σ1 + 1, σ2) = Xi(σ1, σ2), i = 1 . . . D − 1,

X0(σ1 + 1, σ2) = X0(σ1, σ2)± β. (2.5)

Figure 1. A circle represents the winding tachyon divergence. A square represents the closed string

tachyon divergence (or the massless states for superstrings). (a) Free energy evaluated in the strip.

(b) Free energy as a partition function of a single string on the thermal manifold. The equivalence

with (a) follows from the theorem in [33][34]. (c) Free energy after the modular transformation

τ → − 1
τ on (a).

In figure 1(a), there is a UV divergence caused by the exponentially growing string

density. This corresponds to long string dominance. For bosonic strings, after using the

theorem from [33][34], we get the picture of figure 1(b). Here we interpret this divergence as

the tachyonic character of the singly wound string. To extract solely the winding tachyon

contribution, we use a modular transformation in the strip (a). This displaces the winding

tachyon divergence to τ2 →∞ (figure 1(c)).5

Let us now consider this dual (in the modular sense τ → − 1
τ ) path integral for τ2 →∞.

We can use the reparametrization invariance of the path integral to define new worldsheet

5Strictly speaking, this is only valid for τ1 = 0. Nevertheless, we will obtain the expected results.
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coordinates (σ, τ): {
σ = σ1

τ2
, τ = σ2

X(σ1, σ2)→ X(σ, τ).
(2.6)

The worldsheet action now becomes using the torus metric:

S =
1

4πα′

[(
1 +

τ2
1

τ2
2

)∫ 1/τ2

0
dσ

∫ 1

0
dτGµν∂σX

µ∂σX
ν

+2
τ1

τ2

∫ 1/τ2

0
dσ

∫ 1

0
dτGµν∂σX

µ∂τX
ν +

∫ 1/τ2

0
dσ

∫ 1

0
dτGµν∂τX

µ∂τX
ν

]
. (2.7)

We next consider a Fourier series expansion in the σ worldsheet coordinate.

Xi(σ, τ) =

+∞∑
n=−∞

ei(2πnτ2)σXi
n(τ), (2.8)

X0(σ, τ) = ±βτ2σ +
+∞∑

n=−∞
ei(2πnτ2)σX0

n(τ). (2.9)

In the τ2 → ∞ limit, only the n = 0 mode survives (〈(Xµ
n )2〉 ∼ 1/τ2 for n 6= 0) and we

get a dimensional reduction from a two dimensional non-linear σ-model on the worldsheet

to quantum mechanics on the worldline and the string theory reduces to a particle theory

(of the thermal scalar). Physically this corresponds to neglecting the temporal worldsheet

dependence of the string which we started with.

Defining

Xi
0(τ) = Xi(τ), X0

0 (τ) = X0(τ), (2.10)

the particle action becomes:

Spart =
1

4πα′τ2

[
β2(τ2

1 + τ2
2 )

∫ 1

0
dτG00 ± 2τ1β

∫ 1

0
dτG00∂τX

0

±2τ1β

∫ 1

0
dτG0i∂τX

i +

∫ 1

0
dτGµν∂τX

µ∂τX
ν

]
(2.11)

for winding number ±1.

Of course, in dimensional reduction, one always loses information about the high energy

degrees of freedom on the worldsheet, which could be important. The situation is similar

to dimensional reduction in high temperature field theory where one loses the perturbative

Stefan-Boltzmann result coming from the high energy degrees of freedom [35][36]. In a

sense, one can view τ2 as a ‘spatial’ worldsheet temperature. The dimensional reduction

has replaced a string path integral with a particle path integral. So the lost degrees of

freedom are the orthogonal oscillations of the string.

In the case of bosonic strings in flat space (Gµν = δµν), the orthogonal oscillations

(including the Faddeev-Popov factor ∆F τ
−1
2 ) give a factor:

|η(τ)|−48 exp−πR
2

τ2α′
|nτ −m|2, (2.12)
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for one compact dimension with radius R. The symbol η denotes the Dedekind η-function.

Using the modular transformation and taking the limit τ2 →∞ yields

e4πτ2e
− β2

4πα′τ2
(τ2

1 +τ2
2 )
. (2.13)

Comparing with Spart, we find that we have to add

∆S = −4πτ2 = −
τ2

2β
2
H

4πα′τ2
. (2.14)

This correction term was only calculated for flat spacetime. We expect other corrections

when we consider a generally curved background. One of the goals of this paper is precisely

to get a handle on these corrections. We will have more to say about this further on.

Introducing the parameter t = τ2τ and adding ∆S, the particle action is finally

Spart =
1

4πα′

[
β2 |τ |

2

τ2
2

∫ τ2

0
dtG00 − β2

Hτ2 ± 2
τ1

τ2
β

∫ τ2

0
dtG0µ∂tX

µ +

∫ τ2

0
dtGµν∂tX

µ∂tX
ν

]
.

(2.15)

If the metric is time independent, whatever the corrections are, the X0 integration is

Gaussian in this case and can be integrated out exactly. From now on we set G0i = 0.

For the Gaussian X0 integration (G00 is independent of X0) we first solve the classical

equation:

∂t

[(
G00( ~X)∂tX

0,cl(t)
)
± τ1

τ2
βG00( ~X)

]
= 0 (2.16)

or

G00( ~X)∂tX
0,cl ± τ1

τ2
βG00( ~X) = C. (2.17)

The constant C is determined by periodicity:∫ τ2

0
∂tX

0dt = 0 (2.18)

so that

C = ± τ1β

〈1/G00〉
, (2.19)

where we denoted 〈A〉 =
∫ τ2

0 Adt. The classical action (of the X0-dependent contributions)

is

S
(
X0,cl

)
=

1

4πα′

[
τ2

1β
2

〈1/G00〉
− τ2

1

τ2
2

β2〈G00〉
]
. (2.20)

The second term in the classical action cancels the τ2
1 term in Spart. Therefore, putting

X0 = Xcl + X̃0, we find:

Sp =
1

4πα′

[
τ2

1β
2

〈1/G00〉
+ β2

∫ τ2

0
dtG00 − β2

Hτ2 +

∫ τ2

0
dtG00(∂tX̃

0)2 +

∫ τ2

0
dtGij∂tX

i∂tX
j

]
.

(2.21)
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The X̃0 path integral is:

Z0 =

∫ [
DX̃0

]∏
t

√
G00( ~X(t)) exp− 1

4πα′

∫ τ2

0
dtG00( ~X)(∂tX̃

0)2. (2.22)

Using the following identity for one timestep ε:∫ +∞

−∞
du

√
a1

π
exp

(
−a1

ε
(x− u)2

)√a2

π
exp

(
−a2

ε
(u− y)2

)
=
√
ε

√(
a1a2

a1 + a2

)
1

π
exp

(
− a1a2

a1 + a2

(x− y)2

ε

)
, (2.23)

we find after n intermediate timesteps:

(√
ε
)n√( 1∑n

i=1 1/ai

)
1

π
exp

(
− 1∑n

i=1 1/ai

(x− y)2

ε

)
. (2.24)

Using

ai =
1

4πα′
G00(ti), (2.25)

and performing the final integration over X̃0(0) = X̃0(τ2) which gives a factor β, we find

Z0 = Nβ

√
1

〈G−1
00 〉

, (2.26)

where N is a normalization factor given by6

N =

√
1

4π2α′
. (2.28)

Note that the appearance of
∏
t

√
G00 in the measure is essential for this simple result.

The τ1 integration can also be performed exactly for τ2 →∞ because the dual domain

of integration for τ1 is ]−∞,+∞[. This gives the factor

2π
√
α′
√
〈G−1

00 〉
β

. (2.29)

Putting everything together, the 〈G−1
00 〉 factors cancel and we finally obtain the following

particle path integral after integrating out X0:

Zp = 2

∫ ∞
0

dτ2

2τ2

∫
[DX]

√∏
t

detGij exp−Sp(X) (2.30)

6By carefully taking the measure into account, we can determine the normalization factor N . We can

determine this constant equally easy from the flat space limit (since the constant does not depend on the

background) where the path integral is given by

Z0 =

∫
[dX0] exp− 1

4πα′

∫ τ2

0

dt(∂tX0)2 =
β√

4π2α′τ2
. (2.27)

Comparing the results immediately gives the above value for N .
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where

Sp =
1

4πα′

[
β2

∫ τ2

0
dtG00 − β2

Hτ2 +

∫ τ2

0
dtGij∂tX

i∂tX
j

]
. (2.31)

The prefactor 2 is the result of summing over both windings ±1, since these give equal

contributions. Note that we do not find the path integral measure
√
G00 detGij in contrast

to the authors of [1].

