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Abstract
The hyperplanes of the symplectic dual polar space DW (5, q) arising from em-

bedding, the so-called classical hyperplanes of DW (5, q), have been determined
earlier in the literature. In the present paper, we classify non-classical hyperplanes
of DW (5, q). If q is even, then we prove that every such hyperplane is the extension
of a non-classical ovoid of a quad of DW (5, q). If q is odd, then we prove that
every non-classical ovoid of DW (5, q) is either a semi-singular hyperplane or the
extension of a non-classical ovoid of a quad of DW (5, q). If DW (5, q), q odd, has a
semi-singular hyperplane, then q is not a prime number.
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1 Introduction

The hyperplanes of the finite symplectic dual polar space DW (5, q) that arise from some
projective embedding, the so-called classical hyperplanes of DW (5, q), have explicitly
been determined earlier in the literature, see Cooperstein & De Bruyn [5], De Bruyn [7]
and Pralle [21]. In the present paper, we give a rather complete classification for the
non-classical hyperplanes of DW (5, q). There are two standard constructions for such
hyperplanes.

(1) Suppose x is a point of DW (5, q) and O is a set of points of DW (5, q) at distance
3 from x such that every line at distance 2 from x has a unique point in common with
O. Then x⊥ ∪ O is a non-classical hyperplane of DW (5, q), the so-called semi-singular
hyperplane with deepest point x.

(2) Suppose Q is a quad of DW (5, q). Then the points and lines contained in Q define

a generalized quadrangle Q̃ isomorphic to Q(4, q). If O is a non-classical ovoid of Q̃, then
the set of points of DW (5, q) at distance at most 1 from O is a non-classical hyperplane of
DW (5, q), the so-called extension of O. Several classes of non-classical ovoids of Q(4, q)
are known, see Section 2.2 for a discussion.

The following is our main result.
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Theorem 1.1 (1) If q is even, then every non-classical hyperplane of DW (5, q) is the
extension of a non-classical ovoid of a quad of DW (5, q).

(2) If q is odd, then every non-classical hyperplane of DW (5, q) is either a semi-
singular hyperplane or the extension of a non-classical ovoid of a quad of DW (5, q).

Up to present, no semi-singular hyperplane of DW (5, q) is known to exist. If a semi-
singular hyperplane of DW (5, q) exists, then q must be odd (Theorem 3.11) and not a
prime (Corollary 3.10).

The lines and quads through a given point x of DW (5, q) define a projective plane iso-
morphic to PG(2, q) which we denote by Res(x). If H is a hyperplane of DW (5, q) and x
is a point of H, then ΛH(x) denotes the set of lines through x contained in H. We regard
ΛH(x) as a set of points of Res(x). If ΛH(x) is the whole set of points of Res(x), then x
is called deep with respect to H.

The dual polar space DW (5, q) has a nice full projective embedding e in the projective
space PG(13, q), which is called the Grassmann embedding of DW (5, q), see e.g. Cooper-
stein [4, Proposition 5.1]. A hyperplane of DW (5, q) whose image under e is contained in a
hyperplane of of PG(13, q) is said to arise from e. For a proof of the following proposition,
we refer to Pasini [16, Theorem 9.3] or Cardinali & De Bruyn [3, Corollary 1.5].

Proposition 1.2 If H is a hyperplane of DW (5, q) arising from the Grassmann embed-
ding of DW (5, q), then for every point x of H, ΛH(x) is one of the following sets of points
of Res(x): (1) a point; (2) a line; (3) the union of two distinct lines; (4) a nonsingular
conic; (5) the whole set of points of Res(x).

If q 6= 2, then the Grassmann embedding of DW (5, q) is the so-called absolutely universal
embedding of DW (5, q) (Cooperstein [4, Theorem B], Kasikova & Shult [12, Section 4.6],
Ronan [22]), implying that the classical hyperplanes of DW (5, q) are precisely those hyper-
planes arising from the Grassmann embedding. Combining Theorem 1.1 with Proposition
1.2, we easily find:

Corollary 1.3 If H is a hyperplane of DW (5, q), q 6= 2, then for every point x of H,
ΛH(x) is one of the following sets of points of Res(x): (1) the empty set; (2) a point; (3)
a line; (4) the union of two distinct lines; (5) a nonsingular conic; (6) the whole set of
points of Res(x). If ΛH(x) is the empty set, then H is a semi-singular hyperplane whose
deepest point lies at distance 3 from x. If H is not a semi-singular hyperplane, then case
(1) cannot occur.

The conclusion of Corollary 1.3 is false for the dual polar space DW (5, 2). If x is a point of
DW (5, 2), then for every set Y of points of Res(x) ∼= PG(2, 2), there exists a hyperplane
H through x such that ΛH(x) = Y , see Pralle [21, Table 1].

If n ≥ 4, then the symplectic dual polar space DW (2n−1, q) has many full subgeometries
isomorphic to DW (5, q). So, Corollary 1.3 reveals information on the local structure of
any hyperplane of any symplectic dual polar space DW (2n−1, q), where q 6= 2 and n ≥ 4.
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Theorem 1.1 will be proved in Section 3. In Section 2, we give the basic definitions
(including some of the notions already mentioned above) and basic properties which will
play a role in the proof of Theorem 1.1.

2 Preliminaries

2.1 The dual polar space DW (5, q)

Let S = (P ,L, I) be a point-line geometry with nonempty point-set P , line set L and
incidence relation I ⊆ P × L. A set H ( P is called a hyperplane of S if every line of S
has either one or all of its points in H. A full projective embedding of S is an injective
mapping e from P to the point-set of a projective space Σ satisfying (i) 〈e(P)〉Σ = Σ;
(ii) {e(x) | (x, L) ∈ I} is a line of Σ for every line L of S. If e : S → Σ is a projective
embedding of S and Π is a hyperplane of Σ, then e−1(e(P) ∩ Π) is a hyperplane of S. A
hyperplane of S is said to be classical if it is of the form e−1(e(P) ∩ Π), where e is some
full projective embedding of S into a projective space Σ and Π is some hyperplane of Σ.

Distances d(·, ·) in S will be measured in its collinearity graph. If x is a point of S
and i ∈ N, then Γi(x) denotes the set of points of S at distance i from x. Similarly, if X
is a nonempty set of points and i ∈ N, then Γi(X) denotes the set of all points at distance
i from X, i.e. the set of all points y for which min{d(y, x) |x ∈ X} = i.

