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Abstract 

Aortic aneurysms, which lead to aortic dissections and ruptures if left untreated, are among the most life 

threatening forms of cardiovascular disease. Thoracic aortic aneurysm is a prominent clinical feature of several 

hereditary connective tissue disorders, including Marfan syndrome (MFS). MFS is caused by mutations in 

FBN1, which encodes fibrillin-1, an important extracellular matrix protein. Through the study of MFS mouse 

models and diseases related to MFS, it became clear that dysregulated TGF-β signaling contributes significantly 

to the pathogenesis of thoracic aortic aneurysms.  

Thoracic aortic and other aneurysms do also occur in autosomal dominant polycystic kidney disease (ADPKD). 

Mutations in PKD1 or PKD2 are responsible for ADPKD. The function of the polycystins, the proteins encoded 

by these two genes, is not clear yet, but an upregulation of TGF-β signaling has also been suggested as a 

pathogenetic mechanism. Although the main manifestation of ADPKD consists of renal cysts, a clear 

cardiovascular involvement with aneurysm formation has been demonstrated. Vice versa, kidney cysts have been 

observed in MFS. This clinical overlap suggests a mechanistic link between ADPKD and MFS. This link 

provides interesting opportunities for investigations on the pathogenic mechanisms of both diseases, more in 

particular the mechanisms leading to formation of thoracic aortic aneurysms. 
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INTRODUCTION 

 

 Cardiovascular disease is the most 

prominent cause of death in Western 

society (1). One of the most life 

threatening forms consists of aortic 

aneurysms as these lead to aortic 

dissections and ruptures if left untreated 

(2). Thoracic aortic aneurysm is considered 

as a characteristic clinical feature of 

several hereditary connective tissue 

disorders, including Marfan syndrome 

(MFS; MIM# 154700), Ehlers-Danlos 

syndrome (EDS; MIM# 130000) and 

Loeys-Dietz syndrome (LDS; MIM# 

609192) (1).  

 On the other hand, autosomal 

dominant polycystic kidney disease 

(ADPKD; MIM# 173900, MIM# 613095) 

is one of the most frequent human 

hereditary disorders, with a prevalence of 

circa 1/500-1/1000 (3). The disease mainly 

manifests in the kidneys (cyst formation) 

but is also characterized by various extra 

renal symptoms including cysts in the liver 

and spleen and a cardiovascular 

involvement (4). Indeed, a study on 62 

deceased ADPKD patients has shown 

cardiovascular defects in 27% of the 

autopsies (5). Cardiovascular defects 

comprise mitral valve prolapse (up to 25% 

compared to 10% in healthy controls (p-

value = 0,005) (6)), congestive heart 

failure, myocardium hypertrophy, 

aneurysms of the coronary or cervical 

cephalic arteries, cerebral aneurysms (up to 

10%) and dissections of the thoracic (p-

value = 0,034 (7)) and abdominal aorta. 

Importantly, thoracic aortic dissections are 

seven times more frequent in ADPKD 

patients than in the general population, 

while in 1-10% of all ADPKD patients 

aortic aneurysms are found (8-11). This 

demonstrates a clear cardiovascular 

involvement in ADPKD patients. Vice 

versa, in 50-60% of the MFS patients, 

cysts are observed in the kidneys (12). This 

clinical overlap suggests a pathogenetic 

link between ADPKD and MFS. 

 

CLINICAL AND GENETIC 

FEATURES OF MARFAN 

SYNDROME 

 

 Marfan syndrome (MFS) is a 

multisystemic connective tissue disorder 

affecting the skeletal, ocular and 

cardiovascular system. It exhibits an 

autosomal dominant inheritance pattern (2) 

and has an estimated prevalence of 1 in 

5000 individuals (13, 14). The major 

skeletal features of MFS include skeletal 

overgrowth leading to disproportionate 

body dimensions, scoliosis, pectus 

deformities and long digits 

(arachnodactyly) (15). As a consequence 

of the skeletal alterations, pulmonary 

manifestations may arise. About 60% of 

the MFS patients are affected by lens 

dislocation which can result in retinal 

detachment and glaucoma. The most life 

threatening complication in MFS patients 

is progressive dilatation of the aorta 

leading to aneurysm formation and 

eventually aortic dissection and rupture. 

