
Int. J. Appl. Math. Comput. Sci., 2019, Vol. 29, No. 4, 797–815
DOI: 10.2478/amcs-2019-0059

PASSWORD–AUTHENTICATED GROUP KEY ESTABLISHMENT FROM
SMOOTH PROJECTIVE HASH FUNCTIONS

JENS-MATTHIAS BOHLI a, MARÍA ISABEL GONZÁLEZ VASCO b,∗, RAINER STEINWANDT c

aDepartment of Information Technology
Mannheim University of Applied Sciences, Paul-Wittsack-Straße 10, 68163 Manheim, Germany

e-mail: j.bohli@hs-mannheim.de

bDepartment of Applied Mathematics, Materials Science and Technology, and Electronic Engineering (MACIMTE)
King Juan Carlos University, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain

e-mail: mariaisabel.vasco@urjc.es

cDepartment of Mathematical Sciences
Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA

e-mail: rsteinwa@fau.edu

Password-authenticated key exchange (PAKE) protocols allow users sharing a password to agree upon a high entropy secret.
Thus, they can be implemented without complex infrastructures that typically involve public keys and certificates. In this
paper, a provably secure password-authenticated protocol for group key establishment in the common reference string
(CRS) model is presented. While prior constructions of the group (PAKE) can be found in the literature, most of them rely
on idealized assumptions, which we do not make here. Furthermore, our protocol is quite efficient, as regardless of the
number of involved participants it can be implemented with only three communication rounds. We use a (by now classical)
trick of Burmester and Desmedt for deriving group key exchange protocols using a two-party construction as the main
building block. In our case, the two-party PAKE used as a base is a one-round protocol by Katz and Vaikuntanathan, which
in turn builds upon a special kind of smooth projective hash functions (KV-SPHFs). Smooth projective hash functions
(SPHFs) were first introduced by Cramer and Shoup (2002) as a valuable cryptographic primitive for deriving provable
secure encryption schemes. These functions and their variants proved useful in many other scenarios. We use here as a main
tool a very strong type of SPHF, introduced by Katz and Vaikuntanathan for building a one-round password based two party
key exchange protocol. As evidenced by Ben Hamouda et al. (2013), KV-SPHFs can be instantiated on Cramer–Shoup
ciphertexts, thus yielding very efficient (and pairing free) constructions.

Keywords: group key exchange, password authentication, smooth projective hashing.

1. Introduction

Key exchange protocols are among the most useful
cryptographic constructions, allowing users interacting
through an insecure network to establish a common secret
that can later be used for achieving strong confidentiality
and integrity guarantees.

In distributed applications, low-entropy passwords
are still a dominating tool for authentication. Reflecting
this, significant research efforts are currently devoted
to the exploration of password-authenticated key

∗Corresponding author

establishment protocols, through which participants
sharing initially a short password aim at agreeing
upon a high entropy secret for securing subsequent
communication. In this contribution we focus on group
key establishment involving n ≥ 2 users.

In the password setting, different scenarios can be
considered depending on the application context. For
example, it can be plausible to assume that a dedicated
server is available, and each user has an individual
password shared with this server. A different scenario
does not involve a server, and assumes that all users
involved in the key establishment share a common

© 2019 J.-M. Bohli et al.
This is an open access article distributed under
the Creative Commons Attribution-NonCommercial-NoDerivs license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

mailto:j.bohli@hs-mannheim.de
mailto:mariaisabel.vasco@urjc.es
mailto:rsteinwa@fau.edu

798 J.-M. Bohli et al.

password. In this paper we consider the latter approach,
which is well suited for small user groups without a
centralized server. In such scenarios, multicast message
confidentiality or data integrity are natural cryptographic
goals that can be achieved once the group has established
a shared high-entropy secret key (this is the case, for
instance, of secure virtual conferences involving up to a
hundred participants). Similarly, in applications where
the legitimate protocol participants are different devices
controlled by a single human user, a shared high-entropy
key may be used to ensure data integrity.

1.1. Key establishment: From 2-party to group. The
design of key establishment protocols for two participants
has been extensively studied during the last decades,
both in the password setting (Boyko et al., 2000; Katz
et al., 2001; Abdalla and Pointcheval, 2005; Abdalla
et al., 2015) or using stronger authentication means
(signatures) (Blake-Wilson and Menezes, 1999; Bellare
et al., 1998; Katz and Yung, 2007). A standard strategy
for breaking down the design task of a group key
establishment into conceptually simpler steps are protocol
compilers that build on the security of a given 2-party
solution. Indeed, a number of such generic constructions
have been discussed in the literature (Burmester and
Desmedt, 1995; Mayer and Yung, 1999; Hwang et al.,
2004). Many of these compilers are inspired by the
classical construction of Burmester and Desmedt (1995),
where the trick of establishing a group key from
pairwise agreed keys among the group principals was first
introduced. We sketch their idea in Fig. 1, where AKE
stands for two-party authenticated key exchange protocol,
and thus AKE(A,B) denotes the execution of AKE by
users A and B.

The Burmester–Desmedt trick goes as follows:
assume participants to be arranged in a cycle. In a
first round, each participant exchanges two-party keys
with his left and right neighbour. Once these two-party
key establishments have been completed, each participant
broadcasts the XOR-value (or the quotient) of the two
keys he shares with his neighbors. This allows everyone
in the cycle to retrieve each of the 2-party keys that have
been exchanged previously, from which a shared session
key may be derived. Intuitively, if an adversary has
not been able to compromise the security of any of the
2-party protocol executions involved, neither will he be
able to retrieve any information about the resulting group
session key (for XORs of “randomly looking” elements
should look as well random to him), even though some
precautions must be taken in order to prevent him from
mixing up the messages exchanged in the last rounds.

1.2. Related work and our contribution. Remarka-
bly, whether designed following the above idea or built

from scratch, most group key exchange protocols that
can be found in the literature rely on high-entropy
secrets for achieving security against active adversaries.
Using instead password-based authentication, the first
such construction in the standard model is due to
Abdalla et al. (2005; 2006), who extended a 2-party
solution is to the 3-party case. Shortly after, Abdalla
and Pointcheval (2006) introduced a group protocol.
Further, Abdalla et al. (2007) proposed a generic
compiler that enables the derivation of an authenticated
group key establishment protocol from an arbitrary
authenticated 2-party key establishment. This compiler
is indeed inspired by the above Burmester–Desmedt
rationale, but adds extra features and attains very
strong security guarantees. In particular, from a
password-authenticated 2-party key establishment the
compiled protocol is a password-authenticated group
key establishment, that has thus been derived without
adding idealizing assumptions or high-entropy secrets for
authentication. The construction suggested by Abdalla
et al. (2007) builds on the use of non-interactive and
non-malleable commitments, which in the CRS model are
known to be implementable through IND-CCA2 secure
encryption schemes. Nam et al. (2011) identified and
addressed a security problem in the original formulation
of this compiler.

Aiming at eluding idealized assumptions, we present
here a provably secure password-authenticated protocol
for group key establishment in the common reference
string (CRS) model. The three-round protocol we
propose considers a fully asynchronous network with
an active adversary. We build upon a one-round
construction by Katz and Vaikuntanathan (2013) that can
(as proven by Ben Hamouda et al. (2013)) be implemented
from Cramer–Shoup ciphertexts; focusing here on the
theoretical design and security proof, we refer to these
papers for a detailed discussion on how to actually derive
a concrete implementation of our protocol. In a nutshell,
our construction can be taken for a generalization of Katz
and Vaikuntanathan’s scheme to a group setting, compiled
through the ideas of Abdalla et al. (2007) which in turn
build on the Burmester–Desmedt rationale.

Related schemes. Several group key establishment
protocols for the scenario considered here have been
proposed (Bresson et al., 2002; Abdalla et al., 2006;
Dutta and Barua, 2006). Many of these initial
constructions are based on the random oracle or the
ideal cipher model, while few constructions rely on
standard assumptions (Abdalla et al., 2007; Abdalla and
Pointcheval, 2006). Another interesting proposal is
that of Gorantla et al. (2010), which also focuses on
achieving a security proof without idealized assumptions,
but assumes long-term high-entropy secrets are available
for authentication.

Password-authenticated group key establishment from smooth projective hash functions 799

Phase 1: Two-party key establishments.

AKE: All indices are to be taken in a cycle, i.e., Un+1 = U1, etc.

For i = 1, . . . , n, execute AKE(Ui, Ui+1) —as a result, each user Ui holds two keys
−→
K i,
←−
K i shared with

Ui+1 respectively Ui−1.

Phase 2: Group key establishment.

Computation: Each Ui computes
Xi :=

−→
K i ⊕←−K i.

Broadcast: Each Ui broadcasts (Ui, Xi).

Computation: Each Ui sets Ki :=
←−
K i and computes n− 1 values

Ki−j :=
←−
K i ⊕Xi−1 ⊕ · · · ⊕Xi−j (j = 1, . . . , n− 1),

which defines a master key
K := (K1, . . . ,Kn),

and extracts a session key ski from K .

Fig. 1. Burmester–Desmedt construction: the high-level idea.

Table 1 compares our construction with related
previous ones,1 in terms of theoretical assumption,
communication complexity (number of rounds) and
authentication method.

1.3. Paper outline. In the subsequent section we
recall the basic components of the considered security
framework, addressing specifics of password-based
authentication. Thereafter, in Section 3 we describe the
basic tools needed for our construction: smooth projective
hashing, labeled public-key encryption and non-malleable
commitments. Finally, in Section 4 we present our
password-authenticated constant-round protocol for group
key establishment along with a security proof in the CRS
model.

2. Security model and security goals

The theoretical model underlying our proof is basically
adapted from Katz et al. (2001; 2006), building in turn on
Bellare and Rogaway (1994) or Bellare et al. (2000). We
assume that a common reference string CRS is available
that, similarly as in the work of Gennaro and Lindell
(2003a), encodes

(i) the information needed for implementing a
non-malleable commitment scheme,

(ii) a uniformly distributed random element from a
family of universal hash functions, and

1We have excluded Dutta and Barua (2006), as security flaws on this
scheme were found later by Abdalla et al. (2006).

