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ABSTRACT The main objective of this work is to investigate the combinatory effects of both uniaxial
magnetic and electrical anisotropies on the input impedance, resonant length and the mutual coupling
between two dipoles printed on an anisotropic grounded substrate. Three different configurations: broadside,
collinear and echelon are considered for the coupling investigation. The study is based on the numerical
solution of the integral equation using the method of moments through the mathematical derivation of the
appropriate Green’s functions in the spectral domain. In order to validate the computing method and evalu-
ated Matlab®) calculation code, numerical results are compared with available literature treating particular
cases of uniaxial electrical anisotropy; good agreements are observed. New results of dipole structures
printed on uniaxial magnetic anisotropic substrates are presented and discussed, with the investigation of
the combined electrical and magnetic anisotropies effect on the input impedance and mutual coupling for
different geometrical configurations. The combined uniaxial (electric and magnetic) anisotropies provide
additional degrees of freedom for the input impedance control and coupling reduction.

INDEX TERMS Spectral domain analysis, uniaxial anisotropy, input impedance, mutual coupling, dipole
antenna, dipole antenna.

I. INTRODUCTION and antenna arrays in many areas. In fact, the technol-
With the advancement of telecommunications in recent years, ogy of printed antennas has greatly benefited from these
it has become increasingly obvious to use planar antennas advances. On the other hand, these antennas have poten-
tially contributed in their turn to the development of these

The associate editor coordinating the review of this manuscript and systems. Dipole antennas show specific characteristics and
approving it for publication was Conrad Rizal . features that make them attractive for modern wireless
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communication applications. They continue to play a cru-
cial role in communication technologies for various wireless
applications, all with outstanding operating performances.
Simple, small, inexpensive, easy to mount and to integrate
with microwave monolithic integrated circuits (MMICs),
the planar dipole antennas have been specifically designed
to be applied in many antenna and antenna arrays technolo-
gies. They are widely used in telecommunication applica-
tions, among others, we cite mobile phone systems, RFID,
ISM systems and wireless sensors [1]-[4]. This has led to
deploying further efforts in order to be able to model and
properly characterize these microwave components in terms
of geometry as well as in terms of materials related to the
manufacture of these devices. Recently, as material sciences
have greatly advanced, the complex media have significantly
arose as promising materials in the field of microwaves and
optics [S]-[7].

In general, complex media have seen increased interest
from scientists and researchers within the frame of artificial
media with new and exciting properties due to their extra
degree of freedom [6]. Anisotropy is an intrinsic property that
is found in crystals, layered structures, composite materials
and other natural materials, in addition to artificial ones. The
effect of anisotropy is necessary to be taken into consideration
and cannot be ignored in predicting properties in engineering
design for sensing and antenna applications [8]-[10]. These
have attracted a lot of interest and support from researchers
and manufacturers as powerful instruments with a promis-
ing growth potential in microwave applications [11]. Sev-
eral studies have been conducted to characterize microwave
structures printed on complex media, ferrites, metamaterials,
chiral using numerical and analytical methods [10]-[21].
Input impedance and mutual coupling of single and mul-
tilayer dipole antennas printed on isotropic, anisotropic
and chiral materials have been investigated in [22]-[27].
In [23], [24], and [26], only cases of electrical anisotropy
were considered and no discussion of the effect of this com-
ponent was carried out. In this work, we have character-
ized a dipole antenna printed on an anisotropic substrate by
highlighting, in particular, the effect of uniaxial electrical
and magnetic anisotropy on the input impedance, resonant
length and mutual coupling of two printed dipoles. Three
main configurations are considered: broadside, collinear and
echelon. The study is based on a theoretical formulation in
the spectral domain and a numerical solution technique using
the spectral method of moments.

Il. ANALYTICAL FORMULATION

Fig. 1 shows the structure considered in this analysis. The
presented configuration will be used to determine the mutual
coupling between the printed dipoles and to determine how
the input impedance is affected by the uniaxial anisotropic
layer. The direction of propagation is directed along the
z-axis and it is considered as the optic axis. In this study,
the uniaxial electrical and magnetic anisotropic substrates are
characterized by the following expressions of the permittivity
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FIGURE 1. (a) Printed dipole (b) Geometry of mutual coupling
configurations.