In all, we have reduced the full string partition function to a partition function for a

non-relativistic particle moving in the purely spatial curved background. Because of the

swapping of worldsheet coordinates, the time evolution of the particle in its random walk is

equal to the spatial form of the long highly excited string. The long string in real spacetime

has a shape described by the above random walk.

Before moving on, let us briefly recapitulate several of the delicate points in the pre-

vious derivation:

• We assumed that the free energy of a string gas can be described by a path integral

on the thermal manifold over the modular strip. As we already discussed, this is a

very plausible statement. But, as far as we know, it has not been proven in general.

• This picture provides an explicit realization of the correspondence between the long

highly excited string and the dominant behavior of the canonical (single-string) par-

tition function. The Euclidean time coordinate has been integrated out to explicity

show the random walk behavior in the spatial submanifold. If we are interested in the

configurations of the entire string gas, we should look at the multi-string partition

function which is given by

Zmult = e−βF (2.32)

and it is clear that this has contributions from multiple random walks. Whether this

is dominated by single random walks then requires an analysis analogous to [8] that

we shall not consider here.

• Note that since the final result does not depend on X0 anymore, the Wick rotation

(naively) appears trivial in this case. To put it another way, we end up with a

random walk in the spatial submanifold and it appears irrelevant whether we view

this as the spatial submanifold of the Lorentzian or Euclidean background. There

is however one important influence of this Wick rotation: if one chooses a black

hole background with G00 → 0 as r → rH (for instance a Schwarzschild black hole in

Schwarzschild coordinates), the radial coordinate only lives outside the event horizon.

When viewing this random walk as a walk in Lorentzian signature spacetime, this

means the random walk cannot intersect the horizon and go into the interior of the

black hole. This makes sense, since we are discussing thermodynamics as observed

by fiducial observers and spacetime effectively ends at the horizon for these observers

(cfr. the membrane paradigm [14]). The concrete application to random walks near

black hole horizons is discussed in [24].
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• We stated that the τ2 → 0 limit corresponding to the UV divergence, is mapped

to the τ2 → ∞ limit as a IR divergence. This only holds for τ1 = 0. We did not

consider the effect of other values of τ1 on the derivation. This is a subtle point, but

we will find further on that nevertheless we reproduce expected results whenever we

can compare with other results.

• In the worldsheet dimensional reduction, we ignored all higher order terms (we set

them to zero) because they were not dominant in the large τ2 limit. A good approach

would be to integrate all of these out and get corrections for the lowest Fourier mode.

This would then give us the correction term that we missed. We previously found

this by comparing our result with the known exact result. In what follows we will

compare the previous result with several exact results from type II and heterotic

superstrings and we will find perfect agreement. We will also exactly integrate out

all higher Fourier modes in flat spacetime and indeed see that these provide us with

the missed correction term in the action.

• There is a divergence for τ2 → 0 in this result. This was not present at first and

was introduced ‘by hand’ when we chose the lower boundary for the τ2 integral. In

principle, we should not take 0 as the lower limit, since we assumed that τ2 was large.

We chose this to find agreement with the field theory picture (see further) that indeed

has lower value 0. This is actually the same reasoning as discussed in [37] (chapter 7):

if we rewrite the path integral to explicitly display all string contributions and then

drop all but one of these states, we would get the same result as a field theory first-

quantized vacuum loop (provided the integral boundaries are kept the same). This

divergence is not a consequence of a tachyon, but instead follows from the fact that

we only retain one string field. The divergence that sets in is the usual field theory

UV divergence. By dropping all other string excitations, we have lost the finiteness

of the amplitudes. We are however only interested here in the τ2 → +∞ limit so this

will not bother us. Also note that in the bosonic string case, the full string amplitude

has a tachyon in the small τ2 limit, but when doing the manipulations in the large

τ2 limit, we lose this tachyon divergence but instead get the field theory divergence.

2.3 Some extensions

Let us now make two extensions to the method discussed above: a background Kalb-

Ramond field and general stationary spacetimes (so G0i 6= 0).

Adding a Kalb-Ramond background

We extend the previous result to contain a background Kalb-Ramond field. The starting

point is the following addition to the string action

Sextra =
1

4πα′

∫
d2σ
√
hiεabBµν(X)∂aX

µ∂bX
ν . (2.33)
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Since
√
hε12 = 1, the modular transformation has no effect on this term except the swapping

of the roles of σ1 and σ2. We obtain

Sextra = − 1

2πα′

∫
dσ1dσ2iBµν(X)∂1X

µ∂2X
ν . (2.34)

Doing the substitution to σ and τ as before yields

Sextra = − 1

2πα′

∫ 1/τ2

0
dσ

∫ 1

0
dτiBµν(X)∂σX

µ∂τX
ν . (2.35)

The next step is the Fourier expansion. There is only one non-zero possibility here and it

finally gives the following addition to the particle action

Sextra = ∓i β

2πα′

∫ τ2

0
dtB0i(X)∂tX

i. (2.36)

This can be interpreted as the minimal coupling of a non-relativistic particle (with a suit-

ably normalized charge) to a vector potential Ai = B0i. So the resulting particle that lives

in one dimension less than the original string, is also minimally coupled to an electromag-

netic field.

Note that such a term is no longer symmetric under the positive and negative windings (as

is obvious from the orientation reversal symmetry breaking property of the Kalb-Ramond

field). In the particle path integral, the interpretation is that the particles are oppositely

charged under the electromagnetic field.

Non-static spacetimes

One can readily extend the previous calculation to the case where G0i 6= 0. So we consider

stationary but non-static spacetimes (e.g. a string-corrected version of the Kerr black hole).

We present the derivation in appendix A. One arrives at

Zp = 2

∫ ∞
0

dτ2

2τ2

∫ [
d ~X
]√∏

det

(
Gij −

G0iG0j

G00

)
exp−Sp( ~X) (2.37)

where

Sp =
1

4πα′

[
β2

∫ τ2

0
dtG00 − β2

Hτ2 +

∫ τ2

0
dt

(
Gij −

G0iG0j

G00

)
∂tX

i∂tX
j

]
. (2.38)

Thus the only modification is a change in the spatial metric Gij → Gij − G0iG0j

G00
. We will

find this action again in section 5.1 using dimensional reduction and T-duality.

3 Comparison with exact results

In the previous section we saw that for bosonic strings we needed to include a correction

term in the action proportional to the Hagedorn temperature. We now look into the other

types of strings. Just like we did for the bosonic string in the previous section, our strategy

will be to compare the path integral result with the known exact expression for the free

energy.
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3.1 Flat space superstring

For the superstring, one might be initially worried about the effects of the worldsheet

fermions on the previous derivation and especially their interplay with the worldsheet

bosons (the GSO projection). In [32] it is shown that in thermal path integrals with the

strip as the modular integration domain, one must choose only one spin structure for the

fermions. We thus expect that the fermionic contribution will only be a modification of

the Hagedorn temperature (at least for flat space). We now show that this is indeed the

case. The free energy for superstrings is given by the following expression [32]7

F = −2V9

∫ +∞

0
dτ2

∫ 1/2

−1/2

dτ1

τ6
2 (2π2α′)5

[
ϑ3

(
0,

iβ2

4π2α′τ2

)
− ϑ4

(
0,

iβ2

4π2α′τ2

)]
|ϑ4(0, 2τ)|−16 .

(3.1)

In appendix B we prove that in the limit of large τ2 (after the modular transformation)

this is equal to

F = −2V9

∫∫
A

dτ2dτ1

2τ2

1

(4π2α′τ2)5
e
− β2

4πα′
τ2
1 +τ2

2
τ2 e2πτ2 . (3.2)

where the integration region A was shown in figure 1(c).

The path integral from the previous section (without a correction) is given by

Z = 2

∫∫
A

dτ1dτ2

2τ2

∫
[DX] e

− τ2
1β

2

4πα′τ2 e−
β2τ2
4πα′ e−

1
4πα′

∫ τ2
0 dt(∂tXµ)2

. (3.3)

Note that each flat space integral is given by∫
[DX] e−

1
4πα′

∫ τ2
0 dt(∂tXµ)2

=
L√

4π2α′τ2

, (3.4)

where L is the length of the space. So the path integration over the free coordinate fields

reproduces precisely the βV9

(4π2α′τ2)5 factor and the factor 2 in the beginning is the result of

the sum over both windings. Considering finally the relation Z = −βF , we conclude that

this is exactly the same as equation (3.2) if we include a factor e2πτ2 . This corresponds to

the superstring Hagedorn temperature βH = π
√

8α′.