(iii) two values v0, v1 that will serve as input for a
pseudorandom function.

Also, a dictionary D ⊆ {0, 1}∗ is assumed to be publicly
known. We model the dictionary D to be efficiently
recognizable and of constant or polynomial size. In
particular, we must assume that a polynomially bounded
adversary is able to exhaust D. The polynomial-sized set
U = {U1, . . . , Un} of users is assumed to share a common
password pw ∈ D. Further users, not contained in U and
not knowing the shared password, can be simulated by
the adversary. For the sake of simplicity, we adopt the
common assumption that pw has been chosen uniformly
at random from D, therewith slightly simplifying the
formalism.

2.1. Communication model and adversarial capa-
bilities. Users are modelled as probabilistic polynomial
time (ppt) Turing machines.2 Each user U ∈ U may
execute a polynomial number of protocol instances in
parallel. To refer to instance si of a user Ui ∈ U we use
the notation Πsi

i (i ∈ N).

Protocol instances. A single instance Πsi
i can be taken

for a process executed by Ui. To each instance we assign
seven variables:

usedsii indicates whether this instance is or has been used
for a protocol run; the usedsii flag can only be set
through a protocol message received by the instance
due to a call to the Send-oracle (see below);

2All our proofs hold for both uniform and non-uniform machines.

800 J.-M. Bohli et al.

Table 1. Comparison: our proposal vs other group key exchange protocols.
Scheme Model # Rounds Authentication

Bressonn et al., 2002 ROM linear in # of users password
Abdalla et al., 2006 ROM 4 password
Abdalla and Pointcheval, 2006 Standard 5 password
Gorantla et al., 2010 Standard 2 high-entropy secret
Proposed scheme Standard 3 password

statesii keeps the state information needed during the
protocol execution;

termsi
i shows if the execution has terminated;

sidsii denotes a possibly public session identifier that can
serve as identifier for the session key sksii ;

pidsii stores the set of identities of those users that
Πsi

i aims at establishing a key with—including Ui

himself;3

accsii indicates if the protocol instance was successful,
i. e., the user accepted the session key;

sksii stores the session key once it is accepted by Πsi
i .

Before acceptance, it stores a distinguished NULL

value.

For more details on the usage of the variables we refer to
the work of Bellare et al. (2000).

Communication network. Arbitrary point-to-point
(peer-to-peer) connections among the users are assumed
to be available. Thus, the network topology is that
of a complete graph. We assume the network to be
non-private, however, and fully asynchronous. More
specifically, it is controlled by the adversary, who may
delay, insert and delete messages at will.

Adversarial capabilities. We restrict to ppt adversaries.
The capabilities of an adversary A are made explicit
through a number of oracles allowing A to communicate
with protocol instances run by the users:

Send(Ui, si,M) This sends message M to the instance
Πsi

i and returns the reply generated by this instance.
If A queries this oracle with an unused instance Πsi

i

and M being the string “Start”, the usedsii -flag is set,
and the initial protocol message of Πsi

i is returned.

Execute({Πsu1
u1 , . . . ,Π

suµ
uµ }) This executes a complete

protocol run among the specified unused instances
of the respective users. The adversary obtains a

3Dealing with authentication through a shared password exclusively,
we do not consider key establishments among strict subsets of U . With
pidsii := U being the only case of interest, in the sequel we do not make
explicit use of pidsii when defining partnering, integrity, etc.

transcript of all messages sent over the network. A
query to the Execute oracle is supposed to reflect a
passive eavesdropping. In particular, no online-guess
for the secret password can be implemented with this
oracle.

Reveal(Ui, si) yields the session key sksii .

Test(Ui, si) Only one query of this form is allowed for
an active adversaryA. Provided that sksii is defined,
(i. e., accsii = true and sksii �= NULL), A can
execute this oracle query at any time when being
activated. Then with probability 1/2 the session key
sksii and with probability 1/2 a uniformly chosen
random session key is returned.

2.2. Correctness, integrity and secrecy. Before we
define correctness, integrity and secrecy, we introduce
partnering to express which instances are associated in a
common protocol session.

Partnering. We adopt the notion of partnering from
Bohli et al. (2007). Namely, we refer to instances Πsi

i ,
Π

sj
j as being partnered if both sidsii = sid

sj
j and accsii =

acc
sj
j = true.

To avoid trivial cases, we assume that an instance
Πsi

i always accepts the session key constructed at the end
of the corresponding protocol run if no deviation from
the protocol specification occurs. Moreover, all users in
the same protocol session should come up with the same
session key, and we capture this in the subsequent notion
of correctness.

Correctness. We call a group key establishment
protocol P correct, if in the presence of a passive
adversary A, i.e., A must not use the Send oracle, the
following holds: for all i, j with both sidsii = sid

sj
j and

accsii = acc
sj
j = true, we have sksii = sk

sj
j �=NULL.

Key integrity. While correctness takes only passive
attacks into account, key integrity does not restrict
the adversary’s oracle access: a correct group key
establishment protocol fulfills key integrity, if with
overwhelming probability all instances of users that have
accepted with the same session identifier sid

sj
j hold

Password-authenticated group key establishment from smooth projective hash functions 801

identical session keys sksjj . Next, for detailing the security
definition, we will have to specify under which conditions
a Test-query may be executed.

Freshness. A Test-query should only be allowed to
those instances holding a key that are not for trivial
reasons known to the adversary. To this aim, an
instance Πsi

i is called fresh if the adversary never queried
Reveal(Uj , sj) with Πsi

i and Π
sj
j being partnered.

The idea here is that revealing a session key from an
instanceΠsi

i trivially yields the session key of all instances
partnered with Πsi

i , and hence this kind of “attack” will be
excluded in the security definition.

Security/key secrecy. Because of the polynomial size
of the dictionary D, we cannot prevent an adversary
from correctly guessing the shared secret pw ∈ D with
non-negligible probability. Our goal is to restrict the
adversary A to online verification of password guesses.
For a secure group key establishment protocol, we have
to impose a corresponding bound on the adversary’s ad-
vantage: The advantage AdvA(�) of a ppt adversary
A in attacking protocol P is a function in the security
parameter �, defined as

AdvA := |2 · Succ− 1|.
Here Succ is the probability that the adversary queries
Test on a fresh instance Πsi

i and guesses correctly the bit
b used by the Test oracle in a moment when Πsi

i is still
fresh.

Now, to capture key secrecy we follow the approach
of Gennaro and Lindell (2003a). The intuition behind the
definition is that the adversary must not be able to test
(on-line) more than one password per protocol instance.
This approach is stricter than the one taken by Abdalla
et al. (2006) in the sense that we do not tolerate a constant
number > 1 of on-line guesses per protocol instance.

2.3. Strongly universal2 projective hashing.
Kurosawa and Desmedt introduced the notion of
strongly universal2 projective hash families, building
on the previous work of Cramer and Shoup (2002)
on different flavors of projective hashing. Projective
hash families are usually understood as related to hard
subset membership problems and in this fashion serve
as a basis for several provably secure cryptographic
constructions (Cramer and Shoup, 2002; Gennaro and
Lindell, 2003a; González Vasco et al., 2005; Kalai, 2005;
Kurosawa and Desmedt, 2004).

Definition 1. A subset membership problem I is a
specification of a collection of probability distributions
{I�}�∈N, where for each �, I� is a probability distribution
over instance descriptions. An instance description Λ
specifies:

1. Two finite, non-empty sets X�, L� ⊆ {0, 1}poly(�)
with L� ⊆ X�.

2. Two probability distributions D(L�) and D(X� \L�)
over L� and X� \ L�, respectively.

3. A set W� ⊆ {0, 1}poly(�), together with an
NP-relation R� ⊆ X� ×W� such that x ∈ L� if and
only if there exists w ∈ W� such that (x,w) ∈ R�.

The above definition is taken from Gennaro and
Lindell (2003a) and deviates slightly from that of Cramer
and Shoup (2002). Again following Gennaro and Lindell
(2003a), we will only be interested in subset membership
problems that are efficiently samplable, that is, for
which probabilistic polynomial-time algorithms for the
following tasks are available:

1. Upon input 1�, sample an instance Λ from I�,

2. Upon input 1� and an instance Λ, sample x ∈ L�

according to D(L�), together with a witness w ∈W�

for x.

3. Upon input 1� and an instance Λ, sample a value x ∈
X� \ L� according to D(X� \ L�).

Our definition of a hard subset membership problem
is identical to the one in the work of Gennaro and Lindell
(2003a) and basically says that within X� distinguishing
random elements inside and outside L� is hard.

Definition 2. Let I be a subset membership problem
as above. Then we say that I is a hard subset member-
ship problem, provided that the ensembles {(Λ�, x�)}�∈N

and {(Λ�, x̂�)}�∈N are computationally indistinguishable
for Λ�, x� and x̂� sampled according to I�, D(L�) and
D(X� \ L�) respectively.

Subsequently, we make use of subset membership
problems, where the set X� comes along with a certain
type of partition:

Definition 3. Let I be a subset membership problem
as above and suppose that X� = C� × D�. Further,
for each pw ∈ D� denote by X�(pw) (resp., L�(pw))
the set of pairs (c, pw) ∈ X�, (resp., (c, pw) ∈ L�).
The distributions induced by D(L�) and D(X� \ L�)
in X�(pw) and L�(pw) are denoted by D(L�(pw)) and
D(X�(pw) \ L�(pw)).

We say that I is a hard partitioned subset mem-
bership problem, provided that for every pw ∈ D�,
the ensembles {(Λ�, x�)}�∈N and {(Λ�, x̂�)}�∈N are
computationally indistinguishable for Λ�, x� and x̂� being
sampled according to I�, D(L�(pw)) and D(X�(pw) \
L�(pw)), respectively.

