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de Lattre de Tassigny, F-75 775 Paris Cedex 16, France, tel: +33 1 44 05 48 98, fax: +33
1 44 05 40 91, e-mail: bouyssou@lamsade.dauphine.fr.

3Ghent University, Department of Data Analysis, H. Dunantlaan, 1, B-9000 Gent,
Belgium, e-mail: thierry.marchant@UGent.be.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55705088?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

This paper analyzes several well-known bibliometric indices using an axiomatic
approach. We concentrate on indices aiming at capturing the global impact of
a scientific output and do not investigate indices aiming at capturing an average
impact. Hence, the indices that we study are designed to evaluate authors or
groups of authors but not journals. The bibliometric indices that are studied
include classic ones such as the number of highly cited papers as well as more recent
ones such as the h-index and the g-index. We give conditions that characterize
these indices, up to the multiplication by a positive constant. We also study
the bibliometric rankings that are induced by these indices. Hence, we provide a
general framework for the comparison of bibliometric rankings and indices.

Keywords: bibliometric ranking, bibliometric index, h-index, g-index, axiomati-
zation.
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1 Introduction

This paper studies, from an axiomatic point of view, several rankings and indices
based on bibliometric data. It is a companion paper to Marchant (2009a). Com-
pared to this paper, we have enlarged the list of rankings studied. It now includes
the rankings based on: the number of highly cited papers, the number of papers,
the number of citations received, the number of citations received by highly cited
papers, the number of citations exceeding a threshold, the maximum number of
citations, the h-index, and the g-index. Moreover, we will study both rankings
and indices, while Marchant (2009a) only studied rankings. By studying several
bibliometric rankings and indices simultaneously, we hope to provide a framework
for understanding their similarities and their di↵erences. Hence, we have tried
hard to use conditions that can easily be interpreted and to make maximal use of
conditions that are common to several rankings or indices.

We concentrate on indices aiming at capturing the global impact of a scientific
output and do not investigate indices aiming at capturing an average impact.
Hence, the indices that we study are designed to evaluate authors or groups of
authors but not journals.

Among the huge literature (for review, see Alonso et al., 2009, Egghe, 2010a,
Norris and Oppenheim, 2010, Ruscio et al., 2012, Schreiber et al., 2011) on the
h-index and its variants (Rousseau et al., 2013, have seen this development as a
“bubble”), there is already as sizeable literature on the axiomatic analysis of the h-
index, most notably Woeginger (2008a,b), Deineko andWoeginger (2009), Quesada
(2009, 2010, 2011a,b), Hwang (2013) and Miroiu (2013)1. The axiomatic literature
on the g-index is less abundant but nevertheless exists: Woeginger (2008c, 2009),
and Quesada (2011a). Hence, the reader might wonder why we want to add to
this literature. We do so because we feel that these previous axiomatizations have
limitations. Let us discuss them using the example of the h-index. Similar remarks
apply to the previous axiomatizations of the g-index.

The above papers on the axiomatization of the h-index use axioms that we do
not find easy to interpret. Let us take the example of Theorem 4.1 in Woeginger
(2008a). This result characterizes the h-index using three axioms called A1, B
and D. Axiom A1 requires that a bibliometric index f should satisfy the following
condition. Consider an author x. If the author y is identical to author x, except
that she has published an additional paper with f(x) citations, then f(y) = f(x).
Although this axiom is mathematically fine, we claim that this condition is quite
hard to interpret. Indeed, an axiom is a condition imposed on an index f , where f

1While preparing the last draft of this text, we became aware of the work of Chambers and
Miller (2014) who characterize a family of bibliometric rankings, called step-based indices, that
includes as particular cases the number of highly cited papers, the number of papers, and the
h-index. It does not provide a characterization of these particular cases.
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is any index, not necessarily the h-index. Hence, when we read the above condition,
we cannot suppose that f is the h-index. For instance, it could be the square of
the number of papers or the logarithm of the total number of citations. Hence,
we think that it makes little sense to say that “if we add a new paper with f(x)
citations, then . . . ”. Why would we find such a condition (normatively) appealing
if we do not know what f(x) represents? Let us develop this point firther since it
is important to motivate the present paper.

If f(x) measures the scientific value of author x in terms citations per paper,
then it is certainly right to say that adding to x a paper with f(x) citations does
not alter the index. But suppose now the president of your university asks you to
help him choose an index. You ask him whether he wants a citation-monotonic
index (more citations are always better). He probably says yes. You ask him
whether he wants a paper-monotonic index (more papers are always better). He
may say yes or no. You then ask him whether he wants that adding to x a paper
with f(x) citations does not alter the index. He will certainly answer “I dont know.
It depends on what f(x) represents”. If you reply “it is the average number of
citations per paper”, then he will perhaps say yes. But, if the president is smart, he
will ask you “Why do you question me about these axioms if you already decided
that you want to use the average number of citations per paper?” Put di↵erently,
what is the point of axiomatically characterizing an index if the axioms cannot be
understood without presuming what the index is ?

Still in other words, in order to know whether an additional paper can increase
the index of a scientist x, Woeginger’s Axiom A1 compares f(x) to the number
of citations of the additional paper. If the number of citations of the new paper
is not larger than f(x), than the index cannot increase. This comparison is not
really valid, because it compares pears and apples. We do not know whether f(x)
is a number of citations, a number of papers, the product of a number of citations
and a number of papers, a squared number of citations or anything else. It does
not make sense to compare them.

Axiom D in Woeginger (2008a) has the same problem. Finally, Woeginger
(2008a) assumes that a bibliometric index must be a non-negative integer. Re-
quiring that an index can only take integer values appears very restrictive and
di�cult to motivate.

A second limitation of the above mentioned axiomatizations of the h-index is
that they concentrate on characterizing the index and do not study the ranking
induced by the index. In many situations, a bibliometric index is only used via the
ranking it induces on authors. Hence, we feel that this question should be studied
too. Admittedly, there are situations in which one might want to use the index
and not only the ranking it induces. This is the case, for instance, when research
funds are allocated using a formula involving an index. Nevertheless, as stressed

2
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in Franceschini and Maisano (2010), the scale on which the h-index is measured is
rather complex to analyze. Indeed, the e↵ort involved for raising the h-index by
1 unit seems much smaller starting at 1 than starting at 100. A similar remark
holds if one wishes to double the h-index.

The last limitation is that all papers proposing an axiomatic analysis of the
h-index characterize only one index. We do not think that this is completely
satisfactory. Indeed, consider an index h

0 defined as 100 times the h-index. Is
it worse or better than the h-index? This question seems irrelevant, just like
asking whether measuring distances in meters is “better” than measuring them
in centimeters. Our axiomatic analysis will single out not a single index but a
family of indices deduced from one another by the multiplication by a positive
constant. One may object to this last argument that the fact that an author has
a h-index equal to k has an immediate interpretation: the author has k papers
having collected at least k citations. Such an interpretation does not hold if we
multiply the h-index by a positive constant. However, because the scale on which
the h-index is measured is di�cult to ascertain (Franceschini and Maisano, 2010),
we think that this ease of interpretation is largely illusory and can be misleading.
Moreover, an advantage of focusing on the family of indices deduced from one
another by the multiplication by a positive constant is that it allows a unified
treatment of both rankings and indices. This will also allow us to use weaker
axioms than the ones aiming at characterizing a unique index.

We are aware that the axiomatic analysis of the type proposed in this paper
only considers one aspect of bibliometric rankings and indices. Our analysis does
not appeal to an explicit model of production of publications and citations (for
an introduction to such models, see Egghe, 2005). Similarly, we do not propose
any empirical study that would allow to analyze the links between these rankings
and indices on a given set of authors (for such analyses, see, e.g., Bornmann
and Leydesdor↵, 2013, Bornmann et al., 2008, 2011, van Raan, 2006). Hence, we
acknowledge the limitations of the axiomatic approach to bibliometrics put forward
by Glänzel and Moed (2013). Nevertheless, we think such an axiomatic analysis
can give useful elements about the similarities and di↵erences between rankings or
indices.

The paper is organized as follows. We introduce our setting and notation
in Section 2. We then study the ranking and index based on the number of
highly cited papers (Section 3), the number of papers (Section 4), the number of
citations of highly cited papers (Section 5), the number of citations exceeding a
threshold (Section 6), the number of citations (Section 7), the maximum number
of citations (Section 8), the h-index (Section 9), and the g-index (Section 10).
Section 11 contains additional remarks. A final section summarizes our findings
and concludes.
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2 Notation and Setting

The set of non-negative integers is denoted by N. We define N+ = {x 2 N : x > 0}.
The set of real numbers is denoted by R. We define R0 = {x 2 R : x � 0} and
R+ = {x 2 R : x > 0}

2.1 Setting

We use the general framework introduced in Marchant (2009a). We represent an
author a as a mapping from N to N. For x 2 N, we interpret a(x) as the number
of publications of author a with exactly x citations.

The number of publications of author a is given by p

a

=
P

x2N a(x). The
number of publications of author a having been cited at least once is given by
p

0
a

=
P

x2N+
a(x). The total number of citations received by the publications of

author a is given by c

a

=
P

x2N xa(x).
The set of authors A is the set of all functions a from N to N such that p

a

is
finite.

Since authors in A are modelled as functions, it makes sense to speak of an
author that is the addition of several authors or the multiplication of an author
by a non-negative integer. Hence, if a, b 2 A and n 2 N, [a+ b] 2 A and [na] 2 A.
We have, for all x 2 N, [a + b](x) = a(x) + b(x) and [na](x) = n ⇥ a(x). When
there is no risk of confusion, we omit the brackets around [a+ b] and [na].

For all x 2 N, we denote by 1
x

the author in A with exactly one publication
having x citations. We denote by 0 an author (the null author) without any
publication. We say that an author a is non-null if she is not 0. We say that an
author is quasi-null if she has only uncited papers, i.e., is equal to x10, for some
x 2 N+. An author that is neither null nor quasi-null is said to be strictly non-null.

By construction, an author a 2 A can always be written as the sum of authors
having a single publication:

a =
X

z2N

a(z)1
z

.

For a null author, all terms a(z) are null. For quasi-null authors, all terms a(z) are
null, except a(0). A strictly non-null author has at least one a(z) > 0, for some
z 2 N+.

Let a 2 A. For x 2 N, let a+(x) be the number of papers published by a having
received at least x citations, i.e., a+(x) =

P
i�x

a(i).
For a, b 2 A, we write a D b if a+(x) � b

+(x), for all x 2 N and we say that
a dominates b. It is easy to check, since a

+(0) = p

a

, that a D b implies p
a

� p

b

.
The relation D is exactly equivalent to the dominance relation used by Woeginger
(2008a, p. 225) to define his monotonicity condition (he uses the notation ⌫).
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Remark 1
It is easy to check that if a D b, then it possible to go from b to a using the following
operations. We first add to b a number of uncited papers equal to p

a

� p

b

. This
ensures that we have a

+(0) = b

+(0). We then add a number of citations to the
papers published by the modified author b to ensure that a

+(x) = b

+(x), for all
x 2 N.

The relation D is not identical to the relation w used in Marchant (2009a, p.
327). We have a w b when a(x) � b(x), for all x 2 N. Clearly, if a w b holds, then
a D b also holds. The converse is not true. Indeed, let the author b be identical to
a except that b has received an additional citation. Between b and a, the relation
w does not hold while D clearly does. •

Any sensible bibliometric ranking (or index) should be minimally compatible
with the above relation2. If a dominates b, we will require that a is not ranked
below b (or has a lower value of the index). Moreover, the trivial ranking of authors
declaring all authors in A to be equivalent has clearly little interest. These two
requirements lead to the definitions of what we will call a bibliometric ranking and
a bibliometric index.

2.2 Definitions

A ranking of authors is a complete and transitive binary relation on the set of
authors A. When % is a ranking, the statement a % b is interpreted as meaning
that author a has a performance that is at least as good as the performance of
author b. The asymmetric part of % will be denoted by � and is interpreted as
“has a strictly better performance”. The symmetric part of % will be denoted by
⇠ and is interpreted as “has an equivalent performance”. A similar convention
will hold if subscripts or superscripts are added to the symbol %.

Similarly, an index is a real-valued function f on the set of authors A.
In order to exclude obviously uninteresting rankings from the analysis, we will

suppose throughout that any ranking satisfies the following two conditions.

A1 (Nontriviality) There are a, b 2 A such that a 6⇠ b.

The above condition excludes the trivial ranking always putting all authors in
the same equivalence class. It seems quite innocuous since the trivial ranking has
little interest.

A2 (Monotonicity) For all a, b 2 A, a D b ) a % b.

2Chambers and Miller (2014) call the relation D the “objective” information for comparing
authors.
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Remark 2
Observe that the above two conditions can easily be reformulated for an index
f . The rules of this reformulation are quite simple, whenever the condition on
rankings only uses % or some derived relations. Instead of saying that a ⇠ b (resp.
a 6⇠ b, a % b, and a � b), we now say that f(a) = f(b) (resp. f(a) 6= f(b), f(a) �
f(b), and f(a) > f(b)). Hence, any condition on a ranking can be translated into
a condition on an index. For instance, condition A2, stated for an index f , says
that if a D b, then we should have f(a) � f(b).

In the sequel, we will use the same name for the condition on a ranking and
the corresponding condition on an index. This clear abuse of notation should
nevertheless not cause confusion. •

The monotonicity condition says that publishing an additional paper and/or
receiving an additional citation should not lower the position of an author. It
is identical to the monotonicity condition used by Woeginger (2008a, p. 225).
Although we find this condition quite compelling, it is not completely innocuous3.
Suppose that we want to compare two authors a and b. They are identical in
all respects, both having published 10 papers each of them having received 20
citations, except that a has published one more paper than b that has not received
any citation. One may view the uncited paper of a as a signal that part of her
research has not attracted any attention. Hence, one may want to penalize a for
this additional uncited paper. Our monotonicity condition forbids this and implies
that a should not be ranked lower than b. The monotonicity condition is tailored
here for “total performance indices” and not for “average performance indices”
in the sense of Waltman and van Eck (2009b) and Waltman et al. (2011). In
other terms, one should interpret the bibliometric indices studied in this paper as
“extensive” indices (see, e.g., Bouyssou and Marchant, 2010, p. 369), i.e., aiming
at capturing the “global impact” of the scientific output of an author, contrary
to “intensive” indices aiming at capturing the “average impact” of the scientific
output of an author. We do not think that this is unreasonable when evaluating
authors. Clearly, this would be much more objectionable for evaluating journals
(see Bouyssou and Marchant, 2010, 2011a).

Additional remarks on these conditions A1 and A2 can be found in Section 11.
Definition 1
A bibliometric ranking % is a complete and transitive binary relation defined on
the set of authors A that satisfies A1 and A2.

Remark 3
The above definition di↵ers from Marchant (2009a, Def. 1, p. 327) in that it is
supposed there that a bibliometric ranking always satisfies Nontriviality, a con-
dition that is identical to A1, and a condition, weaker than Monotonicity, called

3We thank Antonio Quesada for having brought this point to our attention.
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CDNH (Citations Do Not Harm). The replacement of CDNH by Monotonicity is
motivated by our wish to keep the number of conditions used to a minimum. •
Definition 2
A bibliometric index f is a function associating with any author a 2 A a real
number f(a) satisfying A1 and A2.

Clearly, any bibliometric index f induces a bibliometric ranking %
f

, letting,
for all a, b 2 A,

a %
f

b , f(a) � f(b).

Let ' be a strictly increasing function from R to R. The bibliometric index ' � f
that associates with all a 2 A the value '(f(a)) induces on A a bibliometric
ranking that is identical to the one induced by f .

Remark 4
We could have defined bibliometric ranking and indices without requiring that
they satisfy A1 and A2. This would complicate the statement of many results
and require many more examples to show that the conditions used in our results
are independent. The choice made here is motivated by our desire to keep things
simple and the fact that A1 is quite innocuous while, as discussed above, A2 is fairly
reasonable for rankings and indices aiming at capturing the “global impact”. •

There are many possible bibliometric rankings (and, hence, indices). One pos-
sible way to compare and analyze them is to study whether or not they satisfy a
number of easily interpretable properties (e.g., Rousseau, 2008, studies the prop-
erties satisfied by some variants of the h-index). Moreover, we may also try to find
properties that are collectively satisfied by a unique ranking or index (or family of
rankings or indices), i.e., characterizing properties. Table 1 gives a schematic view
of the main conditions used below. These conditions will precisely be defined and
discussed in the course of the text.