Apart from aortic dilatation, approximately 

80% of the MFS patients suffer from mitral 

valve prolapse (16). 

 MFS is a pleiotropic disease, 

making an accurate diagnosis sometimes 
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difficult. To facilitate the diagnosis of MFS 

patients, the Berlin nosology was 

formulated in 1986 (17). Because 

weaknesses of these criteria had emerged, 

they were revised and edited in 1996, 

giving rise to the Ghent nosology (15). The 

latter set of criteria are mainly based on 

major and minor clinical findings in the 

different affected tissues including the 

cardiovascular, skeletal, ocular, and 

pulmonary system in addition to dura and 

skin. Major manifestations comprised 

ectopia lentis, aortic root dilatation or dural 

ectasia. In 2010, the Ghent criteria have 

been revised, leading to straigthforward 

diagnostic rules and putting more emphasis 

on the cardiovascular manifestations and 

molecular analysis (18). Four possible 

combinations can lead to a diagnosis of 

MFS in a proband: aortic root dilatation 

(Z-score >2) and ectopia lentis, aortic root 

dilation with an FBN1 mutation, aortic root 

dilation with sufficient systemic findings 

(score of 7 or more on the systemic scale; 

for details see (18)) or finally ectopia lentis 

with an FBN1 mutation that has been 

associated with aortic root dilation. 

 Since FBN1 was identified as the 

MFS causing gene in 1991, more than 

1000 different mutations in FBN1 have 

been described (19). FBN1 encodes the 

fibrillin-1 protein, an important component 

of the extracellular matrix (ECM). The 

protein contains various repetitive domains 

including cb EGF-like (calcium binding 

epidermal growth factor) domains, non-cb 

EGF-like domains, hybrid motifs and 

LTBP-like (latent transforming growth 

factor beta binding protein) domains 

characterized by an 8-cysteine domain. 

The fourth LTBP-like domain contains an 

RGD motif (arginine-glycine-aspartic acid) 

responsible for binding of fibrillin-1 to 

integrin (Fig. 1A) (20, 21). Fibrillin-1 also 

interacts with many other ECM proteins 

such as elastin, fibulins, LTBPs and 

microfibril associated proteoglycans (22-

24). 

 

CLINICAL AND GENETIC 

FEATURES OF AUTOSOMAL 

DOMINANT POLYCYSTIC KIDNEY 

DISEASE (ADPKD) 

 

 ADPKD has an estimated 

prevalence of 1 in 500 to 1000 individuals, 

making it the most frequent hereditary 

renal disorder (25, 26). It is characterized 

by cyst formation in the kidneys and 

various extrarenal symptoms including 

cerebral, thoracic and abdominal aortic 

aneurysms (3, 27, 28). Cysts are not 

necessarily harmful and actually quite 

common in the general population, 

particularly in older people. Study of the 

natural history revealed that almost 12% of 

the population has at least one renal cyst 

(29). Also within the general population, 

renal cysts are more common in men than 

in women and their number and size 

increase with age (30). In ADPKD 

patients, 27% of autopsies show 

cardiovascular defects, including mitral 

valve prolapse (up to 25%), congestive 

heart failure, myocardium hypertrophy, 

aneurysms of the coronary or cervical 

cephalic arteries, cerebral aneurysms (up to 

10%) and dissections of the thoracic and 

abdominal aorta (5).   

 ADPKD is mainly caused by PKD1 
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(85-90%) or PKD2 (10-15%) mutations 

(28, 31-33). A small fraction (~ 1%) of 

ADPKD families cannot be linked to one 

of the known loci, suggesting the existence 

of a third disease causing gene (34-36).  