Let W (5, q) be the polar space whose subspaces are the subspaces of PG(5, q) that are
totally isotropic with respect to a given symplectic polarity of PG(5, q), and let DW (5, q)
denote the associated dual polar space. The points and lines of DW (5, q) are the totally
isotropic planes and lines of PG(5, q), with incidence being reverse containment. The
dual polar space DW (5, q) belongs to the class of near polygons introduced by Shult and
Yanushka in [23]. This means that for every point x and every line L, there exists a unique
point on L nearest to x. The maximal distance between two points of DW (5, q) is equal
to 3. The dual polar space DW (5, q) has (q + 1)(q2 + 1)(q3 + 1) points, q + 1 points on
each line and q2 + q + 1 lines through each point.

If x and y are two points of DW (5, q) at distance 2 from each other, then the smallest
convex subspace 〈x, y〉 of DW (5, q) containing x and y is called a quad. A quad Q of
DW (5, q) consists of all totally isotropic planes of W (5, q) that contain a given point xQ

of W (5, q). Any two lines L and M of DW (5, q) that meet in a unique point are contained
in a unique quad. We denote this quad by 〈L,M〉. Obviously, we have 〈L,M〉 = 〈x, y〉
where x and y are arbitrary points of L \M and M \ L, respectively. The points and

lines of DW (5, q) that are contained in a given quad Q define a point-line geometry Q̃
isomorphic to the generalized quadrangle Q(4, q) of the points and lines of a nonsingular
parabolic quadric of PG(4, q). If Q is a quad of DW (5, q) and x is a point not contained
in Q, then Q contains a unique point πQ(x) collinear with x and d(x, y) = 1 + d(πQ(x), y)
for every point y of Q. If Q1 and Q2 are two distinct quads of DW (5, q), then Q1 ∩Q2 is
either empty or a line of DW (5, q). If Q1 ∩Q2 = ∅, then the map Q1 → Q2;x 7→ πQ2(x)

is an isomorphism between Q̃1 and Q̃2.
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2.2 Hyperplanes of Q(4, q)

By Payne and Thas [18, 2.3.1], every hyperplane of the generalized quadrangle Q(4, q)
is either the perp x⊥ of a point x, a (q + 1) × (q + 1)-subgrid or an ovoid. An ovoid of
Q(4, q) is classical if it is an elliptic quadric Q−(3, q) ⊆ Q(4, q). For many values of q,
non-classical ovoids of Q(4, q) do exist: (i) q = ph with p an odd prime and h ≥ 2 [11];
(ii) q = 22h+1 with h ≥ 1 [26]; (iii) q = 32h+1 with h ≥ 1 [11]; (iv) q = 3h with h ≥ 3
[24]; (v) q = 35 [19]. For several prime powers q, it is known that all ovoids of Q(4, q) are
classical:

Proposition 2.1 • ([2, 15]) Every ovoid of Q(4, 4) is classical.
• ([13, 14]) Every ovoid of Q(4, 16) is classical.
• ([1]) Every ovoid of Q(4, q), q prime, is classical.

A set G of hyperplanes of Q(4, q) is called a pencil of hyperplanes if every point of
Q(4, q) is contained in either 1 or all elements of G. The following lemma is precisely
Lemma 3.2 and Corollary 3.3 of De Bruyn [8].

Lemma 2.2 If G1 and G2 are two distinct classical hyperplanes of Q(4, q), then through
every point x of Q(4, q) not contained in G1∪G2, there exists a unique classical hyperplane
Gx satisfying Gx ∩G1 = G1 ∩G2 = G2 ∩Gx. As a consequence, any two distinct classical
hyperplanes of Q(4, q) are contained in a unique pencil of classical hyperplanes of Q(4, q).

2.3 Hyperplanes of DW (5, q)

Since DW (5, q) is a near polygon, the set of points of DW (5, q) at distance at most 2
from a given point x is a hyperplane of DW (5, q), the so-called singular hyperplane with
deepest point x. If O is a set of points of DW (5, q) at distance 3 from a given point x
such that every line at distance 2 from x has a unique point in common with O, then
x⊥ ∪ O is a hyperplane of DW (5, q), a so-called semi-singular hyperplane of DW (5, q)

with deepest point x. If Q is a quad of DW (5, q) and G is a hyperplane of Q̃ ∼= Q(4, q),
then Q∪ {x ∈ Γ1(Q) | πQ(x) ∈ G} is a hyperplane of DW (5, q), the so-called extension of
G.

If H is a hyperplane of DW (5, q) and Q is a quad, then either Q ⊆ H or Q ∩H is a
hyperplane of Q ∼= Q(4, q). If Q ⊆ H, then Q is called a deep quad. If Q ∩H = x⊥ ∩ Q
for some point x ∈ Q, then Q is called singular with respect to H and x is called the deep
point of Q. The quad Q is called ovoidal (respectively, subquadrangular) with respect to
H if and only if Q ∩ H is an ovoid (respectively, a (q + 1) × (q + 1)-subgrid) of Q. A
hyperplane H of DW (5, q) is called locally singular (locally subquadrangular, respectively
locally ovoidal) if every non-deep quad of DW (5, q) is singular (subquadrangular, respec-
tively ovoidal) with respect to H. A hyperplane that is locally singular, locally ovoidal or
locally subquadrangular is also called a uniform hyperplane. In the following proposition,
we collect a number of known results which we will need to invoke later in the proof of
the Main Theorem.
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Proposition 2.3 (1) The dual polar space DW (5, q), q 6= 2, has no locally subquadran-
gular hyperplanes.

(2) The dual polar space DW (5, q) has no locally ovoidal hyperplanes.
(3) Every nonuniform hyperplane of DW (5, q) admits a singular quad.

Proposition 2.3(1) is due to Pasini & Shpectorov [17]. Locally ovoidal hyperplanes of
DW (5, q) are just ovoids and cannot exist by Thomas [25, Theorem 3.2], see also Coop-
erstein and Pasini [6]. Proposition 2.3(3) is due to Pralle [20].

The classical hyperplanes of the dual polar space DW (5, q) have already been classified
in the literature. The dual polar space DW (5, q), q 6= 2, has six isomorphism classes
of classical hyperplanes by Cooperstein & De Bruyn [5] and De Bruyn [7]. This fact
is not true if q = 2. The dual polar space DW (5, 2) has twelve isomorphism classes
of hyperplanes by Pralle [21], see also De Bruyn [7, Section 9]. Observe that all these
hyperplanes are classical by Ronan [22, Corollary 2]. By De Bruyn [8], the classical
hyperplanes of DW (5, q) can be characterized as follows.