3 Number of highly cited papers

This is a classical bibliometric index (see, e.g., Chapron and Husté, 2006, van Eck
and Waltman, 2008).

3.1 Setting

Let ⌧ 2 N. We are interested in the index f

⌧

associating with each author a 2 A

the number of her papers that have received at least ⌧ citations, i.e., we have:

f

⌧

(a) =
X

x�⌧

a(x).

7



Condition Name Expression

A1 Nontriviality 9a, b 2 A such that a 6⇠ b
A2 Monotonicity a D b ) a % b

C1 Independence a % b , a+ c % b+ c
C2 2-Gradedness modified [1

y

� 0 and x > y] ) 1
x

⇠ 1
y

C3 One Is One 1
x

⇠ 1
y

C4 Restricted Additivity 1
x

� 0 and 1
y

� 0 ) [1
x

+ 1
y

] ⇠ 1
x+y

C5 Restricted Transfer 1
x

� 0 and 1
y

� 0 ) [1
x

+ 1
y

] ⇠ 1
x+1 + 1

y�1

C6 Additivity 1
x

+ 11 ⇠ 1
x+1

C7 Weak Independence a % b ) a+ c % b+ c
C8 Strict Monotonicity x > y , 1

x

� 1
y

C9 Quasi-null authors 10 ⇠ 0
C10 One plus One equals One 1

x

+ 1
x

⇠ 1
x

C11 Strong quasi-null authors x10 ⇠ 0
C12 Tail independence See text (p. 35)
C13 Square upwards y

i

� x ) x1
x

% [1
y1 + 1

y2 + . . .1
y

x

]
C14 Square rightwards y

i

 x ) x1
x

% [x1
x

+ 1
y1 + 1

y2 + . . .1
y

j

]
C15 Strong Uniformity (x+ 1)1

x+1 � x1
x

, (y + 1)1
y+1 � y1

y

C16 Lorenz Monotonicity a DL b ) a % b
C17 Single paper author x1

x

% 1(x+1)2�1

C18 Modified Tail independence See text (p. 46)

ORI Condition Origin f(0) = 0
ES Equal Spacing See text (p. 12)

Table 1: Schematic view of conditions. The conditions labelled A and C apply to
both rankings and indices. Conditions A will always be in force. Conditions ORI
and ES are specific to indices.

We will also be interested in the bibliometric ranking %
⌧

induced by f

⌧

. We refer
to van Eck and Waltman (2008) for a very insightful analysis of this index.

When ⌧ = 0, we obtain the index consisting in the number of papers. Higher
values of ⌧ may be justified by the fact that only papers with a su�ciently high
number of citations should influence the performance of an author.

3.2 Conditions

Our first condition is independence. As discussed in Bouyssou and Marchant
(2011b), Marchant (2009a,b), Waltman and van Eck (2009b, 2012) this is an im-
portant property of some bibliometric rankings and indices.

C1 (Independence) For all a, b, c 2 A, a % b , a+ c % b+ c.

8



This above condition is identical to condition A4 in Marchant (2009a, p. 328).
It is easy to check that, whatever ⌧ 2 N, it is satisfied by f

⌧

. The same is
true for %

⌧

. Indeed, whenever a bibliometric index satisfies a condition expressed
using a relation % (such conditions are labeled C in this paper) the corresponding
bibliometric ranking clearly satisfies the same condition.

Independence says the following. Consider two authors a, b 2 A such that a

is at least as good as b. Suppose that both a and b publish the same number
of additional papers and that each of these additional papers receive the same
number of citations. After the publication of these new papers, a becomes a + c

and b becomes b + c. Independence requires that a + c is at least as good as
b + c. This seems a sensible condition. We will nevertheless see that there are
bibliometric rankings that violate it. In order to understand why this property
might not be sensible, suppose that both a and b have published a small number
of papers. Suppose that we consider that a is strictly better than b and that c

contains a very large number of papers. Adding c to both a and b can dilute the
advantage for a over b and we might want to conclude that a + c and b + c are
equivalent. This also serves to motivate the weakening of this condition considered
below in Section 8.2. (C7, Weak Independence).

For a detailed study of independence, we refer to Bouyssou and Marchant
(2010), Marchant (2009b) and Waltman and van Eck (2012). Independence is the
central condition used to characterize scoring rules in Marchant (2009b).

Remark 5
The independence condition can be viewed as the conjunction of the following two
conditions stating that, for all a, b, c 2 A,

a % b ) a+ c % b+ c, (1)

a � b ) a+ c � b+ c. (2)

Equation (1) is the weakening of independence later defined as C7 (Weak Indepen-
dence). Since % is complete, (2) is equivalent to saying that a+c � b+c ) a � b. •

Remark 6
If a ranking % satisfies C1, it is easy to see that a % b and c ⇠ d imply a+c % b+d

(indeed, C1 and a % b imply a+c % b+c. Similarly, C1 and c ⇠ d imply c+b ⇠ d+b.
Hence, we have a+ c % b+ d). Similarly, a � b and c ⇠ d imply a+ c � b+ d.

Another useful consequence of C1 is that a % b , na % nb with n 2 N+.
Indeed, C1 and a % b imply a + a % b + a. Similarly, C1 and a % b imply
a + b % b + b. Hence, we obtain 2a % 2b. Similarly, a � b implies 2a � 2b.
Iterating the above reasoning leads to the desired conclusion.

We will often use such easy consequences of C1, without detailing them in the
sequel. •

9



The following lemma will be useful.

Lemma 1
If a bibliometric ranking % satisfies (1), then we have 1

x

� 0, for some x 2 N.

Proof

Suppose that the thesis is violated, so that 0 % 1
x

, for all x 2 N. Using A2, we
must have 1

x

⇠ 0, for all x 2 N.
Any non-null a 2 A can be written as the sum of single paper authors. Since

1
x

⇠ 0, for all x 2 N, it is easy to see that repeated applications of (1) imply that
a ⇠ 0. This contradicts A1. 2

The following is the (modified) 2-gradedness condition. It says that all authors
having published a single paper are equivalent as soon as they are strictly better
than the null author. This condition is strong since it amounts to be skeptical
about the idea that citations are a sign of quality, Whatever ⌧ 2 N, this condition
is satisfied by %

⌧

. Indeed, for this index we have f

⌧

(1
x

) = 0, for all x 2 N such
that x < ⌧ , and f

⌧

(1
x

) = 1, for all x 2 N such that x � ⌧ . This condition is close
but not identical to the 2-gradedness condition used in Marchant (2009a, p. 333),
which explains its name.

C2 (2-Gradedness modified) For all x, y 2 N, [1
y

� 0 and x > y] ) 1
x

⇠ 1
y

.

The following lemmas will be useful.

Lemma 2
If a bibliometric ranking % satisfies C1 and C2, then there is ⌧ 2 N such that, for
all x 2 N, x < ⌧ ) 1

x

⇠ 0 and x � ⌧ ) 1
x

⇠ 1
⌧

� 0.

Proof

We know from A2 that 1
x

% 0, for all x 2 N. Moreover, Lemma 1 implies that
1
x

� 0, for some x 2 N. Define ⌧ 2 N to be the smallest x 2 N such that 1
x

� 0.
By construction, for all x < ⌧ , we have 1

x

⇠ 0. Using C2, we have 1
x

⇠ 1
⌧

� 0,
for all x � ⌧ . 2
Lemma 3
Let % be a bibliometric ranking satisfying C1 and C2. Define ⌧ as in Lemma 2.
Let a 2 A be a non-null author. We have a ⇠ a

+(⌧)1
⌧

, where, as before, a+(⌧) =P
i�⌧

a(i).

Proof

We know that x � ⌧ implies 1
x

⇠ 1
⌧

and that x < ⌧ implies 1
x

⇠ 0. The thesis
follows from repeated applications of C1. Since this is our first nontrivial proof,
let us give details.

10



Indeed, suppose that a 2 A is such that

a = 1
x1 + 1

x2 + · · ·+ 1
x

n

+ 1
y1 + 1

y2 + · · ·+ 1
y

m

,

with x1, x2, . . . , xn

� ⌧ and y1, y2, . . . , ym < ⌧ .
We have 1

y

i

⇠ 0, for i = 1, 2, . . . ,m and 1
x

j

⇠ 1
⌧

, for j = 1, 2, . . . , n.
Since 1

y

m

⇠ 0, C1 implies that

1
y

m

+ 1
x1 + 1

x2 + · · ·+ 1
x

n

+ 1
y1 + 1

y2 + · · ·+ 1
y

m�1 ⇠
0+ 1

x1 + 1
x2 + · · ·+ 1

x

n

+ 1
y1 + 1

y2 + · · ·+ 1
y

m�1 .

Hence, we obtain

1
x1 + 1

x2 + · · ·+ 1
x

n

+ 1
y1 + 1

y2 + · · ·+ 1
y

m�1 + 1
y

m

⇠
1
x1 + 1

x2 + · · ·+ 1
x

n

+ 1
y1 + 1

y2 + · · ·+ 1
y

m�1 .

Since 1
y

m�1 ⇠ 0, C1 implies that

1
y

m�1 + 1
x1 + 1

x2 + · · ·+ 1
x

n

+ 1
y1 + 1

y2 + · · ·+ 1
y

m�2 ⇠
0+ 1

x1 + 1
x2 + · · ·+ 1

x

n

+ 1
y1 + 1

y2 + · · ·+ 1
y

m�2 .

Hence, we obtain

1
x1 + 1

x2 + · · ·+ 1
x

n

+ 1
y1 + 1

y2 + · · ·+ 1
y

m�2 + 1
y

m�1 + 1
y

m

⇠
1
x1 + 1

x2 + · · ·+ 1
x

n

+ 1
y1 + 1

y2 + · · ·+ 1
y

m�2 + 1
y

m�1 ⇠
1
x1 + 1

x2 + · · ·+ 1
x

n

+ 1
y1 + 1

y2 + · · ·+ 1
y

m�2

Repeating the same reasoning leads to conclude that

1
x1 + 1

x2 + · · ·+ 1
x

n

+ 1
y1 + 1

y2 + · · ·+ 1
y

m

⇠
1
x1 + 1

x2 + · · ·+ 1
x

n

.

Since 1
x

n

⇠ 1
⌧

, C1 implies that

1
x1 + 1

x2 + · · ·+ 1
x

n�1 + 1
x

n

⇠
1
x1 + 1

x2 + · · ·+ 1
x

n�1 + 1
⌧

.

Since 1
x

n�1 ⇠ 1
⌧

, C1 implies that

1
x1 + 1

x2 + · · ·+ 1
x

n�2 + 1
⌧

+ 1
x

n�1 ⇠
1
x1 + 1

x2 + · · ·+ 1
x

n�2 + 1
⌧

+ 1
⌧

.

Hence, we obtain
1
x1 + 1

x2 + · · ·+ 1
x

n�1 + 1
x

n

⇠
1
x1 + 1

x2 + · · ·+ 1
x

n�2 + 21
⌧

.

Repeating the same reasoning leads to conclude that

1
x1 + 1

x2 + · · ·+ 1
x

n�1 + 1
x

n

⇠ a

+(⌧)1
⌧

. 2
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All conditions introduced so far dealt with both rankings and indices. We now
introduce conditions that are specific to indices.

In order to go from a ranking to an index, we have to specify the “origin” of
the index. Using A2, we know that, for all a 2 A, a % 0. Our first condition for
indices specifies the value of the index for the null author 0.

ORI (Condition Origin) f(0) = 0.

Condition ORI is a very mild one. It is satisfied by f

⌧

. It will also hold for all
indices studied in this paper. Together with A2, it implies that for all a 2 A,
f(a) � 0.

Once the origin of the index is settled, one also has to choose a “unit”. We do
so by specifying that some authors are equally spaced with respect to the index.

ES (Equal Spacing) Let a, b, c 2 A be three authors such that f(a) > f(b) > f(c).
If, for all d 2 A\{b}, we have either f(d) � f(a) or f(d)  f(c), then f(a)�f(b) =
f(b)� f(c).

Condition ES says that, if author b is “immediately above” c (meaning that there
is no author having a value of the index strictly between f(c) and f(b)) and a is
“immediately above” b, then the di↵erences f(b) � f(c) and f(a) � f(b) must be
equal4. This implies that, going from an author to an author that is “immediately
above” her, always raises the index by the same amount. It is not di�cult to check
that, whatever ⌧ , the index f

⌧

satisfies ES.

Remark 7
The reader may have the impression that, starting with a bibliometric ranking,
adding conditions ORI and ES always leads to define a bibliometric index. This is
not so because requiring that a bibliometric index is real-valued imposes additional
constraints. Let us illustrate this point with a simple example.

Consider the ranking that that is obtained combining the total number of
citations (i.e., the ranking %

c

defined below) and the number of papers (i.e., the
ranking %0 defined below) in a lexicographic way. For authors having a di↵erent
total number of citations, the ranking is based on the number of citations. For
authors having the same total number of citations, ties are broken according to
the number of papers. Two authors are indi↵erent only when they have the same
total number of citations and the same number of papers. It is simple to check
that this ranking satisfies A1 and A2, so that it is a bibliometric ranking. It leads
to:

0 � 110 � 210 � 310 � · · · � i10 � . . .

4Strengthening this condition requiring that f(b) � f(c) = f(a) � f(b) = 1 would lead to
characterize the index under study instead of the family of indices obtained from the index
under study via the multiplication by a positive constant.
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Moreover, it is simple to check that 110 is immediately above 0 and, for all i 2 N,
(i + 1)10 is immediately above i10. Imposing conditions ORI and ES leads to
conclude that, for the associated index, f(i10) = ik, for all i 2 N, where k =
f(110)� f(0) is a strictly positive real number. But we also know that 11 � i10,
for all i 2 N. Hence, we should have f(11) > ik, for all i 2 N. This is clearly
impossible.

Let us finally observe that adding conditions ORI and ES to a bibliometric
ranking leads to an index that is one among the many possible indices inducing the
same bibliometric ranking. Consider, for instance, the index, studied below, that
counts the number of citations of highly cited papers, i.e., given a threshold ⌧ 2 N+,
this index associates with an author a 2 A the number f(a) =

P
x�⌧

xa(x). After
having characterized the ranking induced by this index, we cannot simply add
ORI and ES to characterize this index. This is because this index does not satisfy
ES. Indeed, 1

⌧+1 is immediately above 1
⌧

that is, in turn, immediately above
0, whereas the value of the index counting the number of highly cited papers is
respectively ⌧ + 1, ⌧ and 0. •

3.3 Results

Our first result, in this section, characterizes %
⌧

.

Theorem 1
A bibliometric ranking % satisfies conditions C1 and C2 if and only if (i↵), for all
a, b 2 A, a % b , f

⌧

(a) � f

⌧

(b), for some ⌧ 2 N.
Proof

Necessity is clear. We show su�ciency. Let ⌧ 2 N be defined as in Lemma 2. In
view of Lemma 3, for all non-null a 2 A, we have a ⇠ a

+(⌧)1
⌧

. By construction,
we know that 1

⌧

� 0. Using C1, we obtain (x+1)1
⌧

� x1
⌧

, for all x 2 N. Hence,
we have a % b , a

+(⌧) � b

+(⌧) , f

⌧

(a) � f

⌧

(b), for all non-null authors a, b 2 A.
The proof is complete observing that if b 2 A is such that f

⌧

(b) = 0, we must have
b ⇠ 0 since we know from Lemma 2 that, for all x 2 N, x < ⌧ ) 1

x

⇠ 0. 2
Remark 8
Theorem 1 is essentially the same as Marchant (2009a, Th. 4, p. 334). We have
used A2 instead of CDNH and Lower Bound.