 PKD1 encodes the polycystin-1 

(PC1) protein, an integral membrane 

glycoprotein (37-39). PC1 has the structure 

of a receptor or an adhesion molecule (see 

Fig. 1B) and mediates cell-cell and cell 

ECM interactions. It contains 16 

immunoglobulin-like domains (also called 

PKD repeats), a receptor for egg-jelly 

domain and a G-protein linked receptor 

proteolytic site (GPS). It also has a long 

extracellular N-terminal region, 11 

transmembrane domains, and a short 

intracellular C-terminal region (3, 38). This 

cytoplasmic tail comprises a coiled-coil 

domain and a G-protein domain, which 

plays an important role in signal 

transduction. PC1 is expressed in the 

primary cilia, cytoplasmic vesicles, the 

plasma membrane near focal adhesions, 

desmosome adherens junctions and 

possibly the endoplasmatic reticulum (ER) 

and nuclei (3). It has been suggested that 

PC1 may regulate the mechanical adhesion 

strength between cells to control the 

formation of stable actin associated 

adherens junctions (40). 

 

 
Figure 1. Fig. 1: (A) Structure of fibrillin-1, showing the different domain structures. (B) Structure of PC1 (left) 

and PC2 (right) and their interactions via coiled-coil domains in the C-terminus. Figures are not drawn to scale. 
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 PKD2 encodes the polycystin-2 

(PC2) protein, an integral membrane 

glycoprotein as well (3, 41, 42). PC2 

consists of a short N-terminal cytoplasmic 

region with a ciliary targeting motif, six 

transmembrane domains and a short C-

terminal tail (43). The latter has a calcium 

(Ca
2+

) binding motif (EF-hand), an ER 

retention motif and a coiled-coil domain, 

responsible for various protein interactions 

(44, 45). PC2 is a non-selective cation 

channel transporting Ca
2+

 and is mainly 

localized in the ER, but it is also found in 

the primary cilia and plasma membrane of 

the renal tubuli (46, 47).  

 Both PC1 and PC2 are members of 

the TRPP family (Transient Receptor 

Potential Polycystic), a subfamily of the 

transient receptor potential (TRP) 

channels. Both proteins interact with each 

other via their C-termini, resulting in a 

complex structure formed in the primary 

cilium (48, 49). The interaction between 

PC1 and PC2 depends on the integrity of 

the coiled-coil domain in the C-terminus of 

PC1. Therefore, a first hypothesis suggests 

that PC1 may be functioning as a receptor 

controlling the cation channel activity of 

PC2 (42). A second hypothesis states that 

the polycystin complex may function as a 

mechanoreceptor sensing the fluid-flow in 

the lumen of the tubuli. This may trigger 

Ca
2+

 influx through the PC2 channel, 

hereby regulating the intracellular Ca
2+

 and 

cyclic AMP amounts (50). In this way, the 

PC1/PC2 complex can respond to flow-

induced mechanosensory stimuli. 

Moreover, it has been shown that cultured 

kidney epithelial cells with mutations in 

Pkd1, do not activate flow-dependent Ca
2+

 

signaling (50). A third possibility is that 

PC1 and PC2 rather have a ciliary 

function. Both PC1 and PC2 are localized 

to the primary cilia of renal epithelia and it 

is known that cilia act as sensory 

organelles. Support for this hypothesis 

resulted from a study in which Kif3a 

deficiency, a protein of the kinesin-2 motor 

complex required for cilia homeostasis, 

resulted in cyst formation (51). 

