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Chemoresistance is one of the most important challenges in cancer therapy.

The presence of cancer stem cells within the tumor may contribute to

chemotherapy resistance since these cells express high levels of extrusion

pumps and xenobiotic metabolizing enzymes that inactivate the therapeutic

drug. Despite the recent advances in cancer cell metabolism adaptations,

little is known about the metabolic adaptations of the cancer stem cells

resistant to chemotherapy. In this study, we have undertaken an untargeted

metabolomic analysis by liquid chromatography–high-resolution

spectrometry combined with cytotoxicity assay, western blot, quantitative

real-time polymerase chain reaction (qPCR), and fatty acid oxidation in a

prostate cancer cell line resistant to the antiandrogen 2-hydroxiflutamide

with features of cancer stem cells, compared to its parental androgen-

sensitive cell line. Metabolic fingerprinting revealed 106 out of the

850 metabolites in ESI+ and 67 out of 446 in ESI- with significant

differences between the sensitive and the resistant cell lines. Pathway

analysis performed with the unequivocally identified metabolites, revealed

changes in pathways involved in energy metabolism as well as

posttranscriptional regulation. Validation by enzyme expression analysis

indicated that the chemotherapy-resistant prostate cancer stem cells

were metabolically dormant with decreased fatty acid oxidation,

methionine metabolism and ADP-ribosylation. Our results shed light on

the pathways underlying the entry of cancer cells into dormancy that might

contribute to the mechanisms of drug resistance.
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1 Introduction

Prostate cancer (PCa) is the second leading cause of cancer-

related death in men with an annual incidence of 268500 cases

(which supposes 27% of all cancer types in men) (Siegel et al.,

2022). According to data from the Spanish Society of Medical

Oncology (SEOM), PCa was the most frequent and prevalent

malignant neoplasm in Spain in 2020 (Cassinello et al., 2018;

Gonzalez Del Alba et al., 2021). Despite the recent highly

developed treatments, the advanced disease, characterized by

androgen-independent growth, experiments 4%–6% annual

increase (Siegel et al., 2022). Once prostate cancer progresses

to become castration-resistant prostate cancer (CRPC), therapy

is based on androgen receptor inhibition and/or antimitotic

taxane chemotherapy which improve survival in patients

(Menges et al., 2022). However, despite the initial benefits of

such therapy prostate cancer, more often than desired, becomes

resistant to chemotherapy and then, the effect of

chemotherapeutic treatments is hampered and therapeutic

options are limited (Lohiya et al., 2016). Currently, the

development of chemoresistance represents one of the greatest

challenges in cancer treatment. Resistance to treatments may be

caused by the presence of cancer stem cells (CSCs), a subset of

cells within the tumor with long-term replicative potential, self-

renewal, and pluripotency abilities.

It has been described that prostate cancer stem cells are

resistant to most standard therapies and constitute a source for

the clonal expansion of cancer cells that is thought to be

responsible for tumor recurrence (Leao et al., 2017; Skvortsov

et al., 2018). CSCs sustain tumor growth by reactivating signaling

pathways and adaptive metabolic networks that induce the

proliferation of surrounding cells and stem cell plasticity.

CSCs sense energy demand and nutrient supply, and display

different metabolic pathways compared to the rest of tumor cells.

Metabolic reprogramming is a hallmark of cancer and allows

tumor cells to meet the increased energy demands required for

rapid cell growth, invasion, and metastasis. Notably, metabolic

reprogramming prevents cancer cells from chemotherapy-

induced death contributing to cancer drug resistance. This is

especially relevant in prostate cancer in which dysregulated lipid

signaling fuels growth and obesity and has been described as a

risk factor with a strong correlation with advanced or lethal

prostate cancer (Pernar et al., 2018). Accumulated evidence

suggests that metabolic adaptations in CSCs are different from

that in bulk cancer cells and quite similar to that in normal tissue

stem cells (Kim, 2019). Moreover, the altered differentiation

signals that induce CSC may be controlled by metabolic

events that take part in the regulation of stem cell fate

(Menendez and Alarcon, 2014). For instance, some

metabolites can regulate epigenetic changes, including histone

methylation and acetylation involved in the control of gene

expression (Shyh-Chang and Ng, 2017). However, the

metabolic signature of CSC resistant to chemotherapy remains

elusive.

Metabolomics aims to detect, identify and quantify all

metabolites in a biological sample, using chemometric and

statistics tools in order to compare the metabolic fingerprints

or metabolite profiles of different physiological conditions which

depend on genetic and environmental factors (Dieme et al.,

2017). Metabolomics provides information about the

biochemical state or metabolome of biological system under

certain conditions. This methodology allows to know the low

molecular weight compounds present in cells, tissues or

biological fluids, which are involved in different metabolic

pathways necessary for the maintenance, growth and normal

functioning of a cell (Fiehn, 2002; Zhang et al., 2014; Xu et al.,

2021). Furthermore, the metabolic profile changes over time, and

at different points in a disease. Recently, metabolomics has

started to be applied in CSC research, because it can show the

energetic status, cell proliferation and fitness, and stem cell fate

choices such as self-renewal versus differentiation (Sun et al.,

2019) as well as the cross-talk between the cell and its

environment (Bispo et al., 2021).

The detection of metabolites in cells, tissues or biofluids is

usually carried out using advanced profiling analytical techniques

like Nuclear Magnetic Resonance (NMR) spectroscopy (Sciarra

et al., 2011; Lima et al., 2018; Vandergrift et al., 2018) or Mass

Spectrometry (MS) (Zang et al., 2014; Segers et al., 2019; Sun

et al., 2022) which have been successfully applied to prostate

cancer study. In general, NMR spectroscopy andMS, particularly

Liquid Chromatography–High-Resolution Mass Spectrometry

(LC-HRMS), are the two most important analytical platforms

used in metabolomic studies. Both techniques provide large

amounts of data, which require statistical analysis to extract

relevant and robust information on metabolic response. One of

the main challenges is the complexity of any metabolome, and

the “untargeted strategy” is the most adequate to establish the

complete profile of the metabolites present (“metabolic

fingerprinting”) in a biological system (Alonso et al., 2015).