Proposition 2.4 The classical hyperplanes of DW (5, q) are precisely those hyperplanes
H of DW (5, q) that satisfy the following property: if Q is an ovoidal quad, then Q∩H is
a classical ovoid of Q.

2.4 Hyperbolic sets of quads of DW (5, q)

As in Section 2.1, let W (5, q) be the polar space associated with a symplectic polarity of
PG(5, q). If L is a hyperbolic line of PG(5, q) (i.e. a line of PG(5, q) that is not a line of
W (5, q)), then the set of the q+1 (mutually disjoint) quads of DW (5, q) corresponding to
the points of L satisfy the property that every line that meets at least two of its members
meets each of its members in a unique point. Any set of q + 1 quads that is obtained in
this way will be called a hyperbolic set of quads of DW (5, q). Every two disjoint quads Q1

and Q2 of DW (5, q) are contained in a unique hyperbolic set of quads of DW (5, q). We
will denote this hyperbolic set of quads by H(Q1, Q2). Considering all the lines meeting
Q1 and Q2, we easily see that the following holds.

Lemma 2.5 Let {Q1, Q2, . . . , Qq+1} be a hyperbolic set of quads of DW (5, q) and let H
be a hyperplane of DW (5, q) such that H ∩Q1 and πQ1(H ∩Q2) are distinct hyperplanes

of Q̃1. Then {πQ1(H ∩Qi) | 1 ≤ i ≤ q + 1} is a pencil of hyperplanes of Q̃1.

3 Proof of Theorem 1.1

Throughout this section, we suppose that H is an arbitrary hyperplane of DW (5, q). In
De Bruyn [9], we classified for every field K of size at least three the hyperplanes of
DW (5,K) containing a quad. The main theorem of [9] implies the following:
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Proposition 3.1 Every non-classical hyperplane of DW (5, q), q 6= 2, containing a quad
is the extension of a non-classical ovoid of a quad.

We have already mentioned above that every hyperplane of DW (5, 2) is classical by Ro-
nan [22, Corollary 2]. Since we are interested in the classification of all non-classical
hyperplanes of DW (5, q), we may by the above assume that the following holds:

Assumption: We have q ≥ 3 and the hyperplane H does not contain quads.

We denote by v the total number of points of H and by l the total number of lines of
DW (5, q) contained in H. In Section 3.1, we prove that there are only three possible
values for v, namely q5 +q3 +q2 +q+1, q5 +q4 +q3 +q2 +2q+1 or q5 +q4 +q3 +q2 +q+1.
In Section 3.2, we prove that if v = q5+q3+q2+q+1, then H is a semi-singular hyperplane.
We also prove there that semi-singular hyperplanes cannot exist if q is even. In [10] (see
also Corollary 3.10), the nonexistence of semi-singular hyperplanes was already shown for
prime values of q. In Section 3.3, we prove that the case v = q5+q4+q3+q2+2q+1 cannot
occur and in Section 3.4, we prove that H must be classical if v = q5 + q4 + q3 + q2 + q+1.
All these results together imply that Theorem 1.1 must hold.

3.1 The possible values of v

The following lemma is an immediate consequence of Proposition 2.3.

Lemma 3.2 The hyperplane admits singular quads.

Lemma 3.3 We have l = v·(q2+q+1)−(q2+1)(q3+1)(q2+q+1)
q

.

Proof. We count the number of lines not contained in H. There are (q+ 1)(q2 + 1)(q3 +
1) − v points outside H and each of these points is contained in q2 + q + 1 lines which
contain a unique point of H. Hence, the total number of lines not contained in H is equal

to ((q+1)(q2+1)(q3+1)−v)(q2+q+1)
q

. Since the total number of lines of DW (5, q) equals (q2 +

1)(q3 +1)(q2 +q+1), we have l = (q2 +1)(q3 +1)(q2 +q+1)− ((q+1)(q2+1)(q3+1)−v)(q2+q+1)
q

=
v·(q2+q+1)−(q2+1)(q3+1)(q2+q+1)

q
. 2

Lemma 3.4 If Q is a singular quad with deep point x, then one of the following cases
occurs:

(1) x⊥ ∩H = x⊥ ∩Q;
(2) there exists a line L through x not contained in Q such that x⊥∩H = (x⊥∩Q)∪L;
(3) there exists a quad R through x distinct from Q such that x⊥ ∩ H = (x⊥ ∩ Q) ∪

(x⊥ ∩R);
(4) x⊥ ⊆ H.

Proof. Since x⊥ ∩ Q ⊆ x⊥ ∩ H, |ΛH(x)| ≥ q + 1. If |ΛH(x)| ∈ {q + 1, q + 2}, then
either case (1) or (2) of the lemma occurs. Suppose therefore that |ΛH(x)| ≥ q + 3 and
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let L1 and L2 be two distinct lines through x that are contained in H, but not in Q. Put
R := 〈L1, L2〉. Since L1 ⊆ R ∩H, L2 ⊆ R ∩H and R ∩ Q ⊆ R ∩H, R is singular with
deep point x and hence every line of R through x is contained in H. So, |ΛH(x)| ≥ 2q+1.

If |ΛH(x)| = 2q + 1, then obviously case (3) of the lemma occurs. Suppose therefore
that |ΛH(x)| ≥ 2q+2. Then there exists a line L3 ⊆ H through x not contained in Q∪R.
If Q′ is a quad through L3 distinct from 〈L3, Q∩R〉, then since Q′ ∩Q ⊆ H, Q′ ∩R ⊆ H
and L3 ⊆ H, Q′ is singular with deep point x and hence every line of Q′ through x is
contained in H. It follows that all lines of DW (5, q) through x are contained in H, except
maybe for the q − 1 lines through x contained in 〈L3, Q ∩ R〉 and distinct from L3 and
Q ∩ R. Let L′ be one of these q − 1 lines and let Q′′ be a quad through L′ distinct from
〈L3, Q ∩ R〉. Since q ≥ 3 lines of Q′′ through x are contained in H, Q′′ is singular with
deep point x and hence also L′ is contained in H. So, x⊥ ⊆ H and case (4) of the lemma
occurs. 2

Lemma 3.5 If Q is a singular quad with deep point x, then |Γ3(x) ∩H| = q5.