 

CLINICAL OVERLAP BETWEEN 

MFS AND ADPKD 

 

 As mentioned before, 

cardiovascular abnormalities are fairly 

common in ADPKD patients. A familial 

clustering of cerebral aneurysms was 

observed in ADPKD patients (52). Several 

case studies have shown an association 

between aortic aneurysm/dissection and 

ADPKD (Table 1). In 1 to 10% of ADPKD 

patients, aortic aneurysms are found (9-

11). Moreover, dissection of the thoracic 

aorta is seven times more frequent in 

ADPKD patients (8). From the overview in 

Table 1, it is clear that there is no obvious 

association between the occurrence of 

aortic dissection and the gender, age, the 

degree of kidney dysfunction, the presence 

of hypertension or linkage to PKD1 or 

PKD2. Both type A and B dissections have 

been described in the presence or absence 

of cystic media degeneration. These data 

suggest that genetic modifiers confer the 

association of aortic aneurysms/dissection 

in ADPKD. On the other hand, MFS 

patients have more renal cysts and at an 

earlier age compared to healthy controls as 

demonstrated in a study performed on 69
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Case report Gender 
Age at 

dissection 
Hypertension ESRD PKD1 or 2 

Aortic 

histology 

Type of 

dissection 

(Stanford) 

Biagini (95) Female 63 No  No    

 Female 45 
Mild arterial 

hypertension 
No    

Somlo (53) Female 60  No    

 Male 38  Yes    

 Male 31  No  
Cystic medial 

necrosis 
A 

Hartman 

(96) 
Male 72  Yes    

Paynter (97) Female 36 Yes (200/120) Yes  Normal B 

Osawa (98)    Yes    

Adeola (99) Male 42 Yes    B 

Lee (100) Male 58 Yes   

Cystic medial 

myxoid 

degeneration 

A 

Peczkowska 

(101) 
Male 54 Yes 

Creatinin 

226 
PKD1 

No cystic 

medial 

necrosis 

A 

 Male 47 Yes 
Normal 

creatinin 
PKD1  A 

Keuleers 

(102) 
Female 54 No No 

No genetic 

confirmation 

Segmental 

arterial 

mediolysis  

A 

Minami 

(103) 
Male 55  Yes   A 

Ramineni 

(104) 
Female 44 Yes    B 

Gignon 

(105) 
Male 43     A 

Fukunaga 

(106) 
Male 44 Yes   

Dissection of 

media 
B 

Table 1. Case reports of thoracic aortic aneurysms and dissections in combination with ADPKD 

 

MFS patients; in 59,4% of the MFS 

patients, renal cysts were present compared 

to 30,4% of the controls (12). Although 

renal cysts are seldom clinically significant 

in MFS, these findings suggest a molecular 

link between the vascular findings in MFS 

and cyst formation. This was further 

supported by the description of pedigrees 

in which ADPKD and connective tissue 

disorders (skeletal overgrowth and aortic 

aneurysms) appear to cosegregate. In one 

of these families linkage with PKD1 was 

found, while linkage with FBN1 was 

excluded (53). In another family, 

independent segregation of the kidney 

phenotype with PKD1 and of the aneurysm 

phenotype with FBN1 occurred (54).  

 Interestingly, also in the Loeys-

Dietz syndrome (LDS) there are 

indications of a clinical overlap with 

ADPKD. LDS is another thoracic aortic 

aneurysm syndrome, characterized by 

hypertelorism, a cleft palate and the 

development of aneurysms. It is caused by 
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mutations in the TGFBR1 or 2 gene, 

encoding the TGF-β1 or 2 receptors (55). 

Unlike MFS patients, LDS patients do not 

present with lens dislocations and the 

skeletal overgrowth is less explicit. As 

cysts were also found in the kidneys of 

LDS patients (H. Dietz, personal 

communication), this provides another 

indication of an important role for the 

ECM in the development of renal cysts.  

 

LESSONS LEARNED FROM MFS 

AND PKD MOUSE MODELS 

 

 New insights and confirmation of 

hypotheses concerning the molecular and 

cellular mechanisms underlying the MFS 

and ADPKD pathology have been gained 

through the generation and study of mutant 

mouse lines (Table 2). 