The advantage of MS over NMR is the higher sensitivity to

detect metabolites at much lower concentrations and the more

suitability for high throughput methods. In addition, in recent

years, the LC-HRMS technique has been increasingly used due to

its robustness and resolution capacity. The high resolution in the

determination of the mass/charge ratio (m/z) of the detected ions

together with the specialized databases in MS, allow to search for

unknown compounds and the tentative identification of the

metabolites present. Thus, today LC-HRMS is the best
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analytical tool to carry out metabolomics studies (Jayaraman

et al., 2018; Martin-Blazquez et al., 2019; Pinto et al., 2020).

Here, we use a metabolomic approach using LC-HRMS, to

understand the adaptive response linked to chemotherapy

resistance using a model of cancer cells resistant to therapy

that displayed features of CSCs. Our combined analysis of the

metabolic fingerprinting and enzyme analysis identified that

drug-resistant cells have a low metabolic rate characterized by

low ADP-ribosylation and methylation as well as low

mitochondrial fatty acid β-oxidation. The identified metabolic

pathways in prostate-resistant cells will allow the development of

effective therapeutic strategies that target the mechanisms

involved in the acquisition of drug resistance and deserves

further investigation.

2 Materials and methods

2.1 Cell culture

The human prostate cancer cell line LNCaP was obtained

from American Type Culture Collection (ATCC CRL-1740,

Rockville, MD, United States) and cultured in RPMI-1640/

10%FBS plus 100 IU/ml penicillin G sodium, 100 g/ml

streptomycin sulfate and 0.25 g/ml amphotericin B

(Invitrogen, Paisley, United Kingdom). To generate the

prostate cancer resistant Cell line, LNCaP cells were cultured

for 6 months in RPMI-1640/10%FBS with a stepwise

concentration increase of the antiandrogen 2-

hydroxyflutamide, starting at 0.1 µm. When the cells were

capable of growing and reaching appropriate confluency at

this concentration, the cells were passaged and 2-

hydroxyflutamide concentration was increased in 0.1 µM.

When cells were able to grow in the presence of 2 µm 2-

hydroxyflutamide, were routinely maintained in such

concentration and renamed LN-Flu.

2.2 Sample preparation for metabolome
analysis and extraction of intracellular
metabolites

LNCaP or LN-Flu cells (20×106) were seeded in each 100 mm

culture dish and cultured for 48 h. When cells were 80%

confluent, were washed in PBS at 4°C and frozen at -80°C.

Then cells were harvested and incubated for 20 min at 4°C in

lysis buffer (50 mM Tris pH 7.4, 0.8 M NaCl, 5 mMMgCl2, 0.1%

Triton X-100, containing protease inhibitor and phosphatase

inhibitor cocktail) (Roche, Diagnostics; Mannheim, Germany).

Cell extracts were centrifuged at 10000 g at 4°C. The supernatant

was concentrated by centrifugation at 10000g at 4°C in Amicon

ultra-0.5, ultracel filters (Amicon, Miami, Florida, United States).

Samples were stored at -80°C until their analysis.

2.3 Chemicals and standards

HPLC grade acetonitrile, MS grade formic acid and

ammonium acetate for LC-MS (Carlo Erba Reagents Srl,

Chaussée du Vexin, France), water obtained from a Milli-Q

system (MilliPore, Bedford, MA), and acetic acid Optima LC-

MS (Thermo Fischer Scientific Inc., Madrid, Spain) were used in

the preparation of mobile phases. The list of standards included

in this study is shown in Supporting Information Supplementary

Table S1.

2.4 Liquid chromatography–high
resolution mass spectrometry analysis

Prior to LC-MS analysis, the extracted samples (n =

20 LNCaP and n = 20 LN-Flu, different cell cultures) were

thawed, homogenized in vortex for 2 min and submitted to an

ultrafiltration process with 3 kDa ultrafiltration membranes

(Merck KGaA, Darmstadt, Germany). 500 µl of each sample

were introduced into the ultrafiltration membrane and a

centrifugation step was carried out at 4,000 g at 4°C for

40 min. Finally, each ultrafiltered sample was divided into two

aliquots of 150 µl to be analyzed by LC-MS (one used in positive

polarity and the other in negative), one aliquot of 100 µl to

constitute the total quality control (QCT) sample that includes all

the study samples, and one aliquot of 50 µl to constitute the

sample of quality control of each study group (QCG1 and QCG2,

LNCaP group and LN-Flu group respectively). In the case of all

QCs, 20 µl of warfarin standard at 100 ng/ml was added for the

internal control of the LC-MS system (retention time and mass

accuracy of the warfarin). These QCs were injected every eight

samples to monitor the performance, stability, and

reproducibility of the LC-MS method throughout the analysis

sequence. Several blanks and QCTs were injected at the

beginning of the sequence to ensure good repeatability.

Sample injection was randomized.

Untargeted metabolomic analysis of all samples was

performed using a Thermo Scientific Dionex Ultimate

3,000 series Ultrahigh Performance Liquid Chromatograph

(Waltham, Massachusetts, United States) coupled to

Q-Exactive hybrid Quadrupole-Orbitrap mass spectrometer

from Thermo Scientific (Waltham, Massachusetts,

United States) equipped with an orthogonal electrospray

ionization (ESI) source and operating in both positive and

negative ion mode.