Proof. Every point of Γ3(x)∩H is collinear with a unique point of Γ2(x)∩Q. Conversely,
every point u of Γ2(x)∩Q is collinear with precisely q2 points of Γ3(x)∩H. (One on each
line through u not contained in Q.) Hence, |Γ3(x) ∩H| = |Γ2(x) ∩Q| · q2 = q5. 2

Lemma 3.6 Suppose Q is a singular quad with deep point x.

• If case (1) of Lemma 3.4 occurs, then v = q5 + q4 + q3 + q2 + q + 1 and l =
q5 + q4 + q3 + q2 + q + 1.

• If case (2) of Lemma 3.4 occurs, then v = q5 + q4 + q3 + q2 + 2q + 1 and l =
(q2 + q + 1)(q3 + 2).

• If case (3) of Lemma 3.4 occurs, then v = q5 + q4 + q3 + q2 + q + 1 and l =
q5 + q4 + q3 + q2 + q + 1.

• If case (4) of Lemma 3.4 occurs, then v = q5 + q3 + q2 + q + 1 and l = q2 + q + 1.

Proof. Suppose case (1) of Lemma 3.4 occurs. Then x is contained in 1 singular quad
that has x as deep point (namely Q) and q2 + q singular quads that do not have x as deep
point. In this case, |Γ0(x)∩H| = 1, |Γ1(x)∩H| = q2 + q, |Γ2(x)∩H| = 1 · 0 + (q2 + q) · q2

and |Γ3(x)∩H| = q5. Hence, v = 1 + (q2 + q) + (q2 + q) · q2 + q5 = q5 + q4 + q3 + q2 + q+ 1.
Suppose case (2) of Lemma 3.4 occurs. Then x is contained in 1 singular quad with

deep point equal to x, q + 1 subquadrangular quads and q2 − 1 singular quads with deep
point different from x. In this case, |Γ0(x) ∩ H| = 1, |Γ1(x) ∩ H| = (q + 2)q = q2 + 2q,
|Γ2(x) ∩ H| = 1 · 0 + (q + 1) · q2 + (q2 − 1) · q2 = q4 + q3 and |Γ3(x) ∩ H| = q5. Hence,
v = 1 + (q2 + 2q) + (q4 + q3) + q5 = q5 + q4 + q3 + q2 + 2q + 1.

Suppose case (3) of Lemma 3.4 occurs. Then x is contained in 2 singular quads with
deep point x, q−1 singular quads with deep point different from x and q2 subquadrangular
quads. In this case, |Γ0(x) ∩ H| = 1, |Γ1(x) ∩ H| = (2q + 1)q = 2q2 + q, |Γ2(x) ∩ H| =
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2 · 0 + (q− 1) · q2 + q2 · q2 = q4 + q3− q2 and |Γ3(x)∩H| = q5. Hence, v = 1 + (2q2 + q) +
(q4 + q3 − q2) + q5 = q5 + q4 + q3 + q2 + q + 1.

Suppose case (4) of Lemma 3.4 occurs. Then x is contained in q2 +q+1 singular quads
that have x as deep point. Hence, v = |Γ0(x)∩H|+|Γ1(x)∩H|+|Γ2(x)∩H|+|Γ3(x)∩H| =
1 + q(q2 + q + 1) + 0 + q5 = q5 + q3 + q2 + q + 1.

In each of the four cases, the value of l can be derived from Lemma 3.3. 2

By Lemmas 3.2, 3.4 and 3.6, we have:

Corollary 3.7 v ∈ {q5 +q3 +q2 +q+1, q5 +q4 +q3 +q2 +q+1, q5 +q4 +q3 +q2 +2q+1}.

We see that if case (2) of Lemma 3.4 occurs for one singular quad Q, then case (2) occurs
for all singular quads Q. A similar remark holds applies to case (4) of Lemma 3.4.

3.2 The case v = q5 + q3 + q2 + q + 1

Let Q∗ denote a singular quad and x∗ its deep point.

Lemma 3.8 If v = q5 +q3 +q2 +q+1, then H is a semi-singular hyperplane of DW (5, q)
with deepest point x∗.

Proof. If v = q5 + q3 + q2 + q + 1, then case (4) of Lemma 3.4 occurs for the pair
(Q∗, x∗). So, we have that x∗⊥ ⊆ H and Γ2(x∗)∩H = ∅ (no deep quad through x∗). Since
Γ2(x∗) ∩H = ∅, every line at distance 2 from x∗ contains a unique point of Γ3(x∗) ∩H.
It follows that H is a semi-singular hyperplane of DW (5, q) with deepest point x∗. 2

The following proposition was proved in De Bruyn and Vandecasteele [10, Corollary 6.3].

Proposition 3.9 If q is a prime power such that every ovoid of Q(4, q) is classical, then
DW (5, q) does not have semi-singular hyperplanes.

By Propositions 2.1 and 3.9, we have

Corollary 3.10 If q is prime, then DW (5, q) has no semi-singular hyperplanes.

We will now use hyperbolic sets of quads of DW (5, q) to prove the nonexistence of semi-
singular hyperplanes of DW (5, q), q even.

Theorem 3.11 The dual polar space DW (5, q), q even, has no semi-singular hyperplanes.

Proof. Suppose H is a semi-singular hyperplane of DW (5, q), q even, and as before let x∗

denote the deepest point of H. Let Q be a quad through x∗, let G be a (q + 1)× (q + 1)-

subgrid of Q̃ not containing x∗, let L1 and L2 be two disjoint lines of G and let Qi,
i ∈ {1, 2}, be a quad through Li distinct from Q. Then Q1 and Q2 are disjoint. Put
H = H(Q1, Q2). Every Q3 ∈ H intersects Q in a line of G and hence x∗ 6∈ Q3. It follows
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that every Q3 ∈ H is ovoidal with respect to H. Suppose Q3 ∈ H\{Q1} and x3 ∈ Q3∩H
such that x1 = πQ1(x3) ∈ Q1 ∩ H. Then the line x1x3 is contained in H and hence
x∗ ∈ x1x3. But this is impossible, since no quad of H contains x∗. Hence, πQ1(Q3 ∩H) is
disjoint from Q1 ∩H. By Lemma 2.5, the set {πQ1(Q3 ∩H) |Q3 ∈ H} is a partition of Q1

into ovoids. This is however impossible since the generalized quadrangle Q(4, q), q even,
has no partition in ovoids by Payne and Thas [18, Theorem 1.8.5]. 2

3.3 The case v = q5 + q4 + q3 + q2 + 2q + 1

We suppose that v = q5 + q4 + q3 + q2 + 2q + 1 and l = (q2 + q + 1)(q3 + 2). Recall that
if Q is a singular quad and x is the deep point of Q, then case (2) of Lemma 3.4 occurs
for the pair (Q, x).