So we learn that also the flat spacetime superstring gets the same type of correction

as the flat spacetime bosonic string.

3.2 Flat space heterotic string

We now look into heterotic strings in flat spacetime. For concreteness we focus on the

E8×E8 string but the result is more general (see remarks further). The general expression

for the free energy of the heterotic string is given by [32]

F = −2V9

∫ +∞

0
dτ2

∫ 1/2

−1/2

dτ1

16τ6
2 (2π2α′)5

[
ϑ3

(
0,
iβ̃2

τ2

)
− ϑ4

(
0,
iβ̃2

τ2

)]
ΘE8⊕E8(−τ)

ϑ4(0, 2τ)8η(−τ)24
.

(3.5)

7One readily checks that this is the same expression as that obtained in [2] when one restricts the

expression for the free energy from [2] to a single sum and extends the domain of integration to the entire

strip.
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where we denoted β̃2 = β2

4π2α′ .

The large τ2 limit is again deferred to appendix B. The result is

F = −2V9

∫∫
A

dτ2dτ1

2τ2(4π2α′τ2)5
e
− β2

4πα′
τ2
1 +τ2

2
τ2 eπiτ1e3πτ2 . (3.6)

We clearly see that the correction is given by eπiτ1e3πτ2 . The second factor looks like a

Hagedorn-like correction, but there is an extra eπiτ1 factor. Intuitively, the heterotic string

is left-right asymmetric, so it is not totally unexpected to find such a factor. Factors

of this type are also seen in other limits [32], where they lead to (unexpected) infrared

convergence.

If we would ignore this τ1 correction, we would have the prediction that the Hagedorn

temperature is equal to

βH =
√

12π
√
α′ (3.7)

which is the value predicted by [32]. However, this value is inconsistent with other values

in the literature [38] and with the expected ‘thermal duality’ of the heterotic string [34].

If we proceed correctly and integrate over τ1, we get∫ +∞

−∞
dτ1 exp

(
β2

4πα′τ2
τ2

1 + πiτ1

)
=

√
4π2α′τ2

β2
exp

(
−π

3α′

β2
τ2

)
. (3.8)

We see that we get a correction to the Hagedorn temperature from this integration.

To ensure convergence in the large τ2 limit, we should have

β2

4πα′
+
π3α′

β2
≥ 3π. (3.9)

At first sight, it seems rather strange to have a β factor in the denominator, but we now

argue that indeed this must be the case.

Solving the previous equation gives two critical temperatures

βH1 = (2 +
√

2)π
√
α′, TH1 =

1

π
√
α′

(
1− 1√

2

)
, (3.10)

βH2 = (2−
√

2)π
√
α′, TH2 =

1

π
√
α′

(
1 +

1√
2

)
. (3.11)

The partition function converges for T ≤ TH1 or T ≥ TH2. The first temperature is the

physical one we encounter in heating up a gas of strings. It is necessary that we have two

solutions since the heterotic string has a duality symmetry [34] under

β ↔ 2π2α′

β
, (3.12)

and the previous convergence condition indeed has this symmetry.
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4 Flat spacetime corrections

In the previous sections, we retained only the lowest Fourier mode in the path integral.

We saw that we missed certain contributions and we corrected for them by comparing with

the known results in flat spacetime. These correction terms obviously have to correspond

to the higher Fourier modes that we neglected. In this section we explicitly show that this

is indeed the case for strings in flat spacetime. We will determine the exact correction

term in the particle path integral result starting from the string path integral alone and by

relating the latter to those for particles in uniform magnetic fields. One can presumably

also obtain these correction terms by using a double Fourier mode decomposition and reg-

ulating several infinite products via zeta-regularization [39][32].

The starting point is the string action after the modular transformation

S =
1

4πα′

[(
1 +

τ2
1

τ2
2

)∫ 1/τ2

0
dσ

∫ 1

0
dτGµν∂σX

µ∂σX
ν

+2
τ1

τ2

∫ 1/τ2

0
dσ

∫ 1

0
dτGµν∂σX

µ∂τX
ν +

∫ 1/τ2

0
dσ

∫ 1

0
dτGµν∂τX

µ∂τX
ν

]
. (4.1)

In the previous derivation we only kept the lowest worldsheet mode in τ . The expansion

of the target coordinate fields is given by

Xi(σ, τ) =
∑+∞

n=−∞ e
2πinτ2σXi

n(τ), i = 1 . . . D − 1,

X0(σ, τ) = ±βτ2σ +
∑+∞

n=−∞ e
2πinτ2σX0

n(τ). (4.2)

If we keep all of these terms and plug it into the action, we get a total action (in flat space)

given by

S = S0 +
+∞∑
n=1

Sn, (4.3)

where the Sn are particle actions that combine the modes ±n and are given by8

Sn =
1

4πα′

∫ 1

0

dτ

τ2

[
2Ẋµ

nẊ
µ
−n + 4πiτ1n

(
Xµ
nẊ

µ
−n − Ẋµ

nX
µ
−n

)
+ 8π2n2

(
τ2

1 + τ2
2

)
Xµ
nX

µ
−n

]
.

(4.4)

To see this, note that the integral over σ is only non-zero if the two contributing factors

have opposite n. The reality of the target fields requires that Xµ
−n = Xµ∗

n . Setting

Xµ
n = An + iBn, Xµ∗

n = An − iBn (4.5)

for two real scalar fields An and Bn, gives

Sn =
1

4πα′

∫ 1

0

dτ

τ2

[
2ȦnȦn + 2ḂnḂn + 8πτ1n

(
AnḂn − ȦnBn

)
+8π2n2

(
τ2

1 + τ2
2

) (
A2
n +B2

n

)]
(4.6)

8A sum over µ is implied; the metric is flat Euclidean space here.
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for one target space component field Xµ. These fields, that only depend on time, need to

be path-integrated over the entire two-dimensional plane (in field space). We notice that:

1. the corrections are independent of the n = 0 contribution, so they will generate a

term independent of the Xi
0 and X0

0 fields,

2. in the end we will multiply this action by 26 (or 10 times for the superstring) since

each target space coordinate Xµ yields the same action,

3. the actions corresponding to different n are also decoupled and of identical form, so

if we can compute the path integral for one of them, we can compute all of them.

The way to solve the path integral corresponding to Sn is to reinterpret it as a path

integral for a 2D particle moving in a harmonic oscillator potential and interacting with a

(imaginary) magnetic field. Exact results are known for such systems [40][41]. We rename

An = x and Bn = y.

The Hamiltonian corresponding to the Lagrangian above is given by (see e.g. [42])

H =
1

2m

[(
px +

qBy

2

)2

+

(
py −

qBx

2

)2

+
1

2
mω2

(
x2 + y2

)]
(4.7)

where

m =
1

πα′τ2
,

qB

2
= i

2τ1n

α′τ2
, ω =

√
4π2n2

(
τ2

1 + τ2
2

)
. (4.8)

The eigenstates of this Hamiltonian are known exactly:

ψN,m`(x, y) ∝ ρ|m`|F
(
−N, |m`|+ 1, γ2ρ2

)
e−γ

2ρ2/2eim`φ (4.9)

where N = 0, 1, 2, . . . and m` = 0,±1,±2, . . . and γ2 = qB
2 . F is the confluent hypergeo-

metric function and ρ2 = x2 + y2. The energies are given by

EN,m` = ω0 (2N + |m`|+ 1) +m`
qB

2m
, ω0 = 2πnτ2. (4.10)

In a general quantum system the heat kernel (path integral of the Euclidean action corre-

sponding to this classical Hamiltonian) is given by

K(r, t|r, 0) =
∑
a

|ψa(r)|2 e−Eat. (4.11)

Integrating the heat kernel over initial and final coordinate gives for normalized eigenfunc-

tions ∫∫
dxdyK(ρ, 1|ρ, 0) =

∑
a

e−Eat → e−2πnτ2 . (4.12)

where we used the fact that in the large τ2 limit the values N = m` = 0 dominate.

As a check, one can obtain the same result from the known heat kernel [41]. The

relevant heat kernel is given by

K(ρ, 1|ρ, 0) =
mω0

2π sinh(ω0)
exp−

{
mω0

sinh(ω0)
(x2 + y2)

[
cosh(ω0)− cosh

(
qB

2m

)]}
.(4.13)
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As in the previous derivation, we need to integrate this over x and y. These integrals are

simple Gaussians and we obtain∫∫
dxdyK(ρ, 1|ρ, 0) =

1

2
[
cosh(ω0)− cosh

(
qB
2m

)] . (4.14)

Now we take the τ2 → ∞ limit. Since B is purely imaginary, the second term in the

denominator has modulus bounded by one, and the first one becomes arbitrarily large. In

the limit, the second term is dropped and we finally obtain∫∫
dxdyK(ρ, 1|ρ, 0)→ 1

2 cosh(ω0)
→ e−ω0 = e−2πnτ2 , (4.15)

in agreement with the previous result. Incidentally, one readily checks that (4.14) agrees

with
∑

N,m`
e−EN,m` with energies (4.10).

