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ABSTRACT

Daily summer precipitation over Belgium from the Aire Limit�ee Adaptation Dynamique D�eveloppement

International (ALADIN) model and a version of the model that has been updated with physical parame-

terizations, the so-called ALARO-0 model [ALADIN and AROME (Application de la Recherche �a
l’Op�erationnel �a Meso-Echelle) combined model, first baseline version released in 1998], are compared with

respect to station observations for the period 1961–90. The 40-yr European Centre for Medium-Range

Weather Forecasts Re-Analysis (ERA-40) is dynamically downscaled using both models on a horizontal

resolution of 40 km, followed by a one-way nesting on high spatial resolutions of 10 and 4 km. This setup

allows us to explore the relative importance of spatial resolution versus parameterization formulation on the

model skill to correctly simulate extreme daily precipitation. Model performances are assessed through

standard statistical errors and density, frequency, and quantile distributions as well as extreme value analysis,

using the peak-over-threshold method and generalized Pareto distribution. The 40-km simulations of

ALADIN and ALARO-0 show similar results, both reproducing the observations reasonably well. For the

high-resolution simulations, ALARO-0 at both 10 and 4 km is in better agreement with the observations than

ALADIN. TheALADINmodel consistently produces too high precipitation rates. The findings demonstrate

that the new parameterizations within the ALARO-0 model are responsible for a correct simulation of ex-

treme summer precipitation at various horizontal resolutions. Moreover, this study shows that ALARO-0 is

a good candidate model for regional climate modeling.

1. Introduction

Extreme precipitation events have a large impact on

societies through damage caused by floods, landslides,

and snow events. Precipitation is thus an important me-

teorological variable in weather prediction and climate

studies. Herrera et al. (2010) studied the ability of regional

climatemodels (RCMs) to reproduce themeanandextreme

precipitation regimes over Spain using a state-of-the-art en-

semble of RCM simulations. The RCMs show good agree-

ment with the observed mean precipitation regime, but for

the extreme regimes themodels reveal important limitations.

As described in the Fourth Assessment Report of the

Intergovernmental Panel on Climate Change (IPCC),

the model skill to simulate realistic extreme daily pre-

cipitation strongly depends on the spatial resolution and

convective parameterization of themodel (Randall et al.

2007). However, it is not straightforward to quantify the

relative contribution of an increase in spatial resolution
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versus an improvement in physical parameterization of

deep convection on the overall performance of themodel.

On the other hand, precipitation is one of the most

sensitive quantities in the different parameterization

schemes of the climate models and to their interplay

with the dynamics of the atmosphere represented in the

models. For this variable it has been shown that RCMs

are able to add significant information to the driving

global simulations, both in space and time (e.g., Jones

et al. 1995; Durman et al. 2001; Jones et al. 2004). In

general terms, the RCMs produce an intensification of

precipitation with respect to the driving global climate

model (GCM), related to the intensification of the hy-

drological cycle (Jones et al. 1995; Durman et al. 2001;

Buonomo et al. 2007). Lynn et al. (2010) tested a re-

gional climate model with different physics components

at two different spatial resolutions. Their results dem-

onstrated a sensitivity of the RCM to the choice of the

convective parameterization, leading to significantly

different summer precipitation outcomes. The authors

conclude that these differences are due to differences in

the convective parameterizations and not because of the

change in spatial resolution of the model.

The aim of the present paper is to elaborate on the

relative importance of resolution versus parameteriza-

tion formulation on the model skill to simulate realistic

extreme daily precipitation. This is achieved by com-

paring at varying horizontal resolutions the Aire Limit�ee

Adaptation Dynamique D�eveloppement International

(ALADIN) model with a version of the model that has

been updated with physical parameterizations, the so-

called ALARO-0 model [ALADIN and AROME

(Application de la Recherche �a l’Op�erationnel �a Meso-

Echelle) combinedmodel, first baseline version released

in 1998]. The ALADIN model is the limited area model

(LAM) version of the Action de Recherche Petite

Echelle Grande Echelle Integrated Forecast System

(ARPEGE-IFS) (Bubnov�a et al. 1995; ALADIN In-

ternational Team 1997). Since the 1990s the model has

been widely used by the numerical weather prediction

(NWP) community and, more recently, in regional cli-

mate modeling (e.g., Radu et al. 2008; Skal�ak et al.

2008). Furthermore, the model uses a diagnostic-type

deep convection and microphysics parameterization

based onBougeault (1985) with upgrades fromGerard and

Geleyn (2005). The new physical parameterizations within

theALARO-0model, as proposed byGerard et al. (2009),

were specifically designed to be used frommesoscale to the

convection-permitting scales (so-called gray-zone scales)

and are centered around an improved convection and

cloud scheme. For this study we use the version of the

ALARO-0 model that was adopted for the operational

applications in the Royal Meteorological Institute (RMI)

of Belgium in 2010. Since then this model has undergone

systematic verification with respect to observations at 7-km

resolution. Gerard et al. (2009) tested the new parameter-

izations within the ALARO-0 model in a 1-day case study

overBelgium,whichwas characterizedbyheavy convective

precipitation. From this study an improvement ofALARO-

0 at varying horizontal scales has been demonstrated.

Basically, the ‘‘nesting’’ strategy, or climate down-

scaling technique, in which a LAM or RCM is driven by

either a GCM or by analyses of observations, is the most

widely used strategy to produce high resolution over a

region of interest (Denis et al. 2002). Hence, limiting the

geographical domain of these atmospheric models re-

duces the total number of grid points and allows one to

perform simulations at high resolutions with an afford-

able computational cost. Because of the ability of these

high-resolution LAMs or RCMs to reproduce mean-

ingful small-scale features over a limited region (Denis

et al. 2002; Giorgi et al. 2004), they have become a pop-

ular tool in both the NWP and the climate community for

studying extreme events at regional and local scales (e.g.,

Jones and Reid 2001; Buonomo et al. 2007; D�equ�e and

Somot 2008; Duli�ere et al. 2011).

However, studies show that RCMs do not necessarily

improve their driving GCM simulations or global re-

analyses (e.g., Castro et al. 2005; Jacob et al. 2007; Sylla

et al. 2010). The use of nested LAMs or RCMs as a cli-

mate downscaling technique, indeed, involves a number

of issues, one of which is related to the lateral boundary

conditions (LBCs) (Giorgi andMearns 1999; Denis et al.