This definition of hard partitioned subset
membership problems is taken from Gennaro and

802 J.-M. Bohli et al.

Lindell (2003a) and captures the situation where each
set X� can actually be partitioned into disjoint sets of
hard problems. As Gennaro and Lindell (2003a) do, we
stress here that the projective hash functions considered
in the sequel will not take this partitioning into account.
Moreover, in accordance with the results of Cramer and
Shoup (2002) (and differing from those of Gennaro and
Lindell (2003a)) we use a definition of projective hash
families where the projection function α has only one
argument.

Definition 4. Let X , Π be finite non-empty sets and K
some finite index set. Consider a family H = {Hk :
X −→ Π}k∈K of mappings from X into Π, and let
α : K −→ S be a map fromK into some finite non-empty
set S (which may be seen as a projection).

Then, given a subset L ⊆ X , we refer to the tuple
H = (H,K,X,L,Π, S, α), as projective hash family
(PHF) for (X,L) if for all k ∈ K, x ∈ L the value Hk(x)
is determined by α(k).

We are mainly interested in a special type of
projective hash families, which by Kurosawa and
Desmedt (2004) are called strongly universal2.

Definition 5. Let H = (H,K,X,L,Π, S, α) be a PHF.
Then we refer to H as strongly universal2 if for k ∈ K
chosen uniformly at random, for any x, x∗ ∈ X \ L, x �=
x∗ the random variables

• ξk := Hk(x), conditioned on α(k),

• ηk, the variable ξk conditioned on both α(k) and
Hk(x

∗),

are statistically close to the uniform distribution over Π.

In the sequel, we will consider only projective hash
families which are efficient in the sense of Gennaro
and Lindell (2003a), i.e., there are efficient algorithms
available for sampling uniformly at random elements from
K , computing α and evaluating Hk at a given x ∈ X
provided that

• either k is given as an input, or

• x ∈ L and (x,w), α(k) are given as input, where w
is a witness for x.

It is worth noting here that, in combination with a
hard subset membership problem, the strongly universal2
property guarantees that, for x �= x∗ ∈ X and
α(k), Hk(x

∗) the value Hk(x) is indistinguishable from
random unless a corresponding witness is known.4

4Smooth projective hashing would not suffice to guarantee indepen-
dence with arbitrary different inputs x �= x∗ ∈ X.

2.4. Strongly universal2 hashing from non-
malleable commitments. Another essential component
of Gennaro and Lindell’s construction and of our proposal
are non-interactive and non-malleable commitment
schemes. Roughly speaking, they should fulfill the
following requirements:

1. Every commitment c defines at most one value
(decommit(c)) (i.e., the scheme must be perfectly
binding).

2. If an adversary receives several commitments to a
value ν, he must not be able to output a commitment
to a value β related to ν in a known way (that is, it
must achieve non-malleability for multiple commit-
ments).

In the common reference string model, the above
commitment schemes can be constructed from any
public-key encryption scheme that is non-malleable and
secure for multiple encryptions (in particular, from any
IND-CCA2 secure public-key encryption scheme).

We briefly recall Gennaro and Lindell’s proposal
for constructing smooth projective hash families, given
a suitable commitment scheme as above: Let C be a
commitment scheme fulfilling the conditions above (thus,
we are in the common reference string model). Let D a
fixed message (password) space. We denote by Cρ(pw; r)
a commitment to pw ∈ D using randomness r and
common reference string ρ. Let Cρ, let us denote the set
of all strings that may be output by C when the common
reference string is ρ. For an efficiently recognizable
superset C′

ρ ⊇ Cρ, define Xρ := C′
ρ ×D and let

Lρ := {(c, pw) ∈ Cρ ×D | ∃ r : c = Cρ(pw; r)} ⊆ Xρ.

We consider a subset membership problem defined as
follows. For each � ∈ N a common reference string ρ (of
polynomial size in �) is selected. Further, for each pw ∈ D
define D(Xρ(pw) \ Lρ(pw)) (resp., D(Lρ(pw))) as the
distribution induced by choosing random r and computing
(Cρ(0

|pw|; r), pw) (resp., Cρ(pw; r), pw))). As argued
by Gennaro and Lindell (2003a), it is easy to see that
the hiding property of the commitment scheme yields the
following.

Proposition 1. Let C be a non-interactive and non-
malleable perfectly binding commitment scheme. Con-
sider the above subset membership problem I, where
for each ρ the set Xρ is partitioned by the sets {C′

ρ ×
{pw}}pw∈D. Then I is a hard partitioned subset mem-
bership problem.

Now, assume we have a strongly universal2
projective hash family defined with respect to (Xρ, Lρ)
as follows: Let K be the key space, and for every k ∈ K
define

Hk : C′
ρ ×D −→ G,

Password-authenticated group key establishment from smooth projective hash functions 803

where G is a finite Abelian group of superpolynomial
size. For the security proof of our protocol we
need an analog of the result of Gennaro and Lindell
(2003a, Lemma 3.1). Namely, we need that given a
projection α(k) ∈ S and two valid commitments c1
and c2 on the same password pw, the values Hk(c1, pw)
and Hk(c2, pw) be computationally indistinguishable
from random (independent) values, provided appropriate
witnesses are not known. Note that if the commitments
are invalid (and hence (c1, pw) and (c2, pw) are outside
L), this follows trivially from the definition of strongly
universal2. For valid commitments, this is a consequence
of the hard subset membership problem.

Lemma 1. Let I be the hard partitioned subset
membership problem described above. With each in-
stance Λ = (X,D(X \ L), L,D(L),W,R), associate
the above strongly universal2 projective hash family H =
(H,K,X,L,G, S, α) for (X,L). Let M be a ppt oracle
machine, and define the following experiments:

Exp-Hash(M): An instance Λ = (X,D(X \
L), L,D(L),W,R) is selected from I�. Then M is
given access to three oracles ΩL, Project and Hash :

ΩL: When queried with a value pw ∈ D, it outputs
Cρ(pw, r) with the pair (Cρ(pw, r), pw) being
selected according to D(L(pw)) from L(pw).

Project: Chooses a key k ∈ K uniformly at random
and returns α(k).

Hash: When queried with input (pw, c, α(k)), it
first checks if c was output by ΩL on input pw,
and α(k) has been output by Project. If at least
one of this is the case, Hash outputs Hk(c, pw).
Otherwise, Hash outputs nothing.

The output of the experiment is the output of M .

Exp-Unif(M): Exactly as above, except that the Hash
oracle is substituted by an oracle Unif which first
checks whether the input c was output by ΩL on in-
put pw, and that α(k) has been output by Project.
If both are true, Unif outputs a uniformly distributed
random g ∈ G; moreover, for two different calls with
the same input α(k), the corresponding two random
group elements will be selected independently. If
only one of c and α(k) was output by an oracle, Unif
outputs Hk(c, pw), otherwise, Unif outputs nothing.

Then, the above experiments are computationally in-
distinguishable, that is, for any ppt oracle machine M, for
any value v it may output,

|Pr[Exp-Unif(M) = v]− Pr[Exp-Hash(M) = v]|

is negligible in the security parameter �.

Proof. This proof is a straightforward variation of the
proof by Gennaro and Lindell (2003a, Lemma 3.1). As
they do, we define the experiments Exp-UnifX\L and
Exp-HashX\L by replacing the oracle ΩL by an oracle
ΩX\L defined in the obvious way. Now, as we are dealing
with a hard partitioned subset membership problem, both

|Pr[Exp-HashX\L(M) = v]

− Pr[Exp-Hash(M) = v]|
and

|Pr[Exp-UnifX\L(M) = v]

− Pr[Exp-Unif(M) = v]|
are negligible. Furthermore,

|Pr[Exp-HashX\L(M) = v]

− Pr[Exp-UnifX\L(M) = v]|
is also negligible by the definition of strongly universal2,
and putting it all together we have

|Pr[Exp-Unif(M) = v]− Pr[Exp-Hash(M) = v]|
≤ |Pr[Exp-Hash(M) = v]

− Pr[Exp-HashX\L(M) = v]|
+ |Pr[Exp-HashX\L(M) = v]

− Pr[Exp-UnifX\L(M) = v]|
+ |Pr[Exp-UnifX\L(M) = v]

− Pr[Exp-Unif(M) = v]|,
from which the desired result follows. �

3. Smooth projective hashing and
CCA-labeled encryption

Smooth projective hash functions (SPHFs) were
introduced by Cramer and Shoup (2002), and have
resulted in a central tool for several provable secure
constructions (Cramer and Shoup, 2002; Gennaro and
Lindell, 2003a; González Vasco et al., 2005; Kalai,
2005; Kurosawa and Desmedt, 2004; Ben Hamouda
et al., 2013; Blazy and Chevalier, 2015). Informally,
consider a family of functions {Hk : X −→ G}k∈K

indexed by a countable set K, which acts on the elements
of a set X, for a given group G, both being finite. Now,
given a distinguished language L defined over X, the
above family defines a SPHF for (X,L) if there are four
efficient algorithms, which in turn allow for selecting a
hashing key k, computing a projection α(k) of it, and
evaluating Hk on any x ∈ X either from the hashing key
k or from a tuple (w,α(k)) where w is a witness that
evidences x ∈ L.

804 J.-M. Bohli et al.

As a correctness requirement, indeed whenever w
is a valid L-witness for x, the hashing values computed
directly from k and from (w,α(k)) must coincide.
However, the smoothness property implies that if x is not
in L, Hk(x) must be statistically indistinguishable from
an element selected uniformly at random in the range of
G even knowing the projection key α(k). There have been
different definitions for SPHF, depending essentially on:

• how the projection key α(k) is defined: adaptively
(depending both on k and x) or non adaptively
(depending only on k);

• whether x may be computed adaptively from α(k).

In this work, we will stick to the definition of Katz
and Vaikuntanathan (2013), for which α(k) will only
depend on the hash key k and yet the word x may be
chosen from α(k) in an adaptive way. In the sequel, we
introduce the main notions needed for our construction
following essentially (Katz and Vaikuntanathan, 2013),
therefore not aiming at full generality. Most definitions
in this section are verbatim taken from Katz and
Vaikuntanathan (2013).