To get all corrections, this has to be taken to the 26th power (the contribution of all

target space fields Xµ) and we have to take the product of all values of n going from 1 to

infinity. So in all, we get

26∏
j=1

+∞∏
n=1

e−2πnτ2 = e−52π
∑+∞
n=1 nτ2 = e52π 1

12
τ2 (4.16)

where we used
∑+∞

n=1 n = − 1
12 . This last step is the analogue of the zeta-regularization

used in [39][32].

The only thing left to do is to include the contribution from the bc ghosts. This is simply

the ghost path integral on the torus worldsheet [37] and in the limit τ2 → ∞ (after the

modular transformation), this gives a factor

e−8πτ2/24. (4.17)

Combining everything finally gives

e4πτ2 (4.18)

which is precisely the result we got in equation (2.14) when comparing with the exact

result. Note that this derivation is purely from the path integral and never used the quan-

tized string spectrum.

We have succeeded in determining the exact correction term for the flat spacetime bosonic

string. The question immediately arises whether we can do this also for different back-

grounds and for other types of strings.

Non-trivial background corrections

As an example of a non-trivial background, consider Rindler spacetime with metric

ds2 =

(
ρ2

α′

)
dτ2 + dρ2 + dx2

⊥. (4.19)
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In this spacetime we see that G00 is quadratic in the field ρ, so the corrections are up to

fourth order in the fields. Such particle path integrals are in general not exactly calculable.

Also, there is a non-trivial mixing between all Fourier modes, so we cannot integrate them

out one by one.

We conclude that the previous tricks (most likely) only work in flat spacetime.

Type II Superstring corrections

For type II superstrings, we have extra contributions from the worldsheet fermions. The

fermions (and superghosts) we need, give in total the following exact contribution to the

partition function9 [32]

28
∞∏
n=1

(1 + qn)8(1 + qn)8e−4πτ2/3 (4.20)

where q = exp(2πiτ). Doing the modular transformation and taking τ2 →∞ limit yields

e2πτ2e−
8πτ2

6 . (4.21)

The bosons (and the ghosts) give the following contribution

e
8πτ2

6 . (4.22)

We see that we end up with e2πτ2 which is indeed the contribution we identified in section

3.1 by comparing with the known flat space result. Mutatis mutandis one can also see that

everything works out for the heterotic string.

5 Alternative approach: the field theory action at one loop

So far, we have obtained a one-loop result that gives the contribution of the winding

tachyon10 to the partition function. All the previous manipulations ensured we only got

this contribution and not the oscillators or other quantum numbers. There is however also

another way to get the contribution for only this string state, namely the spacetime action.

To describe this, let us first take a worldsheet CFT point of view. Consider the one-loop

partition function

Z(τ) = Tr
(
qL0−c/24q̄L̄0−c/24

)
= (qq̄)−c/24Tr

[
e2πiτ1(L0−L̄0)−2πτ2(L0+L̄0)

]
. (5.1)

We are interested in a CFT state that dominates the above partition function as τ2 →∞
(where τ is living on the modular fundamental domain). This is the state with lowest L0 +

L̄0. To describe this in terms of field theory, we are hence interested in the ‘geometrization’

(i.e. writing in terms of differential operators) of the string Hamiltonian L0 + L̄0, along

the lines of [43]. In Lorentzian signature flat space for instance, this reduces to the Klein-

Gordon operator with plane wave solutions ∼ eipx. This operator describes how CFT

9This corresponds to only one type of spin structure on the torus worldsheet. The reason for this is the

thermal boundary conditions as discussed in [32].
10In what follows, we will call this state (winding number ±1, no discrete momentum and no oscillators)

the winding tachyon, even though strictly speaking it is not tachyonic in the regime we are interested in.
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fluctuations propagate in a background without interacting with any other fluctuations.

In our case, the states appearing in the above partition function are those living on the

thermal manifold and the state that dominates is the thermal scalar. This thermal scalar

field theory action (which at lowest order in α′ coincides with the lowest order effective

action), can be used to calculate the one-loop contribution to the free energy and should

give us the critical behavior of the string gas. The path integral derivation presented in

section 2.2 should coincide with the field theory derivation if the large τ2 limit is correctly

taken, that is by integrating out higher Fourier modes instead of setting these to zero.11

We will now check to what extent this story is true.12

Since we could not find a derivation of the relevant action in the literature (and since we

will utilize extensions of this derivation several times further on), we first (re)derive the

winding tachyon action to lowest order in α′ from a spacetime dimensional reduction.

5.1 Dimensional reduction

The bosonic closed string tachyon action to lowest order in α′, is given by

S =
1

2

∫
dDx
√
Ge−2Φ

(
Gµν∂µT∂νT +m2T 2

)
, (5.2)

where T is a real scalar field and Φ is the dilaton field. This also holds for the closed

superstring tachyon before the GSO projection.

Assume now that x0 ∼ x0 + 2πR while the metric does not depend on x0 and has no

components Gi0. We expand the field T in Fourier modes

T (x0, xi) =
∑
n∈Z

Tn(xi)e
inx0

R , (5.3)

where R = β
2π . Plugging this in the tachyon action gives for Tn

S = πR

∫
dD−1x

√
Gij
√
G00e

−2Φ

(
Gij∂iTn∂jT−n +

k2G00

R2
TnT−n +m2TnT−n

)
. (5.4)

Using the reality of T
(
Tn = T ∗−n

)
, gives the action

S = πR

∫
dD−1x

√
Gij
√
G00e

−2Φ

(
Gij∂iTn∂jT

∗
n +

k2G00

R2
TnT

∗
n +m2TnT

∗
n

)
, (5.5)

and we can restrict to positive n. The complex field Tn combines both ±n contributions.

This gives the momentum states of the tachyon field directly in the field theory action. The

full action contains both winding and momentum fields. When dimensionally reducing the

11As mentioned earlier, so far we have not been able to do this in general.
12The reader might object at this point since in this section we consider winding in the modular funda-

mental domain whereas in the previous sections we discussed ‘winding’ in the modular strip domain. This

is however precisely the thermal scalar interpretation that was found long ago [2]: the divergence in the

modular strip is reflected in the masslessness of the winding tachyon in the fundamental domain.
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action, we obtain only the momentum states. But T-duality should still be present in the

full field action. We thus exploit this and use a T-duality on the action with

G00 →
1

G00
, (5.6)

Φ→ Φ− 1

2
ln (G00) , (5.7)

Tn → Tw. (5.8)

The momentum tachyon field is transformed to a winding tachyon. Also
√
Ge−2Φ is T-

invariant. Thus we arrive at (also using R→ α′/R)

S ∼
∫
dD−1x

√
Gij
√
G00e

−2Φ

(
Gij∂iTw∂jT

∗
w +

w2R2G00

α′2
TwT

∗
w +m2TwT

∗
w

)
. (5.9)

This is the tachyon action for a winding w state [3].

For instance for the type II superstring in polar coordinates G00 = α′/ρ2, we arrive at

m2 → m2 + w2ρ2R2

α′3 . With R =
√
α′, we get the action used by the authors of [15][22]

(α′ = 2)

S ∼
∫
dD−1x

√
Gij
√
G00e

−2Φ

(
Gij∂iTw∂jT

∗
w +

(
−1 +

w2ρ2

4

)
TwT

∗
w

)
. (5.10)

So in all, we start with the tachyon action for the tachyon living in the uncompacti-

fied spacetime. Dimensional reduction combined with T-duality then yields the lower-

dimensional winding tachyon action. We noted that our original tachyon need not respect

the GSO projection, it is enough to be there before the GSO projection to cause compact-

ified tachyons (that do satisfy the GSO projection) to appear.

This works fine for both bosonic and superstrings, but for the heterotic strings we need

to be a little more clever. The heterotic string has a left-moving tachyon in its spectrum

(m2 = −4/α′) just as the bosonic string and a right-moving tachyon (m2 = −2/α′) just as

the superstring. The latter is projected out due to the GSO projection on the right-moving

sector and the first cannot match with anything of the same mass on the right-moving side,

so this state also does not exist. This is the story behind the tachyon-free heterotic string

theories.