2002). This drawback of RCMs is related to the fact that

one is obliged to impose imperfect LBCs, inducing

various errors at the boundaries (e.g.,Warner et al. 1997;

Termonia et al. 2009). Despite this, past and current

applications with RCMs have shown that the one-way

nesting strategy is a workable solution (Giorgi andMearns

1999). To minimize the effects of the LBC problem,

Giorgi andMearns (1999) recommend to first validate the

model for the current climate using analyses of observa-

tions, that is, the so-called perfect boundary conditions.

Interesting work has been carried out by de El�ıa et al.
(2002) and Denis et al. (2002) with a perfect-model ap-

proach, showing that, in a downscaling with a one-way

nesting, a LAMorRCM is able to regenerate the correct

amount of variability at the scales smaller than the ones

of the driving model in which the high-resolution vari-

ability had been removed by filtering. However, de El�ıa
et al. (2002) found that the LAM is not capable of re-

producing the correct details with sufficient precision

required by the rms errors (RMSEs), that is, that the

variables locally in space and time do not fully reproduce

the ones of the perfect model run. Whereas de El�ıa et al.
concentrated on the short-term evolution of weather
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systems and quantified the models’ ability to simulate

the data in a deterministic day-by-day basis by means of

RMSEs, Denis et al. focused on climate time scales and

demonstrated the ability of high-resolution RCMs to

gain accuracy in a climatic–statistical sense.

Therefore, for studying the climate of weather ex-

tremes it is rather the statistics of the extremes that are

important, provided the large-scale evolution is consis-

tent with the large-scale flow of the driving model. This

is an important additional criterion in deciding to use

RCMs with respect to global ones.

For long-range runs at temporal scales of multiple

decades, there is also the problem that the internal cli-

mate can start to diverge from the climate of the global

model (Nicolis 2003; Qian et al. 2003; Nicolis 2004). One

can deal with this by either (i) interrupting the model

runs of the LAM after a few days and restarting them,

while allowing a spinup period so that the physics can

adjust, or (ii) carrying out uninterrupted model runs

over long periods, allowing the LAM to find its own

climate equilibrium (Qian et al. 2003). In the second

case, one can for instance apply a spectral nudging of the

large scales to the large scale of the driving globalmodel.

In the present paper, we will also study whether the in-

ternal climate variability generated by the higher reso-

lution of the RCM and its model physics, as identified by

Denis et al. (2002) and de El�ıa et al. (2002), reproduces

the correct statistics. For this we want to avoid imposing

an upper-air spectral nudging; hence, we will merely

carry out a pure downscaling with reinitializations using

a one-way nesting approach. Lucas-Picher et al. (2013)

demonstrated that dynamical downscaling with re-

initializations has lower systematic errors than with a

standard continuous model configuration.

The 40-yr European Centre for Medium-Range

Weather Forecasts (ECMWF) Re-Analysis (ERA-40)

(Uppala et al. 2005) is used as large-scale coupling data

to drive the coupled models, ALARO-0 and ALADIN.

As suggested by Giorgi andMearns (1999), atmospheric

reanalyses, such as ERA-40, can be used in climate

studies to provide the ‘‘perfect boundary conditions’’ for

RCMs (e.g., Csima andHor�anyi 2008; D�equ�e and Somot

2008; Skal�ak et al. 2008; Heikkil€a et al. 2011; Hamdi

et al. 2012). These reanalyses are produced by means of

data assimilation methods in order to find optimal esti-

mates for past atmospheric states that are consistent with

meteorological observations and the model dynamics.

In a recent study of Hamdi et al. (2012) the use of

high-resolution dynamical downscaling of ALARO-0 at

4-km horizontal resolution is explored by means of the

summermaximum surface air temperature over Belgium.

Our study extends the work of Hamdi et al. in the sense

that, instead of temperature, precipitation is now

analyzed. Daily summer precipitation from different

model runs is compared with respect to station observa-

tions, with an emphasis on extreme precipitation. This

approach by which model output is directly compared

against station observations can be motivated by the fact

that the station-level observations provide the closest rep-

resentation of extreme events (Duli�ere et al. 2011). Fur-

thermore, the motivation for only considering summer

precipitation is threefold: (i) other regional climate

studies (e.g., Caldwell et al. 2009; Soares et al. 2012a,b)

show difficulties of RCMs to simulate summer pre-

cipitation; (ii) the new parameterization scheme within

ALARO-0mostlymodifies convection,which is the process

most relevant for (extreme) precipitation events in summer

(Kyselý and Beranov�a 2009; Soares et al. 2012a); and (iii)

the relatively small scale on which these convective pro-

cesses often occur better corresponds to the high-resolution

ALARO-0 simulation (Kyselý and Beranov�a 2009).

We add to our evaluation the ALADIN-Climate

model developed by the Centre National de Recherches

M�et�eorologiques (CNRM), which took part in the Eu-

ropean ENSEMBLES project (www.ensembles-eu.org).

The ALADIN-Climate model is an ALADIN model

version that is specifically used for regional climate

modeling. The Ensemble-Based Predictions of Climate

Changes and their Impacts (ENSEMBLES) project

was finished near the end of 2009 and is aimed to de-

velop an ensemble climate forecast system to produce

probabilistic scenarios of future climate so as to provide

detailed, quantitative, and policy-relevant information to

the European society and economy. Several experiments

were performed with some 10 state-of-the-art European

and Canadian high-resolution, global, and regional cli-

mate models. The ENSEMBLES ALADIN-Climate/

CNRM simulations use a long uninterrupted model run,

which is a different setup than our ALADIN and

ALARO-0 simulations. Hence, a direct comparison

with the ALADIN-Climate/CNRM simulation is not

possible, and these uninterrupted climate runs are merely

added as a reference for regional climate modeling in

order to make the present paper complete.

The model simulations, experimental design, and ob-

servational data used in this study are described in the

next section. Section 3 gives a description of the applied

methods, and the results are discussed in section 4. The

results are summarized in the conclusions in section 5.

2. Model description and data

a. Experimental design

The experimental design is summarized in Table 1.

The ERA-40 reanalysis data (Uppala et al. 2005) are
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dynamically downscaled using the limited-area models

ALADIN and ALARO-0.

The physics parameterization package of the

ALARO-0 model has been specifically designed to be

run at convection-permitting resolutions. The key con-

cept behind the package lies in the precipitation and

cloud scheme called Modular Multiscale Microphysics

and Transport (3MT) developed by Gerard and Geleyn

(2005), Gerard (2007), and Gerard et al. (2009).