 

MOUSE MODELS OF MFS 

 

 One of the first MFS models was 

the so called mgΔ mouse (56). Because 

heterozygous mgΔ animals did not express 

a MFS-like phenotype and homozygous 

mice deceased early in life, the mgR 

mouse was generated. This hypomorphic 

mouse, expressing only 15% of normal 

Fbn1 levels, survived significantly longer 

than the mgΔ mice and showed a MFS-like 

aortic phenotype with medial calcification, 

intimal hyperplasia and inflammatory

 

Mouse Genetic engineering Heterozygous  

mice 

Homozygous 

mice 

Conclusion Reference 

Marfan      

mg Deletion of Fbn1 

exons 19 to 24  

Normal phenotype Perinatal death 

because of 

vascular 

complications 

Difficult to 

study because 

of prenatal 

lethality 

57 

mgR Hypomorphic Fbn1 

allele (expresses 15% 

of normal levels) 

Normal phenotype Survive longer as 

mg mice 

Medial 

calcification  

Intimal 

hyperplasia 

Inflammatory 

responses 

Threshold 

hypothesis 

Fbn1 

functions in 

homeostasis of 

elastic tissues 

 

58 

Fbn1
C1039G/+

 Fbn1 c.1039C>G From 2 months of 

age: 

Elastic fiber 

fragmentation 

Thickening of 

aortic wall 

No intimal 

hyperplasia 

No Inflammation 

No aortic dissection 

Not applicable Loss of 

function 

contributes to 

disease 

mechanism 

Currently 

preferred MFS 

animal model 

61 

Tsk Naturally occurring 

duplication in Fbn1 

resulting in a larger 

protein 

Thickened skin 

Bone overgrowth 

Lung emphysema 

No vascular 

abnormalities 

Not applicable Threshold 

hypothesis 

Naturally 

occurring SSS 

animal model 

60 
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ADPKD      

Pkd1
del34

 Deletion of Pkd1 

exon 34 

Normal phenotype 

Few kidney cysts at 

older age 

Perinatal death 

because of: 

Enlarged kidneys 

Pancreatic cysts 

Pulmonary 

hypoplasia 

No vascular 

abnormalities 

Difficult to 

study because 

of lethality 

66, 67 

Pkd1
L
 Premature stop codon 

in Pkd1 exon 43 

Normal phenotype Embryonic lethal 

with: 

Edema 

Focal vascular 

leaks 

Hemorrhage 

PC1 functions 

in tissue 

integrity 

 

68 

Pkd1
del17-

21βgeo
 

Deletion of Pkd1 

exons 17 to 21 

Renal cysts 

Occasionally liver 

cysts 

Embryonic lethal 

with: 

Disorganized 

myocardium 

Abnormal atrio-

ventricular 

septation 

First ADPKD 

animal model 

69 

Pkd1
-
 Deletion of Pkd1 

exons 2 to 6 

Subtle endothelial 

dysfunction 

Defective NOx 

production 

Embryonic lethal 

with: 

Hemorrhage 

Progressive renal 

cystogenesis 

Difficult to 

study 

70 

Pkd1
nl
 Hypomorphic Pkd1 

allele (expresses 20% 

of normal levels) 

Not applicable Viable 

Renal, liver, 

pancreatic cysts 

Cardiovascular 

abnormalities 

Good ADPKD 

animal model 

71 

Pkd2
WS25

 Disrupted exon 1 in 

tandem with WT 

exon 1 

Renal cysts Renal cysts 

(more severe) 

Loss of 

capacity to 

express PC2 

leads to cyst 

formation 

72 

Pkd2
-
 Deletion of Pkd2 

exon 1 

Renal cysts 

Early death 

Embryonic lethal 

with: 

Structural cardiac 

defects 

Renal and 

pancreatic cysts 

Haplo-

insufficiency 

is mechanism  

73 

Table 2: Existing mouse models for MFS and ADPKD 

 

responses (fibroproliferation and 

elastolysis) (57). Because heterozygous 

mgR mutant animals expressed a normal 

phenotype throughout life, a threshold 

hypothesis was suggested in which the 

relative amount of functionally normal 

fibrillin-1 is decisive for MFS severity. 