The reversed-phase HPLC method using a column Atlantis

(100 mm × 2.1 mm, 1.6 µm porous particle) from Waters

(Madrid, Spain) with its respective column guard, consisted of

a linear binary gradient in three steps: 0% of B for 2 min of 0%–

100% of B in 10 min, and 100% of B for 2 min. After analysis, the

column was re-equilibrated for 5 min using the initial solvent

composition. The flow rate was 0.4 ml/min, the injected volume
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was 5 µl and the column was kept at 40°C during the analytical

sequence. The mobile phase in positive polarity was water (eluent

A) and 90% (v/v) acetonitrile (eluent B), both with 0.1% (v/v)

formic acid. In polarity negative were 5 mM de ammonium

acetate (eluent A) at pH 5 adjusted with acetic acid at 12%

(v/v) and 90% (v/v) acetonitrile (eluent B) with 5 mM de

ammonium acetate at pH 5 adjusted with acetic acid at 12%

(v/v). The mobile phases composed of de ammonium acetate

were filtered using 45 µm nylon membrane filters from Merck

KGaA (Darmstadt, Germany).

Mass spectrometer operated using full scan mode with a mass

range of 70–2000 m/z, at a resolution of 140,000, a maximum

injection time (IT) and AGC target of 480 ms and 1x106,

respectively. Furthermore, in order to carry out the confirmation

of the detected compounds, a not targetMS/MSmethodwas applied

with following parameters, resolution of 17,500, maximum IT and

AGC target of 50 ms and 1x105, three normalized collision energies

of 10, 20 and 30 V to have an average spectrum of the three energies,

and an isolation window of 2.0 m/z. The source parameters were as

follows: sheath gas flow rate, 60 arbitrary units; auxiliary gas flow

rate, 30 arbitrary units; sweep gas flow rate, 0 units; spray voltage,

3.0 kV; capillary temperature, 280°C; vaporizer temperature, 400°C;

and s-lens, 50. Data acquisition was performed by TraceFinder

software 4.1 from Thermo Fischer.

2.5 Data handling and metabolite
annotation

An untargeted data analysis strategy was used to obtain the

maximum amount of information from the data acquired with

the LC-HRMS method, including identification, grouping of

features and statistical analysis. These features are groups of

m/z signals that form an independent molecular entity, including

molecular ions, adducts and isotopic ions, and they represent all

the compounds or metabolites present in the analyzed samples.

All raw spectra were extracted and analyzed in centroid

mode with a threshold of 1x105 intensity units using the

Compound Discoverer software (version 3.2.) from Thermo

Fischer, in order to obtain a list of peak areas, retention times,

and accurate mass to charge ratios (m/z). Peak preprocessing

settings are as follow: Minimum peak intensity: 500.000 units;

mass tolerance: 5ppm; S/N threshold: 3; retention time

tolerance: 0.2 min. Possible unspecific or noise signals (S/

N > 3) were removed while adducts of the same metabolite

were grouped. This resulted in a list of features, each of which

was identified with a unique ID. Filtering of the data was then

carried out to ensure ions with a high quality: 1) peaks below

3x intensity from the blanks were removed, 2) peaks not found

in at least a 80% of the samples belonging to the same group

and 3) with a high variability within the same group (CV >
30% in the QCs and CV > 50% in the samples) were also

filtered. Resulting data was normalized to the sum to minimize

technical variation and Pareto scaling was applied to the

metabolite intensities.

The resulting output data table of high-quality time-aligned

detected features or metabolites, with their corresponding

retention time, m/z and peak area obtained for each sample,

were submitted to statistical analysis.

First, a Principal Component Analysis (PCA) was used to

study variability among samples and features and for outlier

detection. Once all possible sample outliers were removed, the

Shapiro Wilk test was used to verify the normal distribution of

the data. Afterwards, a t-test with the Benjamini-Hochberg False

Discovery Rate (FDR) multiple testing correction was used for

the level of significance of the tests. This significance is

represented in a Volcano plot to evaluate features significantly

different between group comparisons (FDR <0.05) and with a

relevant Fold Change (FC) with values >2 or <1/2. The

Metaboanalyst software (version 4.0) (Chong et al., 2018) was

used for statistical analysis. All raw data are uploaded in

Metabolights repository www.ebi.ac.uk/metabolights/

MTBLS5514 (Haug et al., 2020) and treated data can be seen

in supporting information.

Statistically significant metabolites were tentatively

annotated by matching the obtained accurate m/z to those

published in the selected databases, namely, KEGG

(Hashimoto et al., 2006), HMDB (Wishart et al., 2022) and

Metlin (Smith et al., 2005) within a mass accuracy window of

5 ppm. Finally, MS/MS analysis performed in the QC samples

using MzCloud and MassBank as databases confirmed the

identity of these compounds. Unequivocal identification was

achieved by co-injection of compounds with available

commercial standard solutions. The standards were prepared

at concentrations of 25 ng/ml for their analysis in positive

polarity and at 50 ng/ml for their analysis in negative polarity.

A pathway enrichment analysis was performed using

Metaboanalyst version 5.0 with these annotated metabolites,

using two metabolic databases, the Kyoto Encyclopedia of

Genes and Genomes (KEGG), and the Small Molecule

Pathway Database (SPMDB).

2.6 Western blot

Protein concentration was determined using Bradford

Protein Assay Kit (BioRad, Hercules, CA, United States).

Fifteen micrograms of protein samples were run on a

resolving 10% acrylamide/polyacrylamide gel and transferred

to a PVDF membrane. All primary antibodies (anti-PSMA

diluted 1:1,000; anti-PRMT2 diluted 1:500; anti-PARP diluted

1:1,000; anti-PARG diluted 1:1,000; anti-CPT1alpha diluted 1:

1,000; anti-PGC1alpha diluted 1:1,000; anti-βactin diluted 1:

5,000) from Cell Signaling Technology (Danvers, MA,

United States) were incubated at 4°C overnight. After washing,

membranes were incubated with the secondary antibodies (1:
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5,000 diluted horseradish peroxidase (HRP)-anti-mouse (Sigma-

Aldrich (St. Louis, MO, United States) and 1:1,000 diluted anti-

rabbit IgG (Cell Signaling Technology (Danvers, MA,

United States). The bands were visualized by a

chemiluminescence reagent (Cell Signaling Technology). Gel

imaging Chemidoc MP System (BioRad, Hercules, CA,

United States) was used to visualize and examine the protein

bands. Bands were quantified using Scion Image 4.0 (Scion

Corporation, Chicago, Illinois, United States).