We know we should neglect GSO for our covering space tachyon action, but what about

this left-right asymmetry? Well, it turns out to work just fine if one averages both tachyon

masses of the covering space tachyon. We can see why from the flat space spectrum (on

the NS side of the right-moving sector) (see e.g. [44] for the spectrum)

m2 = − 4

α′
+

4N left

α′
+

(
n

R
+
wR

α′

)2

, (5.11)

m2 = − 2

α′
+

4N right
NS

α′
+

(
n

R
− wR

α′

)2

, (5.12)
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where the constraint is N right
NS − N left + 1

2 = nw. The crucial difference is the term 1
2 ,

so that the non-oscillator states must have both momentum and winding in the compact

direction. Choosing no oscillators and averaging yields

m2 = − 3

α′
+
n2

R2
+
w2R2

α′2
, (5.13)

where nw = 1/2. Setting w = ±1 requires n = ±1/2 (with the same sign). For a general

static background, we have accordingly

m2
total = − 3

α′
+

n2

R2G00
+
w2R2G00

α′2
. (5.14)

Specifying to the state we are interested in gives finally for the lowest order α′ action13

S ∼
∫
dD−1x

√
Gij
√
G00e

−2Φ

(
Gij∂iT∂jT

∗ +
1

4R2G00
TT ∗ +

R2G00

α′2
TT ∗ − 3

α′
TT ∗

)
.

(5.15)

Hence in the above action (5.9), we need to add also a discrete momentum contribution

and choose the covering space mass correction equal to the average of the bosonic and the

superstring tachyon mass. This action was also written down from a scattering amplitude

perspective in [44].14

In general, one can also obtain the same effective action by analyzing scattering amplitudes

as we briefly discuss for the bosonic string in appendix C.

For later convenience, let us assemble the different ‘local’ mass terms for the singly wound

string in a single function mlocal as follows

m2
local = − 4

α′
+
R2G00

α′2
, for bosonic strings, (5.16)

m2
local = − 2

α′
+
R2G00

α′2
, for type II superstrings, (5.17)

m2
local = − 3

α′
+

1

4R2G00
+
R2G00

α′2
, for heterotic strings. (5.18)

The extension to spacetimes with G0i 6= 0 is straightforward (at least for bosonic and type

II superstrings). We get the (discrete momentum) tachyon action

S = πR

∫
dD−1x

√
Ge−2Φ

(
Gij∂iTn∂jT

∗
n +

n2G00

R2
TnT

∗
n

+G0i in

R
(Tn∂iT

∗
n − T ∗n∂iTn) +m2TnT

∗
n

)
, (5.19)

whereas T-duality now gives

G00 →
1

G00
, G0i →

B0i

G00
= 0, Gij → Gij −

G0iG0j

G00
,

Φ→ Φ− 1

2
ln (G00) , Tn → Tw. (5.20)

13We dropped the subindex w here for notational convenience.
14Note that our derivation of this action is not watertight in this case, but the derivation using scattering

amplitudes [44] shows that this action is the correct one.
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The new G0i vanishes because B0i = 0. Also, G′0i = 0 because G′0i = 0. We have

√
Ge−2Φ →

√
G′e−2Φ′

=
√
G′00

√
G′ije

−2ΦG00 =
√
G00e

−2Φ

√
Gij −

G0iG0j

G00
. (5.21)

Thus we arrive at

S ∼
∫
dD−1x

√
Gij −

G0iG0j

G00

√
G00e

−2Φ

(
G′ij∂iTw∂jT

∗
w +

w2R2G00

α′2
TwT

∗
w +m2TwT

∗
w

)
.

(5.22)

where G′ij is the matrix inverse of Gij − G0iG0j

G00
. We thus see that the only effect of this

more general case is the replacement Gij → Gij − G0iG0j

G00
. In what follows we will again

restrict to the case G0i = 0, but we observe that the final result (after a simple substitution)

will still hold in the more general case. This case is in nice agreement with the results in

section 2.3.

5.2 The particle path integral of the field theory action

Let us compare the one-loop prediction of this action with our previous derivation from

section 2.2. Since we only path integrate over the tachyon (the metric, dilaton and NS-NS

fields are backgrounds), the one-loop effective action Γ(1) obtained in this way coincides

with the free energy of the system (up to a factor of β). As a reminder, the first quantized

stringy picture and second quantized field picture are related to the free energy as follows:

Fgas = − 1

β
Zpart, (5.23)

Fgas =
1

β
Γ(1) = − 1

β
ln (ZFT ) , (5.24)

where part denotes the particle action derived in section 2.2 and FT denotes the field

theory of only the winding tachyon. If the string gas indeed can be described by only the

thermal scalar, both formalisms should yield the same expression for the free energy of the

string gas.

We rewrite the one-loop result in a first-quantized way. The action (5.9) derived in the pre-

vious section takes the following form (we have dropped the w index of Tw=1 for notational

convenience)

S =

∫
dD−1x

√
Gij
√
G00

[
Gij∂iT∂jT

∗ +m2
localTT

∗] (5.25)

where i runs over all space indices and Gij is a Euclidean metric on the spatial part of the

manifold. We remind the reader that mlocal is a function of spacetime since it contains

metric components. Our goal is to remove the G00 contribution to the kinetic term ‘as much

as possible’ to hopefully reinterpret this as a particle on a curved background described by

only the spatial part of the total manifold. We will proceed very carefully in what follows.

We first perform a partial integration in the action to distill the inverse propagator:

S =

∫
dD−1x

√
Gij
√
G00T

∗
[
−∇2 −Gij ∂j

√
G00√
G00

∂i +m2
local

]
T. (5.26)
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The operator ∇2 = Gij∇i∂j denotes the covariant Laplacian on the spatial submanifold.

The operator between square brackets is readily seen to be Hermitian with respect to the

inner product

〈ψ1 |ψ2〉 =

∫
dD−1x

√
Gij
√
G00ψ1(x)∗ψ2(x) (5.27)

so its eigenfunctions can be chosen orthonormal and its eigenvalues are real. For con-

venience, let us call the operator Ô. We now choose a basis of such eigenfunctions and

expand

ψ(x) =
∑
n

anψn(x), Ôψn = ωnψn,

∫
dD−1x

√
Gij
√
G00ψn(x)∗ψm(x) = δn,m. (5.28)

The one-loop action is given by the logarithm of the path integral over T with the above

action. In the above basis the path integral gives a product of Gaussian integrals over the

an, resulting in15 ∏
n

(
1

ωn

)
= det−1Ô. (5.29)

The one-loop action can be written as

Γ(1) = − ln det−1Ô = Tr ln Ô. (5.30)

Now we use the Schwinger proper time representation of the logarithm

ln(a) = −
∫ +∞

0

dT

T

(
e−aT − e−T

)
. (5.31)

We drop the −e−T term16 which gives

Γ(1) = −
∫ +∞

0

dT

T
Tre
−T
(
−∇2+m2

local−G
ij ∂j
√
G00√
G00

∂i

)
. (5.32)

Note that the net effect of starting with a complex instead of a real scalar field is an overall

factor 2. This corresponds in the previous path integral derivation to the sum over the two

winding states.

To proceed, we notice a delicate point: despite the fact that it looks like we succeeded

in removing all G00 dependence from the kinetic term, there is still a non-trivial dependence

on it. The trace still contains the
√
G00 measure as is shown in the normalization (5.28). We

still want to remove this factor. This can be done by a simple rescaling of the eigenfunctions.

Let us define new basis vectors

|φn〉 = G
1/4
00 |ψn〉 (5.33)

15We ignore prefactors, since they will just end up as an additive contribution to the effective action (due

to the logarithm) that are independent of the state in the Hilbert space. Also note that we have a complex

scalar field so we should square the contributions coming from real scalar fields.
16This term is proportional to the size of the Hilbert space, just as the prefactors we ignored above.
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which are by definition normalized as∫
dD−1x

√
Gijφn(x)∗φm(x) = δn,m. (5.34)

It now readily follows that the |φn〉 are eigenstates of the operator obtained by pulling the

exponential through the G
−1/4
00 factor as follows

e−T ÔG
−1/4
00 = G

−1/4
00 e−T D̂. (5.35)

In coordinate space, the operator D̂ is simply obtained by setting

D̂f(x) =
Ô
(
G
−1/4
00 f(x)

)
G
−1/4
00

, ∀f(x). (5.36)

We can thus rewrite the previous action as

Γ(1) = −
∫ +∞

0

dT

T
Tre−T D̂ (5.37)

where now the
√
G00 is removed from the integral measure in the trace (we have in effect

changed the definition of the inner product on our Hilbert space).