Isotropic case (Z, this work)

Anisotropic case (Z, this work)
*  Isotropic case (Z, [23])
*  Anisotropic case (Z, [23]
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FIGURE 2. Comparison of our computed input impedance of printed
dipoles on isotropic and anisotropic layer with those in [23], [24].

and permeability, respectively:

g 0 0

[eEl=e]| O & O (1a)
0 0 g
Mt 0 0

ul=wpo| 0 w O (1b)
0 0 Hz

The guided electromagnetic field propagation in the con-
sidered anisotropic medium is described in terms of super-
position of the decoupled TM and TE modes. The deduced
longitudinal components of the electromagnetic field of
the TE and TM modes satisfy the following homogeneous
second-degree differential wave equation [15]:

92E,
072

—y2E, =0 (2a)
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FIGURE 3. Comparison of our computed results of mutual coupling of
printed dipoles on isotropic layer with those repotted in [24] of
(a) broadside (b) collinear and, (c) echelon configurations.
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FIGURE 4. Real and imaginary parts of input impedance with uniaxial
anisotropic substrate of printed dipole antenna (a) for various values
of &z, (b) for various values of &;.

The dispersion relations are found to be as follows:

Ye = <? (a2 +B%) — ngtﬂt) (2¢)
and
Vi = (ﬂ (@ + %) = ngzm> (2d)

ye2 and yhz represent the propagation constants of the TM
and TE transverse modes, respectively. «, B8 are the Fourier
variables corresponding to the space domain and « is the free
space wavenumber.

lll. METHOD OF SOLUTION

Afterward, let’s search solutions for the two differential equa-
tions (2a) and (2b). The longitudinal components E, and H,
in the guided region admit the forms given by the following
expressions:

E; (Y, 2) = Accosh (ye2) + Bsinh (v,2)  (3a)
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FIGURE 5. Real and imaginary parts of input impedance with uniaxial
anisotropic substrate of printed dipole antenna (a) for various values of
uz, (b) for various values of ;.

H, (v, 2) = Apsinh (y42) + Bycosh (y42)  (3b)

where A., B., Aj and By, are complex constants.

On the other hand, for the region above the substrate (air),
the spectral components are decreasing waves with z, for
which the following solutions are assumed:

E, (y0,2) = Coe 10D (4a)

H. (yo,2) = Cpe 0D (4b)
where

Yo =/ (2 + B2) — k3 (4c)

and C, and Cj, are complex constants.

To determine the complex constants appearing in the
expressions of the electromagnetic field components, the fol-
lowing boundary conditions are used at z = 0 and
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FIGURE 6. Normalized resonant frequency of the dipole with uniaxial
anisotropic substrate for various values of (a): [¢] and (b): [r].

atz=d:
Eq =En =0 (5a)
Eq =Ep (5b)
Ey =Eyp (5¢)
Hy — Hy =, (5d)
Hy —Hep =, (5e)

Detailed algebraic analyses of the resulting mathematical
equations lead to the formulation of the estimated electric
field at the interface between the two media with respect
to current densities ]x and jy. Green’s tensor elements are
obtained and arranged to satisfy the following system of
equations [25], [28].

Ey = GyJy + Gyl (6a)

y = GyuJx + Gyyly (6b)

where jx and jy are the Fourier transforms of the current
densities In the analysis of the configuration of narrow dipole
structures, the studied case, the cross-current density in the

y-direction is generally neglected, because it is assumed that
the width of the strip is very small [25]. Therefore, only the
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FIGURE 7. Broadside mutual coupling for various values of (a): [ez],

(b): [e]-

function of the green G, is presented, since the others are not
involved in the calculations.