Lemma 3.12 Let Q be a singular quad, let x be the deep point of Q, let L be the line
through x not contained in Q such that x⊥ ∩ H = (x⊥ ∩ Q) ∪ L and let y be a point of
L \ {x}. Then there are q + 1 lines L1, L2, . . . , Lq+1 through y different from L that are
contained in H. The q + 2 lines L,L1, L2, . . . , Lq+1 form a hyperoval of the projective
plane Res(y) ∼= PG(2, q). (Hence, q must be even.)

Proof. The q + 1 quads R1, . . . , Rq+1 through L determine a partition of the set of
lines through y different from L. Each of these quads is subquadrangular. Hence, Ri,
i ∈ {1, 2, . . . , q + 1}, contains a unique line Li 6= L through y that is contained in H.

For all i, j ∈ {1, 2, . . . , q + 1} with i 6= j, the lines L, Li and Lj are not contained in
a quad since the quad 〈L,Li〉 is subquadrangular. Suppose there exist mutually distinct
i, j, k ∈ {1, 2, . . . , q + 1} such that Li, Lj and Lk are contained in a quad Q′. Then L is
not contained in Q′ and hence Q ∩ Q′ = ∅. Since Li, Lj and Lk are contained in H, Q′

is singular with deep point y. Let z′ ∈ Q′ \ y⊥ and z := πQ(z′). Since z and z′ are not
contained in H, the line zz′ contains a unique point z′′ ∈ H. Let Q′′ denote the unique
quad through z′′ intersecting L in a point u. Then Q′′ ∈ H(Q,Q′). So, every point of
u⊥ ∩Q′′ is contained in a line joining a point of y⊥ ∩Q′ with a point of x⊥ ∩Q and hence
is contained in H. Since also z′′ ∈ H, Q′′ ⊆ H, contradicting the fact that there are no
deep quads. 2

Lemma 3.13 There are four possible types of points in H:
(A) points x for which ΛH(x) is the union of a line of Res(x) and a point of Res(x)

not belonging to that line;
(B) points x for which ΛH(x) is a hyperoval of Res(x);
(C) points x for which |ΛH(x)| = 2;
(D) points x for which ΛH(x) is empty.

Moreover, we have:
(i) Every point of Type (A) has distance 1 from precisely q2 − 1 points of Type (A), q

points of Type (B) and q + 1 points of Type (C).
(ii) Every point of Type (B) has distance 1 from precisely q + 2 points of Type (A),

(q + 2)(q − 1) points of Type (B) and 0 points of Type (C).
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(iii) Every point of Type (C) has distance 1 from precisely 2q points of Type (A), 0
points of Type (B) and 0 points of Type (C).

Proof. Suppose Q∗ is a singular quad and x∗ is its deep point. Consider the collinearity
graph Γ of DW (5, q) and let ΓH denote the subgraph of Γ induced on the vertex set H.
Suppose x is a point of H such that x and x∗ belong to different connected components
of ΓH . We prove that ΛH(x) is empty. Suppose to the contrary that there exists a line
L through x contained in H. If L meets Q∗, then L ∩ Q∗ must be contained in x∗⊥,
contradicting the fact that x∗ and x belong to different connected components of ΓH . So,
L is disjoint from Q∗. Then πQ∗(L) meets x∗⊥ and hence x∗ and x are connected by a
path of ΓH , again a contradiction.

Notice that by Lemma 3.6 and the fact that v = q5 + q4 + q3 + q2 +2q+1, x∗ is a point
of Type (A). So, in order to prove the first part of the lemma, it suffices to verify that
every vertex x of Type (X), X ∈ {A,B,C}, of ΓH is adjacent with only vertices of Type
(A), (B) or (C). As a by-product of our verification, also the conclusions of the second
part of the lemma will be obtained.

First, suppose that x is a point of Type (A). Without loss of generality, we may suppose
that x = x∗. Let L∗ denote the unique line through x∗ such that x∗⊥∩H = (x∗⊥∩Q∗)∪L∗.
By Lemma 3.12, every point of L∗ \ {x∗} has Type (B). Now, let L be a line through x∗

contained in Q∗. Then 〈L,L∗〉 is a subquadrangular quad. Any quad through L different
from 〈L,L∗〉 and Q∗ is singular with deep point contained in L \ {x∗}. By Lemmas 3.4
and 3.6 and the fact that v = q5 + q4 + q3 + q2 + 2q + 1, every point of L \ {x∗} is the
deep point of at most 1 such singular quad. Hence, q − 1 points of L \ {x∗} have Type
(A) and the remaining point of L \ {x∗} has type (C).

Suppose x is a point of Type (C). Let L1 and L2 denote the two lines through x that
are contained in H. Then 〈L1, L2〉 is a subquadrangular quad. If Q is a quad through L1

distinct from 〈L1, L2〉, then Q is singular with deep point on L1 \ {x}. By Lemmas 3.4
and 3.6 and the fact that v = q5 + q4 + q3 + q2 + 2q + 1, every point of L1 \ {x} is the
deep point of at most 1 such singular quad. It follows that every point of L1 \ {x} has
Type (A). In a similar way, one shows that every point of L2 \ {x} has Type (A).

Suppose x is a point of Type (B). Let L be an arbitrary line through x contained in
H. Every quad through L is subquadrangular. It follows that through every point u ∈ L
there are precisely q + 2 lines that are contained in H. If at least three of these lines are
contained in a certain quad R, then R is singular with deep point u and hence u is of
type (A). Otherwise, u is of type (B). By Lemma 3.12, there are two possibilities.

(1) L contains a unique point of Type (A) and q points of Type (B).

(2) L contains q + 1 points of Type (B).