Transforming Ô in this fashion, we obtain the following operator in the exponential

D̂ = −∇2 − 3

16

Gij∂iG00∂jG00

G2
00

+
∇2G00

4G00
+m2

local (5.38)

where the terms involving only one ∂i have miraculously dropped out. As a check, we

see that this operator D̂ is Hermitian with respect to the canonical inner product on the

spatial submanifold

〈φ1 |φ2〉 =

∫
dD−1x

√
Gijφ1(x)∗φ2(x). (5.39)

The only corrections we have are two terms that behave as a potential for the particle. We

denote these for convenience in what follows as K(x):

K(x) = − 3

16

Gij∂iG00∂jG00

G2
00

+
∇2G00

4G00
. (5.40)

The exponential in (5.37) needs to be given a Lagrangian interpretation. So we seek a path

integral description for a system with Hamiltonian

H = pipjG
ij +m2

local +K(x). (5.41)

The corresponding (Euclidean) Lagrangian is given by

LE =
1

4
ẋiẋjGij +m2

local +K(x). (5.42)
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The last step is then to give a path integral representation for e−TH which finally results

in17

Γ(1) = −
∫ +∞

0

dT

T

∫
S1

[Dx]
√
Gije

−
∫ T
0 dt( 1

4
Gij(x)ẋiẋj+m2

local+K(x)). (5.43)

The S1 denotes periodic boundary conditions on the path: x(0) = x(T ). Performing the

substitution t→ πα′t gives the path integral

Γ(1) = −
∫ +∞

0

dT

T

∫
S1

[Dx]
√
Gije

− 1
4πα′

∫ T
0 dt(Gij(x)ẋiẋj+4π2α′2(m2

local+K(x)). (5.44)

For instance, filling in the correct value for mlocal (5.16) when the bosonic flat space Hage-

dorn temperature is to be used, gives

Γ(1) = −
∫ +∞

0

dT

T

∫
S1

[Dx]
√
Gije

− 1
4πα′

∫ T
0 dt

(
Gij(x)ẋiẋj+4π2α′2

(
− 4
α′ +

R2G00
α′2

+K(x)

))
. (5.45)

We can compare this with the result from section 2.2, when we identify Γ(1) directly with

βF . For convenience, we rewrite the result given there:

βF = −
∫ +∞

0

dτ2

τ2

∫
S1

[DX]
√
Gij exp− 1

4πα′

[∫ τ2

0
dt
(
Gij∂tX

i∂tX
j + β2G00 − β2

H

)]
.

(5.46)

Translating (5.44) to this notation, we find

βF = −
∫ +∞

0

dτ2

τ2

∫
S1

[DX]
√
Gij exp−S (5.47)

where

S =
1

4πα′

[∫ τ2

0
dt
{
Gij∂tX

i∂tX
j + 4π2α′2

(
m2
local +K(X)

)}]
. (5.48)

Now let us compare the second quantized field theory result (5.48) with the first quan-

tized result (5.46).

• The particle action (5.48) naturally lives in one dimension less than the original

problem. Here this occurs due to the dimensional reduction used to arrive at the

field theory action. In (5.46), this happened because we integrated out the Euclidean

time coordinate explicitly.

• For bosonic and type II superstrings we have the equality18

4π2α′2m2
local = β2G00 − β2

H . (5.49)

For the heterotic string, the story changes a bit. The mass term is now of the form

4π2α′2m2
local = −β2

H + β2G00 +
π2α′2G00

R2
. (5.50)

17The appearance of the
√
Gij in the measure is natural from coordinate invariance. It can also be

explicitly derived (see [45] for the particle case and [46] (chapter 9) for the field theory case).
18Using the appropriate value of βH .
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Note that β2
H = 12π2α′2. This corresponds to the averaging of the bosonic and type

II tachyon masses as we argued in section 5.1. The reader should not be confused at

this point: this βH is not equal to the Hagedorn temperature, not even in the flat

space. It is simply the mass of the covering space tachyon. The final term in (5.50)

is not found using the naive path integral result and should be added (just like the

β2
H -term). In flat spacetime, we found that this correction actually originated from

a τ1-dependent contribution as we discussed in section 3.2.

• The second quantized result (5.48) has an extra term (denoted as K(x)). This sug-

gests we missed this term in the derivation in section 2.2 in the ‘worldsheet dimen-

sional reduction’, which should be incorporated in the result in the same way as the

β2
H contribution. This term alters the random walk behavior discussed in [1] and

we will show in an upcoming paper [24][25] that it gives crucial modifications. This

extra term disappears when choosing a flat metric, so in the flat case we have per-

fect agreement between the two approaches. The extra term cannot in general be

discarded in any approximation since it is not a higher order curvature contribution

(we will discuss this more extensively in [24][25]).

• This section only focused on the case where there is only a background metric. We

can extend this result to include a background NS-NS field. This is discussed in

appendix D. The upshot is that we get precisely the result from section 2.3 but with

another extra correction term.

5.3 General discussion of corrections to the particle action

Let us look in general to the corrections of the particle action that we derived in section

2.2. In what follows, we define a correction term as a term that is missed in the naive

worldsheet dimensional reduction for τ2 →∞ discussed in section 2.2.

Firstly, we have a correction term proportional to the mass of the most tachyonic

mode in the cover of the manifold that ‘unwraps’ the thermal direction. Note that this

only depends on the type of string theory used and not on the manifold itself. For bosonic

and type II superstrings, this equals the (flat space) Hagedorn correction to the action, but

this need not be precisely the Hagedorn temperature of the space. As an example of the

latter case, consider the WZW AdS3 bosonic string background (we will discuss this model

in a companion paper [25]). The correction is in this case the Hagedorn temperature of the

flat space bosonic string, but this is not equal to the AdS3 Hagedorn temperature.19 We

conclude that this term represents strings that locally approach the Hagedorn temperature,

but this need not give a global divergence in the free energy. This is very reminiscent of

the well-known fact that negative mass2 particles in AdS spacetimes can be stable if their

mass2 is not too low (the Breitenlohner-Freedman bound).

For heterotic strings, we found an additional correction that gives the discrete momentum

19The latter temperature is larger than the flat space bosonic Hagedorn temperature.
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contribution of the winding tachyon.

In flat spacetime, this is the only correction. The one-loop contribution is a simple

sum over all string states without including interactions. When restricting to the winding

±1 states, this is twice the field theory vacuum bubble diagram. We saw that we have an

exact matching between our path integral result and the effective action calculated from

the thermal scalar field theory action.

Secondly, we found a correction term K(x) (5.40) obtained from a non-trivial G00

metric component. This term alters the random walk behavior and there is no rationale

in neglecting it.

This need not be the end of the story however, as α′ corrections to the spacetime action

might be important. Their influence and appearance is rather subtle. The precise effect

of these higher order α′ corrections in general on the random walk behavior is something

we are still further investigating. In the case of Rindler spacetime, these corrections are

understood in full detail as we show in [24]. Other examples with and without α′ corrections

will be discussed elsewhere [25].

6 Conclusion

We have reviewed and extended the path integral derivation of the random walk behavior

of near-Hagedorn thermodynamics [1]. We analyzed this particle path integral for several

string types. The worldsheet dimensional reduction misses some correction terms that we

cannot (yet) determine solely from the path integral. In flat spacetime, we calculated these

explicitly using known particle path integrals. We then changed gears and calculated the

one-loop contribution of the field theory action of the dominant winding string. These two

results should coincide since both methods focus precisely on the same string state. We

checked this and it works out well for flat space. For curved backgrounds however, we

found a discrepancy: the spacetime action has an extra term in the action. We identified

this as something we missed in the (naive) worldsheet dimensional reduction. This identi-

fies both approaches. Both approaches (worldsheet and spacetime) have their advantages

though the worldsheet path integral approach has a direct connection to the random walk

picture of string thermodynamics in the microcanonical ensemble. However, this approach

is computationally more challenging because the τ2 →∞ limit involves coupling to higher

Fourier modes which we drop in a first approximation. These are however important to

attain the full result in curved space. We found that the correction terms can be divided

in three different types:

• Firstly we have a correction that simply introduces the mass of the flat space tachyon

state. We found these explicitly in section 2.2 for the bosonic string and in sections

3.1 and 3.2 for type II and heterotic strings. For heterotic strings however, we found

that we have to introduce a second term as well (we discussed this in section 5.1),

corresponding to the discrete momentum quantum number of the winding tachyon.
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• Secondly we have a correction coming from the G00 component. We found this by

comparing the string path integral with the effective action of the winding tachyon.

This term was explicity determined in equation (5.40).