Observe however that Theorem 4 in Marchant (2009a) is stated for ⌧ > 0. In
fact, it is easy to check that it also holds for ⌧ = 0. Moreover, our version of
2-gradedness di↵ers from the one given in Marchant (2009a) saying that, for all
x, y, z 2 N, x > y > z ) [1

x

⇠ 1
y

or 1
y

⇠ 1
z

]. This does not forbid to have, for
all x, y 2 N+, 1x

⇠ 1
y

� 10 � 0. The ranking induced by the following index:

f(a) = a(0) + 2
X

x�1

a(x),
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satisfies all conditions in Marchant (2009a, Th. 4) but is not identical to %
⌧

. Our
modified version of 2-gradedness corrects this point. •

Adding the zero condition ORI and ES leads to a characterization of the index
f

⌧

up to the multiplication by a positive constant.
We will use the following lemma.

Lemma 4
If a bibliometric index f satisfies conditions C1, C2, ORI, and ES, then, for all
x, y 2 N, f(x1

y

) = xf(1
y

).

Proof

Let ⌧ 2 N be defined as in Lemma 2.
If y < ⌧ , Theorem 1 and ORI imply that f(x1

y

) = f(1
y

) = f(0) = 0.
Let y � ⌧ . Using Theorem 1, we know that, for all x 2 N, f(x1

y

) = f(x1
⌧

).
Moreover, still using Theorem 1, we know that 1

⌧

is immediately above 0 and
that, for all x 2 N+, (x + 1)1

⌧

is immediately above x1
⌧

. Using ORI, we know
that f(0) = 0. Using ES we have f(x1

⌧

) = xf(1
⌧

). Hence, we have f(x1
y

) =
f(x1

⌧

) = xf(1
⌧

) = xf(1
y

). 2

Theorem 2
A bibliometric index f satisfies conditions C1, C2, ORI, and ES i↵, for all a 2 A,
f(a) = �f

⌧

(a), for some � 2 R+ and some ⌧ 2 N.

Proof

Necessity is clear. We show su�ciency. Let ⌧ 2 N be defined as in Lemma 2. Let
f(1

⌧

) = �. We know from Lemma 2 that � > 0. If a 2 A is null, the thesis follows
from ORI. In view of Lemma 3, for all non-null a 2 A, we have f(a) = f(a+(⌧)1

⌧

).
Using Theorem 1 and Lemma 4, we have f(a) = f(a+(⌧)1

⌧

) = a

+(⌧)f(1
⌧

) =
a

+(⌧)� = �f

⌧

(a). 2

3.4 Independence of conditions

It is important in characterization results to use non-redundant conditions. Hence,
we want to show that the conditions used in Theorem 1 (or in Theorem 2) are
independent, i.e., that none of them is implied by the conjunction of the other
ones. We do so by giving examples showing that it is possible to satisfy all but
one of the conditions used in the above results.

When C1 holds, condition C3, used in Theorem 3 below, implies condition C2
(see Lemma 5). Hence, the examples used below to show that the conditions in
Theorem 3 (resp. Theorem 4) are independent also show that the conditions used
in Theorem 1 (resp. Theorem 2) are independent.
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4 Number of papers

This is a standard bibliometric index (see, e.g., van Raan, 2006).

4.1 Setting

We are interested in the index f0 associating with each author a 2 A the total
number of her papers, i.e., we have:

f0(a) = p

a

=
X

x2N

a(x).

We will also be interested in the bibliometric ranking %0 induced by f0.
It is clear that this ranking (resp. index) is a particular instance of the ranking

%
⌧

(resp. index f

⌧

) with ⌧ = 0. Hence, all conditions that are satisfied by %
⌧

(resp. f
⌧

) are also satisfied by %0 (resp. f0).

4.2 Conditions

We will need the following condition. It says that, for authors having a single
paper, the number of citations received by this paper is unimportant.

C3 (One is One) For all x, y 2 N, 1
x

⇠ 1
y

.

Remark 9
The above condition is identical to condition A7 in Marchant (2009a, p. 329). It
is clearly satisfied by %0. When ⌧ > 0, it is violated by %

⌧

.
As stated in Marchant (2009a), this condition says that two authors, each with

exactly one publication, are equivalent irrespective of their number of citations.
This condition is quite strong. It implies that, for authors with a single paper,
citations are not viewed as a signal of impact. •

Lemma 5
If a bibliometric ranking satisfies conditions C1 and C3, it also satisfies C2.

Proof

From Lemma 1, we know that 1
x

� 0, for some x 2 N. Using C3, we obtain that
for all x, y 2 N, 1

x

⇠ 1
y

� 0. This clearly implies C2. 2
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4.3 Results

Our first result, in this section, characterizes %0.

Theorem 3
A bibliometric ranking % satisfies conditions C1 and C3 i↵, for all a, b 2 A,
a % b , f0(a) � f0(a).

Proof

Necessity is clear. We show su�ciency. From Lemma 5, we know that C2 holds,
so that Theorem 1 also holds. Using Lemma 1, we know that we have 1

x

� 0, for
some x 2 N. Then C3 implies that 1

x

⇠ 1
y

� 0, for all x, y 2 N. Hence, defining
⌧ as in Lemma 2, we must have ⌧ = 0. 2

Remark 10
Theorem 3 is identical to Marchant (2009a, Th. 1, p. 329) with A2 replacing CDNH
and Lower Bound. The proof given here is di↵erent however. •

Adding conditions ORI and ES leads to a characterization of the index f0 up
to the multiplication by a positive constant.

Theorem 4
A bibliometric index f satisfies conditions C1, C3, ORI, and ES i↵, for all a 2 A,
f(a) = �f0(a), for some � 2 R+.

Proof

Necessity is clear. We show su�ciency. From Lemma 5, we know that C2 holds,
so that Theorem 2 also holds. Using Lemma 1, we know that we have f(1

x

) > 0,
for some x 2 N. Then C3 implies that f(1

x

) = f(1
y

) > 0, for all x, y 2 N. Hence,
defining ⌧ as in Lemma 2, we must have ⌧ = 0. 2

4.4 Independence of conditions

We show below that the conditions used in Theorem 4 are independent (in order
not to multiply examples, conditions A1 and A2 will always be assumed when
discussing the independence of conditions).

Example 1 (C1 Independence)
Consider the bibliometric index such that f(a) = 1, for all non-null authors and
f(0) = 0. It is clear that this index satisfies A1 and A2.

This index clearly violates C1 since, e.g., we have f(11) = 1 > f(0) = 0 but
f(211) = 1 = f(0 + 11). For all x, y 2 N, we have f(1

x

) = f(1
y

) = 1, so that C3
holds. Condition ORI clearly holds. Condition ES trivially holds. 3
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Remark 11
It is easy to check that the above example satisfies C7, a condition weakening C1
that is defined below in Section 8.2. This shows that it is not possible to replace
C1 by C7 in Theorems 1, 2, 3, and 4. •

Example 2 (C3 One is One)
Consider the bibliometric index defined by

f

c

(a) = c

a

=
X

x2N

xa(x),

i.e., the index giving the total number of citations received by the papers of an
author. This index clearly satisfies A1 and A2. It clearly violates C3 since, e.g.,
f(12) = 2 > f(11) = 1. It is easy to check that all other conditions (C1, ORI, and
ES) are satisfied (see Theorem 9 below). 3

Rephrasing the above examples in terms of the bibliometric ranking induced
by the bibliometric index shows that the conditions used in Theorem 3 are inde-
pendent.

Example 3 (ORI)
Consider the bibliometric index f such that, for all a 2 A, f(a) = f0(a) + 1. This
index clearly satisfies A1 and A2. It clearly violates ORI. It is easy to check that
all other conditions (C1, C3, and ES) are satisfied. 3

Example 4 (ES)
Consider the bibliometric index that assigns to all a 2 A the square of the value
f0(a). It satisfies A1 and A2. It clearly violates ES. It is easy to check that all
other conditions (C1, C3, and ORI) are satisfied. 3

Remark 12
The above two examples showing that ORI (adding a positive constant to the value
of the index) and ES (taking a strictly monotonic transformation of the value of
the index) are independent will be used for all indices that we study. Instead of
repeating them below, we will refer to them as the “standard examples”. •

4.5 Remarks

Theorem 3 characterizes %0 through replacing C2 in Theorem 1 with C3. Clearly,
an alternative characterization is obtained, keeping unchanged all conditions used
in Theorem 1 and adding to them the requirement that 10 � 0. This alternative
characterization uses three conditions that are independent (Example 1 satisfies
this new condition and C2 but violates C1. The index f

⌧

, with ⌧ = 1 satisfies C1
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and C2 but violates the new condition. The index consisting of the sum of the
number of papers and the number of citations satisfies C1 and the new condition
but violates C2).

Let us also observe that we may replace C1 in Theorem 3 by the conjunction
of (1) and (2) while keeping a set of independent conditions. We have already
observed that Example 1 satisfies (1) as well as C3. It clearly violates (2) since
we have 11 � 0 but 11 + 11 ⇠ 0 + 11. The ranking in which all authors having
at most one paper are tied with 0 and all other authors are ranked according to
the number of papers (minus one if one wishes to satisfy ES) gives an example
satisfying (2) and C3 but violating (1) since 0 % 11 but 11 + 11 � 0+ 11.

5 Number of citations of highly cited papers

To our knowledge, the literature has never made use of this index. It is a variant
of the index based on the total number of citations, correcting it to take only
“important papers” into account.

5.1 Setting

Let ⌧ 2 N+. We are interested in the index f

c

⌧

associating with each author a 2 A

the total number of citations received by her papers that have received at least ⌧
citations, i.e., we have:

f

c

⌧

(a) = c

⌧

(a) =
X

x�⌧

xa(x).

We will also be interested in the bibliometric ranking %
c

⌧

induced by f

c

⌧

.

5.2 Conditions

It is not di�cult to check that f
c

⌧

satisfies conditions C1.
We will need the following condition.

C4 (Restricted Additivity) For all x, y 2 N, 1
x

� 0 and 1
y

� 0 imply [1
x

+1
y

] ⇠
1
x+y

.

The above condition says that, for authors having a single publication that
are better than the null author, getting y more citations for the single paper
is equivalent to publishing an additional paper with y citations, as long as the
author having a single paper with y citations is not considered equivalent to the
null author. It is easy to check that this condition is violated by %0. When ⌧ > 0,
this condition is also violated by %

⌧

.
The following lemmas will be useful.
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Lemma 6
If a bibliometric ranking % satisfies C1 and C4, then 10 ⇠ 0.

Proof

A2 implies 10 % 0. Suppose that 10 � 0. A2 implies 11 � 0. Using C1, 10 � 0
implies 10 + 11 � 0 + 11 = 11. Since 10 � 0 and 11 � 0, we use C4 to obtain
10 + 11 ⇠ 10+1 = 11, a contradiction. 2

Lemma 7
If a bibliometric ranking % satisfies C1 and C4, then there is ⌧ 2 N+ such that,
for all x 2 N, x < ⌧ ) 1

x

⇠ 0.

Proof

We know from A2 that 1
x

% 0, for all x 2 N. Moreover, Lemma 1 implies that
1
x

� 0, for some x 2 N. Define ⌧ 2 N to be the smallest x 2 N such that 1
x

� 0.
By construction, for all x < ⌧ , we have 1

x

⇠ 0. Lemma 6 implies that we have
⌧ > 0. 2
Lemma 8
If a bibliometric ranking % satisfies C1 and C4, then, for all a 2 A, a ⇠ a + 1

x

for all x 2 N with x < ⌧ and ⌧ defined as in Lemma 7.

Proof

We know from Lemma 7 that x < ⌧ implies that 1
x

⇠ 0. The conclusion follows
from C1. 2
Lemma 9
If a bibliometric ranking % satisfies C1 and C4, then, for all x, y 2 N, such that
x > y � ⌧ , with ⌧ defined as in Lemma 7, 1

x

� 1
y

.

Proof

Let x, y 2 N, such that x > y � ⌧ . Since y � ⌧ , we know that 1
y

� 0. Using A2,
we have 1

x

% 1
y

� 0. Suppose, in contradiction with the thesis, that 1
x

⇠ 1
y

.
Using C1, this implies y1

x

⇠ y1
y

. Using C4 repeatedly, we obtain 1
xy

⇠ 1
yy

.
Since x > y and 1

y

� 0, C1 implies x1
y

� y1
y

. Using C4 repeatedly, we obtain
1
xy

� 1
yy

, a contradiction. 2

Lemma 10
Let % be a bibliometric ranking satisfying C1 and C4. Define ⌧ as in Lemma 7.
Let a 2 A and let c

⌧

(a) =
P

x�⌧

xa(x). Then a ⇠ 1
c

⌧

(a).

Proof

Suppose first that a 2 A has no papers having been cited at least ⌧ times, so that
c

⌧

(a) = 0. Using Lemmas 6 and 7 and C1 implies that a ⇠ 10 ⇠ 0.
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Suppose now that a 2 A is such that

a = 1
x1 + 1

x2 + · · ·+ 1
x

n

+ 1
y1 + 1

y2 + · · ·+ 1
y

m

,

with x1, x2, . . . , xn

� ⌧ and y1, y2, . . . , ym < ⌧ .
Using Lemma 7 and C1, it is easy to see that a ⇠ [1

x1 +1
x2 + · · ·+1

x

n

]. Using
C4 repeatedly, we obtain a ⇠ 1

x1+x2+···+x

n

⇠ 1
c

⌧

(a). 2

5.3 Results

Our first result, in this section, characterizes %
c

⌧

.

Theorem 5
A bibliometric ranking % satisfies conditions C1 and C4, i↵, for all a, b 2 A,
a % b , c

⌧

(a) � c

⌧

(b), for some ⌧ 2 N+.

Proof

Necessity is clear. We show su�ciency. Let ⌧ 2 N+ be defined as in Lemma 7.
Lemma 10 implies that, for all a 2 A, we have a ⇠ 1

c

⌧

(a). We have a % b ,
1
c

⌧

(a) % 1
c

⌧

(b). In view of Lemma 9, this holds i↵ c

⌧

(a) � c

⌧

(b). 2

The index f

c

⌧

satisfies ORI but we already observed that it violates ES (unless
⌧ = 1). Instead of characterizing f

c

⌧

we will characterize the index f

⇤
c

⌧

that is such
that

f

⇤
c

⌧

(a) =

(
0 if f

c

⌧

(a) = 0,

f

c

⌧

(a) + 1� ⌧ otherwise.

Clearly the indices f
c

⌧

and f

⇤
c

⌧

induce the same ranking on the set of authors. The
di↵erence between f

c

⌧

and f

⇤
c

⌧

is that f ⇤
c

⌧

has been rescaled so as to satisfy ES.
Adding conditions ORI and ES to the conditions used in Theorem 5 leads to a

characterization of the index f

⇤
c

⌧

up to the multiplication by a positive constant.

Theorem 6
A bibliometric index f satisfies conditions C1, C4, ORI, and ES i↵, for all a 2 A,
f(a) = �f

⇤
c

⌧

(a), for some � 2 R+ and some ⌧ 2 N+.

Proof

Necessity is clear. We show su�ciency. Let ⌧ 2 N+ be defined as in Lemma 7.
Let f(1

⌧

) = � > 0. If c
⌧

(a) = 0, we know from Lemma 10 that a ⇠ 10 ⇠ 0. Using
ORI, we have f(a) = 0, while, by definition, we have f

⇤
c

⌧

(a) = 0. Hence, we have
f(a) = �f

⇤
c

⌧

(a). Suppose now that c
⌧

(a) > 0, which, by construction, implies that
c

⌧

(a) � ⌧ . Lemma 10 implies that, for all a 2 A, we have f(a) = f(1
c

⌧

(a)). Using
ORI and ES implies that f(a) = f(1

c

⌧

(a)) = (c
⌧

(a)+1�⌧)f(1
⌧

) = �(c
⌧

(a)+1�⌧) =
�f

⇤
c

⌧

(a). 2
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5.4 Independence of conditions

In presence of C1, condition C6, used in Theorem 9 below, implies condition C4
(see Lemma 16). Hence, the examples used below to show that the conditions in
Theorem 9 (resp. Theorem 10) are independent also show that the conditions used
in Theorem 5 (resp. Theorem 6) are independent.

6 Number of citations exceeding a threshold

To our knowledge, the literature has never made use of this index (it should be
noted that Albarrán et al., 2011a,b have used a similar idea to propose and analyze
indices for groups of authors that are independent of the size of the group5). It is
a variant of the index based on the total number of citations, correcting it to take
only citations exceeding a threshold into account.