With mesh sizes mostly below the Rossby radius of

deformation for convective phenomena, the parame-

terization schemes must take into consideration that the

return current from updrafts is happening in a multitude

of grid boxes. Therefore, each individual grid-box re-

alization of the parameterization has a statistical view of

the ‘‘compensating subsidence’’ happening inside its

area. As long as the updraft computation can also be

considered as statistical with respect to its population of

updrafts of various depths and sizes, it seems not to

matter much that the compensating subsidence is com-

puted on the basis of a purely local closure. But when

mesh sizes become so small that only a few updraft re-

alizations happen inside each grid box, and with area

fractions that cease to be negligible with respect to

‘‘one,’’ the whole concept of ‘‘classical’’ convective pa-

rameterization schemes collapses. In the 3MT scheme

this problem is addressed by combining three key fea-

tures of the scheme: (i) the separately computed deep

convective condensation and large-scale condensation

are merged as single input for a ‘‘prognostic–geometric’’

set of microphysical computations (sedimentation, auto-

conversion, collection and melting–evaporation during

fall); (ii) the convective detrainment is not diagnosed

independently but becomes the result of the combined

computations of closure, entrainment, and condensa-

tion; and (iii) the closure assumption (core of the

physics–dynamics coupling) is a prognostic-type one

with memory of the updraft area fraction and of the

updraft vertical velocity of previous time steps. These

three interrelated characteristics of 3MT induce a good

multiscale performance of 3MT, in particular in the gray

zone. The latter can be defined as the range of horizontal

mesh sizes for which the precipitating convection is

partly parameterized and partly simulated by the re-

solved motions of the model. If nothing specific is done

(i.e., using the classical diagnostic-type schemes of, e.g.,

ALADIN at gray-zone scales), this ambivalence results

in double-counting or double-void situations, leading to

several negative ‘‘gray-zone syndromes.’’ In convective

situations drizzle appears nearly everywhere, and the

precipitation maxima are too intense and too scattered.

This happens especially over mountainous areas.

The multiscale performance of 3MT has been vali-

dated in a numerical weather prediction context up to

a spatial resolution of 4 km (see Gerard et al. 2009). The

ALARO-0 model utilizes 1) the Action de Recherche

Petite Echelle Grande Echell (ARPEGE) Calcul Radi-

atif avec Nebulosit�e (ACRANEB) scheme for radiation

(Ritter and Geleyn 1992, recast in a Net Exchanged Rate

framework), 2) a semi-Lagrangian horizontal diffusion

scheme (SLHD) (V�a�na et al. 2008), 3) some pseudo-

prognostic turbulent kinetic energy (pTKE) scheme (i.e.,

a Louis-type scheme for stability dependencies, but

with memory, advection, and autodiffusion of the overall

intensity of turbulence), and 4) a statistical sedimentation

scheme for precipitation within a prognostic-type scheme

for microphysics (Geleyn et al. 2008). The physics pack-

age of the ALARO-0 model is coupled to the dynamics

of the ALADIN model (Bubnov�a et al. 1995) via a

physics–dynamics interface based on a flux-conservative

formulation of the equations proposed by Catry et al.

(2007).

For the present study, the same land surface model—

Interactions between Soil, Biosphere, and Atmosphere

(ISBA) (Noilhan and Planton 1989)—is used in both the

ALARO-0 and ALADIN models. Furthermore, both

models can be run with different schemes to impose the

lateral-boundary conditions (Davies 1976; Radn�oti 1995;

TABLE 1. Overview of the experimental design.

Reference Daily cumulated precipitation Model Daily cumulated precipitation

1) Effect of downscaling Station observations 0800 LT (day) / 0800 LT

(day 1 1)

ERA-40 0600 UTC (day) / 0600 UTC

(day 1 1)ALR40

ALD40

2) Multiscale performance

of ALARO-0

Station observations 0800 LT (day) / 0800 LT

(day 1 1)

ALR40 0600 UTC (day) / 0600 UTC

(day 1 1)ALD40

ALR10

ALD10

ALR04

3) Reference for regional

climate modeling

Station observations 0800 LT (day) / 0800 LT

(day 1 1)

CNRM mean (0000–2400 UTC)
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Termonia et al. 2012). For this study, the version of

Radn�oti (1995) is used in both models.

The ALARO-0 model runs operationally in a number

of countries of the ALADIN and High-Resolution

Limited-Area Model (HIRLAM) consortia (Austria,

Belgium, Czech Republic, Croatia, Hungary, Norway,

Portugal, Romania, Sweden, Slovenia, Slovakia, and

Turkey) for the national NWP applications, the first of

them already since 2008. More recently, the model is

also used for climate runs. The ALARO-0 model is de-

veloped and maintained mainly through a collaboration

between the RMI of Belgium and the Regional Co-

operation for LimitedAreaModelling forCentral Europe

(RC LACE). The developments of the ALARO-0 model

(intentionally targeted at the gray-zone scales) are cen-

tered around the 3MT basic concept, which means that

many other parameterization schemesmust be adapted to

the use of 3MT, but also sometimes the reverse. Thus,

a rather wide international effort is needed.

As the first step of this study, the improvement of the

downscaling by means of the ALADIN and ALARO-0

models is examined. This is done by comparing recent

past (1961–90) summer precipitation data from an

ALARO-0 and ALADIN simulation performed at

40-km spatial resolution (ALR40 and ALD40) (Fig. 1)

with summer precipitation from the driving ERA-40

reanalysis data (Uppala et al. 2005).

Despite the fact that reanalysis data products are

more continuous in space and time than station data, they

inevitably contain biases. A number of evaluations for

ERA-40 reanalysis precipitation have been performed

(e.g., Zolina et al. 2004; Ma et al. 2009). The ERA-40

precipitation has distinct regional limitations: most of

them are generally related to the coarse horizontal res-

olution of the ERA-40 model, on one hand, and to its

strong model dependency, on the other (Ma et al. 2009).

All physical parameterizations within ERA-40, including

those of precipitation, were run on a spatial resolution of

about 125 km (Zolina et al. 2004; Ma et al. 2009). The

model diagnostics precipitation in ERA-40 is produced

by parameterizedmicrophysical processes in clouds, which

are formed at supersaturation by convective or large-

scale processes (Ma et al. 2009). Total precipitation is

then simply the sum of the convective precipitation

generated by convective clouds and large-scale strati-

form precipitation, associated with frontal or dynamical

systems (Zolina et al. 2004). Hence, ERA-40 precip-

itation is a pure model product. Due to the poor skill of

operational NWP models to account for all important

physical mechanisms that affect the atmospheric water

cycle, it appears to be one of the most uncertain fore-

casted parameters in the reanalysis (Zolina et al. 2004;

Ma et al. 2009; Heikkil€a et al. 2011). The 6-hourly fore-

casts from the ERA-40 reanalysis are used to calculate

daily cumulated summer precipitation between 0600 and

0600 UTC of the next day. For coupling to the regional

model we use a linear interpolation in time. This may

produce errors at the lateral boundaries on our small

domains (Fig. 1) but, as shown by Termonia et al. (2009),

such errors only occur very rarely, and the impact on the

statistics of extreme precipitation should be very minor.