We show that case (2) cannot occur. Suppose it does occur. Then |Γ0(L)∩H| = q+1 and
|Γ1(L) ∩H| = (q + 1)2q. Each quad intersecting L in a unique point is either ovoidal or
subquadrangular and contributes q2 to the value of |Γ2(L)∩H|. Since every point of Γ2(L)
is contained in a unique quad that intersects L in a unique point, |Γ2(L)∩H| = (q+1)q2·q2.
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It follows that |H| = |Γ0(L)∩H|+|Γ1(L)∩H|+|Γ2(L)∩H| = (q+1)+(q+1)2q+(q+1)q4 =
q5 + q4 + q3 + 2q2 + 2q+ 1, contradicting the fact that |H| = q5 + q4 + q3 + q2 + 2q+ 1. 2

Now, let nA, nB, nC respectively nD, denote the total number of points of H of Type
(A), (B), (C), respectively (D). Then by Lemma 3.13, we have nA · q = nB · (q + 2) and
nA · (q + 1) = nC · 2q. Hence,

nB =
nA · q
q + 2

, (1)

nC =
nA · (q + 1)

2q
. (2)

Now, counting in two different ways the number of pairs (x, L), with x ∈ H and L a line
through x contained in H, we obtain

nA · (q + 2) + nB · (q + 2) + nC · 2 = l · (q + 1) = (q2 + q + 1)(q + 1)(q3 + 2). (3)

From equations (1), (2) and (3), we find nA = (q2+q+1)(q3+2)q
2q+1

, nB = (q2+q+1)(q3+2)q2

(q+2)(2q+1)
and

nC = (q2+q+1)(q3+2)(q+1)
2(2q+1)

. If q = 3, then nA 6∈ N. If q ≥ 4, then

nA + nB + nC = (q2 + q + 1)(q3 + 2) · 5q2 + 7q + 2

2(q + 2)(2q + 1)

> (q5 + q4 + q3 + q2 + 2q + 1) · 1
= v,

a contradiction. Hence, the case v = q5 + q4 + q3 + q2 + 2q + 1 cannot occur.

3.4 The case v = q5 + q4 + q3 + q2 + q + 1

Suppose v = q5 + q4 + q3 + q2 + q + 1.

Lemma 3.14 There are five possible types of points in H:
(A) points x for which |ΛH(x)| = 1;
(B) points x for which ΛH(x) is a line of Res(x);
(C) points x for which ΛH(x) is the union of two distinct lines of Res(x);
(D) points x for which ΛH(x) is an oval of Res(x);
(E) points x for which ΛH(x) is empty.

Proof. Suppose Q∗ is a singular quad and x∗ is its deep point. Consider the collinearity
graph Γ of DW (5, q) and let ΓH denote the subgraph of Γ induced on the vertex set H.
Suppose x is a point of H such that x and x∗ belong to different connected components
of ΓH . Then we prove that ΛH(x) is empty. Suppose to the contrary that there exists a
line L through x contained in H. If L meets Q∗, then L ∩Q∗ must be contained in x∗⊥,
contradicting the fact that x∗ and x belong to different connected components of ΓH . So,
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L is disjoint from Q∗. Then πQ∗(L) meets x∗⊥ and hence x∗ and x are connected by a
path of ΓH , again a contradiction.

By Lemmas 3.4 and 3.6 applied to the pair (Q∗, x∗), x∗ is a point of Type (B) or
(C). So, in order to prove the lemma, it suffices to prove that if x is a point of Type
(X) ∈ {(A), (B), (C), (D)} and y is a point of H \ {x} collinear with x, then y is of Type
(A), (B), (C) or (D). Put L := xy. Since x is of Type (A), (B), (C) or (D), one of the
following two possibilities occurs:

(1) L is contained in q + 1 singular quads with deep point on L.

(2) L is contained in a unique singular quad with deep point on L and q subquadrangular
quads.

Observe that case (1) can only occur if x has Type (A), (B) or (C), while case (2) can
only occur if x has Type (C) or (D).

Suppose case (1) occurs. Then ΛH(y) is the union of a number of lines of Res(y)
through a given point of Res(y), union this point. Since every quad through y is singular,
subquadrangular or ovoidal, every line of Res(y) intersects ΛH(y) in either 0, 1, 2 or
q + 1 points. Notice also that the point y cannot be deep with respect to H, since
otherwise Lemmas 3.4 and 3.6 applied to any singular quad through y would yield that
v = q5 + q3 + q2 + q+ 1, which is impossible. It follows that y is of Type (A), (B) or (C).

If case (2) occurs, then there are two possibilities:

(2a) ΛH(y) is a line of Res(y) + q extra points. By Lemma 3.4, y necessarily is a point
of Type (C).

(2b) |ΛH(y)| = q+ 1. If at least three of the points of ΛH(y) are collinear, then ΛH(y) is
necessarily a line of Res(y). But this is impossible since y is not the deep point of
a singular quad through L. So, no three points of ΛH(y) are collinear. This implies
that ΛH(y) is an oval of Res(y), i.e. y is a point of Type (D). 2

Definition. As we have already noticed in the proof of Lemma 3.14, every line L ⊆ H
must be contained in either q+ 1 singular quads or one singular quad and q subquadran-
gular quads. If all quads on L are singular, then L is said to be special.

Lemma 3.15 If L is a special line, then L contains only points of Type (A), (B) and
(C). Moreover, the number of points of Type (A) on L equals the number of points of
Type (C) on L.

Proof. Since every quad through L is singular, there are (q + 1)q lines contained in H
that meet L in a unique point. Moreover, for every y ∈ L, ΛH(y) is the union of a number
of lines of Res(y), union the point of Res(y) corresponding to L. It follows that every
point of L is of Type (A), (B) or (C). Let n1, n2, respectively n3, denote the number of
points of Type (A), (B), respectively (C), contained in L. Then n1 + n2 + n3 = q+ 1 and
n1 · 0 + n2 · q + n3 · 2q = q(q + 1). It follows that n1 = n3. 2

The proof of the following lemma is straightforward.
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Lemma 3.16 Every point of Type (A) is contained in a unique special line. Every point
of Type (C) is contained in a unique special line.

Let nA, nB, nC , nD, respectively nE, denote the total number of points of H of Type
(A), (B), (C), (D), respectively (E). The following is an immediate corollary of Lemmas
3.15 and 3.16.

Corollary 3.17 We have nC = nA.

Lemma 3.18 We have nE = 0.