6.1 Setting

Let ⌧ 2 N+. We are interested in the index f

t

⌧

associating with each author a 2 A

the total number of citations above ⌧ received by her papers, i.e., we have:

f

t

⌧

(a) = t

⌧

(a) =
X

x�⌧

(x+ 1� ⌧)a(x).

We will also be interested in the bibliometric ranking %
t

⌧

induced by f

t

⌧

.
Observe that this index is di↵erent from f

c

⌧

and f

⇤
c

⌧

. For instance, with ⌧ = 10,
we have: f

t

⌧

(112) = f

⇤
c

⌧

(112) = 3, while f

t

⌧

(2110) = 2 and f

⇤
c

⌧

(2110) = 11.
It is easy to check that f

t

⌧

satisfies C1, as well as ORI and ES. It violates C4.
Indeed, taking ⌧ = 10, we have f

t

⌧

(110) = 1 > f

t

⌧

(0) = 0, while f

t

⌧

(110 + 110) =
2 6= f

t

⌧

(110+10) = 11.

6.2 Conditions

We already observed that f
t

⌧

satisfies conditions C1, ORI, and ES, whatever ⌧ � 1.
Clearly it also satisfies condition C9, introduced later in Section 8.2 (saying that
10 ⇠ 0). We will need the following condition.

C5 (Restricted Transfer) For all x, y 2 N, with y > 0, if 1
x

� 0 and 1
y

� 0, then
[1

x

+ 1
y

] ⇠ 1
x+1 + 1

y�1.

5We thank Lude Waltman for having brought these papers to our attention.
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It is easy to check that the above condition is satisfied by %
t

⌧

, whatever ⌧ � 1.
It is easy to check that condition C5 is violated by %

⌧

(with ⌧ > 0) and %
c

⌧

(with
⌧ > 1). It is satisfied by %0 and %

c

. The following lemmas will be useful.

Lemma 11
If a bibliometric ranking % satisfies C1, then 1

x

� 0, for some x 2 N. There is
⌧ 2 N such that, for all x 2 N, x < ⌧ implies 1

x

⇠ 0. Moreover, if C9 holds, we
have ⌧ � 1.

Proof

The first part results from Lemma 1. We know from A2 that 1
x

% 0, for all x 2 N.
Define ⌧ 2 N to be the smallest x 2 N such that 1

x

� 0. By construction, for all
x < ⌧ , we have 1

x

⇠ 0. The last part is a direct consequence of C9. 2
Lemma 12
Let % be a bibliometric ranking satisfying C1 and C5. For all y 2 N, 1

y

� 0
implies 1

y+1 � 1
y

.

Proof

Define ⌧ as in Lemma 11. By construction, 1
y

� 0 implies y � ⌧ . We know that
1
⌧

� 0 and 1
⌧�1 ⇠ 0.

Let us first show that 1
⌧+1 � 1

⌧

. Suppose, contrary to the thesis, in view of
A2, that 1

⌧+1 ⇠ 1
⌧

. Using C5, we have 1
⌧

+ 1
⌧

⇠ 1
⌧+1 + 1

⌧�1. Using C1, this is
contradictory since 1

⌧+1 ⇠ 1
⌧

� 1
⌧�1 ⇠ 0.

Let us now show that 1
⌧+2 � 1

⌧+1. Suppose, contrary to the thesis, in view
of A2, that 1

⌧+2 ⇠ 1
⌧+1. We know that 1

⌧+1 � 1
⌧

� 0. Using C5, we have
1
⌧+1 + 1

⌧+1 ⇠ 1
⌧+2 + 1

⌧

. Using C1, this is contradictory since 1
⌧+2 ⇠ 1

⌧+1 � 1
⌧

.
Repeating the above reasoning leads to the desired conclusion. 2
Lemma 13
Let % be a bibliometric ranking satisfying C1, C5, and C9. Define ⌧ as in Lemma 11.
Let a 2 A and let t

⌧

(a) =
P

x�⌧

(x + 1 � ⌧)a(x). If t
⌧

(a) = 0, then a ⇠ 0. If
t

⌧

(a) > 0, then a ⇠ 1
⌧�1+t

⌧

(a).

Proof

Suppose first that a 2 A has no papers having been cited at least ⌧ times, so that
t

⌧

(a) = 0. Using Lemma 11 and C1 implies that a ⇠ 0.
Suppose now that a 2 A is such that, for some n 2 N+ and some m 2 N,

a = 1
x1 + 1

x2 + · · ·+ 1
x

n

+ 1
y1 + 1

y2 + · · ·+ 1
y

m

,

with x1, x2, . . . , xn

� ⌧ and y1, y2, . . . , ym < ⌧ , so that t
⌧

(a) > 0.
Using Lemma 11 and C1, it is easy to see that a ⇠ [1

x1 + 1
x2 + · · · + 1

x

n

].
By construction, we know that 1

x

i

� 0, for i = 1, 2, . . . , n. Let x

i

= ⌧ + ↵

i

, for

22



i = 1, 2, . . . , n, so that we have a ⇠ [1
⌧+↵1 +1

⌧+↵2 + · · ·+1
⌧+↵

n

]. By construction,
we know that t

⌧

(a) =
P

n

i=1(↵i

+ 1). Using C5, we have a ⇠ [1
⌧+↵1+1 + 1

⌧+↵2 +
· · ·+1

⌧+↵

n�1 +1
⌧+↵

n

�1]. Repeating the process leads to a ⇠ [1
⌧+↵1+↵

n

+1+1
⌧+↵2 +

· · ·+ 1
⌧+↵

n�1 + 1
⌧�1]. Since we know from Lemma 11 that 1

⌧�1 ⇠ 0, using C1, we
obtain a ⇠ [1

⌧+↵1+↵

n

+1+1
⌧+↵2 + · · ·+1

⌧+↵

n�1 ]. Repeating the process, we obtain
a ⇠ [1

⌧+↵1+↵2+...↵

n

+(n�1)]. We know that t

⌧

(a) =
P

n

i=1(↵i

+ 1), so that we have
a ⇠ 1

⌧�1+t

⌧

(a). 2

6.3 Results

Our first result, in this section, characterizes %
t

⌧

.

Theorem 7
A bibliometric ranking % satisfies conditions C1, C5, and C9 i↵, for all a, b 2 A,
a % b , t

⌧

(a) � t

⌧

(b), for some ⌧ 2 N+.

Proof

Necessity is clear. We show su�ciency. Let ⌧ 2 N+ be defined as in Lemma 11.
If t

⌧

(a) = 0, Lemma 13 implies that a ⇠ 0. If t
⌧

(a) � 1, Lemma 13 implies that
a ⇠ 1

⌧�1+t

⌧

(a). By construction, we know that 1
⌧�1+t

⌧

(a) � 0. The conclusion
therefore follows using Lemma 12. 2

Adding conditions ORI and ES to the conditions used in Theorem 7 leads to
a characterization of the index f

t

⌧

up to the multiplication by a positive constant.

Theorem 8
A bibliometric index f satisfies conditions C1, C5, C9, ORI, and ES i↵, for all
a 2 A, f(a) = �f

t

⌧

(a), for some � 2 R+ and some ⌧ 2 N+.

Proof

Necessity is clear. We show su�ciency. Let ⌧ 2 N+ be defined as in Lemma 11.
Let f(1

⌧

) = � > 0.
If t

⌧

(a) = 0, we know, using Theorem 7, that f(a) = f(0). Using ORI, we
know that f(0) = 0, so that the conclusion holds in this case. If t

⌧

(a) � 1, we
know, using Theorem 7, that f(a) = f(1

⌧�1+t

⌧

(a)). Using ES, it is clear that
f(1

⌧�1+t

⌧

(a)) = t

⌧

(a)f(1
⌧

) = �f

t

⌧

(a). 2
Remark 13
The rankings %

c

⌧

and %
t

⌧

are both based on the citation count of highly cited
papers. Although they aim at capturing the same basic idea, they do so in di↵erent
ways. Examining their characterizing properties do not give completely convincing
arguments in favor of one of them. The index f

c

⌧

violates ES. This has motivated
the introduction of the rescaled index f

⇤
c

⌧

. This seems to favor f
t

⌧

over f ⇤
c

⌧

. This is
all the more true since the index f

⇤
c

⌧

has jumps when going from authors with one
paper to authors with more than one paper that are not completely intuitive. •
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6.4 Independence of conditions

We show below that the conditions used in Theorem 8 are independent.

Example 5 (C9 Quasi-null authors)
Define f as the bibliometric index such that f

a

= f0(a) + f

c

(a) (i.e., the sum of
the numbers of papers and the number of citations). It is clear that this index
satisfies A1 and A2. Conditions ORI and ES are satisfied. C9 is violated since
f(10) = 1. Condition C1 and C5 clearly holds. 3
Example 6 (C5 Restricted Transfer)
The bibliometric index f

⇤
c

⌧

clearly satisfies C1 and C9. It is easy to check that it
violates C5. For instance, with ⌧ = 3, we have 14 + 13 �

c

⌧

15 + 12. Conditions
ORI and ES clearly hold. 3
Example 7 (C1 Independence)
Consider the bibliometric index such that f(a) = 0 for all authors with at most 1
paper and f(a) = 1 otherwise.

It is clear that this index satisfies A1 and A2. Condition C9 clearly holds.
Condition C5 holds since all authors having two papers are tied. Condition C1 is
violated since 11 ⇠ 0 but 211 � 11. Conditions ORI and ES trivially hold. 3

Rephrasing the above examples in terms of the bibliometric ranking induced
by the bibliometric index shows that the conditions used in Theorem 7 are inde-
pendent. The standard examples show that ORI and ES cannot be omitted in
Theorem 8.

7 Number of citations

This is a standard bibliometric index (see, e.g., van Raan, 2006).

7.1 Setting

We are interested in the index f

c

associating with each author a 2 A the total
number of citations received by her papers, i.e., we have:

f

c

(a) = c

a

=
X

x2N

xa(x).

We will also be interested in the bibliometric ranking %
c

induced by f

c

.
It is clear that this ranking (resp. index) is a particular instance of the ranking

%
c

⌧

(resp. index f

c

⌧

) with ⌧ = 1. The same is true with %
t

⌧

and f

t

⌧

with ⌧ = 1.
Hence, all conditions that are satisfied by %

c

⌧

(resp. f
c

⌧

) are also satisfied by %
c

(resp. f
c

). The same is true with %
t

⌧

and f

t

⌧

.
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7.2 Conditions

We only need one new condition that is clearly satisfied by %
c

.

C6 (Additivity) For all x 2 N, 1
x

+ 11 ⇠ 1
x+1.

When ⌧ > 1, the above condition is violated by %
c

⌧

and %
t

⌧

. It is clearly
violated by %0 and by %

⌧

with ⌧ > 0.

Remark 14
The above condition is identical to Condition A8 in Marchant (2009a, p. 330).
It is clearly satisfied by %

c

. It says that for authors having a single publication,
obtaining one more citation for that paper or publishing one additional paper with
one citation has the same impact. •

Our first lemma is identical to Lemma 6 with C6 replacing C4.

Lemma 14
If a bibliometric ranking % satisfies C1 and C6, then 10 ⇠ 0.

Proof

Using A2, we know that 10 % 0. Suppose that 10 � 0. Using C1, we obtain
10 + 11 � 0 + 11 = 11. Using C6, we know that 10 + 11 ⇠ 11. Hence, we obtain
11 � 11, a contradiction. 2

The following lemmas will be useful.

Lemma 15
If a bibliometric ranking % satisfies C1 and C6, then 11 � 0.

Proof

Suppose, in contradiction with the thesis that 0 % 11. Using A2, we have 11 ⇠ 0.
Using C1, we obtain 11+11 ⇠ 0+11 = 11. Using C6, we know that 11+11 ⇠ 12,
so that we have 12 ⇠ 11 ⇠ 0. Repeating the same reasoning shows that we have
1
x

⇠ 0, for all x 2 N+. Lemma 14 has shown that 10 ⇠ 0. Hence, we obtain a
violation of Lemma 1. 2
Lemma 16
If a bibliometric ranking % satisfies C1 and C6, then it satisfies C4.

Proof

We have to show that, for all x, y 2 N, 1
x

� 0 and 1
y

� 0 imply 1
x

+ 1
y

⇠ 1
x+y

.
The claim is trivial, using C6, if y = 1. Let us show that it holds for y = 2. Using
C6, we know that 12 ⇠ 11 + 11. Using C1, 1

x

+ 12 ⇠ 1
x

+ 11 + 11. C6 implies
that 1

x+1 ⇠ 1
x

+ 11. Hence, using C1, 1
x

+ 11 + 11 ⇠ 1
x+1 + 11. Using C6 again,

we obtain 1
x

+ 11 + 11 ⇠ 1
x+2. Hence, we have 1

x

+ 12 ⇠ 1
x+2. Repeating the

above reasoning proves the claim. 2
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Lemma 17
If a bibliometric ranking satisfies C1 and C6, then it satisfies C5.

Proof

Using C6, we know that 1
x

+ 11 ⇠ 1
x+1 and 1

y�1 + 11 ⇠ 1
y

. Using C1, we have
1
x+1 + 1

y�1 ⇠ 1
x

+ 11 + 1
y�1 ⇠ 1

x

+ 1
y

. This clearly implies C5. 2

7.3 Results

Our first result, in this section, characterizes %
c

.

Theorem 9
A bibliometric ranking % satisfies C1 and C6 i↵, for all a, b 2 A, a % b , f

c

(a) �
f

c

(b).

Proof

Necessity is clear. We show su�ciency. From Lemma 16, we know that C4 holds,
so that Theorem 5 also holds. Using Lemmas 14 and 15, we have 10 ⇠ 0 and
11 � 0. Hence, defining ⌧ as in Lemma 7, we must have ⌧ = 1. 2

Remark 15
Theorem 9 is almost identical to Marchant (2009a, Th. 2, p. 330). We have used
here A2 instead of Lower Bound and CDNH. The proof given here is di↵erent
however. •

Adding conditions ORI and ES leads to a characterization of the index f

c

up
to the multiplication by a positive constant.

Theorem 10
A bibliometric index f satisfies C1, C6, ORI, and ES i↵, for all a 2 A, f(a) =
�f

c

(a), for some � 2 R+.

Proof

Necessity is clear. We show su�ciency. From Lemma 16, we know that C4 holds,
so that Theorem 6 also holds. Using Lemmas 14 and 15, we have f(10) = f(0) and
and f(11) > f(0). Hence, defining ⌧ as in Lemma 7, we must have ⌧ = 1. Using
Lemma 10, we know that f(a) = f(1

c

a

). Let � = f(11) > f(0). ORI implies that
� > 0. Using Theorem 9, ORI and ES, we obtain f(a) = f(1

c

a

) = �c

a

= �f

c

(a). 2

7.4 Independence of conditions

We show below that the conditions used in Theorem 10 are independent.
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Example 8 (C1 Independence)
Consider the bibliometric index such that f(a) = 1, for all non-null authors and
f(0) = 0. It is clear that this index satisfies A1 and A2.

This index clearly violates C1 since, e.g., we have f(11) = 1 > f(0) = 0 but
f(211) = 1 = f(0+ 12). For all x 2 N, we have f(1

x

+ 11) = f(1
x+1) = 1, so that

C6 holds. Condition ORI clearly holds. Condition ES trivially holds. 3
Remark 16
It is easy to check that the above example satisfies C7, a condition weakening C1
that is defined below in Section 8.2. This shows that it is not possible to replace
C1 by C7 in Theorems 5, 6, 9, and 10. •
Example 9 (C6 Additivity)
The index f0 clearly violates C6. Theorem 4 has shown that it satisfies all other
conditions. 3

Rephrasing the above examples in terms of the bibliometric ranking induced
by the bibliometric index shows that the conditions used in Theorem 9 are inde-
pendent. The standard examples show that ORI and ES cannot be omitted in
Theorem 10.