• Other α′ correction terms might appear (originating from the field theory action),

but we postpone their treatment to other work [24][25].

We conclude that the random walk picture is modified due to all these correction terms.

Several questions arise in this process: is there really a winding mode in the string spectrum,

especially if the space does not topologically support winding modes? Can we get a handle

on the higher correction terms? In [24] we answer these questions for black holes, when we

take a near-horizon Rindler approximation. We will find precisely which correction terms

are required to have a full description of the near-Hagedorn critical behavior of a string

gas surrounding a black hole. With this random walk description and the interpretation as

a long highly excited string, we will obtain a realization of Susskind’s idea of long strings

surrounding black hole horizons. We also study several other specific examples of these

methods in a companion paper [25].
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A Extension path integral to non-static spacetimes

We start with the action (2.15) in the general case G0i 6= 0:

Spart =
1

4πα′

[
β2 |τ |

2

τ2
2

∫ τ2

0
dtG00 − β2

Hτ2 ± 2
τ1

τ2
β

∫ τ2

0
dtG0µ∂tX

µ +

∫ τ2

0
dtGµν∂tX

µ∂tX
ν

]
.

(A.1)

The classical equation of motion of X0 is given by

± τ1

τ2
β∂tG00 + ∂t

(
G00∂tX

0
)

+ ∂t
(
G0i∂tX

i
)

= 0. (A.2)

Integrating with respect to t gives

± τ1

τ2
βG00 +G00∂tX

0 +G0i∂tX
i = C. (A.3)

Again integrating and using periodicity of Xµ fixes

C =
1〈

G−1
00

〉 [±τ1β +

〈
G0i∂tX

i

G00

〉]
. (A.4)
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One readily finds for the on-shell classical action (including only the X0-dependent contri-

butions)

4πα′Son−shell = ∓2
τ1

τ2
β
〈
G0i∂tX

i
〉
− τ2

1

τ2
2

β2 〈G00〉+
τ2

1β
2〈

G−1
00

〉 ± 2τ1β〈
G−1

00

〉 〈G0i∂tX
i

G00

〉
+

1〈
G−1

00

〉 〈G0i∂tX
i

G00

〉2

−
〈
G0iG0j

G00
∂tX

i∂tX
j

〉
. (A.5)

Setting X0 = X0,cl + X̃0, one arrives at the following total action

4πα′Stotal = β2

∫ τ2

0
dtG00 − β2

Hτ2 +
τ2

1β
2〈

G−1
00

〉 ± 2τ1β〈
G−1

00

〉 〈G0i∂tX
i

G00

〉
+

1〈
G−1

00

〉 〈G0i∂tX
i

G00

〉2

+

〈(
Gij −

G0iG0j

G00

)
∂tX

i∂tX
j

〉
+
〈
G00∂tX̃

0∂tX̃
0
〉
.

(A.6)

Finally performing the τ1 integration, the first term in the second line is precisely cancelled

and the X̃0 path integral again cancels the
〈
G−1

00

〉
prefactors. Since

√
G =

√
G00

√
Gij −

G0iG0j

G00
, (A.7)

we finally end up with

Zp = 2

∫ ∞
0

dτ2

2τ2

∫ [
d ~X
]√∏

det

(
Gij −

G0iG0j

G00

)
exp−Sp( ~X) (A.8)

where

Sp =
1

4πα′

[
β2

∫ τ2

0
dtG00 − β2

Hτ2 +

∫ τ2

0
dt

(
Gij −

G0iG0j

G00

)
∂tX

i∂tX
j

]
, (A.9)

which is the expression shown in section 2.3.

B Large τ2 limit of several string theories

Superstring

The free energy for superstrings is given by the following expression [32]

F = −2V9

∫ +∞

0
dτ2

∫ 1/2

−1/2

dτ1

τ6
2 (2π2α′)5

[
ϑ3

(
0,

iβ2

4π2α′τ2

)
− ϑ4

(
0,

iβ2

4π2α′τ2

)]
|ϑ4(0, 2τ)|−16

(B.1)

where

ϑ3(0, τ) =
+∞∑

n=−∞
qn

2/2, ϑ4(0, τ) =
+∞∑

n=−∞
(−1)nqn

2/2. (B.2)
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For the modular functions, we follow the definitions of [37]. We do a modular transforma-

tion τ → − 1
τ . The factor dτ1dτ2

τ2
2

is invariant under modular transformations. Also,

ϑ3

(
0,

iβ2

4π2α′τ2

)
− ϑ4

(
0,

iβ2

4π2α′τ2

)
=

+∞∑
n=−∞

(1− (−1)n)e
−β

2n2

4πα′
τ ′21 +τ ′22
τ ′2 . (B.3)

From now on we drop the primes. We can take the τ2 → +∞ limit of the expression:

F = −2V9

∫∫
A
dτ2

dτ1

τ2
2 (2π2α′)5

(
|τ |2

τ2

)4 [ +∞∑
n=−∞

(1− (−1)n)e
−β

2n2

4πα′
τ2
1 +τ2

2
τ2

] ∣∣∣∣ϑ4

(
0,−2

τ

)∣∣∣∣−16

.

(B.4)

The ϑ4 function has the modular property

ϑ4

(
0,−1

τ

)
= (−iτ)

1
2ϑ2(0, τ), (B.5)

and the ϑ2 function has the following product expansion

ϑ2(0, τ) = 2eπiτ/4
+∞∏
m=1

(1− qm)(1 + qm)2. (B.6)

We notice that |ϑ2| for τ2 →∞ has no contribution from the infinite product. So

|ϑ2(0, τ)| → 2e−πτ2/4 (B.7)

irrespective of the value of τ1. We finally arrive at∣∣∣∣ϑ4

(
0,−2

τ

)∣∣∣∣−16

→ |τ |−8 2−8e2πτ2 . (B.8)

The sum in the integrand (B.4) is dominated by n = ±1 in the limit τ2 → +∞. Plugging

all this into the integral finally gives

F = −2V9

∫∫
A dτ2

dτ1
τ6
2 (2π2α′)5

[
4e
− β2

4πα′
τ2
1 +τ2

2
τ2

]
2−8e2πτ2

= −2V9

∫∫
A
dτ2dτ1

2τ2
1

(4π2α′τ2)5 e
− β2

4πα′
τ2
1 +τ2

2
τ2 e2πτ2 . (B.9)

which is the result stated in section 3.1.

Heterotic string

The free energy for the E8 × E8 heterotic string is given by [32]

F = −2V9

∫ +∞

0
dτ2

∫ 1/2

−1/2

dτ1

16τ6
2 (2π2α′)5

[
ϑ3

(
0,

iβ2

4π2α′τ2

)
− ϑ4

(
0,

iβ2

4π2α′τ2

)]
× ΘE8⊕E8(−τ)

ϑ4(0, 2τ)8η(−τ)24
. (B.10)
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We again use the modular transformation τ → −1/τ and the limiting behavior of the

modular functions (as τ2 →∞)

ϑ4

(
0,−2

τ

)−8

→ e−πiτ

τ424
, (B.11)

η

(
1

τ

)
= (iτ)1/2η(−τ)→ (iτ)1/2e−

πiτ
12 . (B.12)

Using ΘE8⊕E8 = Θ2
E8

and ΘE8 = 1
2

(
ϑ8

2 + ϑ8
3 + ϑ8

4

)
, we see that20

ΘE8⊕E8

(
1

τ

)
= (−iτ)8ΘE8⊕E8 (−τ)→ (−iτ)8 (B.13)

where the contributions from ϑ3 and ϑ4 give a factor of 4 that cancels the denominator.

We now arrive at21

F = −2V9

∫∫
A

dτ2dτ1τ
4
2

16τ2
2 (2π2α′)5

[
4e
− β2

4πα′
τ2
1 +τ2

2
τ2

]
e−πiτ

τ424
(iτ)−12e2πiτ (−iτ)8

= −2V9

∫∫
A

dτ2dτ1

2τ2(4π2α′τ2)5
e
− β2

4πα′
τ2
1 +τ2

2
τ2 eπiτ1e3πτ2 . (B.14)

which is the result stated in section 3.2.

C Scattering amplitudes

In this appendix we compute the scattering amplitude of one graviton and two winding

(w = ±1) tachyons for the bosonic string. We first present the amplitudes as computed

from string theory and then we reproduce these amplitudes from the thermal scalar field

theory action. To avoid awkwardness, we return to Lorentzian signature and consider the

25-direction to be compactified with radius R. Upon Wick rotating the resulting action, we

will see that the spacetime action has the form of the thermal scalar action (5.9). For the

indices, we will denote M,N as 26-dimensional indices and µ, ν as 25-dimensional indices.