Proof. We count in two different ways the number of pairs (x, L) with x ∈ H and L a
line of H through x. We find

nA · 1 + nB · (q + 1) + nC · (2q + 1) + nD · (q + 1) + nE · 0 = l(q + 1).

Using the facts that nA = nC and l = (q2+q+1)(q3+1) = v, we find nA+nB+nC+nD = v.
Hence, nE = 0. 2

Lemma 3.19 We have nD = 2q2

q+1
nA.

Proof. We count in two different ways the number of pairs (x,Q) where Q is a singular
quad and x is its deep point. We find

Si = nB + 2 · nC , (4)

where Si denotes the total number of singular quads. We count in two different ways the
number of pairs (x,Q) where Q is a singular quad and x is a point of Q∩H distinct from
the deep point of Q. We find

(q + 1)q · Si = (q + 1)nA + q(q + 1)nB + (q − 1)nC + (q + 1)nD. (5)

From (4) and (5) and the fact that nA = nC , it readily follows that nD = 2q2

q+1
nA. 2

Now, put δ := nA. Then we have nA = nC = δ, nD = 2q2

q+1
· δ and nB = (q2 + q + 1)(q3 +

1)− 2(q2+q+1)
q+1

· δ.

Lemma 3.20 We have 0 ≤ δ ≤ b1
2
(q + 1)(q3 + 1)c.

Proof. This follows from the fact that nB ≥ 0. 2

Remark. If q ≥ 4 is even, then by De Bruyn [7], the dual polar space DW (5, q) has
up to isomorphism two hyperplanes not containing quads. The values of δ corresponding

to these two hyperplanes are respectively equal to 0 and q3(q+1)
2

. If q is odd, then by
Cooperstein and De Bruyn [5], the dual polar space DW (5, q) has up to isomorphism two
hyperplanes not containing quads. The values of δ corresponding to these two hyperplanes
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are respectively equal to 1
2
(q + 1)(q3 − 1) and 1

2
(q + 1)(q3 + 1). So, the lower and upper

bounds in Lemma 3.20 can be tight.

Definition. Recall that if Q is a quad of DW (5, q) then the points and lines of DW (5, q)
contained in Q bijectively correspond to the points and lines of PG(4, q) that are contained
in a given nonsingular parabolic quadric Q(4, q) of PG(4, q). A conic of Q is a set of q+ 1
points of Q that corresponds to a nonsingular conic of Q(4, q), i.e. with a set of q + 1
points of Q(4, q) contained in a plane π of PG(4, q) intersecting Q(4, q) in a nonsingular
conic of π.

Lemma 3.21 Let {Q1, Q2, . . . , Qq+1} be a hyperbolic set of quads of DW (5, q) such that
Q1 is ovoidal with respect to H and |πQ1(Q2 ∩H) ∩ (Q1 ∩H)| ≥ 2. Then:

(1) πQ1(Q2 ∩H) ∩ (Q1 ∩H) is a conic of Q1.

(2) The number of ovoidal quads of {Q1, . . . , Qq+1} is bounded above by q+1
2

. If the

number of these ovoidal quads is precisely q+1
2

, then the remaining q+1
2

quads of
{Q1, . . . , Qq+1} are subquadrangular with respect to H.

Proof. We first prove that πQ1(Q2 ∩ H) 6= Q1 ∩ H. Suppose to the contrary that
πQ1(Q2 ∩H) = Q1 ∩H. Let u be a point of Q1 \H, let L be the unique line through u
meeting each quad of {Q1, Q2, . . . , Qq+1}, let v denote the unique point of L contained in
H, and let i be the unique element of {3, . . . , q+ 1} such that v ∈ Qi. Now, since Qi ∩H
contains πQi

(Q2 ∩H) and the point v ∈ Qi \ πQi
(Q2 ∩H), we must have Qi ⊆ H. This is

however impossible since no quad is contained in H.
So, πQ1(Q2 ∩ H) 6= Q1 ∩ H. By Lemma 2.5, {πQ1(Qi ∩ H) | 1 ≤ i ≤ q + 1} is a

pencil of hyperplanes of Q̃1. Let α1, α2, respectively α3, denote the number of quads of
{Q1, . . . , Qq+1} that are ovoidal, singular, respectively subquadrangular, with respect to
H. Put β := |πQ1(Q2 ∩H) ∩ (Q1 ∩H)| ≥ 2. We prove that β = q + 1.

If α1 = q+ 1 and α2 = α3 = 0, then (q+ 1)(q2 + 1) = |Q1| = β + (q+ 1)(q2 + 1− β) =
(q+1)(q2+1)−qβ < (q+1)(q2+1), a contradiction. So, without loss of generality, we may
suppose that Q2 is not ovoidal with respect to H. If Q2 is subquadrangular with respect
to H, then β = |πQ1(Q2∩H)∩ (Q1∩H)| = q+1. If Q2 is singular with respect to H with
deep point u such that πQ1(u) 6∈ Q1 ∩H, then also β = |πQ1(Q2 ∩H)∩ (Q1 ∩H)| = q+ 1.
If Q1 were singular with respect to H with deep point u such that πQ1(u) ∈ Q1 ∩H, then
β = |πQ1(Q2 ∩H) ∩ (Q1 ∩H)| = 1, a contradiction. Hence, β = q + 1 as claimed.

Now, we have α1 +α2 +α3 = q+ 1 and (q+ 1)(q2 + 1) = |Q1| = (q+ 1) +α1(q2− q) +
α2q

2 +α3(q2 + q) = (q+ 1) + (q+ 1)q2 + q(α3−α1), i.e. α1 +α2 +α3 = q+ 1 and α1 = α3.
Hence, α1 = α3 ≤ q+1

2
. Moreover, if α1 = α3 = q+1

2
, then α2 = 0. This proves claim (2).

Now, α2 + α3 ≥ q+1
2

. So, α2 + α3 ≥ 2. Without loss of generality, we may suppose
that the quads Q2 and Q3 are singular or subquadrangular with respect to H.

The points and lines contained in Q1 can be identified (in a natural way) with the
points and lines lying on a given nonsingular parabolic quadric Q(4, q) of PG(4, q). Now,

each of πQ1(Q2 ∩H) and πQ1(Q3 ∩H) is either a singular hyperplane or a subgrid of Q̃1
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and hence arises by intersecting Q(4, q) with a hyperplane of PG(4, q). Since πQ1(Q2 ∩
H)∩πQ1(Q3∩H) = πQ1(Q2∩H)∩ (Q1∩H) is a set of q+1 mutually noncollinear points,
πQ1(Q2 ∩H) ∩ (Q1 ∩H) must be a conic of Q1. 2

Lemma 3.22 If Q1 is an ovoidal quad, then through every two points of Q1 ∩ H, there
is a conic of Q1 that is completely contained in Q1 ∩H.