We start by stating what we mean by a labelled
public-key encryption scheme, which fits applications
in which both plaintexts and ciphertexts are tagged by
labels in a consistent manner (Shoup, 2006). The
different security notions for public-key encryption can
easily be adapted for labeled schemes (see, e.g., Abdalla
and Pointcheval, 2006). Informally, the main point for
adapting security definitions is to modify the challenge
construction phase assuming the adversary must provide
not only two plain texts m0 and m1, but also a label l.
As a result, when considering CCA security, he will not
be allowed to query his decryption oracle on any pair
(label, c) where c has been output by the encryption oracle
on an input involving the label l.

Definition 6. A labeled public-key encryption scheme
is a tuple of probabilistic polynomial time algorithms
(Gen,Enc,Dec) such that

• Gen, the key-generation algorithm, takes as input a
security parameter 1n and returns a pair of (public,
secret) keys (pk, sk). This is denoted by (pk, sk)←
Gen(1n).

• Enc, the encryption algorithm, takes as input a public
key pk, a label label and a plaintext m and returns
a ciphertext C. We write: C ← Enc(pk, label,m),
or C ← Enc(pk, label,m, r), if we want to make
explicit the randomness r possibly involved in the
computation.

• Dec, the decryption algorithm, takes as input a secret
key sk, a label label and a ciphertext C, and returns

a plaintext m or an error message ⊥ . In symbols;
m← Dec(sk, label, C).

Moreover, we assume that for all (pk, sk) output by
Gen(1n), any label, any plaintext m, and any C output
by Enc(pk, label,m), there holds Dec(sk, label, C) = m.
At this, plain texts, cipher texts, and labels are assumed
to be bitstrings of length polynomial in n. The plain text
and label spaces are supposed to be implicitly defined (and
may depend on the public key).

Building on a CCA-secure labeled encryption
scheme (as Katz and Vaikuntanathan, 2013), we define a
hard subset-membership problem that will serve as a basis
for the SPHF which is the main tool of our construction.
We refer to Gennaro and Lindell (2003b) for the general
definition of hard subset-membership problems.

Let D ⊆ {0, 1}∗ be a fixed dictionary and
(Gen,Enc,Dec) a CCA-secure labeled encryption
scheme. For any given public key output by Gen, pk,
we denote by Cpk the set of valid pairs (label, C) with
respect to the public key pk (thus, C is a cipher text),
and assume this set to be efficiently recognizable. Now,
consider:

• X = {(label, C, pw) | (label, C) ∈ Cpk and pw ∈
D}

• Lpw = {(label,Enc(pk, label, pw), pw) where label ∈
{0, 1}∗}.

Note that L =
⋃

pw∈D Lpw ⊆ X. As the encryption
scheme is CCA, it can be proven that (X,L) define a
hard subset-membership problem: for any probabilistic
polynomial-time A, he can only win with negligible
probability the following experiment:

• Phase 1: Setup. (pk, sk) ← Gen(1n) and
b ← {0, 1} is selected uniformly at random. The
adversary is given the public key and is also granted
access to a b-encryption oracle, which, on any input
(label,m0,m1), with m0 and m1 of the same bit
size, will output Enc(pk, label,mb).

• Phase 2: Challenge. A selects two
passwords pw0 and pw1 from D (assumed to be of
the same bit size), and a label label. He is presented
with an encryption C ← Enc(pk, label, pwb).

• Phase 3: Output. On top of the b-encryption
oracle, A has now access to a decryption oracle
holding the secret key sk, which he cannot query
with the input (label, C). He outputs a guess b′ for
the bit b.

Now, the above ingredients will be used to define a
KV-SPHF for any given public key pk.

Password-authenticated group key establishment from smooth projective hash functions 805

Definition 7. Let X be a non-empty set, G be a group
and K some index set (all finite). Consider a family H =
{Hk : X −→ G}k∈K of mappings from X into G, and let
α : K −→ S be a map fromK into some finite non-empty
set S (which may be seen as a projection). Given a subset
L ⊆ X , we refer to the tuple H = (H,K,X,L,G, S, α),
as smooth projective hash family (SPHF) for (X,L) if
there are efficient algorithms

• HashKG: selects uniformly at random a hash key k ∈
K

• ProjKG(k): computes a projection key α(k),

• Hash(k, x): outputs Hk(x) computed from the
hashing key k.

• ProjHash(α(k), x, w): outputs Hk(x) from the
projection key α(k), provided that w is a valid
witness evidencing x ∈ L.

Moreover, for any function f : S −→ X \
L, the following distributions have statistical difference
negligible in the security parameter n:

{k ← HashKG, s← ProjKG(k) : (s,Hk(f(s)))}
and

{k ← HashKG, s← ProjKG(k), g ← G : (s, g)}.

Remark 1. As neatly explained by Ben Hamouda et al.
(2013), the main difference between the above definition
of smoothness and previous ones that can be found in the
literature is that

• KV-SPHF (Katz and Vaikuntanathan, 2013): the
projection key does not depend on the word C and
furthermore the smoothness condition holds even if
C is constructed knowing α(k),

• CS-SPHF(Cramer and Shoup, 2002): the projection
key α(k) does not depend on C, but C must not
depend on α(k),

• GL-SPHF(Gennaro and Lindell, 2003b): α(k) may
depend on C.

In the work of Ben Hamouda et al. (2013), a new
KV-SPHF is constructed from the labelled Cramer–Shoup
encryption. Recall that KV-SPHFs were designed with
the goal of achieving one-round PAKE. In order to do
with just one round, the cipher text and the projection
key for verifying the correctness of the partner’s cipher
text should be sent together, and thus be independent.
Moreover, the smoothness property must hold in a
scenario where the adversary can wait until it receives the
partner’s projection key before generating the cipher text.

Let us go back to the concrete instance of a
hard subset membership problem as explicited above.
At this, note that ProjHash(α(k), label, C, pw, r) will
output Hk(label,C, pw) if and only if r is a valid
witness of (label, C, pw), namely, if and only if
C ← Enc(pk, label, pw, r). We will make use of
the following technical lemma taken from Katz and
Vaikuntanathan (2013), which in turn is a refinement
of Lemma 3.4 of Gennaro and Lindell (2006). It
roughly states that seeing many projection keys will
not help in distinguishing (properly constructed) hashes
from elements selected at random from G, if appropriate
witnesses are not known.

Lemma 2. Let LENC = (Gen,Enc,Dec) be a CCA-
labeled public-key encryption scheme, ρ = ρ(n) be a
fixed polynomial function and A a probabilistic polyno-
mial time adversary. For b ∈ {0, 1}, we define the experi-
ment Expb as

• Phase 1: Setup. Execute (pk, sk) ←
Gen(1n), fix H = (H,K,X,L,Π, S, α) a smooth
projective hash function for pk as above and forward
this public key to A.

• Phase 2: Challenge. Execute HashKG ρ
times, retrieving as output k1, . . . , kρ which are in
turn fed to ProjKG(·). Feed the corresponding out-
puts s1, . . . , sρ to A.

• Phase 3: Output. During this phase, A is
granted access to two oracles:

– OEnc: a modified encryption oracle, which on
input (label, pw) for any pw ∈ D outputs

∗ If b = 0: Hki(label, C, pw), for i =
1, . . . , ρ, where C ← Enc(pk, label, pw),

∗ otherwise, if b = 1: ρ values selected uni-
formly at random from G.

– ODec : a CCA-decryption oracle for LENC,
namely, this oracle may not be queried with any
pair (label, C) where C was obtained from the
encryption oracle on query label, pw.

At the end of this phase,A outputs her guess b′.

Then |2Pr[b = b′]−1| is negligible in the security param-
eter.

The previous lemma thus states that distinguishing
between the two experiments Exp0 and Exp1 defined
above is hard; thus hashes and random group elements
are hard to distinguish even when having access to many
projections.

806 J.-M. Bohli et al.

4. Group key establishment protocol

The protocol we propose builds on a CCA-labelled
encryption scheme and a KV-SPHF H = {Hk}k∈K as
described in the previous section. In particular, we assume
the image of the hash functions Hk to be contained in
a finite Abelian group G. Furthermore, we will use a
family of universal hash functions UH that maps elements
from Gn onto a superpolynomial-sized set {0, 1}L, and a
family of universal hash functions UH′ that map elements
from G onto a superpolynomial sized set T of cardinality
|T | ≤ √|G|. Similarly as Bresson et al. (2002), we
impose an additional restriction on UH′, saying that there
are no “bad indices” into the family UH′. Namely, for
each UH′ ∈ UH′ we require the following to hold: any
ppt algorithm having UH′ as input has no more than a
negligible probability to predict UH′(g) for an (unknown)
uniformly at random chosen g ∈ G.

Example 1. Let G := Z/pZ be the additive group of
integers modulo an �-bit prime p, and let L′ := ��/2�.
Choosing T := {0, 1}L′

to be the set of bitstrings of
length L′, the following family UH′ considered by Carter
and Wegman (1977) contains no “bad indices”:

UH′ := {g �→ [a · g + b]0→L′−1 :

a, b ∈ Z/pZ with a �= 0},

where [·]0→L′−1 denotes selection of L′ least significant
bits (“mod 2L

′
”). The universality of UH′ is well known;

cf., e.g., Carter and Wegman (1977). Moreover, as the
case a = 0 is excluded in the affine maps considered,
for a uniformly distributed random g ∈ G, also a · g +
b is uniformly distributed in G, and the probability of
predicting the correct value UH′

a,b(g) = [a · g+ b]0→L′−1

is negligible. �
The CRS selects one universal hash function UH

from the family UH.