Detailed study of the elastic vessels from 

both mgR mice and MFS patients revealed 

loss of cell attachments at the surface of 

elastic laminae, causing morphological 

changes in neighboring cells (58). This 

suggested an important role for fibrillin-1 

in the homeostasis of elastic tissues. 
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Further support for the threshold 

hypothesis came from the Tight skin (Tsk) 

mouse, characterized by thickened skin, 

bone overgrowth and lung emphysema 

(59). Heterozygous Tsk mice express a 

decreased amount of functional 

microfibrils, hereby exceeding the 

threshold levels for bone overgrowth and 

lung emphysema, but not for vascular 

abnormalities. Because mgΔ and mgR 

mice both rely on homozygosity of the 

mutant allele for expression of a 

phenotype, a heterozygous MFS mouse 

model was generated: the Fbn1
C1039G/+

 

mouse (60). These mice had a normal life 

span, while elastic fiber fragmentation and 

thickening of the aortic wall was 

significant starting at 2 months of age. 

Intimal hyperplasia and aortic wall 

inflammation were not observed. 

Unfortunately, also aortic dissections did 

not occur. As transgenic addition of the 

wild type fibrillin-1 allele to the 

Fbn1
C1039G/+

 mice resulted in rescue of the 

MFS phenotype, loss-of-function was 

confirmed as the disease mechanism in 

MFS pathogenesis.  

 

INVOLVEMENT OF DYSREGULATED 

TGF-Β SIGNALING IN MFS 

PATHOGENESIS 

 

 For a long time it was assumed that 

MFS was caused by pure structural 

deficiency of the microfibrils. This 

provided a plausible explanation for some 

manifestations of MFS, such as lens 

dislocation and aortic aneurysm, but 

others, including skeletal overgrowth, 

could not be explained by loss of structural 

tissue integrity. Studies on the Fbn1
C1039G/+

 

mouse model demonstrated that increased 

TGF-β signaling played an important role 

in the aorta pathology (61, 62) and that 

fibrillin-1 is thus not only a structural 

component of the ECM but also a key 

regulator of TGF-β activation (21, 63) (see 

Fig. 2). The key experiment involved 

rescue of the mutant phenotype in Fbn1 

deficient mice by the administration of 

TGF-β-neutralizing antibodies (62). This 

mutant phenotype included impaired distal 

airspace septation in the respiratory tract 

(62), and elastic fiber fragmentation, 

aneurysms (64) and mitral valve prolapse 

(61) in the cardiovascular system. 

 

MOUSE MODELS OF ADPKD 

 

 Pkd1
del34 

was the first Pkd1 mouse 

(65). Heterozygous Pkd1
del34/+

 mice have a 

normal phenotype although a few kidney 

cysts developed at older age (66), while 

homozygous animals died early in the 

perinatal period. No vascular abnormalities 

were observed. In a second Pkd1 mouse 

model, homozygous mice (Pkd1
L/L

) died in 

utero between E14.5 and E15.5 (67). The 

animals exhibited edema, focal vascular 

leaks and hemorrhage, indicating that PC1 

has an important role in maintenance of 

vascular tissue integrity. Homozygosity for 

a third mutant Pkd1 allele (Pkd1
del17-21βgeo

) 

also turned out to be embryonic lethal, but 

both homozygous and heterozygous 

mutant mice developed renal cysts (68). 