7.5 Remarks

Theorem 9 characterizes %
c

through replacing C4 in Theorem 5 with C6. Clearly,
an alternative characterization is obtained, keeping unchanged all conditions used
in Theorem 5 and adding to them the requirement that 11 � 10. This alternative
characterization uses three conditions that are independent. Example 8 satisfies
this new condition and C4 but violates C1. The index f

⇤
c

⌧

, with ⌧ = 2 satisfies
C1 and C4 but violates the new condition. The index consisting of the sum of the
number of papers and the number of citations satisfies C1 and the new condition
but violates C4 since we have 12 � 0 and 13 � 0 but 12 + 13 � 15.

Let us also observe that we may replace C1 in Theorem 9 by the conjunction
of (1) and (2) while keeping a set of independent conditions. We have already
observed that Example 8 satisfies (1) as well as C6. It clearly violates (2) since we
have 11 � 0 but 11+11 ⇠ 0+11. The ranking in which all authors having at most
one citation are tied and all other authors are ranked according to the number of
citations (minus one if one wishes to satisfy ES) gives an example satisfying (2)
and C3 but violating (1) since 0 % 11 but 11 + 11 � 0+ 11.

8 Maximum number of citations

This is a bibliometric index that is less frequently used than the ones analyzed so
far. It is nevertheless sometimes used in the literature (see Eto, 2003)
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8.1 Setting

We are interested in the index f

M

associating with each author a 2 A the number
of citations received by her most cited paper, i.e., we have:

f

M

(a) = max{x 2 N : a(x) > 0},

where it is understood that taking the maximum over an empty set leads to the
value 0.

We will also be interested in the bibliometric ranking %
M

induced by f

M

.

8.2 Conditions

The ranking %
M

violates C1 (simple examples show that it also violates C2, C3,
C4, C5, and C6). It is easy to check that it satisfies the weakened version of C1
that is introduced below (it is identical to (1) introduced above).

C7 (Weak Independence) For all a, b, c 2 A, a % b ) a+ c % b+ c.

Remark 17
This above condition is identical to condition A5 in Marchant (2009a, p. 328).
The interest of this weakening of C1 has already been discussed. Since %

⌧

and
%

c

⌧

satisfy C1, they also satisfy C7, whatever ⌧ . •

The following lemma extends Lemma 1 to the case of weak independence.

Lemma 18
If a bibliometric ranking % satisfies C7, then we have 1

x

� 0, for some x 2 N.

Proof

Suppose that the thesis is violated, so that 0 % 1
x

, for all x 2 N. Using A2, we
must have 1

x

⇠ 0, for all x 2 N.
Any non-null a 2 A can be written as the sum of single paper authors. Since

1
x

⇠ 0, for all x 2 N, it is easy to see that repeated applications of C7 imply that
a ⇠ 0. This contradicts A1. 2

The following condition says that for authors having only one paper, citations
always have a positive e↵ect. It is clearly satisfied by %

M

. It seems innocuous as
soon as the idea that citations are a signal of quality is accepted. It is violated
by %0 and %

⌧

, whatever ⌧ . When ⌧ > 1, it is also violated by %
c

⌧

and %
t

⌧

. It is
clearly satisfied by %

c

.

C8 (Strict Monotonicity) For all x, y 2 N with x > y, 1
x

� 1
y

.
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The next condition says that a quasi-null author with a single paper should
not be distinguished from the null author. It is clearly satisfied by %

M

. It seems
rather innocuous. It is violated by %0. It is satisfied by %

⌧

when ⌧ > 0. It is
clearly satisfied by %

c

⌧

, whatever ⌧ , and, hence, by %
c

. We already know that it
is satisfied by %

t

⌧

, whatever ⌧ .

C9 (Quasi-null authors) 10 ⇠ 0.

The following condition says that having two papers with the same number of
citations does not have a positive impact on the ranking. It is clearly satisfied by
%

M

.

C10 (One Plus One Equals One) For all x 2 N, 1
x

+ 1
x

⇠ 1
x

.

Remark 18
The above condition is identical to condition A9 in Marchant (2009a, p. 332).
It is clearly satisfied by %

M

. As discussed in Marchant (2009a), this condition
says that for an author having a single publication, publishing another paper with
exactly the same number of citations has no impact. It favors quality (in terms of
citations) over quantity (in terms of papers). It does so in a very strong way. It is
easy to check that it is violated by %0 and %

c

. It is also violated by %
⌧

, %
c

⌧

, and
%

t

⌧

, whatever ⌧ > 0. •

The following lemmas will be useful.

Lemma 19
If a bibliometric ranking % satisfies C7, C8, C9, and C10, then for all x, y 2 N
such that x � y, 1

x

⇠ 1
x

+ 1
y

.

Proof

If y = 0, C9 implies that 1
y

⇠ 0 and the conclusion follows using C7. Suppose
henceforth that y > 0. Using C8 and C9, we know that 1

y

� 10 ⇠ 0, so that
1
y

� 0. Using C7, we obtain 1
y

+ 1
x

% 0 + 1
x

= 1
x

. Conversely, using A2, we
know that 1

x

% 1
y

. Using C7, we obtain 1
x

+ 1
x

% 1
y

+ 1
x

. Using C10, we know
that 1

x

+ 1
x

⇠ 1
x

, so that 1
x

% 1
x

+ 1
y

. Hence, we have 1
x

⇠ 1
x

+ 1
y

. 2
Lemma 20
If a bibliometric ranking % satisfies C7, C8, C9, and C10, then, for all n 2 N and
all x, y1, y2, . . . , yn 2 N such that x � y

i

, for i = 1, 2, . . . , n, 1
x

⇠ 1
x

+ 1
y1 + 1

y2 +
· · ·+ 1

y

n

.

Proof

Using Lemma 19, we know that 1
x

⇠ 1
x

+ 1
y1 . Using C7, we obtain 1

x

+ 1
y2 ⇠

1
x

+ 1
y1 + 1

y2 . Using Lemma 19 again, we know that 1
x

⇠ 1
x

+ 1
y2 , so that

1
x

⇠ 1
x

+ 1
y1 + 1

y2 . Repeating the reasoning leads to the desired conclusion. 2
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Lemma 21
If a bibliometric ranking % satisfies C7 and C10, then, for all x 2 N and all
y 2 N+, y1x

⇠ 1
x

.

Proof

Using C10, we know that, 1
x

+ 1
x

= 21
x

⇠ 1
x

. Using C7, we have 21
x

+ 1
x

⇠
1
x

+ 1
x

. Hence, we obtain 31
x

⇠ 21
x

⇠ 1
x

. Repeating the above reasoning leads
to the desired conclusion. 2

8.3 Results

Our first result, in this section, characterizes %
M

.

Theorem 11
A bibliometric ranking % satisfies C7, C8, C9, and C10 i↵, for all a, b 2 A,
a % b , f

M

(a) � f

M

(b).

Proof

Necessity is clear. We show su�ciency. Let us first deal with the case of authors
that have a null value for the index f

M

. Such authors are either null or quasi-null.
Using C9 and Lemma 21, we know that, for all y 2 N+, y10 ⇠ 10 ⇠ 0. Hence all
authors having a null value for the index f

M

are tied in the ranking. Consider now
an author a 2 A such that f

M

(a) = k > 0. Using Lemmas 20 and 21, we know that
a ⇠ 1

k

. Using C8 and C9, we know that 1
k

� 10 ⇠ 0. Hence all authors having a
strictly positive value for the index f

M

are ranked above all authors having a null
value for the index f

M

.
Consider now two authors a, b 2 A such that f

M

(a) = k and f

M

(b) = k

0 with
k, k

0
> 0. Using Lemmas 20 and 21, we know that a ⇠ 1

k

and b ⇠ 1
k

0 . If k = k

0,
this implies a ⇠ b. Suppose that k > k

0. Using C8, we know that 1
k

� 1
k

0 , so that
a � b, which completes the proof. 2
Remark 19
The above theorem is similar to Marchant (2009a, Th. 3, p. 332) with A2 instead
of Lower Bound and CDNH. Observe however that Marchant (2009a, Th. 3) is
not entirely correct as it is stated. A counter-example is the ranking with two
equivalence classes with 0 being the only element of the last equivalence class. The
problem comes from the formulation of Uniformity in Marchant (2009a) (saying
that, for all x 2 N+, 1x

� 1
x�1 i↵ 1

x+1 � 1
x

). In the proof of Theorem 3 in
Marchant (2009a) it is said that Lemma 2 in Marchant (2009a) (saying that there
is x 2 N such that 1

x

� 0) and Uniformity imply that x > y , 1
x

� 1
y

. This is
not correct (a counterexample is given by a ranking in which all 1

x

are indi↵erent
and strictly above 0).

We have corrected the above problem replacing the Uniformity condition in
Marchant (2009a) by our condition C8. •
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Bringing condition ORI and ES into the picture leads to a characterization of
the index f

M

up to the multiplication by a positive constant. We start with a
simple lemma.

Lemma 22
If a bibliometric index f satisfies conditions C7, C8, C9, C10, ORI, and ES, then,
for all x 2 N, f(1

x

) = xf(11).

Proof

Using Theorem 11 and ORI, we know that f(11) > f(10) = f(0) = 0. Using
Theorem 11, it is clear that 11 is immediately above 0 and that, for all y 2 N+,
1
y+1 is immediately above 1

y

. Given that ORI holds, repeated applications of ES
imply, for all x 2 N+, f(1x

) = xf(11). 2
Theorem 12
A bibliometric index f satisfies C7, C8, C9, C10, ORI, and ES i↵, for all a 2 A,
f(a) = �f

M

(a), for some � 2 R+.

Proof

Necessity is clear. Using Theorem 11 and ORI, we know that f(y10) = f(10) =
f(0) = 0. The claim therefore holds for null and quasi-null authors.

Let f(11) = �. Using Theorem 11 and ORI, we know that � > 0. Consider
now an author a 2 A that is strictly non-null. Suppose that f

M

(a) = k > 0. Using
Lemmas 20 and 21, we know that f(a) = f(1

k

). Using Lemma 22, we obtain
f(a) = f(1

k

) = kf(11) = �k = �f

M

(a). 2

8.4 Independence of conditions

We show below that the conditions used in Theorem 12 are independent.

Example 10 (C7 Weak Independence)
Let a 2 A be a strictly non-null author and let f

M

(a) = k

a

. Clearly we can
always find x 2 N+ such that x1

k

a

D a. Let x
a

be the smallest integer such that
x

a

1
k

a

D a.
Let f be the index such that:

f(a) =

8
><

>:

0 if a is null or quasi-null,

k

a

if x
a

 2,

k

a

+ 1 if x
a

> 2.

It is simple to check that A1 and A2 hold so that this index is a bibliometric index.
Conditions C9 and ORI trivially hold. It is not di�cult to check that ES holds.

For all x 2 N, we have f(1
x

) = x. This shows that C8 holds. For all x 2 N, we
have f(21

x

) = f(1
x

), which shows that C10 holds.
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Condition C7 is violated. For instance, we have f(213) = 3 = f(13) and
f(313) = 4 > f(213). 3

Example 11 (C8 Strict Monotonicity)
Consider the bibliometric index f that is equal to 0 for all authors having at most
one paper, and equal to f

M

otherwise.
It is simple to check that A1 and A2 hold so that this index is a bibliometric

index. This index clearly violates C8. It is easy to check that all other conditions
are satisfied. 3

Example 12 (C9 Quasi-null authors)
Consider the index f that is equal to f

M

+1 whenever an author is strictly non-null.
We let f(a) = 1, for all quasi-null authors a 2 A and f(0) = 0.

It is simple to check that A1 and A2 hold so that this index is a bibliomet-
ric index. Conditions C7, C8, C10, ORI and ES clearly hold. Condition C9 is
violated. 3

Example 13 (C10 OPOEO)
The index f

c

clearly violates C10. All other conditions (A1, A2, C7, C8, and C9)
clearly hold. 3

Rephrasing the above examples in terms of the bibliometric ranking induced
by the bibliometric index shows that the conditions used in Theorem 11 are in-
dependent. The standard examples show that ORI and ES cannot be omitted in
Theorem 12.

9 Hirsch index (h-index)

This index was proposed by Hirsch (2005) and has been at the forefront of research
on bibliometric indices ever since.

9.1 Additional notation

Consider a non-null author a 2 A, so that p

a

� 1. We index the p

a

papers of
author a as 1, 2, . . . , p

a

. Let x

a

i

be the number of citations received by the ith
paper of author a.

Using the above notation, we can view the non-null author a 2 A as the
following sum of single paper authors as follows:

a = 1
x

a

1
+ 1

x

a

2
+ · · ·+ 1

x

a

p

a

.
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Note that in the above expression, we can always choose to order the integers
x

a

1, x
a

2, . . . , x
a

p

a

in decreasing order. When we want to emphasize this ordering, we
will write an author a 2 A as

a = 1
x

a

(1)
+ 1

x

a

(2)
+ · · ·+ 1

x

a

(p
a

)
,

with the convention that:

x

a

(1) � x

a

(2) � · · · � x

a

(p
a

).

Hence, for a non-null author a = 1
x

a

(1)
+ 1

x

a

(2)
+ · · ·+ 1

x

a

(p
a

)
2 A, xa

(1) is the number
of citations of her most cited paper and x

a

(p
a

) is the number of citations of her
least cited paper. It will be convenient to suppose that, for a null author a 2 A,
x

a

(1) = x

a

(p
a

) = 0.
Let x 2 N+. An author with x publications each of them having been cited

x times is written as x1
x

. We also say that this author is a square author of
size x. Whereas square authors played no particular rôle for the analysis of the
rankings and indices studied so far, they will play a central one for the analysis of
the h-index and of the g-index in the next section.

Observe that an author that is strictly non-null always dominates the square
author of size 1.

9.2 Setting

Our definition of the h-index is di↵erent from the one usually found in the lit-
erature. It is however easy to see that our definition is equivalent to the usual
one.

Consider an author a 2 A. If a is null or quasi-null she has a Hirsch index
(henceforth h-index) of 0. Otherwise a 2 A is strictly non-null, so that p

a

> 0,
c

a

> 0. We know that a dominates the square author of size 1. The h-index of
a strictly non-null author a is equal to k 2 N+ if a D k1

k

and a 6D (k + 1)1
k+1.

Summarizing, we have:

f

h

(a) =

(
0 if a is null of quasi null,

k if a D k1
k

and a 6D (k + 1)1
k+1 otherwise.

When f

h

(a) = k > 0, any set of k papers having received at least k citations is
called the h-core of a 2 A.

Hence, for a strictly non-null author a 2 A a h-index of k means that she has
k of her publications that have been cited at least k times (i.e., have a number of
citations that is greater than or equal to k) and n�k of her publications have been
cited at most k times (i.e., have a number of citations that is less than or equal
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to k). If author a 2 A is null or quasi-null, her h-index is 0. The bibliometric
index associating with each author her h-index is denoted by f

h

. We will also be
interested in the bibliometric ranking %

h

induced by f

h

.
It is possible to give a nice geometric interpretation of the h-index (see, e.g.,

Ga̧golewski and Grzegorzewski, 2009, Liu et al., 2013, Woeginger, 2008a). Let
a = 1

x

a

(1)
+ 1

x

a

(2)
+ · · ·+ 1

x

a

(p
a

)
. We associate with each of the papers of a, starting

with the most cited one, a vertical bar the height of which is equal to the number of
citations received (see Figure 1). Hence, each a 2 A can be viewed as a collection
of bars in a two-dimensional plane. With this representation in mind, an author
a 2 A is such that f

h

(a) � k if the collection of bars associated with a in this
representation lies “above” a square of size k.

10

9

8 8

5

2

1 1

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

1

Figure 1: Geometrical interpretation of the h-index. The author a = 110 + 19 +
18 + 18 + 15 + 12 + 11 + 11 has f

h

(a) = 5.

It is easy to check that %
h

satisfies A1 and A2, so that it is a bibliometric
ranking.

With our conventions regarding x

a

(1) and x

a

(p
a

) for null authors (they are both
equal to 0), it can easily be checked, as observed by Quesada (2009), that for any
a 2 A, we have

min(p0
a

, x

a

(p
a

))  f

h

(a)  min(p
a

, x

a

(1)).