A collision-resistant pseudorandom function family.
We use UH to select an index within a collision-resistant
pseudorandom function family F = {F �}�∈N as used by
Katz and Shin (2005). We assume F � = {F �

η}η∈{0,1}L

to be indexed by {0, 1}L and denote by v0 = v0(�) a
publicly known value such that no ppt adversary can find
two different indices λ �= λ′ ∈ {0, 1}L with Fλ(v0) =
Fλ′(v0) (see the work of Katz and Shin (2005) for more
details). As Katz and Shin (2005) we use another public
value v1 (which, like v0, can be included in the CRS)
for deriving the session key. The family UH′ is used for
confirming the auxiliary two-party keys Zi,i−1 in Round 2
of our protocol without jeopardizing the password pw.

Commitments. Round 2 of our protocol uses another
essential component already present in Gennaro and

Lindell’s construction: non-interactive and non-malleable
commitment schemes. Roughly speaking, they should
fulfill the following requirements:

1. Every commitment c defines at most one value
(decommit(c)) (i. e., the scheme must be perfectly
binding).

2. If an adversary receives several commitments to a
value ν, he must not be able to output a commitment
to a value β related to ν in a known way (that is, it
must achieve non-malleability for multiple commit-
ments).

In the common reference string model, the above
commitment schemes can be constructed from any
public-key encryption scheme that is non-malleable and
secure for multiple encryptions (in particular, from any
IND-CCA2 secure public-key encryption scheme) (see,
for instance, the work of Gennaro and Lindell (2003b)).5

Now we are ready to introduce our proposed
construction. Our protocol is symmetric in the sense that
all users perform the same steps. Figures 2–4 show the
three rounds of our protocol. For the sake of readability,
we do not explicitly refer to instances si of users.

5. Design comments

The basic design of the protocol follows the construction
by Burmester and Desmedt (1995), where the
Diffie–Hellman key exchanges are replaced by the
Katz–Vaikuntanathan one-round protocol (Katz and
Vaikuntanathan, 2013) key exchange. A basic trick of our
design is the construction of the master key as

mk = (Z1,2, Z2,3, . . . , Zn−1,n, Zn,1).

The original construction mk =
∏

i=1,...,n Zi,i+1 can be
determined by two malicious users as pointed out by Bohli
et al. (2007). Thus, if an adversary guesses the password,
he would be able to provoke pathological behaviors such
that each protocol run ends up with exactly the same
mk (and thus, identical sidi, ski). Note that with the
construction of mk proposed above, both sidi and ski will
be indistinguishable from random if a sole honest user is
involved in the protocol run.

Let us further comment a bit about Round 2. At
this stage, the idea is to broadcast commitments to the
quotients Xi. This is to prevent an online attack on the
protocol consisting only of Round 1 and Round 3, that
allows to test two passwords using only one instance Πsi

i .
Further, note that the testi-values in Round 2

address attacks where one party did not receive the

5Actually, the encrypted values ci,i+1, ci,i−1 from Round 1 could
as well have been defined as commitments constructed from such a com-
mitment scheme. We preferred the encryption formulation to keep our
formulation closer to that of Katz and Vaikuntanathan (2013).

Password-authenticated group key establishment from smooth projective hash functions 807

Round 1:

Broadcast: Each Ui

• chooses uniformly at random ki from K;

• derives a corresponding projection key Si = α(ki);

• selects random nonces ri,i+1, ri,i−1;

• defines labels labeli,i+1 := (Ui, Ui+1, Si) and labeli,i−1 = (Ui, Ui−1, Si);

• computes
ci,i+1 := Enc(pk, labeli,i+1, pw, ri,i+1)

and
ci,i−1 := Enc(pk, labeli,i−1, pw, ri,i−1);

• broadcasts M1
i := (Ui, Si, ci,i+1, ci,i−1).

Check: Each Ui

• waits until messages M1
j for all Uj arrived;

• checks if the values ci+1,i and ci−1,i are valid encryptions;a

• If any of the checks fails, set acci := false and terminate.

aAt this, valid means a valid encryption of pw with the expected pk and label.

Fig. 2. Round 1: a password-authenticated 3-round protocol for group key establishment.

correct projection but rather a bogus one, inserted by the
adversary. Note that this is needed despite assumptions
on the projective hash function, for we have no guarantees
if projections are not constructed from randomly selected
elements k ∈ K (for details, see Games 4 and 5 in the
proof of Theorem 1). Finally, the random value Xi,1 is
needed if the check of a testi-value fails. In this case,
the true Xi,0 must not be revealed. On the other hand,
an adversary should not recognize if the check fails, as
this would give a hint if the respective hash values and
therefore a password that the adversary may have used
was correct. This is again, to prevent that two passwords
may be tested with one instance running the protocol.

5.1. Security analysis.

Theorem 1. With the prerequisites as described above,
the protocol depicted in Figs. 2–4 is correct and achieves
key secrecy and key integrity.

Proof. It is easy to see that the above protocol fulfills
correctness and integrity, and the main part of our proof is
devoted to key secrecy.

Correctness and integrity. Owing to the
collision-resistance of the familyF , all oracles that accept
with identical session identifier use with overwhelming
probability the same index value UH(mk) and therewith
also derive the same session key.

Key secrecy. We imagine a simulator that simulates the
oracles and instances for the adversary. The proof is

set up in terms of several experiments or games, where
from game to game the simulator’s behaviour somehow
deviates from the previous. Following the standard
notation, we denote by Adv(A, Gi) the advantage of the
adversary when confronted with Game i. The security
parameter is denoted by �. Furthermore, we will index
the Send oracle, denoting by Send0 the Send query that
initializes a protocol run and by Sendi a Send query that
delivers a message of round i for i ∈ {1, 2, 3}. As
we must consider the session identifiers known to the
adversary, we assume them to be part of the output of the
final Send3 query.

For the sake of readability, we start by sketching an
informal proof roadmap here:

– Game 0 is, as usual, modelling the real experiment
faced by the adversary.

– Game 1 to Game 3 deal with the case of passive
adversaries; thus, they progressively modify the Ex-
ecute oracle: in Game 1 the two-party keys Zi,j

are replaced by random bit strings, then in Game
2 the “real” password is substituted by another one
and finally the session key is chosen in Game 3
uniformly at random. The adversary is unable to
notice these steps, due to the hiding property of the
commitment scheme, the semantic security of the
encryption scheme and the fact that the values Zi,j

and Xi look anyway random to him.

Games 4 to 8 deal with adversaries that modify
messages in Round 1. For all possible modifications, the

808 J.-M. Bohli et al.

Round 2:

Computation: Each Ui

• sets
labeli+1,i := (Ui+1, Ui, Si+1)

and
labeli−1,i := (Ui−1, Ui, Si−1);

• derives two party keys:

Zi,i+1 := Hki(labeli+1,i, pw, ci+1,i) ·Hki+1(labeli,i+1, pw, ci,i+1),

Zi,i−1 := Hki−1(labeli,i−1, pw, ci,i−1) ·Hki(labeli−1,i, pw, ci−1,i);

• sets Xi,0 := Zi,i+1 · Z−1
i,i−1;

• chooses a random Xi,1 ∈ G;

• chooses random values r′i,0, r′i,1;
• computes commitments Cρ(Ui, Xi,0;r

′
i,0) and Cρ(Ui, Xi,1;r

′
i,1);

• chooses at random UH′
i ∈ UH′ and

• computes a test value testi := UH′
i(Zi,i−1).

Broadcast: Each user Ui broadcasts for a random bit b

M2
i := (Ui, Cρ(Ui, Xi,b;r

′
i,b), Cρ(Ui, Xi,1−b;r

′
i,1−b), testi,UH

′
i).

Check: Each user Ui

• waits until messages M2
j for all j arrived

• checks if
UH′

i+1(Zi,i+1) = testi+1;

• if the check succeeds, set (Xi, r
′
i) := (Xi,0, ri,0), otherwise (Xi, r

′
i) := (Xi,1, ri,1).

Fig. 3. Round 2: a password-authenticated 3-round protocol for group key establishment.

recipient of the bogus message will randomize its value
Xi, or the game is aborted. Also for correct messages, the
values Zi,i−1 and Zi,i+1 are randomized. Table 2 gives
an overview which game deals with which modifications
caused by the adversaryA.

– Game 4 and 5 are concerned with the situation in
which the adversary may insert projections in the first
round. A malicious insertion of Si−1 results in Ui

choosing Zi,i−1 uniformly at random; in Game 5, if
Ui gets an adversarially sent Si+1 the corresponding
Xi is chosen uniformly at random.

The adversary will not notice these changes
in the simulation. In Game 4 the argument
follows because inserting a projection will not help
him distinguishing the Zi,j from values selected
independently and uniformly at random, and thus
messages from Round 2 will not help him detect
the change. Furthermore, in both games the
messages from Round 3 will not help the adversary
in distinguishing. The adversary cannot prevent that

with overwhelming probability the check in Round 2
will fail and thus in Round 3 uniform random values
Xi,1 will be broadcast.

– Game 6. Once ruled out the possibility of inserted
projections, the simulator will now generate the
two-party keys Zi,j independently and uniformly
at random if the encryptions in round one
were oracle-generated, i.e., honestly transmitted or
replayed from other instances. Distinction between
this game and Game 5 reduces to distinguishing
between Exp0 and Exp1 from Lemma 2.

In the sequel, we will speak of “valid encryptions” to
refer to encryptions of the correct pw with the public
key and label as expected.

– Game 7 deals with the case in which the adversary
may insert an invalid encryption in Round 1. The
simulator, detecting an invalid encryption, will
choose Xi,0 at random. This modification is due
to the smoothness property not detectable by the

Password-authenticated group key establishment from smooth projective hash functions 809

Round 3:

Broadcast: Each user Ui broadcasts M3
i := (Ui, Xi, r

′
i).

Check: Each Ui

• checks that X1 · · ·Xn = 1;

• checks the correctness of the commitments Cρ(Uj , Xj;r
′
j);

• if at least one of theses checks fails, set acci := false and terminate.

Computation: Each Ui computes the values

Zi−1,i−2 := Zi,i−1/Xi−1,

Zi−2,i−3 := Zi−1,i−2/Xi−2,

...