Homozygous mutant mice of the fourth 

Pkd1 mouse model (Pkd1
-/-

) died from 

E14.5 onwards (69). Surviving Pkd1
-/-

mice 

developed renal cysts starting from E15.5, 
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Figure 2: Overview of the TGF-β pathways involved in the pathogenesis of MFS. TGF-β is the prototype of a 

family of secreted polypeptide growth factors essential in development, cell growth, differentiation, migration, 

apoptosis and ECM production (74, 75). TGF-β is secreted as part of a latent complex, consisting of TGF-β, 

LAP-β (latency associated protein) and LTBP (latent TGF-β binding protein), and binds to the ECM. Once 

activated, TGF-β binds to the cell surface receptors, TβRI and TβRII (76). Smads (combination of the C. elegans 

Sma protein and the Drosophila Mad (Mothers against decapenthaplegic) protein) are transcription factors 

shuttling between the cytoplasm and nucleus which regulate the intracellular responses with regard to TGF-β 

(77-80). TGF-β can activate two pathways: the canonical (indicated in blue) and the non-canonical (indicated in 

green). In the canonical signaling pathway, Smad2 and/or Smad3 are phosphorylated by TβRI/II, followed by 

binding of Smad4. The Smad2/3-Smad4 complex translocates to the nucleus where transcription of Smad 

dependent genes occurs (81). The non-canonical (alternative) TGF-β pathways include the RhoA and MAPK 

cascades (ERK, JNK and p38) (82-84). 

 

which increased in number and size up to 

E18.5. Next, a hypomorphic Pkd1 mutant 

model (Pkd1
nl

), expressing only 20% of 

normal PC1, was generated (70). In 

contrast to the previous Pkd1 mutant 

mouse models, Pkd1
nl

 mice were viable 

and presented renal, liver and pancreatic 

cysts. They also showed cardiovascular 

abnormalities, in line with the human 

ADPKD phenotype. These findings 

demonstrate that a decreased Pkd1 

expression level is sufficient to cause 

polycystic kidneys and vascular 

abnormalities.  

 In the first Pkd2 mouse model 

(Pkd2
WS25

), about half of the homozygous 

and heterozygous mutant animals 

developed renal cysts, with cyst formation 

being more severe in the homozygous 

mice. In a minority, liver cysts were 

observed as well (71). PC2 

immunohistochemistry on kidneys of 

Pkd2
+/WS25 

mice with a non-cystic 

phenotype was comparable to that of WT 

mice. In contrast, in kidneys of Pkd2
+/WS25 

mice with a cystic phenotype, a complete 

absence of PC2 immunoreactivity was 

observed in the renal cysts and in cells 

lining the cysts, while the surrounding 

noncystic regions did show PC2 
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expression. This suggested that tubular 

epithelial cells which lose the complete 

capacity to express PC2 may give rise to 

cysts. The second Pkd2 mouse model 

carried a true null mutation (Pkd2
-
) (72). 

Homozygous mice died at E13.5. Kidney 

cysts development in heterozygous mice 

(Pkd2
+/-

) resulted in renal failure and early 

death. Heterozygous mice without kidney 

cysts had an intermediate survival. These 

findings suggested that haploinsufficiency 

was the disease causing mechanism. 

Further evidence for haploinsufficiency as 

the disease causing mechanism came from 

the evaluation of two rat models 

expressing truncated PC2 (73). 

 

OPPORTUNITIES FOR THE STUDY 

OF ANEURYSM PATHOGENESIS 

FROM THE INTERSECTION OF MFS 

AND ADPKD 

 

ROLE OF TGF-Β IN MFS AND ADPKD 

 

 As described above, dysregulated 

TGF-β signaling is an important 

contributor to MFS pathogenesis. 

Likewise, experiments on ADPKD 

epithelial cells show an increased TGF-β 

activation (85), while also in Pkd1
nl

 mice 

an important role for TGF-β signaling was 

demonstrated in the more advanced stages 

of disease, including cyst progression and 

fibrogenesis (86). This suggests a clear 

contribution of dysregulated TGF-β 

signaling to ADPKD progression. For the 

time being, it is not clear exactly how the 

polycystins fit within this pathogenic 

mechanism, although it is conceivable that 

the polycystins play a role in the ECM. 