2.7 RNA extraction and reverse
transcription quantitative polymerase
chain reaction

Cellular RNAwas extracted from cells using the RNeasyMini

Kit (Qiagen, Hilden, Germany). Total RNA (2 µg) underwent

cDNA synthesis using SuperScriptTM RT (Roche, Basel,

Switzerland) according to the manufacturer’s protocol. qPCR

was performed in a 10 µL volume using SYBR-Green PCRMaster

Mix (Takara Bio, Inc., Kusatsu, Japan) on a 7,500 Real-Time PCR

System (Applied Biosystems Inc., Foster City, CA, United States).

PCR amplification was carried out using the following primer

sequences: Nanog-F 5′-TTTGTGGGCCTGAAGAAAC-3′,
Nanog-R 5′-AGGGCTGTCCTGAATAAGCAG-3’; Oct4-F 5′-
GACAGGGGGAGGGGAGGAGCTAGG-3′, Oct4-R 5′-CTT
CCCTCCAACCAGTTGCCCCAAAC-3’; ABCB1A-F 5′-TTG
CTGCTTACATTCAGGTTTCA-3′, ABCB1A-R 5′-AGCCTA
TCTCCTGTCGCATTA-3’; AR-F 5′-CCAGGGACCATGTTT
TGCC-3’; AR -R 5′-CGAAGACGACAAGATGGACAA-3’.

2.8 Fatty acid β-oxidation assay

Fatty acid β-oxidation was measured using assay kits from

the Biomedical Research Service Center, State University of

New York (Buffalo, NY, United States). Cells were lysed in

50 µL Cell Lysis Solution and centrifuged at 10,000 g at 4°C for

5 min. The supernatant is harvested and stored at -80°C.

Protein concentration was assessed by Bradford assay and

normalized to 1 mg/ml. Twenty microliters of the samples

were added in duplicate to a 96-well plate and 50 µl of FAO

Assay Solution or control solution was added to each sample.

The plate was incubated in a non-CO2 incubator at 37°C for

60 min. All experiments were terminated by adding 50 µl of

3% acetic acid, and the plate was read at a wavelength of

492 nm with a microplate reader (iMARK, Bio-Rad

Laboratories, Inc., Hercules, CA, United States). Control

well reading was subtracted from reaction well reading for

each sample and FAO activity was calculated in IU/L = µmol/

(L•min) = ΔO.D. × 1,000 × 70 µl/(30 min × 0.5 cm × 18 ×

20 µl) = ΔO.D. × 12.96. Enzyme activity was presented as

units/µg proteins.

2.9 Statistical analysis

Statistical significance in qPCR and wester blotting assays, was

estimated with Graphpad 9.0 (La Jolla, CA, United States) software

using 2-way ANOVA and Tukey’s or Sidak’s multiple comparison

test when indicated. Data are presented as the mean ± SD.

3 Results

3.1 The cell line LN-Flu is resistant to 2-
hydroxyflutamide and expresses stem cell
markers

To study metabolic changes related to cancer stem cells and

therapy resistance we developed a cell line resistant to the

androgen receptor and chemotherapeutic 2-hydroxyflutamide.

To this end, prostate cancer LNCaP cells were slowly adapted to

growth in the presence of 2-hydroxyflutamide, after which they

developed resistance to the antiandrogen as well as were less

sensitive to the antimitotic docetaxel (Sanchez et al., 2020). To

corroborate the chemoresistance in the cells used in this study,

we assessed the effect of the IC50 and IC75 doses of docetaxel and

2-hydroxyflutamide on cell viability. MTT viability assay shows

that 10 µM 2-hydroxyflutamide at 24h, reduced LNCaP cell

viability to 40% whereas in LN-Flu cells only reduced cell

viability to 83% (Figure 1A) which is in line with previous

reports (Sanchez et al., 2020). Likewise, 40 µM docetaxel

reduced LNCaP cell viability to 50% but only to 80% in LN-

Flu cells (Figure 1A). Western blot and qPCR analysis revealed

that LN-Flu cells decreased the expression of the androgen

receptor (Figure 1B). Interestingly, LN-Flu cells had increased

expression of the typical pluripotent genes Nanog and Oct4 as

well as of the transporter ABCB1A or glycoprotein P, all of them

related to the acquisition of stem cell features and resistance to

chemotherapy (Figure 1C). These results indicate that LN-Flu

cells are cancer stem-like cells and display resistance to the

androgen receptor antagonist and therefore is a good model

to analyze the metabolome of prostate cancer drug-resistant cells.

3.2 Metabolic fingerprinting on stem cell
samples by LC–HRMS

Using the above explained LC-HRMS method, metabolic

fingerprints of cell cultures from the LNCaP group and the LN-

Flu group were obtained. Cells were seeded and after 72 h, cell

extracts were obtained, as detailed in the methods section, for the

metabolomic study. Compound Discoverer data processing and

the subsequent peak filtering process allowed us to detect

850 features in ESI + mode, and 446 in ESI- mode in all the

40 samples (see www.ebi.ac.uk/metabolights/MTBLS5514). The

resulting data matrix with the individual values of peak area from
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each feature in every sample was then submitted to statistical

analysis. The overall differences between the LNCaP group and

the LN-Flu group were first evaluated by PCA. A clear separation

was observed between both groups in both ionization methods

(see Figure 2) evidencing relevant metabolic differences between

both cell cultures. The principal component 1 (PC1) could

explain 53% of the total variance in ESI+ and 53.5% in ESI-.