Zi,i+1 := Zi+1,i+2/Xi+1,

a master key
mk := (Z1,2, Z2,3, . . . , Zn−1,n, Zn,1),

and sets ski := FUH(mk)(v1), sidi := FUH(mk)(v0) and acci := true.

Fig. 4. Round 3: a password-authenticated 3-round protocol for group key establishment.

Table 2. Handling modified Round 1 messages in the proof of Theorem 1.
Game Si−1 Si+1 ci−1 ci+1

4 replaced ∗ oracle-generated oracle-generated
5 ∗ replaced oracle-generated oracle-generated
6 � � oracle-generated oracle-generated

7
* * invalid *
* * * invalid

8 * * valid from A valid fromA

adversary from the messages exchanged.

– Game 8 deals with the case of valid encryptions ci
generated by the adversary when he wins. This
corresponds to a correct guess for the password.

– Game 9 aborts in case any encryption, commitment,
projection or Xi-value is inserted by the adversary.
The advantage of the adversary can only vary
negligibly, as due to the non-malleability of
the commitment scheme and the condition
X1 · · ·Xn = 1, the protocol would anyway
abort with overwhelming probability.

– Game 10 and 11 argue similarly as in the passive
case, once all malicious Send-queries are ruled out.
First, in Game 10, encryptions from Round 1 are
constructed using a randomly selected password. To
conclude, the key generation is modified in Game 11
in that the session key is chosen uniformly at random.
The adversary can only win by having inserted a
valid commitment he constructed; otherwise he will

not be able to tell the difference, given that UH is a
universal hash function and (at least) one of its inputs
Zi,k is a random group element. This concludes the
proof.

Having outlined the structure of the proof, we are left
to fill in the details:

Game 0. All oracles are simulated as defined in the
model. Thus, Adv(A, G0) is exactly Adv(A).
Game 1. In this game, the simulation of the Execute
oracle is modified. Instead of computing the values
Zi,i−1, Zi,i+1 for i = 1, . . . , n as specified in the protocol,
they are chosen uniformly at random from G. As a
result, also the values Xi will be random though fulfill
the property X1 · · ·Xn = 1 and the master key mk will
be a randomly selected element from G

n.
Let us now reason that the probability an adversary

has of distinguishing between the values Xi generated
in Game 0 and the ones generated in Game 1 is no
greater than the probability he has of distinguishing the
experiments Exp0 and Exp1 from Lemma 2. Indeed,

810 J.-M. Bohli et al.

for a fixed common reference string and password
the adversary cannot distinguish between Exp0 and
Exp1, for i = 1, . . . , n. This means, seeing values
ci,i−1, ci,i+1 and the projection α(ki), he cannot tell
Hki(labeli+1,i, pw, ci,i−1) and Hki(labeli−1,i, pw, ci−1,i)
apart from independent random values; thus, the same
applies to each element Xi generated in Game 0.

Therefore, having a negligible probability of
distinguishing between the two experiments we have

|Adv(A, G1)− Adv(A, G0)| ≤ negl(�).

Game 2. At this juncture, the Execute oracle is again
modified, so that a password p̂w is chosen uniformly
at random from D. Further, each ci,i+1 and ci,i−1 are
computed consistently. Due to the semantic security of
the encryption scheme ENC, we again have

|Adv(A, G2)− Adv(A, G1)| ≤ negl(�).

Game 3. Let us consider a further modification of the Ex-
ecute oracle. Namely, the simulator will assign to the
instances a session key sksii ∈ {0, 1}�, chosen uniformly
at random.

Note that even knowing all values Xi, still the
value of at least one of the two-party keys Zk,j is
indistinguishable from a random group element. Thus,
with the leftover hash lemma, we see that the master
key mk = (Z1,2, . . . , Zn,1) has sufficient entropy so
that the output of the pseudorandom function FUH(mk)

is distinguishable from a random sksii with negligible
probability only,

|Adv(A, G3)− Adv(A, G2)| ≤ negl(�).

By now the Execute oracle returns only random
values, independent of the password, and instances used
by an Execute-query hold only random session keys. The
following games will deal with the Send oracle.

In the following we will call an encryption that
was generated by the simulator oracle-generated and
in accordance an encryption that was generated by the
adversary adversary-generated. This can be checked
efficiently by keeping a list of all encryptions the
simulator generates. Furthermore, we call the encryption
valid if it is indeed an encryption for the password pw
and invalid otherwise. Note that also encryptions that are
replayed by the adversary are oracle-generated.

Game 4. In this experiment all encryptions are
oracle-generated and the simulator will keep a list for
the projections Si he generated for each user Ui in
Round 1. Once an instance Πsi

i has got all messages of

the first round, the simulator checks if the received Si−1

is consistent with the one generated for the Ui−1. In case
Si−1 was replaced and one of the respective ci,i−1 or
ci−1,i is oracle-generated, the corresponding key Zi,i−1

is replaced by a random group element. If Zi,i−1 was
replaced, Ui−1 will use Xi−1,1 in Round 3.

The replacement of Zi,i−1 was caused by a replaced
projection Si−1 and hence the value

Hki−1(labeli,i−1, pw, ci,i−1)

may be known to the adversary. However, as ki
was honestly generated, ci−1,i oracle-generated,
and the projective hash function is smooth the
hash Hki(labeli−1,i, pw, ci−1,i) computed by Ui is
indistinguishable from an element chosen independently
and uniformly in the group. Therefore Zi,i−1 computed
by Ui is for the adversary indistinguishable from an
independently uniformly at random chosen element.
This holds of course only, if Ui−1 does not release any
information about Hki(labeli−1,i, pw, ci−1,i). Therefore
Ui−1 will use Xi−1,1 in Round 3.

It is left to show thatUi−1’s check of testi will indeed
fail. Ui will randomly choose UH′

i ∈ UH′ and compute
and broadcast testi = UH′

i(Zi,i−1). Neither can the
adversary recognize the replacement of Zi,i−1 from testi
nor can he produce a testi that will be accepted by Ui−1.

• Even with knowledge of all testj , j = 1 . . . n,
the value Zi,i−1 remains indistinguishable from
an independently and uniformly at random chosen
element in G, because the testj carry only a
negligible amount of information due to |T | ≤√|G|.
• The adversary cannot produce test′i that would be

accepted by Ui−1: As UH′
i is chosen independent

at random, it is independent from Zi−1,i and
the adversary has no prior information on the
testi-value expected by Ui−1, because Zi,i−1 is
indistinguishable from random for him. Suppose the
adversary tries to insert both test′i and UH′′

i . He will
only succeed if he is able to find h and UH′′

i so that
h = UH′′

i (Zi−1,i), where Zi−1,i is indistinguishable
from random for him. By our assumption on the
hash family UH′ that there are no “bad indices” into
UH′, this is not possible, however. Thus, in either
case, the adversary has only a negligible probability
of success.

Therefore, we have

|Adv(A, G4)− Adv(A, G3)| ≤ negl(�).

Game 5. Again, the commitments are oracle-generated,
but this experiment deviates from the previous one in that
the simulator also checks if Si+1 is consistent with the

Password-authenticated group key establishment from smooth projective hash functions 811

one generated for the Ui+1. In case Si+1 was replaced
and ci,i+1 is oracle-generated, Ui will continue with Xi,1

in Round 3.
We show that Ui’s check of testi+1 would indeed

fail, so that this replacement makes no difference for the
adversary. The argument is analogous as above: when
Ui+1 chooses UH′

i+1 ∈ UH′, the adversary is unable to
produce a testi+1 that will be accepted by Ui, as again
the value Zi,i+1 computed by Ui+1 is indistinguishable
from random for the adversary. Neither will the adversary
succeed in computing a pair (UH′′

i+1, test
′
i+1) that will

convince Ui: due to our assumption on the hash family
UH′, the adversary has no a-priori information on the
testi+1 value expected by Ui.

Therefore, we have

|Adv(A, G5)− Adv(A, G4)| ≤ negl(�).

Game 6. In this experiment, if the commitments were
oracle-generated the simulator chooses the values Zi,i−1

and Zi,i+1 independently and uniformly at random from
the group G. The simulator keeps a list for entries of the
form

(ci,i−1, Si−1, ci−1,i, Si)→ Zi,i−1,

(ci,i+1, Si, ci+1,i, Si+1)→ Zi,i+1.

The simulator behaves as in Game 5, except for the answer
following a Send1 query that delivers the last first round
message to an instance Πsi

i .
Once an instance Πsi

i has received all messages
of the first round, the simulator checks if ci−1,i and
ci+1,i were both oracle-generated (but all projections
were unmodified). In this case, the simulator
checks if (ci,i−1, Si−1, ci−1,i, Si) → Zi,i−1 or
(ci,i+1, Si, ci+1,i, Si+1) → Zi,i+1 are already in the
list, and uses the according values Zi,i−1 respectively
Zi,i+1 for further computations. The values Zi,i−1

or Zi,i+1 that are not yet determined by the list
are chosen at random from the group G and the
assignment (ci,i−1, Si−1, ci−1,i, Si) → Zi,i−1 or
(ci,i+1, Si, ci+1,i, Si+1) → Zi,i+1, respectively, is stored
in the list to assure consistency between neighbored
instances.

Given an adversary A able to distinguish between
Game 5 and Game 6 we can construct a distinguisher
D between Exp0 and Exp1. Thus, from Lemma 2 we
can conclude that A’s advantage between the two games
differs at most negligibly.

The distinguisher D is either facing Exp0 or Exp1
from Lemma 2. D is constructed so that it will behave
like the simulator from Game 5, except the following:

• commitments c are not computed but obtained by the
OEnc oracle from Lemma 2 on input pw,

• if a Send-query of the adversary requires D to
compute values Zi,i−1 respectively Zi,i+1, D will
output hashes/random values from the respective
values ci,i−1, ci−1,i and ci,i+1, ci+1,i if both were
oracle-generated.

Now the view of A will be exactly as in Game 5 if
D is facing Exp0 and exactly as in Game 6 if D is facing
Exp1.

|Adv(A, G6)− Adv(A, G5)| ≤ negl(�),

For the following games, the simulator is given an Extract
oracle, that checks if a given encryption is valid, i. e., an
encryption of the password pw.