The latter hypothesis is built on several 

arguments. First, polycystin 1 has several 

extracellular motifs that may function in 

possible cell-cell and cell-matrix 

interactions (87). Second, an altered 

expression of matrix proteins, such as 

collagen and fibronectin, occurs in 

polycystic kidneys (88, 89). Finally, in 

Pkd1 and Pkd2 deficient zebrafish, a 

persisting expression of multiple collagen 

mRNAs transcripts and low levels of 

collagen-crosslinking inhibitors were 

found, implicating an involvement of the 

polycystins in the modulation of collagen 

expression (90).  

 

ROLE OF PC1/PC2 IN VASCULAR 

REMODELING 

 

 Polycystin 1 and 2 are expressed in 

the smooth muscle cells of the arterial wall 

and in the dense plaques, where they 

anchor the intracellular contractile 

filaments to the extracellular elastic 

lamellae (91, 92). Based on the 

hypomorphic Pkd1
nl

 mouse model, 

Hassane et al. examined vascular 

remodeling in ADPKD (93). These studies 

led to the formulation of a model for 

aneurysm formation in which matrix 

components accumulate between the 

elastic lamellae, followed by an increase of 

smooth muscle cells leading to weakening 

of the vessel wall. Subsequently, 

endothelial cells detached from the elastic 

lamellae in the intima. This leads, in 

combination with the weakened aortic 

media, to a rupture in the intima, giving 

rise to intramural bleeding. Therefore, 

polycystins may play a role in the smooth 
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muscle cell-adhesion complex and the 

maintenance of the structural integrity of 

the vasculature, and thus seem to function 

in vascular homeostasis rather than in 

vascular development (93). 

 Pkd2
+/-

 mice were used to examine 

intracellular Ca
2+

 homeostasis (94). 

Hypertension was surgically induced in 

WT and Pkd2
+/-

 mice. Since the majority 

of Pkd2
+/-

 mice developed cerebral arterial 

lesions compared to only one WT animal, 

loss of PC2 was associated with an 

increased risk of vascular complications. 

Furthermore, Pkd2
+/-

 mice had decreased 

sarcoplasmic reticulum Ca
2+

 storage 

caused by reduced store-operate calcium 

activity. These data support the hypothesis 

that the PC1/PC2 complex might play a 

role in flow-dependent Ca
2+

 regulation. 

Most probably, abnormal intracellular Ca
2+

 

regulation is contributing to the vascular 

phenotype observed in ADPKD. This may 

warrant experiments to deduce the 

intracellular Ca
2+

 levels in MFS mouse 

models as well. 

 In conclusion, although the 

pathogenic mechanisms leading to 

aneurysm formation in MFS and ADPKD 

remain largely undeciphered, it is clear that 

an interesting overlap exists (Fig.3) and 

that this overlap may provide interesting 

opportunities for investigations on the 

pathogenic mechanisms of both diseases. 

 

FUTURE PERSPECTIVES 

 

 Although mutations in PKD1 and 

PKD2 explain the large majority of the 

ADPKD families, further genetic 

heterogeneity has been suggested based on 

the fact that some ADPKD families are not 

linked to either PKD1 or PKD2. But, so far 

the suggested third locus has not been 

identified. The availability of ADPKD 

families with known vascular involvement 

and in whom linkage to the PKD1, PKD2,

 

 
Figure 3. Overlap between the different proteins involved in MFS and ADPKD and their function. 
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FBN1 and TGFBR1/2 loci has been 

excluded, can offer a solution. If these 

families are large enough linkage analysis 

can be performed, possibly resulting in the 

identification of new loci. Additionally, if 

tissue samples from these families are 

available immunohistochemistry can be 

performed, enabling the investigation of 

the contribution of TGF-β in ADPKD 

pathogenesis. If human tissues cannot be 

obtained, experiments on aortic wall tissue 

from different Pkd mouse models can be 

informative. The results of these 

experiments will lead to a better 

understanding of the different pathways 

that are involved in the pathogenesis of 

aneurysm formation in MFS and ADPKD 

and will provide an explanation for the 

intersection of both diseases. 
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