Proof. Let x1 and x2 be two distinct points of Q1 ∩H. By Lemmas 3.14 and 3.18, there
exists a line Li, i ∈ {1, 2} through xi that is contained in H. Let Q2 be a quad distinct
from Q1 that meets L1 and L2, and let {Q1, Q2, . . . , Qq+1} be the unique hyperbolic set
of quads of DW (5, q) containing Q1 and Q2. Since {x1, x2} ⊆ πQ1(Q2 ∩H) ∩ (Q1 ∩H),
Lemma 3.21 applies. We conclude that πQ1(Q2 ∩H) ∩ (Q1 ∩H) is a conic containing x1

and x2. 2

Lemma 3.23 For every quad Q1 that is ovoidal with respect to H, there is a quad Q2

disjoint from Q1 that is singular with respect to H such that πQ1(u) 6∈ Q1 ∩H where u is

the deepest point of the singular hyperplane Q2 ∩H of Q̃2.

Proof. The number of points x ∈ Γ1(Q1) ∩ H for which πQ1(x) 6∈ Q1 ∩ H is equal to

(|Q1| − |Q1 ∩ H|) · q2 = q3(q2 + 1). Now, since nD = 2q2

q+1
δ ≤ 2q2

q+1
· 1

2
(q + 1)(q3 + 1) =

q2(q3 + 1) < q3(q2 + 1), there exists a point y ∈ Γ1(Q1) ∩ H not of type (D) for which
πQ1(y) 6∈ Q1 ∩ H. Let L ⊆ H be a special line through y and let z denote the unique
point of L for which πQ1(z) ∈ Q1 ∩H. By Lemma 3.14, there are at most two quads R

through L for which z is the deep point of the singular hyperplane R ∩H of R̃. Hence,
there exists a quad Q2 through L for which the deep point u of the singular hyperplane
Q2 ∩H of Q̃2 is distinct from z. Since u is not collinear with a point of Q1 ∩H, Q1 and
Q2 are disjoint. 2

Lemma 3.24 If Q1 is ovoidal with respect to H, then Q1 ∩H is a classical ovoid of Q̃1.

Proof. By Lemma 3.23, there exists a quad Qq+1 disjoint from Q1 that is singular
with respect to H such that πQ1(u) 6∈ Q1 ∩ H where u is the deep point of the singular

hyperplane Qq+1 ∩ H of Q̃q+1. Let {Q1, Q2, . . . , Qq+1} denote the unique hyperbolic set
of quads of DW (5, q) containing Q1 and Qq+1. By Lemma 3.21, we then have:

(1) X := πQ1(Qq+1 ∩H) ∩ (Q1 ∩H) is a conic of Q1;
(2) the number k of ovoidal quads of the set {Q1, Q2, . . . , Qq+1} is at most q

2
.

Without loss of generality, we may suppose that Q1, . . . , Qk are the quads of {Q1, Q2, . . . ,
Qq+1} that are ovoidal with respect to H. Since (q + 1) − q

2
≥ 2, Qq and Qq+1 are not

ovoidal with respect to H. By Lemmas 2.2 and 2.5, πQ1(Qq ∩H) and πQ1(Qq+1 ∩H) are

contained in a unique pencil of classical hyperplanes of Q̃1. Moreover, this pencil contains
the hyperplanes πQ1(Qi ∩H), i ∈ {k+ 1, . . . , q+ 1}. Let A1, . . . , Ak denote the remaining
elements of this pencil. Then X ⊆ A1 ∩ · · · ∩ Ak and A1 ∪ · · · ∪ Ak = πQ1(Q1 ∩ H) ∪
· · · ∪ πQ1(Qk ∩ H). Now, |A1 ∪ · · · ∪ Ak| ≥ |X| + k(q2 + 1 − |X|) = (q + 1) + k(q2 − q)
and equality holds if and only if every Aj, j ∈ {1, . . . , k}, is a classical ovoid of Q̃1. Now,
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since |πQ1(Q1 ∩H)∪ · · · ∪ πQ1(Qk ∩H)| = |X|+ k(q2 + 1− |X|) = (q+ 1) + k(q2− q), we

can conclude that every Aj, j ∈ {1, . . . , k}, is a classical ovoid of Q̃1.
Now, let i ∈ {1, . . . , k} and suppose there exists no j ∈ {1, . . . , k} such that πQ1(Qi ∩

H) = Aj. Then X ⊆ πQ1(Qi ∩ H) ⊆ A1 ∪ · · · ∪ Ak and there exist two distinct j1, j2 ∈
{1, . . . , k} such that πQ1(Qi ∩H) ∩ (Aj1 \X) 6= ∅ and πQ1(Qi ∩H) ∩ (Aj2 \X) 6= ∅. Let
y1 be an arbitrary point of πQ1(Qi ∩ H) ∩ (Aj1 \ X) and let y2 be an arbitrary point of
πQ1(Qi∩H)∩ (Aj2 \X). By Lemma 3.22, there exists a conic C through y1 and y2 that is
completely contained in πQ1(Qi∩H) and hence also in A1∪· · ·∪Ak. Since |C| = q+1 and
k ≤ q

2
, there exists a j3 ∈ {1, . . . , k} such that |C ∩Aj3| ≥ 3. Since Aj3 is a classical ovoid

of Q̃1, this necessarily implies that C ⊆ Aj3 , contradicting the fact that y1 ∈ Aj1 \ X,
y2 ∈ Aj2 \X and j1 6= j2. Hence, there exists a j ∈ {1, . . . , k} such that πQ1(Qi∩H) = Aj.

This implies that the ovoid Qi ∩H of Q̃i is classical. 2

Corollary 3.25 The hyperplane H is classical.

Proof. This is an immediate corollary of Proposition 2.4 and Lemma 3.24. 2

Remark. With the terminology of Cooperstein & De Bruyn [5] and De Bruyn [7], the
hyperplane H is either a hyperplane of Type V or a hyperplane of Type VI.
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[26] J. Tits. Ovöıdes et groupes de Suzuki. Arch. Math. 13 (1962), 187–198.

17