This can be done because the password is
information-theoretically contained in the encryption. On
input a value c, the Extract oracle exhausts all possible
random choices r to check whether c is a commitment
to pw or not. Indeed, the set of possible values r is of
superpolynomial size in the security parameter; this is
however allowed for the Extract oracle.

Game 7. In this experiment, the simulator behaves as
in Game 6, except that in Round 2’s computation phase,
following a Send1 query, the received ci−1,i and ci+1,i

are checked by the simulator with respect to the password
using the Extract oracle. Then, those instances Πsi

i that
received an invalid encryption will choose a random group
element for Xi,0.

By a statistical argument, we see that the probability
for the adversary to distinguish between Game 7 and
Game 6 is negligible. If in Round 1 an invalid encryption
c to a wrong password p̃w (that is, (c, p̃w) /∈ Lρ,) was
sent, then by the smoothness property of the hash proof
system the distribution of (c, p̃w, α(k), Hk(label, p̃w, c))
is statistically close to the distribution of (c, p̃w, α(k), g)
for a random group element g ∈ G. Thus, the respective
Zi,i−1 orZi,i+1 and thereforeXi,0 will look like a random
group element for the adversary, who thus has only a
negligible chance to detect the difference.

As a result,

|Adv(A, G7)− Adv(A, G6)| ≤ negl(�).

By now, only such executions of Round 2 following a
Send1 query are unchanged where the encryptions from
the neighboring users are both valid and at least one
was adversary-generated. The following experiments will
also modify this situation.

Game 8. Now the simulator will abort the game with a
win of the adversary, if an instance Πsi

i received from
a Send1-query valid commitments ci−1,i and ci+1,i of
which at least one was adversary-generated.

812 J.-M. Bohli et al.

This will only increase the success probability of the
adversary, therefore:

Adv(A, G8) ≥ Adv(A, G7).

Game 9. In this game, the simulation aborts if the
adversary has inserted commitments, projections or
Xi-values in Round 3:

Note that in Game 9, if a message in Round 1
to an instance of Ui was modified, as a result Ui

individually chooses Zi,i−1 or Zi,i+1, respectively,
uniformly at random. Therefore, Ui holds Xi unknown
to anyone and expects commitments to values Xj such
that X1 · · ·Xn = 1. Now, in Round 2, Ui outputs
a commitment Cρ(Ui, Xi;r

′
i) to a value Xi that only

with negligible probability fulfills X1 · · ·Xn = 1. To
avoid users U1, . . . , Ui−1, Ui+1, . . . , Un from aborting,
therefore, the adversary needs to be able to construct
a commitment Cρ(Ui, X

∗
i ;r

∗) to a value X∗
i such that

X1 · · ·X∗
i · · ·Xn = 1. Again, as all Xj are unknown

to the adversary, this can only succeed with negligible
probability. Note that, moreover,Xi is a random value and
only Cρ(Ui, Xi;r

′
i) contains information about Xi. Thus,

the non-malleability of the commitment scheme gives the
adversary only a negligible probability to insert values
X∗

j with j = 1, . . . , i − 1, i + 1, . . . , n which would
be accepted by Πsi

i in Game 8. The above argument
also demonstrates that the adversary cannot insert any
value Xi in Round 3 without resulting in an abort (with
overwhelming probability). Therefore,

|Adv(A, G9)− Adv(A, G8)| ≤ negl(�).

At this point, we have excluded all situations in
which the adversary may have inserted encryptions,
commitments, projections or Xi-values in Round 3:
either he has guessed the password and inserted valid
commitments to it (Game 8) or his attempts to insert
rogue messages resulted in a protocol abortion before the
computation of a session key. Thus the only situation left
to handle is that all queries to the Send-oracle contain
messages faithfully constructed following the protocol
specification. Here we can mimic the reasoning for the
passive case.

Game 10. Now the simulation changes in that, for
constructing the encryptions from Round 1, a password
p̂w is chosen uniformly at random from D. This does not
change anything, as in the previous game, these values
were not used in any projective hash function anymore.
All information about the password, which was available
to the adversary, were encryptions sent in the first round.
Due to the semantic security of the encryption scheme,
the adversary detects the use of p̂w instead of pw with
a negligible probability only. Now the adversary does
not have any correct encryption of the password as input.

But, due to the non-malleability of the encryption scheme,
the adversary’s probability to succeed in producing a new
valid encryption of pw drops at most negligibly,

|Adv(A, G10)− Adv(A, G9)| ≤ negl(�).

Game 11. We now modify the computation of the
session key. The simulator keeps a list of assignments
(Z1,2, . . . , Zn,1, sk

si
i). Once an instance receives the last

Send3-query, the simulator computes Z1,2, . . . , Zn,1 and
checks if for the sequence (Z1,2, . . . , Zn,1) a master key
was already issued and assigns this key to the instance.
If no such entry exists in the list, the simulator chooses a
session key sksii ∈ {0, 1}� uniformly at random.

The adversary can only detect the difference, if he
knows the master key mk = (Z1,2, . . . , Zn,1). The
master key has once the Xi are public, sufficient entropy
because knowing all quotients Xi, still the value of at
least one of the two-party keys Zk,j is indistinguishable
from a random group element. Therefore the output of
the function FUH(mk) is only with a negligible probability
distinguishable from a random sksii ,

|Adv(A, G11)− Adv(A, G10)| ≤ negl(�).

Now the session keys are randomly distributed
and independent from the password and the messages.
Instances that hold the same master key computed
the same UH(mk) and therefore hold identical session
identifiers. Thus, those instances are partnered and
the freshness definition renders the Reveal-oracle
useless because instances that are not partnered have
independently uniformly at random chosen session keys.
Besides the 1/2 probability of guessing the bit b right, the
only way for the adversary to win is having sent a valid
adversary-generated encryption to a neighbored instance
that did not get an invalid commitment from the other
neighbor. Thus, the adversary has just one try per instance
to guess a password and the probability to win in Game 11
is

Succ(A, G11) =
q

|D| +
1

2

(

1− q

|D|
)

+ negl(�),

giving an advantage of

Adv(A, G11) =
q

|D| + negl(�).

Remember, that q only counts the number of different
instances that were addressed by a Send-query.

Putting everything together, we have

Adv(A) ≤ q

|D| + negl(�).

�

Password-authenticated group key establishment from smooth projective hash functions 813

6. Conclusion

We describe a generic design for group PAKE building
on the two-party protocol of Katz and Vaikuntanathan
(2013). Following Ben Hamouda et al. (2013), this
scheme can be implemented from the Cramer–Shoup
CCA-encryption, resulting in a very efficient (pairing
free) design. Our construction can be proven secure in the
standard model, and provides quite strong guarantees; in
particular, we evidence that adversaries can only perform
one online password test per instance.

Acknowledgment

M.I. González Vasco and R. Steinwandt are partially
supported by research projects MTM2013-41426-R
and MTM2016-77213-R, both funded by the Spanish
MINECO. Also, this research was sponsored (in
part) by the NATO Science for Peace and Security
Programme under the grant G5448. We are indebted
to Michel Abdalla for numerous valuable comments and
discussions.

References
Abdalla, M., Benhamouda, F. and MacKenzie, P. (2015).

Security of the J-PAKE password-authenticated key
exchange protocol, IEEE Symposium on Security and Pri-
vacy, SP 2015, San Jose, CA, USA, pp. 571–587.

Abdalla, M., Bohli, J.-M., González Vasco, M.I. and Steinwandt,
R. (2007). (Password) Authenticated key establishment:
From 2-party to group, in S.P. Vadhan (Ed.), Theory of
Cryptography Conference, TCC 2007, Lecture Notes in
Computer Science, Vol. 4392, Springer, Berlin/Heidelberg,
pp. 499–514.

Abdalla, M., Bresson, E., Chevassut, O. and Pointcheval,
D. (2006). Password-based group key exchange in a
constant number of rounds, in M. Yung et al. (Eds),
Public Key Cryptography, PKC 2006, Lecture Notes in
Computer Science, Vol. 3958, Springer, Berlin/Heidelberg,
pp. 427–442.

Abdalla, M., Fouque, P.-A. and Pointcheval, D. (2005).
Password-based authenticated key exchange in the
three-party setting, in S. Vaudenay (Ed.), Public Key Cryp-
tography, PKC 2005, Lecture Notes in Computer Science,
Vol. 3386, Springer, Berlin/Heidelberg, pp. 65–84.

Abdalla, M., Fouque, P.-A. and Pointcheval, D. (2006).
Password-based authenticated key exchange in the
three-party setting, IEE Proceedings: Information Security
153(1): 27–39.

Abdalla, M. and Pointcheval, D. (2005). Simple password-based
encrypted key exchange protocols, in A. Menezes (Ed.),
Topics in Cryptology, CT-RSA 2005, Lecture Notes in
Computer Science, Vol. 3376, Springer, Berlin/Heidelberg,
pp. 191–208.

Abdalla, M. and Pointcheval, D. (2006). A scalable
password-based group key exchange protocol in the

standard model, in X. Lai and K. Chen (Eds), Proceedings
of ASIACRYPT 2006, Lecture Notes in Computer Science,
Vol. 4284, Springer, Berlin/Heidelberg, pp. 332–347.

Bellare, M., Canetti, R. and Krawczyk, H. (1998). A modular
approach to the design and analysis of authentication and
key exchange protocols (extended abstract), 13th Annual
ACM Symposium on the Theory of Computing, Dallas, TX,
USA, pp. 419–428, DOI: 10.1145/276698.276854.

Bellare, M., Pointcheval, D. and Rogaway, P. (2000).
Authenticated key exchange secure against dictionary
attacks, in B. Preneel (Ed.), Advances in Cryptology, EU-
ROCRYPT 2000, Lecture Notes in Computer Science, Vol.
1807, Springer, Berlin/Heidelberg, pp. 139–155.