To explore further the multiscale performance of

ALARO-0, as found by Gerard et al. (2009) but now for

climate time scales, we evaluate in a second step re-

cent past simulations (1961–90) of the ALADIN and

ALARO-0 models at varying horizontal resolutions

against different station datasets.

(i) and (ii) The ALADIN and ALARO-0 models are

driven by ERA-40 and run at a horizontal resolu-

tion of 40-km spatial resolution with 69 3 69 grid

points on a domain that encompassesmost of western

Europe (ALD40 and ALR40, respectively; Fig. 1).

These 40-km outputs are then used to perform a

one-way nesting on a domain centered on Belgium

(Fig. 1) using the following spatial resolutions:

(iii) and (iv) 10-km spatial resolution on a 67 3 67 grid

(ALD10 and ALR10) and

(v) 4-km spatial resolution on a 181 3 181 grid

(ALR04). That we did not run any ALD04 config-

uration is obviously linked to the corresponding

gray-zone-type resolution, where the diagnostic

FIG. 1. Domains corresponding to the different simulations at 40-,

25-, 10-, and 4-km horizontal resolution.
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parameterization of convection would have be-

come completely irrelevant (see section 4 for the

first syndromes already noticeable in ALD10).

Finally, we also include ALADIN-Climate/CNRM

simulations within our analysis so as to provide a refer-

ence for regional climate modeling. One part of the

performed experiments within the ENSEMBLES pro-

ject aimed to validate the models for the recent past

climate. The results from this experiment, including 40

years of 25-km resolution ALADIN-Climate/CNRM

simulations driven by the ERA-40 reanalysis (hereafter

denoted as CNRM), are used in our analysis for the pe-

riod 1961–90. From the ENSEMBLES data archive we

have only selected the CNRM precipitation data for the

grid points that coincide with the ALR04 domain (Fig.

1). The precipitation data correspond to daily means

calculated for the interval 0000–2400 UTC. As men-

tioned in section 1, the model setup of CNRM and our

simulations are different. The number of vertical levels

that is used in our runs with the ALADIN and

ALARO-0 models is 46 with a model top that extends

up to 72km. The CNRM simulations from ENSEMBLES

have used 31 vertical levels. Furthermore, the CNRM

simulations use a long-term and free run setup. Our pro-

cedure is to interpolate the original ERA-40 files to 40-km

resolution. These 6-h files serve as initial and boundary

conditions for 48-h ALD40 and ALR40 runs. These are

started at 0000 UTC every day. The (3h) output from

these first runs serves as input for the high-resolution 10-

and 4-km runs (ALD10, ALR10, and ALR04). However,

to exclude spinupproblems, the first 12h are not taken into

account. So we have 36h of data left for the 4- and 10-km

runs (which thus start at 1200 UTC). Finally, we again

dismiss the first 12h of the runs, to arrive at 24h of output

at 4- and 10-km resolution, and then integrate/reinitialize

over each subsequent 24-h period during the summer pe-

riod of June–August, 1961–90.

b. Observations

The observation dataset comprises 93 climatological

stations with daily accumulated precipitation, selected

from the climatological network of the RMI of Belgium.

The data have undergone a manual quality control by op-

erators, and the stations were chosen so that continuous

data for the 30-yr study period (1961–90) are available. The

stations cover all of Belgium, thus representing conditions

of coastal, inland, and higher orographic locations (Fig. 2).

3. Methods

a. Data processing and analysis

Model validation against observations can either be

done with station data or gridded station data. Both

validation methods have their disadvantages (Hofstra

et al. 2010). Model evaluation against observations at

station level often raise issues related to the scale dif-

ference between the model and observation field

(Tustison et al. 2001; Duli�ere et al. 2011). Themodel grid

cell values correspond to spatially averaged values rep-

resenting the area of the whole grid cell. Furthermore,

the spatial variability of these averaged model fields will

always be lower than the one of the observation field.

These differences in spatial variability depend on the

area of the grid cell as well as on the inherent variability

of the field variable. Precipitation, for example, is known

to have a relatively high spatial variability. To illustrate

the differences in spatial variability in this study, Fig. 3

shows the different grid cell areas of themodels together

with the 93 climatological stations (i.e., observation points).

The grid cell areas in this study range from 1600 km2 for

the 40-km horizontal resolution to 16 km2 for the 4-km

horizontal resolution (Fig. 3). Hence, reducing those

spatially averagedmodel values with an originally greater

heterogeneity to a single station point value leads to an

inconsistent comparison. However, for long time periods,

such as 30 years, we can assume that the spatial variability

within a grid cell would be reduced in such a way that the

spatial variability of both model and observation fields

tends to converge (Duli�ere et al. 2011).

Another common way to overcome this scale incon-

sistency is the use of gridded data. The Climate Re-

search Unit (CRU) and the European ENSEMBLES

project provide daily gridded observation datasets

(Mitchell and Jones 2005; Haylock et al. 2008). How-

ever, these gridded datasets are in some regions con-

structed by interpolation or area-averaging of station

observations from a small number of stations, which

FIG. 2. Topography (m) of Belgium showing the location of the 93

selected climatological stations (black dots).
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smooths and possibly affects the extreme values within

the dataset (Hofstra et al. 2010). Since this study aims to

examine extreme precipitation events, the models are

evaluated against station observations. This is done by

comparison of daily observed station-level precipitation

with modeled daily precipitation of the nearest grid box

over land. The 93 resulting precipitation time series se-

lected from the model simulations are not corrected

for topography with respect to altitude of the nearest

station. It is difficult to apply such correction for pre-

cipitation because of its dependency on topography,

humidity, buoyancy, and other local variables (Soares

et al. 2012a).

Time discrepancy between computations of daily

cumulated precipitation from station observations and

model output is an important, but rarely highlighted,

problem within precipitation evaluation studies. To deal

with this problem, the error analysis can be performed

on longer than daily time scales, such as monthly, sea-

sonal, or annual time scales (Ma et al. 2009; Soares et al.