& _ —j < o> yove

" weg (a2 + B2) \[yoe: coth (ved) + ve]

_ ,32’(31% )
(yn coth (ypd) + 11 v0)

IV. NUMERICAL RESULTS

In this work, we are first interested in the input impedance,
the resonant length of the dipole and second in the mutual
coupling between two printed dipoles arranged in three con-
figurations. Before discussing the results obtained of the
uniaxial anisotropy case, a validation of the calculation code
elaborated, in Matlab, through a comparison with published
literature is essential.

A. VALIDATION
In this subsection, we investigate the effect of the substrate
anisotropy on the input impedance of the dipole, in addition
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FIGURE 8. Broadside mutual coupling for various values of (a): [x] and

(b): [ne]-

to the consideration of the mutual coupling for three cases
of geometrical configurations. Extensive computations were
performed involving a dipole structure printed on a uniaxial
anisotropic structure. The results from these computations
were successfully compared to the published results. We have
initially considered the isotropic and uniaxial anisotropic
cases (¢, = ¢, = 3.25and u, = pu; = 1) and (¢, = 3.14,
& =5.12 and p, = pu, = 1), respectively.

Fig.2 presents the input impedance (Continuous lines for
real impedance parts and Broken lines for imaginary parts)
of a planar dipole of width W = 0.0004 XA as a function
of the normalized length L/Xg. The dipole is printed on
an anisotropic grounded dielectric slab of thickness d =
0.1060A¢. Fig 3.a, b and c present the mutual coupling
between printed dipoles according to the collinear, eche-
lon and broadside configurations, respectively, for various
values of L = 150mm, W = 0.5mm, f = 500MHz and
d = 1.58mm. All of these dimensions were taken as they
are reported in [23] and [24], so that we can validate our
results.

The representation shows good agreements with data
reported in [23] and [24].
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FIGURE 9. Collinear mutual coupling for various values of (a): [¢],

(b): [ee]-

These results represent a validation of the accuracy
of the present work computations for both isotropic and
anisotropic substrates. A comparison representation of the
input impedance and mutual coupling for the configuration
of Fig. 1 are presented in Fig. 2 and 3.

In the present analysis, we aimed to highlight the effect of
combined uniaxial electrical and magnetic anisotropy that has
been less addressed in the literature.

B. EFFECT OF THE UNIAXIAL ELECTRICAL AND MAGNETIC
ANISOTROPY ON THE INPUT IMPEDANCE
Fig. 4.a shows the effect of ¢, on the input impedance (contin-
uous lines for real parts and broken lines for imaginary parts).
It consists in shifting the resonant length of the dipole
antenna with a slight change in its peak, while & effects
significantly the magnitude of the input impedance with an
increase of its peak, where it is doubled, from 3kS2 for &; =
3.25 and ¢; = 2.25 to 6k2 for &; = 2.25 and ¢, = 3.25, all
with a slight shift in the resonant length(Fig. 4.b).
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FIGURE 10. Collinear mutual coupling for various values of (a): [1;] and
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In Figs. 5.a and b, the effect of the two components of
permeability p, and w; does not resemble to that of the
permittivity components &; and &;. An increase in p, results
in an increase in the input impedance peak, with a decrease
in the resonance frequency.

The effect of the permeability component p, is reversed
in this case, where an increase in the p, component leads
to a significant increase in the resonance frequency with
a decrease in the peak value of the input impedance. The
boundary conditions imposed by the structure, the choice
of uniaxial anisotropy along a given optical axis and the
dimensions of the dipole mean that the Green’s tensor (which
connects the electric field and the current density) is asym-
metrically related to the four constituent parameters (&;, &2, 14
and ;). This may explain the difference registered between
the effects of these components compared to each other.

C. EFFECT OF THE UNIAXIAL ELECTRICAL AND MAGNETIC
ANISOTROPY ON THE RESONANT FREQUENCY

Figs 6.a and 6.b present the effect of the four elements of the
uniaxial electrical and magnetic anisotropy on the resonant
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FIGURE 11. Echelon mutual coupling for various values of (a): ¢z, (b): &;.

frequency. The values of this latter have been obtained from
the input impedance by varying ¢ and u, respectively and
calculating the corresponding resonance frequency which
corresponds to the zero crossing of the reactance curve (imag-
inary part) [29], [30].