However, the main separation axis between both groups is along

principal component 2 (PC2), which explains 21.1% of the

variability in ESI+ and 14.1% in ESI-. This suggests that

although some differences can be found, the vast majority of

the metabolome is not altered between both groups, as expected

in an untargeted metabolomic approach. Furthermore, the PCA

analysis was used to ensure the quality of the analysis. As can be

seen, QC samples are placed between both groups in both

PC1 and PC2, ensuring a good analytical quality. Also, some

samples were deemed as outliers, as they appear outside of the

95% confidence interval and were therefore removed from

further statistical analysis. These samples are M19 in LNCaP

group, and M27, M31 and M40 from LN-Flu group.

After ensuring data quality with the PCA, a ShapiroWilk’s test

was used to check the normal distribution of the data, and a

Volcano Plot was used to evaluate statistically significant

differences between both groups. From this test, 106 out of the

850 metabolites in ESI+ and 67 out of 446 in ESI- showed

significant differences (FDR <0.05 and FC > 2 or FC < 1/2)

between LNCaP and LN-Flu groups (Figure 3). Among them,

28 features showed significantly higher MS response in the LN-Flu

FIGURE 1
LN-Flu cells exhibit chemotherapy resistance and express stem cell markers. LNCaP cells were adapted for six months to grow in the presence
of 2 µm 2-hydroxyflutamide after which they were renamed LN-Flu. (A)MTT Cell viability assay of LNCaP and LN-Flu cells. Cells (1.5 × 105cells/well)
were seeded into 12-well plates and treated with the indicated doses of 2-hydroxyflutamide or docetaxel for 24 h. 100 μl of MTT [3-(4, 5-dimethyl-
2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide] dye solution was added to each well and incubated at 37°C for 1 h. Subsequently, the cells
were lysed with 2-propanol and the optical density wasmeasured at 595 nm. Cell viability was calculated as the percentage compared to the control
cells, which were arbitrarily assigned 100% viability. (B) Levels of AR expression in each cell line, determined by Western blot and qPCR. (C) Levels of
stem cell markers expression determined by qPCR. Results are the mean ± S.D. of three independent experiments. *p < 0.05 and **p <
0.01 significant difference between LNCaP and LN-Flu cells by two-way ANOVA and Sidak’s multiple comparisons test.
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group, while 78 features showed the opposite behavior in ESI+. In

ESI-, 24 features presented higher concentration in LN-Flu group,

while 43 had lower concentrations (see Supporting Information,

Supplementary Table S2). Out of these statistically significant

features, 54 were tentatively annotated using MS/MS data in

ESI + mode, while 25 were annotated in ESI-. The unequivocal

identification of these metabolites using commercially available

standards was achieved for 14 metabolites in positive ionization

mode and 10 in negative ionization (Table 1).

Finally, a pathway analysis performed with the unequivocally

identified metabolites, revealed several pathways that were

significantly impacted by these metabolites (Figure 4). These

pathways include energy metabolism such as fatty acid

degradation and amino acid metabolism.

3.3 Biological relevance of the significant
metabolites

To validate the results obtained in the metabolomic study, and

to examine the biological relevance in chemotherapy-resistant

prostate cancer stem cells of the most significant metabolites

described before, we examined the levels of the main enzymes

involved in the metabolic pathways highlighted by the KEGG and

SMPB analyses.

3.3.1 Fatty acid oxidation
Fatty acids oxidate by the β-oxidation pathway (FAO) in the

mitochondria to yield acetyl-CoA which enters the TCA cycle to

fuel oxidative phosphorylation. Fatty acids are transported into

the inner mitochondrial membrane by conjugation of long-chain

fatty acids to carnitine forming acylcarnitine. In addition, acetyl-

CoA also plays a role in protein acetylation. Since the

metabolome analysis showed a decrease in coenzyme A and

acyl-CoA as well as several acylcarnitines (Figure 5A), and

impact of the beta-oxidation of long and short fatty acids

(Figure 4), we evaluated the level of carnitine

palmitoyltransferase 1A (CPT1A), which is responsible for

mitochondrial β-oxidation by transporting fatty acids into

mitochondria and FAO in the prostate cells. As shown in

Figure 5B, the levels of CPT1A were strongly decreased in the

cancer stem-like cells LN-Flu. Likewise, the expression of the

FIGURE 2
The Principal Component Analysis of metabolomic data from all samples in both positive and negative MS ionization methods shows good
separation between group classes. Blank samples (red dots) are perfectly separated from the rest, and QC samples (light blue dots) are placed in
between LNFlu (green dots) and LNCaP (dark blue dots) samples showing good consistency in the metabolomic study.
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peroxisome proliferator-activated receptor-gamma coactivator

1α (PGC1α), an essential factor involved in mitochondrial

energy homeostasis and biogenesis, was notably decreased in

LN-Flu cells (Figure 5B), suggesting a decrease in mitochondrial

function. Therefore, to corroborate whether the drug-resistant

cancer stem-like LN-Flu cells showed slower fatty acid β-
oxidation, we measured the oxidation of fatty acids using

octanoyl-CoA as substrate as described in the methods

section. According to their lower levels of acyl CoA,

Coenzyme A, CPT1, and PGC1α, FAO of LN-Flu cells was

notably decreased (Figure 5C). Altogether, these results

indicate that the catabolism of fatty acid to obtain energy is

diminished in the cancer stem-like cells pointing to a metabolic

dormancy state (Figure 5D).