2012b). However, in this study the model evaluation is

done on a daily basis, requiring a consistent calculation

of the daily precipitation values. Daily observed pre-

cipitation corresponds to the total accumulated pre-

cipitation between 0800 and 0800 local time (LT) of the

following day. Hence, the daily model values for all

FIG. 3. Model grid points over Belgium for each of the horizontal resolutions for which the simulations are

performed. The black dots represent the 93 climatological stations.
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simulations (ALR40, ALD40, ALR10, ALD10, and

ALR04) have been calculated based on the definition of

observed daily accumulation, which corresponds to 0600

and 0600 UTC of the following day (Table 1).

b. Extreme value analysis and peak-over-threshold
methods

The methods used for the modeling of extreme events

are similar to those used inHamdi et al. (2012). Threshold

models and peak-over-threshold (POT) methods are

useful tools for the modeling of extreme events. A well-

known distribution that may describe the behavior of

the excesses or POT events is the generalized Pareto

distribution (GPD) (Coles 2001). Recently, several au-

thors have modeled extreme precipitation with the

GPD (e.g., Ribatet et al. 2009; Roth et al. 2012; Mailhot

et al. 2013).

Consider a sequence of independent and identically

distributed random variables X1, X2, . . . , Xi from an

unknown distribution F. We are interested in the ex-

treme events that exceed a certain high threshold u. The

distribution function of such an extreme event X from

the Xi sequence can then be defined as

Fu(y)5PfX. u1 y jX. ug5 12F(u1 y)

12F(u)
, (1)

with y . 0. Equation (1) is the conditional probability

that the threshold u is exceeded by no more than an

amount y, given that the threshold u is exceeded. Given

that X . u, the GPD of the excesses (X 2 u) is then

given by

H(y)5 12

�
11

jy

s

�21/j

, (2)

where j is the shape parameter and s is the scale pa-

rameter. The GPD with parameters j and s describes

the limiting distribution for the distribution of excesses

[Eq. (1)] and can be used to model the exceedances of

a threshold u by a variable X. Thus, for x . u,

PfX. x jX. ug5
h
11 j

�x2u

s

�i21/j
. (3)

It follows that

F(x)5PfX. xg5 zu

h
11 j

�x2 u

s

�i21/j
, (4)

where zu5PfX. ug. In this study the parameters of the

GPD are estimated by the maximum-likelihood method,

following the definitions of Stephenson (2002). The level

xm that is on average exceeded once everym observations

is the solution of

zu

h
11 j

�xm 2 u

s

�i21/j
5

1

m
. (5)

The xm return level, which gives the amount of extreme

precipitation corresponding to a given number of ob-

servations m, is then given by

xm5 u1
s

j
[(mzu)

j21] . (6)

4. Results and discussion

a. Effect of downscaling

As a first stepwe validate the effect of the downscaling

of theERA-40with theALADINandALARO-0models.

Figure 4 shows the relative frequencies calculated for

daily precipitation amounts of ERA-40, ALR40, and

ALD40, which are binned into bins of 1mmday21. As a

reference the relative frequencies of the observations

are also shown. A logarithmic scale has been used for

better representation of the extreme values. From both

ERA-40 data and the ALR40 and ALD40 data 93 grid

points, corresponding to the closest grid points to the

observation stations, have been selected. It should be

noted that the ERA-40 only has two grid points over

FIG. 4. Relative frequencies of observations, ERA-40, ALR40,

and ALD40. Frequencies are computed with the 30-yr (1961–90)

daily cumulated summer precipitation given for each station sep-

arately and are displayed on a logarithmic scale. Numbers for PSS

correspond to the average of the Perkins skill score [Eq. (7)] cal-

culated for precipitation amounts below and above the 0.95th

quantile of the observations (PSS , q0.95 and PSS . q0.95). The

black line indicates the 0.95th quantile of the observations.
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Belgium. For low precipitation amounts (i.e., ,0.95th

quantile of the observations) the ERA-40 as well as

ALR40 andALD40 coincide well with the observations.

However, for the higher rainfall rates ERA-40 starts

to diverge from the observations, while ALR40 and

ALD40 still approach the observations. Both 40-km

models are able to reproduce rainfall rates up to

108mm day21, while the reanalysis does not capture the

higher precipitation amounts due to the low spatial

resolution of the ERA-40 data. To provide a measure of

similarity between observed and modeled frequencies,

the Perkins skill score (PSS) has been calculated

(Perkins et al. 2007):

PSS5�
n

1

min(Z1,Z2) , (7)

where n is the number of bins andZ1,2 is the frequency of

values in a given bin from the observation and model

data, respectively. This metric measures how well the

observations and modeled frequencies coincide, with a

PSS ranging from zero for no overlap to a skill score of

one for a perfect overlap. Similar to Boberg et al. (2010)

and Dom�ınguez et al. (2013), the PSS has been calcu-

lated for daily precipitation amounts going from

0mmday21 up to the 0.95th quantile of the observations

(PSS , q0.95) and for precipitation amounts above the

0.95th quantile of the observations (PSS. q0.95). In this

way, the skill score is to a larger extent influenced by the

more extreme precipitation values (Boberg et al. 2010).

The skill scores are calculated for each station sepa-

rately. The final PSS is then simply themean value of the

average of PSS , q0.95 and PSS . q0.95 over the 93

stations. The 0.95th quantile of the observations, which

is used as a threshold for the calculation of the modified

PSS, is also shown in Fig. 4. The Perkins skill scores for

ERA-40 are relatively low, and for the higher pre-

cipitation amounts ERA-40 has a much lower PSS

(PSS . q0.95: 0.62) than ALR40 and ALD40 (PSS .
q0.95: 0.75). ALR40 and ALD40 perform very similar

with respect to the observations and have relatively high

PSS, which are close to one. To summarize, the

downscaling with the ALARO-0 and ALADIN

models is significantly different from the driving ERA-

40 and is closer to the observations. In particular,

ALR40 and ALD40 produce more extreme precip-

itation than their driving ERA-40.

b. Multiscale performance of ALARO-0

To investigate themultiscale performanceofALARO-0,

40-, 10-, and 4-km horizontal resolution simulations of

ALARO-0 together with 40- and 10-km horizontal

resolution simulations of ALADIN are comparedwith

respect to station observations.

1) SPATIAL AND TEMPORAL DISTRIBUTION

Figure 5 shows the observed and simulated spatial

distribution of the 30-yr-averaged summer precipitation.

On top of each subfigure average values over the 93

stations for the cumulated summer precipitation are

given. On average all models except for CNRM over-

predict the observed cumulated summer precipitation.