Suppose that an author a 2 A is such that f
h

(a) = k � 1. It is easy to check
that adding to a a single paper with at most k citations cannot improve her h-
index. It may also be instructive to observe that, for all a 2 A and all x 2 N+,
f

h

(a)+1 � f

h

(a+1
x

), i.e., the addition of a single paper can at most increase the
h-index by 1.
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It is well-known (Bouyssou and Marchant, 2011b, Marchant, 2009a, Waltman
and van Eck, 2009a,b, 2012, Waltman et al., 2012) that the ranking %

h

violates
independence (C1) and even weak independence (C7). For instance, we have
f

h

(516) = f

h

(515) = 5, while f

h

(516 + 17) = 6 > f

h

(515 + 17) = 5. This explains
why the analysis of this ranking will require conditions that are rather di↵erent
from the ones used so far.

It is easy to check that f

h

satisfies C2, C6, and C9. It violates C3 (since
f

h

(11) = 1 > f

h

(10) = 0), C4 (since f

h

(12) = 1 > 0, while f

h

(212) = 2 >

f

h

(14) = 1), and C8 (since f
h

(12) = f

h

(11) = 1), and C10 (since f
h

(12) = 1, while
f

h

(212) = 2).

9.3 Conditions

Our analysis is inspired by Quesada (2009). Because %
h

does not satisfy C1 or
C7, many new conditions will be needed.

C11 (Strong quasi-null authors) For all x 2 N+, x10 ⇠ 0.

The above condition is implied by condition A1 in Quesada (2009). It is a strength-
ening of C9. It asserts that all quasi-null authors (i.e., authors of the type x10 with
x 2 N+), should not be distinguished from 0. This condition is clearly satisfied by
f

h

. Indeed, f
h

(a) = 0 implies that a is null or quasi-null. It is easy to check that
this condition is satisfied by %

c

⌧

and %
t

⌧

, whatever ⌧ , and by %
M

. It is clearly
violated by %0. It is satisfied by %

⌧

, when ⌧ > 0.

C12 (Tail independence) Let a, b 2 A be strictly non-null authors. Suppose that
p

a

= p

b

= n and that a = 1
x

a

(1)
+1

x

a

(2)
+ · · ·+1

x

a

(n)
and b = 1

x

b

(1)
+1

x

b

(2)
+ · · ·+1

x

b

(n)
.

Let z 2 N be such that z  x

a

(n) and z  x

b

(n). Then

a ⇠ b ) [a+ 1
z

] ⇠ [b+ 1
z

].

The above condition is a variation on condition A3 in Quesada (2009). It has
the flavor of an independence condition and is clearly implied by C7 and, hence,
C1. Suppose that two authors a and b have the same number of papers. Suppose
furthermore that these two authors have at least one paper with at least one
citation. Suppose finally that these two authors are equally ranked.

The condition relates the performance of a and b after they both publish an
additional paper with the same number of citations. If this number of citations of
this additional paper is at most equal to the minimum of the number of citations
of the least cited paper of a and the number of citations of the least cited paper
of b, the modified authors are still equally ranked.
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Let us show that this condition is satisfied by %
h

. Suppose that a and b have at
least one paper with at least one citation. Suppose furthermore that p

a

= p

b

= n

and f

h

(a) = f

h

(b) = k. We clearly have n � k � 1. Suppose first that n > k.
Because f

h

(a) = f

h

(b) = k < n, we know that xa

(n)  k and x

b

(n)  k. Adding to
both a and b a paper 1

z

with z  k cannot modify their h-index. The condition
therefore holds in this case and we have a ⇠

h

b ⇠
h

a + 1
z

⇠
h

b + 1
z

. Suppose
now that n = k. We have x

a

(n) � k and x

b

(n) � k. Let ` = min(xa

(n), x
b

(n)) � k. Let
us analyze the impact of the addition to both a and b of a paper 1

z

with z  `.
We distinguish two cases. If z  k, this addition cannot improve the h-index of
a and b. The condition therefore holds and we have a ⇠

h

b ⇠
h

a + 1
z

⇠
h

b + 1
z

.
If ` � z > k, after the addition of 1

z

, the h-index of both a and b increases by 1.
The condition therefore holds and we have f

h

(a) = f

h

(b), f
h

(a + 1
z

) = f

h

(a) + 1
and f

h

(b+ 1
z

) = f

h

(b) + 1, so that a+ 1
z

⇠
h

b+ 1
z

.
It is easy to check that C12 is satisfied by %

⌧

(and, hence, %0), %c

⌧

, %
t

⌧

(and,
hence, %

c

) and %
M

(since C7, and, hence, C1, implies C12).

C13 (Square upwards) Let x 2 N+. Let y1, y2, . . . , yx 2 N such that y
i

� x, for
i = 1, 2, . . . , x. Then

x1
x

% [1
y1 + 1

y2 + . . .1
y

x

].

The above condition is satisfied by f

h

since we have f

h

(x1
x

) = x and f

h

(1
y1 +

1
y2 + . . .1

y

x

) = x. It is a variation on condition A1 in Quesada (2009). It says
that a square author cannot improve her position by just collecting more citations.
This is a strong condition. It is illustrated in Figure 2.

Although C13 may seem to be quite specific to %
h

, it is also satisfied by %0.
It is easy to check that it is violated by %

c

and by %
M

. It is also violated by %
⌧

(whatever ⌧), %
c

⌧

, and %
t

⌧

(with ⌧ > 1).

C14 (Square rightwards) Let x, j 2 N+. Let y1, y2, . . . , yj 2 N be such that y
i

 x,
for i = 1, 2, . . . , j. Then

x1
x

% [x1
x

+ 1
y1 + 1

y2 + . . .1
y

j

].

This condition is satisfied by %
h

since we have f
h

(x1
x

) = x and f

h

(x1
x

+1
y1+1

y2+
. . .1

y

j

) = x. This condition is also a variation on condition A1 in Quesada (2009).
It says that adding publications to a square author of size x cannot improve the
index when each of these publications are cited at most x times. This is also a
strong condition. It is illustrated in Figure 3. A consequence of this condition is
that a square author cannot improve her position by just publishing new papers
that receive a low number of citations.

Although C14 may seem to be quite specific to %
h

, it is also clearly also satisfied
by %

M

. It is violated by %0 and %
c

. It is also violated by %
⌧

(with ⌧ > 0) and by
%

c

⌧

and %
t

⌧

(with ⌧ > 1).
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Figure 2: Geometrical interpretation of C13 Square upwards. We have 515 %
110 + 19 + 19 + 18 + 18 + 15.

C15 (Strong Uniformity) For all x, y 2 N,

(x+ 1)1
x+1 � x1

x

, (y + 1)1
y+1 � y1

y

.

Together with A2, the above condition implies that, if 111 = 11 ⇠ 010 = 0,
then all square authors will belong to the same equivalence class of the bibliometric
ranking. Conversely, if 111 = 11 � 010 = 0, then we have, for all x 2 N+

(x+1)1
x+1 � x1

x

. Condition C15 is clearly satisfied by f

h

since we have f
h

(x1
x

) =
x.

It is easy to check that C15 is satisfied by %0, %c

and %
M

. It is easy to check
that it is violated by %

⌧

(with ⌧ > 0) and by %
c

⌧

and %
t

⌧

(with ⌧ > 1).
The following lemmas will be useful.

Lemma 23
If a bibliometric ranking % satisfies C11 and C15, then 11 � 10 ⇠ 0.

Proof

Using C11, we know that 10 ⇠ 0. Suppose now that 10 % 11. Using A2, we must
have 11 ⇠ 10. Using A2 and C15, this implies that, for all x 2 N+, all square
authors x1

x

belong to the same indi↵erence class as 0. Take any a 2 A. Take
any z 2 N+ such that z1

z

D a. Using A2, we know that z1
z

% a. Since we have
supposed that 11 ⇠ 0, A2 and C15 imply that (x+ 1)1

x+1 ⇠ x1
x

, for all x 2 N+.
Hence, we have z1

z

% a and z1
z

⇠ 0, so that 0 % a. Using A2, this implies a ⇠ 0,
for all a 2 A. This violates A1. 2
Lemma 24
If a bibliometric ranking % satisfies C11, C12, C13, and C14, then, for all a 2 A,
f

h

(a) = k > 0 implies a ⇠ k1
k

.
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Figure 3: Geometrical interpretation of C14 Square rightwards. We have 515 %
515 + 14 + 14 + 13 + 12.

Proof

Let a 2 A be such that f
h

(a) = k > 0. This implies that p
a

� k. Suppose that

a = 1
x

a

(1)
+ 1

x

a

(2)
+ · · ·+ 1

x

a

(p
a

)
.

Since f

h

(a) = k, we know that xa

(i) � k, for i = 1, 2, . . . , k and that xa

(k+j)  k for
j = 1, 2, . . . , p

a

� k.
On the basis of a we define several other authors. For i = k, k + 1, . . . , p

a

, let
a

⇤i be an author with i publications such that, if i = k,

a

⇤i = i1
k

= k1
k

,

and, if i > k:
a

⇤i = k1
k

+ 1
x

a

(k+1)
+ 1

x

a

(k+2)
+ · · ·+ 1

x

a

(i)
.

Similarly, for i = k, k + 1, . . . , p
a

, let ai be an author with i publications such
that

a

i = 1
x

a

(1)
+ 1

x

a

(2)
+ · · ·+ 1

x

a

(i)
.

For i = k, k + 1, . . . , p
a

consider the authors a

i and a

⇤i. They both have the
same number of papers (i.e., p

a

i = p

a

⇤i). Both have at least one paper with at
least one citation. Moreover, we have a

i D a

⇤i.
Using A2, we know that ak % a

⇤k.
Using C13, we know that a⇤k % a

k.
Hence, we know that a

k ⇠ a

⇤k. If p
a

= k, we know that a = a

k, so that
a

⇤k ⇠ a

k ⇠ a

Suppose henceforth that p
a

> k. Notice that, the combination of A2 and C14
implies that a⇤k+j ⇠ a

⇤k, for j = 1, 2, . . . , p
a

� k.
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We first show that a

k+1 ⇠ a

⇤k+1. Using A2, we know that a

k+1 % a

⇤k+1. By
construction, we have:

a

k+1 = a

k + 1
x

a

(k+1)
,

a

⇤k+1 = a

⇤k + 1
x

a

(k+1)
.

Since ak ⇠ a

⇤k, C12 implies that ak+1 ⇠ a

⇤k+1. We know that a⇤k+1 ⇠ a

⇤k. Hence,
we obtain a

k+1 ⇠ a

⇤k+1 ⇠ a

⇤k.
Suppose now that for i = 1, 2, . . . , j with j < p

a

� k, we have ak+i ⇠ a

⇤k+i. Let
us show that we must also have a

k+j+1 ⇠ a

⇤k+j+1.
By construction, we have:

a

k+j+1 = a

k+j + 1
x

a

(k+j+1)
,

a

⇤k+j+1 = a

⇤k+j + 1
x

a

(k+j+1)
.

Since a

k+j ⇠ a

⇤k+j, using C12 implies that a

k+j+1 ⇠ a

⇤k+j+1. We know that
a

⇤k+j+1 ⇠ a

⇤k. Hence, we obtain a

k+j+1 ⇠ a

⇤k+j+1.
The above argument shows that, for all a 2 A such that f

h

(a) = k > 0, we
have a ⇠ k1

k

. 2

9.4 Results

Our first result, in this section, characterizes %
h

.

Theorem 13
A bibliometric ranking % satisfies conditions C11, C12, C13, C14, and C15, i↵,
for all a, b 2 A, a % b , f

h

(a) � f

h

(b).

Proof

Necessity is clear. We show su�ciency.
Suppose that a bibliometric ranking % satisfies C11, C12, C13, C14, and C15.

We have to show that, for all a, b 2 A a % b , f

h

(a) � f

h

(b).
If f

h

(a) = f

h

(b) = 0, then a and b are either null or quasi-null. The conclusion
follows from C11. If f

h

(a) = k > 0 and f

h

(b) = 0, using C11 and Lemma 24, we
know that a ⇠ k1

k

and b ⇠ 0. The conclusion follows from A2 and Lemma 23.
If f

h

(a) = k > 0 and f

h

(b) = ` > 0. Using Lemma 24, we know that a ⇠ k1
k

and b ⇠ `1
`

. If k = `, the conclusion follows. Suppose that k > `. We know from
Lemma 23 that 11 � 10. Using C15, we obtain, for all x 2 N+, (x+1)1

x+1 � x1
x

.
Hence, we have k1

k

� `1
`

. This completes the proof. 2

To our knowledge, Theorem 13 is the only characterization of %
h

, together
with Marchant (2009a, Th. 5, p. 336). We use conditions that are much simpler
than the ones used in Marchant (2009a). Our proof is shorter.
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Remark 20
Going through the proof of Theorem 13 shows that C12 is only used when one
of the two authors a and b is the square author of size n. Condition C12 could
therefore be weakened in this way. •

We also give a characterization of the index f

h

up to the multiplication by a
positive constant. As shown above, this is at variance with the previous char-
acterizations of f

h

(Hwang, 2013, Miroiu, 2013, Quesada, 2009, 2010, 2011a,b,
Woeginger, 2008a,b). Moreover our conditions do not su↵er from the problems
discussed in Section 1 since they never explicitly refer to the value of the index f .

It is clear that the index f

h

satisfies conditions ORI and ES. The following
lemma will be useful.

Lemma 25
A bibliometric index f satisfies conditions C11, C12, C13, C14, C15, ORI, and
ES, then, for all x 2 N, f(x1

x

) = xf(11)

Proof

Using Theorem 13, we know that 111 is immediately above 0. Moreover, for all
y 2 N+, (y+1)1

y+1 is immediately above y1
y

. Given ORI, the thesis follows from
ES. 2
Theorem 14
A bibliometric index f satisfies conditions C11, C12, C13, C14, C15, ORI, and
ES, i↵, for all a 2 A, f(a) = �f

h

(a), for some � 2 R+.

Proof

Necessity was shown above. We concentrate below on su�ciency. Suppose that a
bibliometric index f satisfies C11, C12, C13, C14, ORI, and ES. We have to show
that f = �f

h

, for some � 2 R+.
Using Lemma 23, we know that f(11) > 0 and f(0) = 0. define � = f(11) > 0.

We will show that, for all a 2 A, f(a) = �f

h

(a).
Suppose that f

h

(a) = 0, so that a is null or quasi-null. The conclusion follows
from ORI and C11.

Suppose that f
h

(a) = k > 0. Using Lemma 24, we have f(a) = f(k1
k

). Using
Lemma 25, we know that f(k1

k

) = kf(11). Hence, the conclusion follows. 2

9.5 Independence of conditions

Let us show that none of the conditions used in Theorem 14 is redundant.
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Example 14 (C11 Strong quasi-null authors)
Consider the bibliometric index f such that, for all a 2 A,

f(a) =

8
><

>:

0 if a is null or if a = 10,

1 if a = x10 with x > 0,

f

h

(a) + 1 otherwise,

This index clearly violates C11. It is simple to check that all other conditions are
satisfied.

Observe that conditions C12, C13 and C14 all involve constraints on the value
of f for authors having a strictly positive h-index. Hence, they are all satisfied.
Conditions A1, A2, C15, ORI, and ES clearly hold. 3

Example 15 (C12 Tail independence)
Consider the bibliometric index such that, for all a 2 A, f(a) = min(p

a

, x

a

(1)) =
min(p

a

, f

M

(a)) (using the convention that for a null author a, x

a

(1) = 0). As
observed in Quesada (2009), this index violates C12 since, for instance, f(318) =
f(313) = 3, while f(318 + 11) = 4 > f(313 + 11) = 3. It is easy to check that
all other conditions are satisfied. Indeed, A1, A2,C11, ORI, and ES are clearly
satisfied. The value of the index for a square author of size x is x, so that C15 holds.
It is simple to check that C13 holds since all authors involved in this condition
have a value x for this index. The same is true for C14. 3
Example 16 (C13 Square upwards)
Consider the bibliometric index such that, for all a 2 A, f(a) = f

M

(a) = x

a

(1)

(using the convention that for a null author a, xa

(1) = 0).
Condition C13 is clearly violated. It is easy to check that all other conditions

are satisfied. Indeed, A1, A2, C11, ORI, and ES are clearly satisfied. The value of
the index for a square author of size x is x, so that C15 hold. Clearly the addition
of a paper that is less cited than the least cited paper of an author leaves the value
of this index unchanged. Hence, C12 holds. It is simple to check that C14 holds
since all authors involved in this condition have a value x for this index. 3
Example 17 (C14 Square rightwards)
Consider the bibliometric index such that, for all a 2 A, f(a) = p

0
a

(i.e., the number
of publications of a having received at least one citation). Condition C14 is clearly
violated. It is easy to check that all other conditions are satisfied. Indeed, A1,
A2, C11 and ORI are clearly satisfied. The value of the index for a square author
of size x is x, so that ES and C15 hold. To check that C12 holds, it su�ces to
observe that adding to any author a paper having at least one citation increases
the value of the index by 1 and, moreover, that the addition of an uncited paper
leaves the index unchanged.