3.3.2 Glutamate, N-Acetylaspartate metabolism
The metabolomic analysis showed that both NAA and its

precursor N-acetyl-aspartyl glutamic acid (NAAGA), were

decreased in the cancer stem-like LN-Flu cells (Figure 6A)

suggesting a depletion of this pathway. This notion was

confirmed by the surprisingly low levels of PSMA detected in

LN-Flu cells (Figure 6B). Aberrant N-acetylaspartate (NAA)

concentrations have been detected in many pathological

conditions including neurodegenerative disorders, obesity and

type 2 Diabetes (Daniele et al., 2020). Although it is believed that

it is only synthetized in brain, the prostate expresses the NAA

synthetizing enzyme Glutamate carboxipeptidase II (NAAG

peptidase) also named folate hydrolase (FolH1) and prostate

specific membrane antigen (PSMA), which increases to the point

of being considered one of the best tumor markers for prostate

cancer (Kaewput and Vinjamuri, 2022; Schoder et al., 2022). In

addition, NAA promotes oxidative stress and stimulates lipid

peroxidation and protein oxidation (Surendran and Bhatnagar,

2011). Our results indicate that this pathway is downregulated in

the resistant LN-Flu cells compared to the sensitive parental

LNCaP cells (Figure 6C).

3.3.3 Methionine, spermidine and glutathione
To contextualize the increase of N3, N4-Dimethyl-L-arginine

(sDMA), and the decrease of spermidine observed in the

metabolomic analysis (Figure 7A), we determined the levels of

the main enzyme responsible for methylation reactions PRMT2.

As observed in Figure 7B, levels of PRMT2 were decreased in LN-

Flu cells compared to LNCaP cells. Within the cell, methionine is

recycled from homocysteine by methionine synthase, via the

methionine cycle, which is linked to nutrient status through one-

carbon metabolism. In addition, via the methionine salvage

pathway, methionine yields S-adenosylmethionine (SAM)

which plays an essential part in methyl donation for

methylation reactions catalyzed by protein arginine

methyltransferases (PRMTs). This pathway is essential for

gene expression via DNA methyltransferases (DNMT) and

histone methyltransferases, lipid metabolism, and polyamine

synthesis (Figure 7C). Additionally, methionine can also be

FIGURE 3
Volcano Plot showing the metabolomics statistically significant features in the LNFlu vs. LNCaP comparison, using both positive and negative
MS ionizationmethods. Black dots represent non significant features detected in the study, and purple dots represent significant features in the LNFlu
vs. LNCaP comparison (FDR <0.05 and FC > 2 or FC < 1/2).
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TABLE 1 Significant metabolites (FDR < 0.05 and FC > 2 or FC < 1/2) unequivocally identified.

ESI polarity ID Annotated name FDR FC (LN-Flu/LNCaP) Regulation

ESI+ ID_241 trans-3-Indoleacrylic acid 2.20E-12 0.388 Down LN-Flu

ID_70 Octanoylcarnitine 2.77E-12 0.467 Down LN-Flu

ID_222 Spermidine 1.59E-10 0.495 Down LN-Flu

ID_842 N-Acetylaspartylglutamic acid 8.21E-09 0.314 Down LN-Flu

ID_144 Aspartic acid 1.83E-08 0.449 Down LN-Flu

ID_183 N-Acetyl-L-aspartic acid 3.92E-08 0.470 Down LN-Flu

ID_846 Valine 1.35E-07 0.401 Down LN-Flu

ID_155 Phenylalanine 3.37E-07 0.443 Down LN-Flu

ID_58 Methionine sulfoxide 1.04E-03 0.468 Down LN-Flu

ID_146 Cysteinyl glycine (Cys-Gly) 6.56E-03 0.497 Down LN-Flu

ID_176 N3, N4-Dimethyl-L-arginine SDMA 2.43E-20 3.681 Up LN-Flu

ID_114 Proline 4.28E-19 2.143 Up LN-Flu

ID_152 Histidine 6.60E-11 2.573 Up LN-Flu

ID_280 ADP-ribose 9.19E-06 2.188 Up LN-Flu

ESI- ID_357 Tryptophan 4.88E-16 0.415 Down LN-Flu

ID_342 Acetyl-CoA 5.75E-13 0.078 Down LN-Flu

ID_322 Phenylalanine 1.91E-12 0.396 Down LN-Flu

ID_315 Coenzyme A 6.09E-13 0.134 Down LN-Flu

ID_152 5-Aminovaleric acid 9.12E-10 0.450 Down LN-Flu

ID_246 S-Nitroso-L-glutathione (GSNO) 7.37E-09 0.342 Down LN-Flu

ID_545 Lauric acid (dodecanoic acid) 6.92E-08 0.494 Down LN-Flu

ID_95 Histidine 6.37E-20 2.762 Up LN-Flu

ID_175 Glutamyl alanine 2.79E-07 2.299 Up LN-Flu

ID_242 ADP-ribose 4.17E-07 2.068 Up LN-Flu

ESi polarity: ionization mode (positive or negative) in the MS; ID: automatic ID given to each feature in the metabolomics analysis, before the identification; Annotated name: identified

metabolites; FDR: False Discovery Rate; FC (LN-Flu/LNCaP): Fold change of the comparison LN-Flu versus LNCaP; Regulation: up or downregulation of the metabolite in LN-Flu versus

LNCaP.

FIGURE 4
Pathway enrichment analysis from absolutely identified metabolites in (A) KEGG and (B) SPMDB databases. Graph shows the impact the
statistically significant identified metabolites have in the different pathways (x-axis) together with the statistical significance of those metabolites
(y-axis). Highlighted pathways have several statistically significant metabolites that in turn produce a high impact in the pathway.
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FIGURE 5
Fatty acid β-oxidation in prostate LN-Flu cells. (A) Box and whisker plot of metabolites involved in the pathway. (B) Levels of carnitine palmitoyl
transferase 1 (CPT1) and Peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC1α) determined by Western blot. Densitometric
analysis of thewestern blot bands from three independent experiments is shown on the right. (C) Fatty acid β-oxidation determined by Results are the
mean ± S.D. of three independent experiments. **p < 0.01 significant difference between LNCaP and LN-Flu cells by two-way ANOVA and
Sidak’smultiple comparisons test. (D) Fatty acid β-oxidation (FAO) scheme showing themetabolites and enzymeswe have found up (red arrow up) or
down (red arrow down) in LNFlu cells compared to LNCaP cells. CPT1, carnitine palmitoyltransferase 1; CAT carnitine:acylcarnitine translocase;
CPT2, carnitine palmitoyltransferase 2; PGC1α, peroxisome proliferator-activated receptor-gamma coactivator 1α; PPARγ, peroxisome proliferator-
activated receptor γ.
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recycled from the SAM-dependent polyamine biosynthesis by-