Both observation and simulation fields show a clear to-

pographical dependency, with a gradual increase in

precipitation going from the northwest (low altitudes) to

the southeast (high altitudes) of the country. The

ALARO-0 and ALADIN simulation at 40 km show

a very similar distribution. Obviously, the precipitation

fields for the simulations with low spatial resolution are

less heterogeneous than the ones with high spatial res-

olution. However, the 25-km spatial resolution CNRM

plot illustrates less variability than the 40-km simula-

tions: also, the local maximum in the southeast cannot

been seen on the CNRM plot. For the higher-resolution

simulations ALARO-0 approaches much better the

observations than ALADIN. For instance, ALD10

overpredicts cumulated summer precipitation with

values that are, on average, over all stations almost

100mm higher than observed. On the contrary, the av-

erage values for ALR10 and ALR04 differ only slightly

from the observations, and the observed local maximum

at the higher altitudes is very well simulated by both

models.

The scatterplots presented in Fig. 6 are consistent with

the spatial distributions shown in Fig. 5. Each point in

the scatterplots represents the summer cumulated pre-

cipitation for each year in the 30-yr period averaged for

the 93 stations. The linear regression line (solid line) and

its determination coefficient (R2) is also presented for

each of the five models. Except for ALD10, summer

precipitation is relatively well simulated by all models.

The ALD10 model shows again a clear overestimation

of observed summer precipitation. This is an indirect

confirmation that, with 10-kmmesh sizes, the syndromes

linked to the gray-zone performance are already present

(see section 2a).

2) ERROR STATISTICS

The previous analysis showed the ability of themodels

to represent the spatial and temporal pattern of mean

annual summer precipitation. To quantify this ability we

have computed some important error statistics. Figure 7

shows the spatial distribution of the 30-yr average

summer biases of the daily cumulated precipitation, as

well as the mean bias over the 93 climatological stations.

15 NOVEMBER 2013 DE TROCH ET AL . 8903



Average values over the 93 stations of other 30-yr mean

summer statistics are also given: the RMSE and the

mean absolute error (MAE). The statistics are calcu-

lated with daily values for each station separately.

Both 40-km simulations ALR40 and ALD40 again

perform similar. Overall, the biases are remarkably

lower for ALARO-0 than for ALADIN. The bias over

the 93 climatological stations between model simula-

tions and observations is 0.25mmday21 for ALR40,

0.43mmday21 for ALD40, 20.06mmday21 for CNRM,

0.33mmday21 for ALR10, 1.06mmday21 for ALD10,

and 0.06mmday21 for ALR04. The error statistics for all

three ALARO-0 simulations show a similar improve-

ment, suggesting amultiscale performance ofALARO-0.

However, one should also keep in mind that error sta-

tistics are not entirely fair when validating models with

different spatial resolution. Small displacements of pre-

cipitationmaxima andminima in higher-resolutionmodels

are highly penalized by error statistics because of the so-

called double penalty effect (Soares et al. 2012a).

The aforementioned underestimation by CNRM is

confirmed by the spatial distribution of its bias. Fur-

thermore, the coastal precipitation is by all other models

generally better simulated than the inland precipitation

(Fig. 7). The larger and positive differences at the higher

elevations can partly be assigned to higher uncertainties

in the measurements of the observations due to rain

gauge undercatchment (Buonomo et al. 2007). However,

this overestimation, which is pronounced more strongly

for ALD10 (Fig. 7), can also be attributed to themodel or

the driving ERA-40 data. All three ALARO-0 simula-

tions (40-, 10-, and 4-km horizontal resolution) produce

the lowest deviations from the observations, with a ten-

dency to slightly overestimate (underestimate) in the

southern (northern) part of the country. ALARO-0 values

for RMSE and MAE lie in the same range as those for

FIG. 5. Spatial distribution of 30-yr (1961–90) mean cumulated summer precipitation from

observations andmodel simulations: (left) ALR40,ALR10, andALR04; (center)ALD40 and

ALD10; (right) CNRM. Themean summer precipitation over the 93 climatological stations is

given above each subfigure.
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ALADIN, indicating that the low mean biases of

ALARO-0 are possible owing to cancellation effects

arising from the bias computation. Nevertheless, the

overall errors of the ALARO-0 simulations are still

smaller than those of ALD10.

To get an understanding of the trend of frequency and

intensity of extreme precipitation, density curves and

frequency and quantile distributions of all six simula-

tions have been created (Figs. 8–10). The densities in

Fig. 8 have been calculated with the square root of the

daily precipitation since themajority of the precipitation

rates are less than 10mmday21. All models tend to

overestimate the amount of ‘‘drizzle’’ and low pre-

cipitation (i.e., ,1mmday21). In the 1–2mmday21

range, both ALADIN simulations as well as CNRM

overestimate the observed density almost by 2 times,

while ALARO-0 starts to approach closely the observed

density (Fig. 8, center). The latter continues to do this up

to the right-end tail of the observed density curve (Fig. 8,

right). Perkins et al. (2007) use probability density

functions (PDFs) for the evaluation of simulated daily

precipitation over Australia from 14 different climate

models. Similarly to the density curves of ALADIN and

CNRM, the PDFs in Perkins et al. show for all models an

overestimation of ‘‘drizzle,’’ with most models over-

estimating the observed density of rainfall in the 1–

2mmday21 range by 2–3 times.

The relative frequencies, shown in Fig. 9, are again

calculated for daily precipitation amounts of the obser-

vations and model data, which are binned into bins of

1mmday21. For the low precipitation rates all models

manage to reproduce the observed frequencies rela-

tively well. Once the 0.95th quantile of the observations

(indicated by the vertical black line) is exceeded, CNRM

shows an increasing departure from the observations

with frequencies left shifted from the observations.

ALARO-0 and ALADIN at 40-km horizontal resolu-

tion reveal again a similar result, while for the higher

FIG. 6. Each point in the scatterplots represents

summer cumulated precipitation for each year in the

30-yr period (1961–90) averaged for the 93 stations.

The dotted (solid) black line is the diagonal (linear re-

gression) line. The number in each scatterplot corre-

sponds to the determination coefficient (R2) of the

linear regression.
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10-km resolution a clear difference between both

models is apparent. The small overestimation of ALD10

for the low precipitation rates persists and becomes

larger for the higher rates. The model clearly rains too

often, both with very small and very high quantities of

rainfall. On the other hand, the frequencies of ALR04

and ALR10 nicely follow the observations, showing

their ability to capture the occurrence of extreme and

rare precipitation events, with values around 100mm,

quite well. As a measure for similarity between the ob-

served and modeled frequencies, the PSS [Eq. (7)] are

also given in Fig. 9. The overall PSS, as well as PSS for

precipitation amounts below and above the 0.95th quantile

of the observations, is higher for ALARO-0 than for

ALADIN and CNRM.