Stringy amplitudes

As the vertex operators we take

gc,25

α′
:
(
∂XM ∂̄XN + ∂XN ∂̄XM

)
eik·X : (C.1)

for the graviton and KK scalar (M = N = 25) and the winding tachyon vertex operators

are given by

gc,25 : eikL·XL(z)+ikR·XR(z) : (C.2)

20This result is more general: given a lattice theta function ΘΓ(τ), the limit for τ2 → +∞ is always equal

to 1. This implies that this derivation also holds for the SO(32) heterotic string (based on the Γ16 lattice).
21There is a subtlety here: we approximate τ2

1 + τ2
2 ≈ τ2

2 , which is only valid for τ2 � τ1. So the τ2 →∞
limit is taken before the integral over τ1 is performed.
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where we denoted gc,25 = gc√
2πR

.

Following standard arguments [37], we arrive at the following scattering amplitudes22

(where the two tachyons are wound with w = 1 and w = −1)

Gµν → −πigc,25(2π)25δ25(k1 + k2 + k3)kµ23k
ν
23, (C.3)

Gµ25 → −πigc,25(2π)25δ25(k1 + k2 + k3)kµ23(k25
L23 + k25

R23), (C.4)

G2525 → −πigc,25(2π)25δ25(k1 + k2 + k3)k25
L23k

25
R23. (C.5)

The last amplitude becomes (using k25
L23 = 2R

α′ and k25
R23 = −2R

α′ )

G2525 → πigc,25(2π)25δ25(k1 + k2 + k3)
4R2

α′2
. (C.6)

Field theory amplitudes

The field theory action is

S = −
∫
d25x

√
−Gµν

√
G2525

(
Gµν∂µT∂νT

∗ +
R2G2525

α′2
TT ∗ − 4

α′
TT ∗

)
(C.7)

where we have absorbed
√

2πR in the tachyon field.23 We now show that this action

reproduces the graviton and Kaluza-Klein scalar amptitudes determined above. Expanding

GMN = ηMN − 2κ25eMNf(x) results in√
−Gµν

√
G2525 =

√
det (ηMN − 2κ25eMNf(x)) ≈ 1 + Tr(−2κ25eMNf(x)) = 1 (C.8)

because the polarization tensor is traceless for a graviton. We then expand the action

resulting in

S = −
∫
d25x

(
ηµν∂µT∂νT

∗ + 2κ25e
µνf(x)∂µT∂νT

∗ + R2

α′2TT
∗

−R22κ25e2525
α′2 f(x)TT ∗ − 4

α′TT ∗
)
. (C.9)

We clearly see a kinetic term for the tachyon (first term) and two mass terms (third and

fifth term). The two other terms describe interactions with the graviton. The second term

corresponds to graviton-tachyon-tachyon scattering, while the fourth one corresponds to

KK scalar-tachyon-tachyon scattering.

The (graviton)-(winding tachyon)-(winding tachyon) amplitude becomes

Aµν ∝ 2iκ25e
µνk2

µk
3
ν = −iκ25

2
eµνk23

µ k
23
ν . (C.10)

When writing κ25 = 2πgc,25 and including the kinematic factors, we get

Aµν = −iπgc,25e
µνk23

µ k
23
ν (2π)25δ25(k1 + k2 + k3). (C.11)

22Note that this differs slightly from the results in [37] due to a somewhat different normalization of the

graviton vertex operators.
23This action is the Lorentzian signature action for a complex tachyon with winding number w = ±1.

Note that we do not include Gµ25 dependence, although one can readily generalize the arguments given

here to this more general case.
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The (KK scalar)-(winding tachyon)-(winding tachyon) amplitude becomes

A2525 ∝ 2iκ25e2525
R2

α′2
. (C.12)

We obtain

A2525 = 4iπgc,25e
2525(2π)25δ25(k1 + k2 + k3)

R2

α′2
. (C.13)

Note that e2525 = e2525 since indices of eMN are raised and lowered with ηMN .

We conclude that the stringy amplitudes (C.3) and (C.5) agree with the field amplitudes

(C.11) and (C.13) respectively.24 Wick rotating then immediately yields the thermal scalar

action (5.9). Obviously the above action was not entirely general, for instance the dilaton

field or the Gµ25 field couplings are not present. One can readily generalize the above to

also include these contributions.

D Extension of the thermal scalar field theory to a background Kalb-

Ramond field

We make a final extension to the field theory result and include also a non-zero NS-NS

field. We know that to lowest order, the covering-space tachyon action does not couple

to the NS-NS field. This however does not imply that there is no influence of the NS-NS

background as one can readily check that the scattering amplitudes for a B0i component

and two winding tachyons does not vanish. Hence we do expect a coupling.

The (discrete momentum) tachyon action for the complex field Tn is given by

S = πR

∫
dD−1x

√
Ge−2Φ

(
Gij∂iTn∂jT

∗
n +

n2G00

R2
TnT

∗
n

+G0i in

R
(Tn∂iT

∗
n − T ∗n∂iTn) +m2TnT

∗
n

)
, (D.1)

The T-duality is given by

G00 →
1

G00
, G0i →

B0i

G00
, Gij → Gij −

G0iG0j

G00
+
B0iB0j

G00
,

Φ→ Φ− 1

2
ln (G00) , Tn → Tw. (D.2)

We have

√
Ge−2Φ →

√
G′e−2Φ′

=
√
G′00

√
G′ij −

G′0iG
′
0j

G′00

e−2ΦG00 =
√
G00e

−2Φ

√
Gij −

G0iG0j

G00
.

(D.3)

24If we choose discrete momentum states instead of winding states, this would result in the stringy

amplitude with k25
L23k

25
R23 = n2

R2 . So in all, this would differ by a minus sign and a factor of R4

α′2 , precisely

the difference in the effective action: the minus sign comes from the G2525 component (instead of G2525)

and the other factor comes from the T-duality step to obtain the winding action.
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Thus we arrive at (also using R→ α′/R)

S ∼
∫
dD−1x

√
Gij −

G0iG0j

G00

√
G00e

−2Φ(
G′ij∂iTw∂jT

∗
w +

w2R2G′00

α′2
TwT

∗
w +G′0i

iwR

α′
(Tw∂iT

∗
w − T ∗w∂iTw) +m2TwT

∗
w

)
. (D.4)

Note that this field theory action indeed couples to the background NS-NS field. From

here on we set Φ = constant (as we have done in all the other cases as well).

The term corresponding to G′0i in brackets needs to be written in the form T ∗ÔT to apply

the manipulations as in section 5.2. This gives schematically

√
GG′0i (Tw∂iT

∗
w − T ∗w∂iTw)→ −∂i

(√
GG′0i

)
T ∗wTw − 2

√
GG′0iT ∗w∂iTw. (D.5)

The first term is a spatial derivative term and is similar to K(x) in section 5.2. We thus

include it in K(x) and we ignore it in what follows.

Further following the logic from section 5.2, we seek a path integral description of a system

with Hamiltonian

H = pipjg
ij +m2

local +K(x) + V ipi (D.6)

where V i = 2G′0iwR/α′. The Euclidean Lagrangian corresponding to this Hamiltonian

equals25

LE =
1

4
ẋiẋjgij + i

Viẋ
i

2
− ViV

i

4
+K(x) +m2

local (D.7)

=
1

4
ẋiẋjḠ′ij + iwḠ′ijG

′0j R

α′
ẋi − Ḡ′ijG′0iG′0j

w2R2

α′2
+
w2R2G′00

α′2
+m2 +K(x) (D.8)

where we denoted Ḡ′ij as the inverse to the purely spatial matrix G′ij . This is not the same

as G′ij since the latter results from inverting the complete G′µν matrix and then looking at

the spatial components. Using matrix algebra, one can show the following identities

Ḡ′ij = Gij −
G0iG0j

G00
, (D.9)

Ḡ′ijG
′0iG′0j −G′00 = −G00, (D.10)

Ḡ′ijG
′0j = −B0i. (D.11)

The Euclidean Lagrangian reduces to (for w = ±1)

LE =
1

4
ẋiẋj

(
Gij −

G0iG0j

G00

)
∓ iB0i

R

α′
ẋi +G00

R2

α′2
+m2 +K(x). (D.12)

Setting R = β
2π , we see that the ẋi term reduces precisely to that given in section 2.3 and

the other terms remain as before, in agreement with section 2.3. There is however one extra

correction term that we included in K(x). This term vanishes for zero NS-NS background.

25Expression (23.A.22) in [48] with Aab = 2gab and Ba = Va.
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