product methylthioadenosine (MTA), which is further processed

by the enzyme methylthioadenosine phosphorylase (MTAP) via

the methionine salvage pathway (Figure 7C) which generates

spermidine, a polyamine which interacts with negatively charged

macromolecules regulating cell growth, differentiation, and

apoptosis (Holbert et al., 2022). Our results indicate that

arginine methylation as well as the methionine salvage

pathway are decreased in the stem-like cells. In addition,

methionine metabolism is connected with glutathione (GSH)

synthesis, an antioxidant tripeptide that protects against oxidant

injury. GSNO can be formed from NO and GSH through the

reduction of ferric cytochrome C providing a link between GSNO

formation and the cellular redox status (Broniowska et al., 2013).

Therefore, our results showing a depletion of L-cysteinyl glycine

and S-Nitroso-L-Glutathione (GSNO) indicate a decrease in the

cell reduction power (Figure 7C).

3.3.4 ADP-ribose
Finally, an enrichment of intracellular ADP-ribose was also

observed in the LN-Flu cells (Figure 8A). To analyze the enzymes

involved in ADP-ribose metabolism we examined the levels of

PARP-1, the founding member of the PARP family and the most

extensively studied, and PAR-glycohidrolases 1–3 (PARG1-3)

which remove ADP-ribosyl modification yielding free ADP-

ribose. As shown in Figure 8B, levels of PARP-1 were sightly

but significantly decreased whereas those of PARG1-3 were

increased in the stem-like resistant LN-Flu cells compared to

LNCaP cells. ADP-ribose is involved in ADP-ribosylation, a

post-translational modification that regulates the activity of

many proteins involved in key processes like DNA damage

repair, cell proliferation and differentiation, metabolism,

stress, and immune responses (Navas and Carnero, 2021).

ADP-ribose is added consecutively to the molecules by PAR

polymerases (PARPs) from NAD + resulting in the poly-ADP-

ribosylation of the target molecules (Figure 8C). Our results

showing a decrease of PARP-1 and an increase of PARG1-3

correlate with the increased ADP-ribose found in the

metabolomic analysis and indicate a decrease in the ADP-

ribosylation of molecules.

4 Discussion

Chemoresistance is one of the most challenging difficulties in

prostate cancer treatment. The high prevalence of chemoresistant

FIGURE 6
N-acetyl aspartate biosynthesis in prostate LN-Flu cells. (A) Box and whisker plot of metabolites involved in the pathway. (B) Levels Prostate
specific membrane antigen (PSMA) determined by Western blot. Densitometric analysis of the western blot bands from three independent
experiments is shown on the right. Results are the mean ± S.D. of three independent experiments. ***p < 0.005 significant difference between
LNCaP and LN-Flu cells by two-way ANOVA and Sidak’s multiple comparisons test. (C) N-acetyl-aspartate (NAA) biosynthesis showing the
metabolites and enzymes we have found up (red arrow up) or down (red arrow down) in LNFlu cells compared to LNCaP cells.
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FIGURE 7
Methionine metabolism and methylation in prostate LN-Flu cells. (A) Box and whisker plot of metabolites involved in the pathway. (B) Levels of
Protein argininemethyltransferase 2 (PRMT2) determined byWestern blot. Densitometric analysis of the western blot bands from three independent
experiments is shown on the right. Results are the mean ± S.D. of three independent experiments. **p < 0.01 significant difference between LNCaP
and LN-Flu cells by two-way ANOVA and Sidak’s multiple comparisons test. (C)Methionine metabolism (Methionine cycle, methionine salvage
pathway and transsulfuration) showing the metabolites and enzymes we have found up (red arrow up) or down (red arrow down) in LN-Flu cells
compared to LNCaP cells.
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cancer makes it urgent to deepen our understanding of

chemoresistance mechanisms and to develop novel therapeutic

strategies. Among the mechanisms underlying chemoresistance

stand out the existence of cancer stem cells with unique

properties including high multi-drug resistance transporters

expression, and self-renewal ability that sustain the tumor even

in the presence of chemotherapeutics. However, while metabolic

reprogramming is nowadays considered a hallmark of cancer

(Fouad and Aanei, 2017), little is known about the metabolic

pathways underlying the plastic nature of CSCs, which are

capable of residing in a dormant state, and able to rapidly

proliferate when the need to repopulate the tumor mass arises

(Mancini et al., 2018).

Cancer stem cells are an important subpopulation in prostate

tumors and are mostly responsible for antiandrogen therapy

resistance. In a recent epigenetic and transcriptomic study of

castration-resistant prostate cancer patients, Tang et al. (Tang

et al., 2022) identified four subgroups according to their lineage

plasticity and transcription factors involved. They found a stem cell-

like (SCL) subtype which was the second most prevalent group and

was associated with a poorer response to the new generation of

androgen receptor inhibitors. Interestingly, those SCL tumors were

negative or had low expression of the AR (Tang et al., 2022). In

another study, Han et al. identified a stem-like PCa subtype of

metastatic castration-resistant prostate cancer that arose from AR-

positive cells as a consequence of its blockade with enzalutamide and

therapy-induced lineage plasticity (Han et al., 2022). In this study, we

have used a prostate cancer cell line adapted to grow in the presence

of the antiandrogen 2-hydroxyflutamide, that displays characteristics

of stem cells like an enhanced expression of the pump that efflux

FIGURE 8
ADP-ribosylation is modified in the drug-resistant cancer stem cells LN-Flu. (A) Box and whisker plot of metabolites involved in the pathway. (B)
Levels of ADP-ribosyl transferase 1 (PARP-1) and PAR-glycohydrolase (PARG1-3) determined by Western blot. Densitometric analysis of the western
blot bands from three independent experiments is shown on the right. Results are the mean ± S.D. of three independent experiments. *p < 0.05 and
**p < 0.01 significant difference between LNCaP and LN-Flu cells by two-way ANOVA and Sidak’s multiple comparisons test. (C) ADP-
ribosylation reaction showing themetabolites and enzymes we have found up (red arrow up) or down (red arrow down) in LN-Flu cells compared to
LNCaP cells.
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accumulated drugs inside the cell, ABCB1A, increased expression of