41



Hence, C12 holds. It is simple to check that C13 holds since all authors involved
in this condition have a value x for this index. 3
Example 18 (C15 Strong Uniformity)
Consider the bibliometric index f such that f(a) = 0 if f

h

(a) = 0 and f(a) = 1
otherwise.

Conditions A1 and A2 are clearly satisfied. It is clear that this index violates
C15. It is easy to check that all other conditions are satisfied. Indeed, C11 and
ORI are clearly satisfied. Condition ES trivially holds. Conditions C12, C13, and
C14 are satisfied since they all involve non-strict comparisons of strictly non-null
authors. 3

Rephrasing the above examples in terms of the bibliometric ranking induced
by the bibliometric index shows that the conditions used in Theorem 13 are in-
dependent. The standard examples show that ORI and ES cannot be omitted in
Theorem 14.

10 Egghe index (g-index)

This index was proposed by Egghe (2006). It has received much attention in the
literature.

10.1 Additional notation

The Lorenz vector associated with a non-null author a 2 A is a function a

L from
N+ to N+ such that aL(1) = x

a

(1), a
L(2) = x

a

(1)+x

a

(2), a
L(3) = x

a

(1)+x

a

(2)+x

a

(3), . . . ,

a

L(p
a

) = x

a

(1)+x

a

(2)+ · · ·+x

a

(p
a

). For all i > p

a

, we let aL(i) = a

L(p
a

). Hence aL(i)
is the total number of citations received by the i most cited papers of a 2 A. The
link between the g-index and Lorenz vectors was stressed in Egghe (2010b, 2012,
2013) and Woeginger (2008c).

For instance for the author a 2 A such that

a = 10 + 10 + 11 + 12 + 12 + 12 + 13 + 15 + 15,

we have p

a

= 9, c
a

= 20, and a

L = (5, 10, 13, 15, 17, 19, 20, 20, 20, 20, . . . ).
We say that author a 2 A Lorenz dominates author b 2 A, which we denote

by a DL

b whenever aL(i) � b

L(i), for all i 2 N+.

Remark 21
It is not di�cult to check that if a D b, then a DL

b. Although this fact can be
easily derived from classical results on majorization (Marshall et al., 2011, Ch. 7),
we sketch its proof for completeness.
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Remember that a D b means that a+(x) � b

+(x), for all x 2 N, where a

+(x)
is the number of papers published by a having received at least x citations, i.e.,
a

+(x) =
P

i�x

a(i). Suppose that a D b. Let x = x

a

(1). If b has a paper with x

citations, we have a

L(1) = b

L(1). Otherwise, we have a

L(1) > b

L(1), so that, in
any case a

L(1) � b

L(1).
Using induction, suppose that aL(k) � b

L(k), for k = 1, 2, . . . , i. We want to
prove that this implies a

L(i + 1) � b

L(i + 1). Let ↵ = x

a

(i+1) and � = x

b

(i+1). If

↵ � �, we obtain a

L(i + 1) � b

L(i + 1). Suppose that ↵ < �, so that a(�) = 0.
Since a D b, we know that a

+(�) � b

+(�). Hence, since a(�) = 0, we have
a

+(� + 1) > b

+(� + 1), i.e., a has strictly more papers having been cited at least
� + 1 times than b. This clearly implies that aL(i+ 1) � b

L(i+ 1). •

Remark 22
Observe that the addition of uncited papers to an author does not modify her
Lorenz vector. Hence, in order to compare two authors a and b using their Lorenz
vectors, it is not restrictive to suppose that they have published the same number
of papers. If this is not the case, we may add a number of uncited papers to
the authors having published the least number of papers, without modifying her
Lorenz vector.

It is well-known that when a and b have received the same number of citations,
the fact that a DL

b means that it is possible to go from b to a by a succession
of elementary transformations consisting in decreasing the number of citations of
a paper published by b by one unit and, simultaneously, increasing by one unit
the number of citations of a paper published by b having initially received at
least as many citations (Marshall et al., 2011, p. 195). Each of these elementary
transformations lead to an author that is above the initial one w.r.t. DL.

When the total number of citations received by the papers published by b

exceeds the total number of citations received by the papers published by a, it is
clearly impossible to have a DL

b since, when i is large, aL(i) (resp. bL(i)) is equal
to c

a

(resp. c
b

).
When the total number of citations received by the papers published by a

exceed the total number of citations received by the papers published by b and
a DL

b, we can go from b to a by the following steps. We first lower the total
number of citations received by the papers published by a decreasing the number
of citations received by the papers published by a having received the least number
of citations. We then obtain an author a0 for which we have c

a

0 = c

b

and such that
a DL

a

0. We can now go from b to a

0 using the above elementary transformations
(Marshall et al., 2011, p. 177).

Let us illustrate this process on a simple example. Suppose that authors a and
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b are such that:

a = 10 + 11 + 12 + 12 + 12 + 13 + 15 + 15,

b = 11 + 11 + 11 + 12 + 12 + 13 + 14 + 15.

We have a DL

b since

a

L = (5, 10, 13, 15, 17, 19, 20, 20, 20, . . . ) and

b

L = (5, 9, 12, 14, 16, 17, 18, 19, 19, . . . ),

Observe that we have: a+(1) = 7, b+(1) = 8, a+(5) = 2, b+(5) = 1, so that these
two authors related by DL are not related by D.

We have c

a

= 20 while c

b

= 19. We first build an author a0 that has the same
number of citation as b by decreasing the number of citation of a paper having
been cited at least once and having received the least number of citations. Hence,
we have:

a

0 = 10 + 10 + 12 + 12 + 12 + 13 + 15 + 15,

so that
a

0L = (5, 10, 13, 15, 17, 19, 19, 19, 19, . . . ).

Observe that we have a DL

a

0 DL

b. Now we can go from b to a

0 by, first, taking
a citation from one of the papers 11 published by b, transforming it into a paper
10, and adding this extra citation to the paper 14, transforming it into a paper
15, and, second, taking a citation from one of the remaining papers 11 published
by b, transforming it into a paper 10, and adding this extra citation to the other
remaining paper 11, transforming it into a paper 12.

Contrary to the usual economic interpretation of Lorenz dominance that is of-
ten associated with the idea of promoting “equality” (Perny et al., 2006, Shorrocks,
1983), we use it in a dual way that promotes “elitism” (Bazen and Moyes, 2012).
This point was also stressed by Albarrán et al. (2011a, bottom of p. 53). This dual
perspective has been criticized in Ravallion and Wagsta↵ (2011). •

10.2 Setting

Consider an author a 2 A. If author a is null or quasi-null she has an Egghe index
(henceforth g-index) of 0. Otherwise, a is strictly non-null so that p

a

> 0 and
c

a

> 0. Suppose that a 2 A is such that:

a = 1
x

a

(1)
+ 1

x

a

(2)
+ · · ·+ 1

x

a

(p
a

)
.

If k > p

a

, we extend our previous notation and define x

a

(k) = 0.

44



The g-index of a strictly non-null author a is defined as the largest k 2 N+

such that
kX

i=1

x

a

(i) � k

2
.

Hence, an author a has a g-index of f
g

(a) = k if she has k papers having collected
a number of citations at least equal to k

2 and she does not have a set of k + 1
papers having collected a number of citations at least equal to (k + 1)2.

As with the h-index, the g-index of a square author of size k is exactly k. When
f

g

(a) = k > 0, any set of k papers having received a total number of k2 citations
is called the g-core of a 2 A.

Remark 23
We have defined x

a

(k) = 0 for k > p

a

. This fact is important to compute the g-
index. For instance, we have f

g

(15 + 14) = 3, although this author has only two
papers.

As detailed in Woeginger (2008c) (see also Woeginger, 2009) there are in fact
two versions of the g-index that were introduced by Egghe (2006). The one that
we use here corresponds to the “Note added in proof” in Egghe (2006, p. 145) and
is similar to the version studied in Woeginger (2008c). The other version, in which
f

g

cannot exceed p

a

, was investigated in Quesada (2011a). •

Remark 24
As was the case with %

h

the ranking %
g

violates independence (C1) and even
weak independence (C7) (Waltman and van Eck, 2012). For instance, we have
f

g

(18) = f

g

(14) = 2, while f

g

(18 + 11) = 3 > f

g

(14 + 11) = 2. Notice that the
above example also shows that %

g

violates C12.
The ranking %

g

does not satisfy C13. Indeed, the g-index rewards authors for
having highly cited papers. For instance, an author with a single paper that is
highly cited may have an arbitrarily large g-index, whereas her h-index is always
1. On the contrary, it is easy to check that the g-index satisfies C14, since adding
papers being cited at most x times to x1

x

cannot increase the g-index. Condition
C15 is clearly satisfied by f

g

.
It is not di�cult to check that f

g

satisfies C4, C6 and C9. On the contrary, f
g

violates C2 and C3 (since f

g

(14) = 2 > f

g

(11) = 1), C8 (since f

g

(12) = f

g

(11) =
1), and C10 (since f

g

(12) = 1, while f

g

(212) = 2).

10.3 Conditions

C16 (Lorenz Monotonicity) For all a, b 2 A,

a DL

b ) a % b.
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The above condition should be unsurprising. It is clearly satisfied by %
g

.
Remembering that a D b implies a DL

b, we know that C16 is stronger than A2. It
is useful to observe that, if f

g

(a) = x, then a DL

x1
x

. Moreover, if f
g

(a) = x and
p

a

 x, then 1
x

2+2x DL

a. This condition is violated by the ranking induced by
the h-index. For instance, we have 18 DL 214, while f

h

(18) = 1 and f

h

(214) = 2.
It is clear that %0 and %

⌧

) (with ⌧ > 0) violate C16. This condition is clearly
satisfied by %

c

⌧

and %
t

⌧

(whatever ⌧) and %
M

.

C17 (Single paper author) For all x 2 N+, we have

x1
x

% 1(x+1)2�1.

The above condition says what is the maximal (with respect to Lorenz domi-
nance) author with a single paper that is not above the square author x1

x

. It is
also satisfied by the ranking induced by the h-index. It will be used as a replace-
ment of C13. Observe that combining C16 with C17 implies, for instance, that
x1

x

⇠ (x+1)1
x

. Indeed, (x+1)1
x

DL

x1
x

, so that (x+1)1
x

% x1
x

. At the same
time, we know that 1

x

2+2x DL (x+ 1)1
x

and x1
x

% 1
x

2+2x.
Condition C17 is clearly violated by %

c

and %
M

. It is also violated by %
c

⌧

and
%

t

⌧

(with ⌧ > 1) and by %
⌧

(with ⌧ > 0). It is satisfied by %0 and %
h

.
Our next condition will be used as a replacement for C12 and C14. Consider a

strictly non-null a 2 A. Suppose that a has at least k+1 papers and is equivalent
to a square author of size k, i.e., a ⇠ k1

k

. Suppose now that we add additional
papers to a that are all less cited than the least cited paper of a and all have at
most k citations. The condition implies that the addition of such weak papers
to a cannot change its position in the ranking. It is simple to check that this
condition is satisfied by %

g

. Indeed, if a ⇠
g

k1
k

and a has at least k + 1 papers,
the least cited paper of a has at most k citations. The g-index of a is not altered
after of the addition of weak papers. Note that the hypothesis that a has at least
k + 1 papers is crucial here. Indeed, for instance, we have 17 + 11 ⇠

g

212 but
17 + 11 + 11 �g

212.

C18 (Modified Tail independence) Let a 2 A be a strictly non-null author so that
p

a

> 0. Suppose that a = 1
x

a

(1)
+ 1

x

a

(2)
+ · · · + 1

x

a

(p
a

)
. Suppose that k1

k

⇠ a, with

k < p

a

. Let y 2 N be such that y  k and y  x

a

(n). We have k1
k

⇠ a+ 1
y

.

Using C16 with C17, we know that (x+ 1)1
x

⇠ x1
x

. Repeated applications of
C18 imply that (x+ y)1

x

⇠ x1
x

, with y � 2. Combining this last expression with
C16 shows that C16, C17 and C18 imply C14.

Condition C18 is satisfied by %
h

. It is clearly violated by %
c

and by %
c

⌧

and
%

t

⌧

(with ⌧ > 1). It is satisfied by %
⌧

, whatever ⌧ .
The following lemmas will be useful.
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Lemma 26
If a bibliometric ranking % satisfies C16, C17, and C18, then, for all a 2 A,
f

g

(a) = k > 0 implies a ⇠ k1
k

.

Proof

We distinguish two cases depending on the fact that p
a

� k or p
a

< k.

(1) p

a

 k. The fact that f
g

(a) = k implies that c
a

� k

2 and c

a

< (k + 1)2. Since
p

a

 k, we have:
1
k

2+2k DL

a DL

k1
k

.

Using C16 and C17, we obtain that a ⇠ k1
k

.

(2) p

a

> k. We distinguish two cases.

Suppose that p
a

= k+1. By construction, since f
g

(a) = k, we have 1
k

2+2k DL

a. Because we also have a DL

k1
k

, we obtain, using C16 and C17, a ⇠ k1
k

Suppose that p
a

> k + 1. Let a(k+1) be the author consisting in the (k + 1)th
most cited papers of a. Let a�(k+1) be the author consisting in all other papers
of a. From the above case, we know that a(k+1) ⇠ k1

k

. By construction, we
know that x

a

(k+1)  k (Woeginger, 2008c, Observation 2.4). Hence, we have

x

a

(k+2)  k. Repeated applications of C18 lead to k1
k

⇠ a

(k+1) + a

�(k+1) = a.
2

10.4 Results

Our first result, in this section, characterizes %
g

.

Theorem 15
A bibliometric ranking % satisfies conditions C11, C15, C16, C17, and C18, i↵,
for all a, b 2 A, a % b , f

g

(a) � f

g

(b).

Proof

Necessity is clear. We show su�ciency. Observe that, since C11 and C15 hold, we
can use Lemma 23.

Suppose that a bibliometric ranking % satisfies C11, C15, C16, C17, and C18.
We have to show that, for all a, b 2 A a % b , f

g

(a) � f

g

(b).
If f

g

(a) = f

g

(b) = 0, the a and b are either null or quasi-null and the conclusion
follows from C11. If f

g

(a) = k > 0 and f

g

(b) = 0, using C11 and Lemma 26, we
know that a ⇠ k1

k

and b ⇠ 0. The conclusion follows from C16 and Lemma 23.
If f

g

(a) = k > 0 and f

g

(b) = ` > 0. Using Lemma 26, we know that a ⇠ k1
k

and
b ⇠ `1

`

. If k = `, the conclusion follows. Suppose that k > `. We know from
Lemma 23 that 11 � 10. Using C15, we obtain, for all x 2 N+, (x+1)1

x+1 � x1
x

.
Hence, we have k1

k

� `1
`

. This completes the proof. 2
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To our knowledge, Theorem 15 is the only existing characterization of %
g

. We
now turn to the characterization of f

g

. This requires to bring conditions ORI and
ES into the picture.

Theorem 16
A bibliometric index f satisfies conditions C11, C15, C16, C17, C18, ORI, and
ES, i↵, for all a 2 A, f(a) = �f

g

(a), for some � 2 R+.

Proof

Necessity was shown above. We concentrate below on su�ciency. Suppose that a
bibliometric index f satisfies C11, C15, C16, C17, C18, ORI, and ES. We have to
show that f = �f

g

, for some � 2 R+.
Using Lemma 23, we know that f(11) > 0 and f(0) = 0. Define � = f(11).