The quantile distributions confirm the ability ofALR04,

ALR10, and even ALR40 to reproduce extreme rainfall

rates (Fig. 10). Only the highest 99.9 quantile (i.e.,

strongest events) is slightly overestimated by ALARO-0.

It is evident that such events, which are situated in

the very end of the distribution, might correspond to

outliers. Consistently with the frequency plots, the higher

quantiles are over- and underestimated by ALD10 and

CNRM, respectively.

Previous results can be qualified in the context of

other regional downscaling studies; however, a direct

comparison is difficult because of differences in study

area and model design. Soares et al. (2012a) performed

a dynamical downscaling of 20 years of the ECMWF

Interim Re-Analysis (ERA-Interim) (1989–2008) for

Portugal using the Weather Research and Forecasting

(WRF)model. TwoWRFhigh-resolution simulations (9

and 27 km) and ERA-Interim are compared with station

observations. For summer precipitation, their results

show a different frequency distribution for the 9- and

27-km simulation. The 9-km frequencies of summer

precipitation follow well the observed frequencies and

show a clear improvement compared to the driving

reanalysis. Our results show a coherent performance

of the ALARO-0 model across all resolutions and the

good model performances as displayed in Figs. 8–10 can

be practically attributed to the quality of the physics

FIG. 7. Spatial distribution of the 30-yr (1961–90) average summer biases (model minus

observed) of the daily cumulated precipitation. The numbers correspond to the spatial

mean of the bias, the RMSE, and the mean absolute error (MAE).
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parameterizations unrelated to the increase of the res-

olution. Finally, the persistent positive biases of the

ALADIN model ALD10 are in accordance with other

studies where recent past (1961–90) ALADIN simula-

tions at 10-km horizontal resolution, driven by ERA-40

data, are validated against gridded observations (see

Csima andHor�anyi 2008; Skal�ak et al. 2008). According to

Skal�ak et al. (2008), these positive (summer) precipitation

biases can be linked with the tendency of the model ‘‘to

precipitate more often than in the station observations.’’

3) EXTREME VALUE ANALYSIS

The extreme value analysis has been performed for

each station separately, using the 30-yr daily summer

data. The use of a generalized Pareto distribution as a

model for threshold excesses assumes independent ex-

cesses (Coles 2001). In practice this is rarely the case.

Exceedances over a certain threshold often occur in

clusters. To account for these clusters of POT events, the

data have been declustered by selecting the maximum

value within each cluster. The independence of two

clusters of POT events is determined by a combination

of the threshold and the separation time between both

clusters. However, the choice of a suitable threshold and

separation time is relatively arbitrary. The threshold has

to be high enough in order to ensure extreme events and

to avoid dependency between the events, but a thresh-

old that is too high prevents statistical significance owing

to a loss of information (Kyselý and Beranov�a 2009;

Heikkil€a et al. 2011). Similar to the study of Heikkil€a

et al., the threshold has been defined for each station

separately as the 0.95th quantile of daily summer pre-

cipitation so that spatial differences in the precipitation

amount (see Fig. 5) are taken into account.

The results obtained by using cluster maxima defined

with different separation times (e.g., 1, 2, or 4 days) do

not differ much from the results when the original non-

declustered data have been used (not shown). Hence, in

accordance with another study on extreme precipitation

of Kyselý and Beranov�a (2009), two POT events are

considered to be independent when the minimum sepa-

ration time between both events is one day.

To investigate if the underlying probability dis-

tribution of the (declustered) peak-over-threshold

FIG. 8. Density curves of (top) observations, ALR40, ALD40, and CNRM and (bottom) observations, ALR10, ALD10, and ALR04.

Densities are computed with the 30-yr (1961–90) daily cumulated summer precipitation given for each station separately. The x axes

represent the square root of the daily precipitation since the majority of the precipitation rates are less than 10mmday21.
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events of the observations and models significantly

differs, a Kolmogorov–Smirnov test has been applied.

The Kolmogorov–Smirnov test statistic is defined as the

maximum absolute difference between two distribution

functions:

Dn1,n25maxjFn1(x)2Fn2(x)j , (8)

where Fn1(x) and Fn2(x) are the empirical distribution

functions of the observations and themodel, respectively,

and ni refers to the number of samples. The null hy-

pothesis (H0) that the distribution of the observed POT

events equals the distribution of themodeled POT events

is rejected at significance level a 5 0.05 if

K5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � n2
n11 n2

s
Dn1,n2.Ka , (9)

where Ka is the critical a level of the Kolmogorov dis-

tribution:

Pr(K#Ka)5 12a . (10)

Figure 11 shows for each station the K statistic of

the observations and models. In general, the K values for

the ALARO-0 model at all three spatial resolutions are

much smaller thanALADINandCNRM.H0 is accepted at

the 95% level at 35 and 16 stations forALD40 andALD10,

respectively. For ALARO-0 at 40, 10, and 4km, H0 is ac-

cepted at 46, 47, and 38 locations, respectively. Compared

to ALD10, there are for ALARO-0 more stations at the

high altitudes for which the distribution of the POT events

equals the observed distribution of the POT events. This

indicates that an increase in resolution does not neces-

sarily contribute to a better representation of orographic

precipitations. In the case of CNRM, H0 is rejected for

all stations. Thus, consistent with the results from the

frequency and quantile distributions, the Kolmogorov–

Smirnov test confirms that the ALARO-0 simulations

yield more reliable statistics of the extreme events.

The GPD equation [Eq. (2)] is then fitted through the

selected cluster maxima of the observations and the six

model simulations ALR40, ALD40, CNRM, ALR10,

ALD10, and ALR04. The 5- and 20-yr return levels of

FIG. 9. As in Fig. 4, but for observations and model simulations: (left) ALR40, ALR10,

and ALR04; (center) ALD40 and ALD10; (right) CNRM.
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the POT models for the observations and six simula-

tions are shown in Figs. 12 and 13. The return levels

xm are calculated by Eq. (6) using the declustered data

with 1-day separation time and a threshold u, defined as

the 0.95th quantile. Since the return levels xm are cal-

culated on an annual basis, the value for m equals 92

observations, corresponding to the number of summer

days within one year of the study period. The return

levels for both return periods are generally larger at the

higher elevations. The 95% confidence levels of the

observed return levels are also indicated. It appears that

for most stations the return levels of ALARO-0 lie

FIG. 10. Quantiles (2.5, 10, 20, 25, 30, 40, 50, 60, 70, 75, 80, 90, 95, 97.5, 99, and 99.9) of observations vs (left) the

ALR40, ALD40, and CNRMmodels and (right) ALR10, ALD10 and ALR04 models. Quantiles are computed with

the 30-yr (1961–90) daily cumulated summer precipitation given for each station separately.