the pluripotency factors Nanog and the Yamanaka factor Oct4, as

well as low levels of the AR. Remarkably, those cells exhibited less

sensitivity to the chemotherapeutics flutamide as well as docetaxel

and therefore are a good model to study the metabolic changes

related to cancer chemotherapy resistance.

Accumulating evidence suggests that lipid and amino acid

metabolism alteration is closely related to drug resistance in

tumors (Yang et al., 2022). It has been recently reported that

metastatic ovarian cancer stem cells display different lipid patterns

than their primary tumors. Those cells depend on lipophagy for the

utilization of lipids rather than the conventional lipolytic pathway

and accumulate numerous cytoplasmic lipid droplets and lipophagic

vesicles in contrast to their primary tumors (Sandeep et al., 2022). In

the same line, hematopoietic stem cells depend on mitochondrial

fatty acid β-oxidation to regulate differentiation. Cells that self-renew
in a symmetrical division had higher levels of proteins involved in

FAO whereas cells that differentiate in an asymmetrical division had

lower levels (Ito et al., 2016). Our results showed a decrease in fatty

acid β-oxidation in the cancer resistant stem-like cells compared to

their parental cells suggesting that they are probably undergoing

asymmetrical divisions to maintain proliferating tumor cells.

Cancer cells distinguish for their high required levels of

methionine, a fact known as methionine addiction or Hoffman

effect, as it was first described by Hoffmann (Hoffman, 1985;

Hoffman et al., 2019). Human pluripotent stem cells also use high

levels of methionine for protein synthesis and methylation reactions

involved in epigenetic regulation. Interestingly, methionine and SAM

are key factors regulating pluripotency and differentiation.

Methionine deprivation induces a decrease in SAM levels

triggering epigenetic changes that modulate the expression of

genes involved in pluripotency (Shiraki et al., 2014) and

maintains cells in a quiescent state (Homma et al., 2022). Our

results show a depletion of the arginine methyl transferase

PRMT2 and a rise in sDMA suggesting that arginine methylation

is reduced in the resistant cells. This is in good agreement of previous

results describing that PRMT inhibition trigger Oct4-dependent

reprogramming of embryonic fibroblasts implying that inhibition

of protein arginine methylation might be the inductor of the

reprogramming process (Yuan et al., 2011).

Altogether, our results indicate that the resistant prostate cancer

cells are metabolically dormant, showing repression fatty acid

oxidation, methionine, and ADP-ribosylation pathways. According

to previous hypothesis (Shyh-Chang and Ng, 2017), it seems that

long-term self-renewing stem cells maintain their multipotent

capacity in a hypoxic environment and downregulate

mitochondrial activity (Han et al., 2018). Moreover, it has been

suggested that in stress conditions cancer cells can suffer a phenotypic

transition from a proliferating state to a dormant state characterized

by no proliferation, no death, no senescence, resistance to

chemotherapy, high expression of dormant markers, metabolic

suppression, and recovery to active status (Morales-Valencia and

David, 2022). In fact, tumor dormancy is a critical stage in cancer

development where cancer cells can remain occult, asymptomatic,

and resistant to therapy. Tumor dormant cells limit the efficacy of

chemotherapy which is mostly directed towards highly dividing cells,

driving recurrence and drug resistance. The capacity of tumor cells to

stay dormant and reappear dramatically with a more aggressive

performance resistant to chemotherapy is characteristic of prostate

cancer (Cackowski and Heath, 2022). Despite the importance of

tumor dormancy in chemotherapy resistance of prostate cancer, the

mechanisms underlying dormancy entry and themetabolic pathways

involved remain largely unexplored. In this study, we have explored

the metabolic adaptation of prostate cancer cells resistant to

chemotherapy. Recent findings indicate that overexpression of

Nanog is associated with prostate cancer cells dormancy

(Cackowski et al., 2017). Likewise, a previous study by Zhang

et al. demonstrated that Nanog overexpression induced dormancy

of colorectal cancer cells (Zhang et al., 2022). Accordingly, our results

show that chemoresistance is associated with an overexpression of

Nanog and a metabolic switch off. These results shed light on the

pathways underpinning the entry of cancer cells into dormancy.

Then, a strategy to overcome chemoresistance could be to induce

dormancy escape by rewiring the metabolic pathways that remain

downregulated in the resistant cells.

One of the major limitations in metabolomics is the

identification of the unknown metabolites. Identification of

metabolites is usually not a successful task and often results in

the unequivocal identification of only a few metabolites. There are

two reasons for this issue, the prohibitive costs or the non-

availability of most of the standards, and the limited information

that can be found in currently available databases. Another strong

limitation is the lack of an analytical platform enabling the total

coverage of the metabolome due to the heterogeneity of the broad

spectrum of metabolites that can be present in the analyzed samples

and the difference in the abundance of these metabolites as they

might range from pmol tommol (nine orders of magnitude). On the

other hand, another limitation of the study is that we have used a

unique resistant cell line. Although this has allowed the homogeneity

of the samples to achieve better accuracy in the metabolomic

analysis, the work might gain additional relevance using resistant

cell lines to another different chemotherapeutics.
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