We will show that, for all a 2 A, f(a) = �f

g

(a).
Suppose that f

g

(a) = 0, so that a is either null of quasi-null. The conclusion
follows from ORI and Theorem 15.

Suppose that f
g

(a) = k > 0. Using Lemma 26, we have f(a) = f(k1
k

). Using
Theorem 15, we know that 111 is immediately above 0. Moreover, for all y 2 N+,
(y + 1)1

y+1 is immediately above y1
y

. Given ORI, the thesis follows from ES. 2

Remark 25
Quesada (2011a) studies the variant of the g-index mentioned above. In this
variant, we have f

0
g

(a) = min(f
g

(a), p
a

). As observed in Woeginger (2008c) using
the example of the citation profile of John F. Nash, this variant of the g-index
is not really satisfactory. Indeed, it seems to be in contradiction with the initial
motivation for introducing the g-index, i.e., rewarding authors for having highly
cited papers that are neglected by the h-index.

Quesada (2011a, Propositions 2.7 and 2.8) claims to characterize f

0
g

using,
among others, an axiom S called Subadditivity. Unfortunately, this condition is
not satisfied by f

0
g

. Indeed, let a = 11000 and b = 11 + 11 + 11. We clearly have
f

0
g

(a) = f

0
g

(b) = 1. Condition S requires that, letting c = 11001+11+11, we should
have f

0
g

(a) + f

0
g

(b) = 2 � f

0
g

(c). This is false since f

0
g

(c) = 3. Hence, Propositions
3.7 and 3.8 in Quesada (2011a) are incorrect as they stand. We are not presently
aware of any simple way to fix them. Since we think that f

0
g

is not completely
satisfactory, we do not pursue this point here. •
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10.5 Independence of conditions

Example 19 (C11 Quasi-null authors)
Consider the bibliometric index f such that, for all a 2 A,

f(a) =

8
><

>:

0 if a is null or if a = 10,

1 if a = x10 with x > 0,

f

g

(a) + 1 otherwise,

This index clearly violates C11. It is simple to check that all other conditions are
satisfied. 3

Example 20 (C15 Strong Uniformity)
Consider the bibliometric index f such that f(a) = 0 if f

g

(a) = 0 and f(a) = 1
otherwise. Conditions A1 and A2 are clearly satisfied.

It is clear that this index violates C15. It is easy to check that all other
conditions are satisfied. Indeed, C11, C17, C16 and ORI are clearly satisfied.
Conditions C18 is satisfied since it involves non-strict comparisons of strictly non-
null authors. Condition ES trivially holds. 3

Example 21 (C18 Modified Tail Independence)
Let a 2 A such that f

g

(a) = k. We denote by c

+(a) the total number of citations
of the k + 1 most cited papers of a and c

�(a) = c

a

� c

+(a).
Let us define the index f as follows. If f

g

(a) = 0, then f(a) = 0. If [f
g

(a) =
k > 0 and c

+(a) < k

2+2k] or if [f
g

(a) = k > 0 and c

+(a) = k

2+2k and c

�(a) = 0],
we have f(a) = 2f

g

(a)� 1. If [f
g

(a) = k > 0 and c

+(a) = k

2 + 2k and c

�(a) > 0],
we let f(a) = 2f

g

(a).
Clearly the above definition covers all possible cases since, if f

g

(a) = k, it is
impossible that c+(a) > k

2 + 2k.
It is not di�cult to check that this index is a bibliometric index since it satisfies

A1 and A2.
It is clear that C11 and ORI hold. It is not di�cult to check that ES holds.
Transferring a citation from a paper beyond the k + 1 most cited papers to a

more cited paper remaining beyond the k + 1 most cited papers cannot decrease
f . Similarly, transferring a citation from a paper belonging to the k+1 most cited
papers to a more cited paper cannot decrease f . Transferring a citation from a
paper beyond the k + 1 most cited papers to a paper belonging to the k + 1 most
cited papers has the following e↵ect. If initially, we had c

+(a) < k

2 + 2k � 1,
this transfer has no e↵ect. If initially, we had c

+(a) = k

2 + 2k � 1, this transfer
increases f by 1 if initially c

�(a) � 2. Otherwise, this transfer has no e↵ect on
f . If initially, we had c

+(a) = k

2 + 2k, this transfer increases f by 2. Hence, C16
holds.
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Condition C18 is violated. For instance, if a = 415 + 14, we have f(a) = 7,
since f

g

(a) = 4, c+(a) = 24 and c

�(a) = 0. Yet we have f(a + 11) = 8 since
f

g

(a+ 11) = 4, c+(a+ 11) = 24 and c

�(a+ 11) > 0. 3

Example 22 (C16 Lorenz Monotonicity)
Consider the bibliometric index f

h

. It clearly violates C16. All other conditions
are clearly satisfied. 3

Example 23 (C17 Single paper author)
The index f

M

violates C17. It clearly satisfies A1, A2, C11, ORI, ES and C16.
It satisfies C18 since, if a is such that k1

k

⇠
M

a

(k+1), then we have a ⇠
M

a

(k+1),
with a

(k+1) defined as in the proof of Lemma 26. 3

Rephrasing the above examples in terms of the bibliometric ranking induced
by the bibliometric index shows that the conditions used in Theorem 15 are in-
dependent. The standard examples show that ORI and ES cannot be omitted in
Theorem 16.

11 Remarks

11.1 Independence and Monotonicity

Using C1 (Independence), what happens with authors having a single paper has
consequences for authors having more than one paper. Hence, when C1 holds, the
full strength of A2 is not really needed. The only implication of A2 that is used
in all theorems using C1 is that, for all x, y 2 N such that x � y,

1
x

% 1
y

% 0,

This above condition is exactly equivalent to the combination of Lower Bound and
CDNH in Marchant (2009a) that we recall below.

A3 (CDNH) For all x, y 2 N, x � y ) 1
x

% 1
y

.

A4 (Lower bound) For all x 2 N, 1
x

% 0.

These two conditions may replace A2 for the study of rankings and indices
that are independent (a formal proof of this fact can be deduced using the lemmas
in the next section). This may be seen as an advantage, since they are more
elementary than A2. But, since many rankings and indices discussed in this paper
are not independent, we need A2 in many results and, for the sake of consistency,
we decided to use it in all results.

50



11.2 Weak Independence and Monotonicity

Basically there are two distinct forms of monotonicity. The first one deals with
citations, while the other one deals with publications.

A first form of monotonicity deals with citations and says what happens to the
performance of an author when one of her papers receives an additional citation.
Clearly, this should not lead to a lower performance. In order for an author to
receive an additional citation, she must be non-null. It is always possible to write
a non-null author as c+1

x

, where c 2 A is a possibly null author and x 2 N. Sup-
pose that the paper 1

x

receives an additional citation, everything else remaining
unchanged. The resulting author is c+1

x+1. In such a case, it is tempting to con-
sider that the performance of c+ 1

x

should not be lower than the performance of
c+1

x+1. This is a first form of monotonicity that only concerns citations: receiving
an additional citation, ceteris paribus, cannot decrease performance. All the in-
dices (and rankings) that we have analyzed satisfy this first form of monotonicity.
We formalize this condition below

A5 (Weak Citation Monotonicity) For all b 2 A and x 2 N, b+ 1
x+1 % b+ 1

x

.

Another form of monotonicity deals with publications and says what happens to
the performance of an author when she publishes a new paper. Consider an author
a 2 A. Suppose that this author publishes a new paper receiving x citations, with
x 2 N. Hence, a becomes a + 1

x

. It is then tempting to conclude that the
performance of a+ 1

x

should not be inferior to to the performance of a. This is a
form of monotonicity that only concerns publications: publishing an extra paper,
ceteris paribus, cannot decrease performance. All the indices (and rankings) that
we have analyzed satisfy this second form of monotonicity. We formalize this
condition below. It is identical to condition A6 in Marchant (2009a, p. 328).

A6 (Weak Publication Monotonicity) For all a 2 A and x 2 N, a+ 1
x

% a.

The newt two lemmas show that in presence of C7, A3 implies A5 and A4
implies A6.

Lemma 27
If a bibliometric ranking % satisfies A3 and C7, it also satisfies A5.

Proof

Using C3, we know that 1
x+1 % 1

x

, for all x 2 N. Let b 2 A. Using C7, we obtain
1
x+1 + b % 1

x

+ b. 2

Lemma 28
If a bibliometric ranking % satisfies A4 and C7, it also satisfies A6.
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Proof

Using A4, we know that 1
x

% 0, for all x 2 N. For all a 2 A, using C7, we obtain
1
x

+ a % 0+ a = a. 2

Finally, we show that, in presence of C7, A3 and A4 imply A2.

Lemma 29
If a bibliometric ranking % satisfies A3, A4, and C7, it also satisfies A2.

Proof

We know from the two preceding lemmas that A5 and A6 hold. It is clear that
the conjunction of A5 and A6 implies A2. 2

Using Lemma 29, it is therefore possible to formulate variants of our results
that use C7 or C1, replacing A2 with A3 and A4.

12 Conclusion

Table 2 gives a summary of our results for rankings. Entries marked with “Y”
result from Theorems 1, 3, 5, 9, 11, 13, and 15. The proof for the “y” and “n”
entries was noted in the text. In order to avoid redundancies with the columns %0

and %
c

, the column for %
⌧

(resp. %
c

⌧

and %
t

⌧

) states what happens when ⌧ > 0
(resp. ⌧ > 1).

12.1 Classic and “modern” rankings and indices

It has often been argued (Alonso et al., 2009, Egghe, 2010a, Hirsch, 2005, Norris
and Oppenheim, 2010, Ruscio et al., 2012) that the h-index was combining “quan-
tity” (number of papers) and “quality” (number of citations) in a way that leads to
a robust ranking and index. Indeed, the h-index does not reward the publication
of lowly cited papers. Similarly, it is not sensitive to the existence of a few papers
having attracted many citations. As forcefully stressed in van Eck and Waltman
(2008), Waltman and van Eck (2009a), these properties are shared by the index
f

⌧

(we will limit ourselves here to the discussion of indices since the situation for
rankings is similar).

It has often been argued that an advantage of the h-index over the number
of highly cited papers f

⌧

is that is does not require to determine the value of ⌧ .
Indeed, the index f

⌧

is clearly dependent upon the choice of ⌧ . Van Eck and Walt-
man (2008) have argued that the fact that the h-index does not use a parameter
such as ⌧ is largely due to an artifact. Instead of considering square authors as
central, one may have chosen to work instead with rectangle authors (rectangle au-
thors are also considered in the step-based indices studied in Chambers and Miller,
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%
⌧

%0 %
c

⌧

%
t

⌧

%
c

%
M

%
h

%
g

C1 Y Y Y Y Y n n n
C2 Y y n y n n y n
C3 n Y n n n n n n
C4 n n Y n y n n y
C5 n y n Y y n n y
C6 n n n n Y n y y
C7 y y y y y Y n n
C8 n n n n y Y n n
C9 y n y Y y Y y y
C10 n n n n n Y n n
C11 y n y y y y Y Y
C12 y y y y y y Y n
C13 n y n n n n Y n
C14 n n n n n y Y y
C15 n y n n y y Y Y
C16 n n y y y y n Y
C17 y y n n n n y Y
C18 y y n n n y y Y

Table 2: Summary of results for rankings: “Y” indicates a characterizing con-
dition, “y” indicates a condition that is satisfied, “n” indicates a condition that
is violated. In the columns for %

⌧

(resp. %
c

⌧

and %
t

⌧

), a “y” indicates that the
condition holds for all ⌧ > 0 (resp. ⌧ > 1).

2014). The shape of the rectangle authors would require setting a parameter just
like ⌧ . Deciding that among all possible rectangle authors, square authors play
a central part, involves a great deal of arbitrariness, as stressed in van Eck and
Waltman (2008). Hence, the “modern” h-index does not di↵er from its classical
counterpart f

⌧

on this account. We refer to Schreiber (2013b) for an empirical
study of the impact varying ⌧ for f

⌧

and the impact of the use of the variants of
the variants of the h-index suggested in van Eck and Waltman (2008).

We may hence try to compare f

h

and f

⌧

using their formal properties. In our
view, the comparison of Theorems 2 and 14 is enlightening. The index f

h

does
not satisfy independence (we refer to Ye, 2013, for a skeptical view on indepen-
dence). Its characterizing properties are complex and not easy to motivate. On
the contrary, the index f

⌧

satisfies independence and its characterizing properties
are simple and appealing. Schreiber (2013a) o↵ers6 a more critical view on the

6We thank Ludo Waltman for having brought this paper to our attention.

53



index f

⌧

. Indeed, this index may violate a property stating that the comparison
of two authors should not be altered by a common absolute improvement, i.e.,
the addition of the same number of citations to each paper of these two authors.
We do not think that this property is very compelling however. Indeed, since the
two authors may have, at the beginning, a very di↵erent number of papers and
of citations, the “common” improvement consisting of adding the same number of
citations to each paper of these two authors, may be quite di↵erent for the two
authors. The same is true for the case of a common relative improvement that is
also studied by Schreiber (2013a).

Both f

⌧

and f

h

emphasize the number of “important” papers, i.e., papers that
have been cited su�ciently often. On the contrary, the indices f

⇤
c

⌧

, f ⇤
t

⌧

and f

g

emphasize the total number of citations of “important” papers, i.e., papers that
have been cited su�ciently often (this is also the case for f

c

⌧

, but this index
violates ES). This interpretation of f

g

was proposed and discussed in Schreiber
et al. (2011). It is not consensual however, see Bornmann et al. (2008, 2009). The
above comparison between f

h

and f

⌧

carries over to the comparison between f

⇤
c

⌧

(or
f

t

⌧

) and f

g

. The fact that the g-index does not use a parameter, contrary to f ⇤
c

⌧

(or
f

t

⌧

) is again largely due to an artifact. The index f

g

does not satisfy independence
and its characterizing properties are not easy to motivate. On the contrary, the
indices f ⇤

c

⌧

and f

t

⌧

satisfy independence and their characterizing properties seem
simple and appealing.

The above critical remarks on f

h

or f
g

are based on formal arguments. As al-
ready mentioned, such arguments only consider one aspect of bibliometric rankings
and indices. The analysis of f

h

or f
g

should also be based on empirical evidence.
However, the empirical evidence that we are aware does not seem, up to now, to
give clear cut arguments in favor of f

h

(resp. f
g

) over f
⌧

(resp. f ⇤
c

⌧

).

12.2 Limitations and directions for future research

We have stressed above that we agreed with the limitations of the axiomatic anal-
ysis of bibliometric rankings and indices put forward in Glänzel and Moed (2013).
Hence, we simply view our results as providing a general framework for the com-
parison of the formal properties of several indices and rankings. The study of these
formal properties do not exhaust the analysis of these indices and rankings.

Besides this clear limitation of our work, we would like to stress some others.
First, we have not studied the incredibly many variants of the h- and g-index

that have been proposed in the literature (see Alonso et al., 2009, Egghe, 2010a,
Norris and Oppenheim, 2010, Ruscio et al., 2012, Schreiber et al., 2011). This
would have been clearly impossible within a single paper. The h-index and the g-
index represent two focal elements in this literature, the first focusing on counting
highly-cited papers, the second rewarding authors having highly cited papers. We
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feel that it should not be a major di�culty to adapt our conditions for the study of
the many variants (Bornmann et al., 2011, p. 349 present no less than 37 variants
of the h-index) of these indices (see Kosmulski, 2013, for a synthetic presentation).
The empirical literature is not consensual on the way to categorize these variants
(compare, e.g., Bornmann et al., 2008 with Schreiber et al., 2011).

Second, we would like to stress that our paper leaves completely untouched
some of the most di�cult problems that are to be faced in evaluative bibliometrics:

• the field normalization of indices,

• the adequate treatment of various types of publications (articles, reviews,
letters, notes),

• the correction of indices for the length of careers,

• the proper treatment of multiple authors,

• the proper treatment of multiple a�liations.

Our analysis o↵ers no clue on how to deal with these “bibliometric nightmares”.
Nevertheless, we believe that an axiomatic approach could shed some light on these
di�culties. This will be the subject of further studies.
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