Bellare, M. and Rogaway, P. (1994). Entity authentication and
key distribution, in D.R. Stinson (Ed.), Advances in Cryp-
tology, CRYPTO’93, Lecture Notes in Computer Science,
Vol. 773, Springer, Berlin/Heidelberg, pp. 232–249.

Ben Hamouda, F., Blazy, O., Chevalier, C., Pointcheval, D.
and Vergnaud, D. (2013). New smooth projective hash
functions and one-round authenticated key exchange, IACR
Cryptology ePrint Archive 2013: 34, http://eprint.
iacr.org/2013/034.

Blake-Wilson, S. and Menezes, A. (1999). Authenticated
Diffie–Hellman key agreement protocols, in S.E.
Tavares and H. Meijer (Eds), Proceedings of the Se-
lected Areas in Cryptography, SAC’98, Springer-Verlag,
Berlin/Heidelberg, pp. 339–361.

Blazy, O. and Chevalier, C. (2015). Generic construction
of UC-secure oblivious transfer, in T. Malkin et al.
(Eds), Applied Cryptography and Network Security,
Lecture Notes in Computer Science, Vol. 9092, Springer,
Berlin/Heidelberg, pp. 65–86.

Bohli, J.-M., González Vasco, M.I. and Steinwandt, R. (2007).
Secure group key establishment revisited, International
Journal of Information Security 6(4): 243–254.

Bohli, J.-M., Vasco, M.I.G. and Steinwandt, R. (2018).
Password-authenticated constant-round group key
establishment from smooth projective hash functions,
Cryptology ePrint Archive, Report 2006/214, http://e
print.iacr.org/2006/214.

Boyko, V., MacKenzie, P. and Patel, S. (2000). Provably
secure password-authenticated key exchange using
Diffie–Hellman, in B. Preneel (Ed.), Advances in
Cryptology, EUROCRYPT 2000, Lecture Notes in
Computer Science, Vol. 1807, Springer, Berlin/Heidelberg,
pp. 156–171.

Bresson, E., Chevassut, O. and Pointcheval, D. (2002). Group
Diffie–Hellman key exchange secure against dictionary
attacks, in Y. Zheng (Ed.) Advances in Cryptology,
Lecture Notes in Computer Science, Vol. 2501, Springer,
Berlin/Heidelberg, pp. 497–514.

Burmester, M. and Desmedt, Y. (1995). A secure and
efficient conference key distribution system, in A.D.
Santis (Ed.), Advances in Cryptology, EUROCRYPT’94,
Lecture Notes in Computer Science, Vol. 950, Springer,
Berlin/Heidelberg, pp. 275–286.

http://eprint.iacr.org/2013/034
http://eprint.iacr.org/2013/034
http://eprint.iacr.org/2006/214
http://eprint.iacr.org/2006/214

814 J.-M. Bohli et al.

Carter, L. and Wegman, M.N. (1977). Universal classes of hash
functions (extended abstract), in J.E. Hopcroft et al. (Eds),
Proceedings of the 9th Annual ACM Symposium on Theory
of Computing, Boulder, CO, USA, pp. 106–112.

Cramer, R. and Shoup, V. (2002). Universal hash proofs and a
paradigm for adaptive chosen ciphertext secure public-key
encryption, in L. Knudsen (Ed.), Advances in Cryptology,
EUROCRYPT 2002, Lecture Notes in Computer Science,
Vol. 2332, Springer, Berlin/Heidelberg, pp. 45–64.

Dutta, R. and Barua, R. (2006). Password-based encrypted group
key agreement, International Journal of Network Security
3(1): 23–34.

Gennaro, R. and Lindell, Y. (2003a). A framework for
password-based authenticated key exchange, Cryptology
ePrint Archive, Report 2003/032, http://eprint.ia
cr.org/2003/032.

Gennaro, R. and Lindell, Y. (2003b). A framework for
password-based authenticated key exchange (extended
abstract), in E. Biham (Ed.), Advances in Cryptology, EU-
ROCRYPT 2003, Lecture Notes in Computer Science, Vol.
2656, Springer, Berlin/Heidelberg, pp. 524–543.

Gennaro, R. and Lindell, Y. (2006). A framework for
password-based authenticated key exchange, ACM Trans-
actions on Information and System Security 9(2): 181–234,
DOI: 10.1145/1151414.1151418.

González Vasco, M.I., Martı́nez, C., Steinwandt, R. and Villar,
J.L. (2005). A new Cramer-Shoup like methodology for
group based provably secure schemes, in J. Kilian (Ed.),
Proceedings of the 2nd Conference on Theory of Cryptog-
raphy, TCC 2005, Lecture Notes in Computer Science, Vol.
3378, Springer, Berlin/Heidelberg, pp. 495–509.

Gorantla, M.C., Boyd, C., González Nieto, J.M. and Manulis,
M. (2010). Generic one round group key exchange in
the standard model, Information, Security and Cryptol-
ogy, ICISC 2009, Lecture Notes in Computer Science, Vol.
5984, Springer, Berlin/Heidelberg, pp. 1–15.

Hwang, J.Y., Lee, S.-M. and Lee, D.H. (2004). Scalable key
exchange transformation: From two-party to group, Elec-
tronic Letters 40(12): 728–729.

Kalai, Y.T. (2005). Smooth projective hashing and two-message
oblivious transfer, in R. Cramer (Ed.), Advances in
Cryptology, EUROCRYPT 2005, Lecture Notes in
Computer Science, Vol. 3494, Springer, Berlin/Heidelberg,
pp. 78–95.

Katz, J., Ostrovsky, R. and Yung, M. (2001). Efficient
password-authenticated key exchange using
human-memorable passwords, in B. Pfitzmann (Ed.),
Advances in Cryptology, EUROCRYPT 2001, Lecture
Notes in Computer Science, Vol. 2045, Springer,
Berlin/Heidelberg, pp. 475–494.

Katz, J., Ostrovsky, R. and Yung, M. (2006). Efficient
and secure authenticated key exchange using weak
passwords, http://www.cs.umd.edu/˜jkatz/pa
pers/password.pdf.

Katz, J. and Shin, J.S. (2005). Modeling insider attacks on
group key-exchange protocols, Cryptology ePrint Archive,
Report 2005/163, http://eprint.iacr.org/2005
/163.

Katz, J. and Vaikuntanathan, V. (2013). Round-optimal
password-based authenticated key exchange, Journal of
Cryptology 26(4): 714–743.

Katz, J. and Yung, M. (2007). Scalable protocols for
authenticated group key exchange, Journal of Cryptology
20(1): 85–113.

Kurosawa, K. and Desmedt, Y. (2004). A new paradigm
of hybrid encryption scheme, in M. Franklin (Ed.), Ad-
vances in Cryptology, CRYPTO 2004, Lecture Notes in
Computer Science, Vol. 3152, Springer, Berlin/Heidelberg,
pp. 426–442.

Mayer, A. and Yung, M. (1999). Secure protocol transformation
via “Expansion”: From two-party to groups, Proceedings
of the 6th ACM Conference on Computer and Communica-
tions Security, CCS’99, New York, NY, USA, pp. 83–92.

Nam, J., Paik, J. and Won, D. (2011). A security weakness
in Abdalla et al.’s generic construction of a group key
exchange protocol, Information Sciences 181(1): 234–238,
DOI: 10.1016/j.ins.2010.09.011.

Shoup, V. (2006). An emerging standard for public-key
encryption, ISO 18033-2, International Organization for
Standardization, Geneva, http://www.shoup.net/i
so/std6.pdf.

Jens-Matthias Bohli is a professor at the Uni-
versity of Applied Science in Mannheim. He re-
ceived his diploma and the PhD degree in com-
puter science from the Karlsruhe Institute for
Technology in 2003 and 2007, respectively. In
2007, he joined the security research team at
NEC Laboratories Europe as a senior researcher
and worked on security for the IoT. In the aca-
demic year 2009/2010, he worked at the Univer-
sity of Sussex as a lecturer. In 2016, he joined

the University of Applied Science in Mannheim. His current research
interest and experience lie in efficient cryptographic protocols for a wide
range of applications, such as authentication, blockchains, voting ma-
chines, and embedded systems.

Marı́a Isabel González Vasco is an associate
professor at the Department of MACIMTE, King
Juan Carlos University, where she has been work-
ing since 2003. She received her diploma and the
PhD degree in mathematics from the University
of Oviedo (1999 and 2003). Her research inter-
ests include provable security for cryptographic
constructions, with a special focus on public key
cryptographic designs for encryption and group
key exchange. She is currently a member of the

board of directors (Junta de Gobierno) of the Royal Spanish Mathemati-
cal Society.

http://eprint.iacr.org/2003/032
http://eprint.iacr.org/2003/032
http://www.cs.umd.edu/~jkatz/papers/password.pdf
http://www.cs.umd.edu/~jkatz/papers/password.pdf
http://eprint.iacr.org/2005/163
http://eprint.iacr.org/2005/163
http://www.shoup.net/iso/std6.pdf
http://www.shoup.net/iso/std6.pdf

Password-authenticated group key establishment from smooth projective hash functions 815

Rainer Steinwandt serves as the chair of Florida
Atlantic University’s Department of Mathemati-
cal Sciences. Before joining FAU, he was with
the University of Karlsruhe in Germany, where
he completed his MS and PhD degrees in com-
puter science, researching topics in computer al-
gebra. Today, his research focus is on cryptology,
including quantum cryptanalysis and quantum-
safe cryptography. He currently serves as the di-
rector of FAU’s Center for Cryptology and Infor-

mation Security.

Received: 1 November 2018
Revised: 4 March 2019
Accepted: 8 May 2019

	Introduction
	Key establishment: From 2-party to group
	Related work and our contribution
	Paper outline

	Security model and security goals
	Communication model and adversarial capabilities
	Correctness, integrity and secrecy
	Strongly universal2 projective hashing
	Strongly universal2 hashing from non-malleable commitments

	Smooth projective hashing and CCA-labeled encryption
	Group key establishment protocol
	Design comments
	Security analysis

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