FIG. 11. TheK statistic from aKolmogorov–Smirnov test [Eq. (9)]. The 93 stations (abscissa)

are shown by ascending altitude (from left to right). The test is performed on the POT events of

the observations vs the (top) ALR40, ALD40, and CNRM and (bottom) ALR10, ALD10, and

ALR04 model simulations. The horizontal dotted line represents the critical K level with

significance a 5 0.05.
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within the 95% confidence range of the observed return

levels. In contrast to ALARO-0, ALD10 and CNRM

are not able to produce the observed 5- and 20-yr return

events. Their estimated return levels lie for a great

number of stations outside the observed confidence

interval.

In line with what Hamdi et al. (2012) found for sum-

mer maximum temperature, previous results from the

FIG. 12. The 5-yr return levels of the POT models for the observations and model simula-

tions: (top) ALR40, ALD40, and CNRM and (bottom) ALR10, ALD10, and ALR04. The 93

stations (abscissa) are shown by ascending altitude (from left to right), and the shaded area

represents the 95% confidence interval of observed return levels.

FIG. 13. As in Fig. 12, but for 20-yr return levels.
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extreme value analysis show for ALARO-0 at the

high resolutions of 4 and 10 km, as well as at 40-km

horizontal resolution, a clear improvement in simu-

lating extreme summer precipitation. Extreme events

are also often investigated by means of climate in-

dices (e.g., Herrera et al. 2010; Dom�ınguez et al. 2013;
Duli�ere et al. 2011; Soares et al. 2012b). To complete

the extreme value analysis, two main precipitation

indices have been calculated: the number of wet days

and the number of very heavy precipitation days.

Both indices are explained below and are calculated

for each year (i.e., summer season) and each clima-

tological station.

4) NUMBER OF WET DAYS

The number of wet days (WD) for the observations

andmodels are defined as the annual count of days when

precipitation is.1mm. Figure 14 shows the ratio ofWD

in models to observations. As the model values repre-

sent a whole grid box, we could assume that the models,

and especially the lower resolution models, will poorly

reproduce the indices at the station points. However,

the low-resolution ALR40 model (left) reproduces

relatively well the observed WD. On the other hand,

ALADIN and CNRM show an overestimation for WD.

This can be explained by the fact that precipitation may

occur more systematically at the model grid box level,

which gives rise to aWD even when no precipitation has

been observed at the station location. Compared to

ALADIN and CNRM, the ALARO-0 model (at 4-, 10-,

and 40-km horizontal resolution) is able to better re-

produce the number of wet days.

5) NUMBER OF VERY HEAVY

PRECIPITATION DAYS

The number of very heavy precipitation days is de-

rived by an annual counting of days with precipitation

rates .20mm. The temporal and spatial means of the

number of very heavy precipitation days are consistent

with the results from foregoing extreme value analysis.

Overall, ALR04, ALR10, and ALR40 can reproduce

the number of days with precipitation .20mmday21

very well (Fig. 15). ALR04 and ALR10 have the highest

correlations, and for three out of the 93 stations ALR10

predicts exactly the same number of days with heavy

precipitation rates as have been observed.

FIG. 14. (top) Spatial mean of ratio of number of days above 1mmday21 (i.e., WD) in models to observations.

(bottom) Temporal mean of ratio of number of days above 1mmday21 (i.e., WD) in models to observations. Station

sequence as in Fig. 12.
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5. Conclusions

Extreme value analysis, using the peak-over-threshold

method and generalized Pareto distribution, was per-

formed in order to explore the relative importance of

resolution versus parameterization formulation on the

simulation of extreme daily summer precipitation. The

results show that dynamical downscaling of the ERA-40

reanalysis using the ALARO-0 model adds value to the

prediction of extreme daily summer precipitation when

compared to the ERA-40 results. Hence, running a lim-

ited area model with the adapted parameterization,

which was originally motivated to perform in the

convection-permitting resolutions, statistically outper-

forms the global data in the output of extreme precip-

itation events of the ERA-40 reanalysis. The main

strength of these tests is that, by the choice of the setup, we

are considering the pure effect of the downscaling, with-

out being obliterated by issues such as spectral nudging.

Moreover, the model regenerates the precipitation in-

stead of letting it evolve from its initial state. The re-

gional nature keeps the computing cost within reach of

a typical small center, like the RMI, while reproducing

the correct statistics of the extreme precipitation events

consistently with the large-scale forcing imposed by the

initial conditions and lateral boundaries. Furthermore, it

should be stressed that the present model version has

been developed and tuned in a context of NWP, is used

as a 12-member component of the Grand Limited Area

Model Ensemble Prediction System (GLAMEPS), and

has been taken as such to downscale ERA-40 data. This

can be seen as an extra indirect validation of the NWP

applications running ALARO-0, in the sense that the

model has amore correct climatology of convective rain.

It is clear that there are several components, such as the

physics–dynamics interaction, the interaction between

model physics, and the numerics, that may influence the

climatology of the precipitation. However, it is difficult

to isolate the importance of these components, and it

is beyond the scope of this study to address the relative

impact of the different parameterization updates within

ALARO-0. It should be kept in mind, though, that all of

these factors play a crucial role in the model perfor-

mance at gray-zone resolutions.

FIG. 15. (top) Spatial mean of number of days above 20mmday21. (bottom) Temporal mean of number of days

above 20mmday21. The numbers correspond to Pearson correlation coefficients. Significant correlation coefficients

at significance level 0.05 based on t statistics are indicated with an asterisk. Station sequence as in Fig. 12.
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ALARO-0 simulations at 40-, 10-, and 4-kmhorizontal

resolution with a new parameterization scheme of deep

convection and microphysics and 40- and 10-km hori-

zontal resolution output from the ALADIN model

with an old parameterization scheme were compared

with respect to station observation data. We find for

ALARO-0 at high spatial resolutions of 10 and 4 km an

improvement in the spatial distribution of summer

precipitation, such that the distinct local maximum at

the highest elevations is well resolved by the model,

a feature strongly overestimated by the ALADIN

model at 10-km resolution. Furthermore, the results

from the extreme value analysis suggest that the new

parameterization scheme of ALARO-0 contributes to

the improvement in the modeling of extreme pre-

cipitation events at varying horizontal resolutions,

rather than the increase in spatial resolution. Thus, the

nature of the parameterization is more important than

the resolution, which confirms the previous findings of

Lynn et al. (2010) andHamdi et al. (2012). As an outlook,

the ALARO-0 model will be used to compute IPCC

scenarios.
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