It is shown in Figs.6 that the resonant frequency decreases
significantly as the value of the permittivity ¢, and u, are
increased. In particular, the resonant frequency is mainly
affected by the z-component of the permittivity and per-
pendicular permeability component w,. This is because the
dominant mode is present, which has a field component in
the substrate in the z-direction [13], [26].

D. EFFECT OF THE UNIAXIAL ELECTRICAL AND MAGNETIC
ANISOTROPY ON THE MUTUAL COUPLING

Mutual impedance computations between two printed
dipoles have been performed in three main configurations:
1) broadside, 2) collinear and 3) echelon. In these cases,
the dipoles in Fig. 1.b have a length of 15 cm, a width
of 0.5 mm with a source frequency of 500 MHz.
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The mutual coupling between the two printed dipoles
in broadside case (G = 0), has been calculated, illustrated
and compared with literature (Figs. 7.a and 7.b), for vari-
ous values of the anisotropic permittivity elements &; and
&; by varying one element at a time. It is shown that the
uniaxial anisotropy results agree well with those published
in [23], [24].

The mutual coupling is the largest for the anisotropic val-
ues of ¢, = 3.25 and ¢, = 5.12, and smallest for ¢, = 3.25
and e, = 2.25, while as for the & component, it has no
significant effect. The effect of the two components of the
uniaxial magnetic anisotropy p, and p.is reversed in this
case compared to the uniaxial electrical anisotropy; this is
well illustrated in Fig 8.a and b.

The optimal case of mutual decoupling is reached for
the permeability ;; = 0.5. This is because the dominant
mode TMO is along the z-direction i.e. the optical axis and
is in direct relation with &, and u; [25]. In the case of a
reduced mutual coupling a quasi-oscillation corresponding
to lengths 7 and 5mm is noticed for &, = 2.25 (1% case)

VOLUME 9, 2021



M. L. Bouknia et al.: Analysis of the Combinatory Effect of Uniaxial Electrical and Magnetic Anisotropy

IEEE Access

10 4
9=
~ 54
@ ]
2 4
N~ 4
S 31
§ 2
g 7
2 17
g 0
N
E -2—. | 7/
3——g=325,=325u=1 ,u=1'
[N
€=2.25,e=475,1=0.5 ,puF11.5
] §=2.25, =525, =525, u=0.5
- T T T T T T T T T 1
0.3 0.4 0.5 0.6 0.7 0.8

L/A

0

FIGURE 13. Optimal combined uniaxial electrical and magnetic
anisotropy elements effect on the input impedance of the dipole printed
antenna.

and p; = 0.5 (2" case), respectively. The corresponding
frequencies of these lengths are 28.57 and 47.06 GHz respec-
tively (Fig.7). Using the explicit cut-off-frequency expres-
sions given in [31], close values are obtained: 29.68 GHz
(TM1 mode) for the first case and 44.754 GHz (TE1 mode)
for the second case.

Figs. 9 and 10 show mutual impedance for the collinear
case plotted versus the separation distance G for different
uniaxial magnetic and electrical anisotropy elements. The
mutual coupling decays very slowly with G. The period of
oscillation of the mutual impedance as obtained from Fig. 6 is
150mm for the isotropic case, this value agrees with that
reported in [26].

This agreement is excellent and confirms that the mutual
coupling for the collinear configuration is only due to the
surface waves TM mode [26]. The origin of the mutual
coupling behavior for small values of G is due to the near
zone field of the dipoles. This is because of the dominant
mode in the substrate with no cutoff frequency. This may also
explain the feeble and similar effect of the four constitutive
elements. This agreement is good and shows that the coupling
in collinear arrangement is dominated by the surface waves
TM mode. This is due to the fact that most of the surface
wave power carried by this mode flows inside the dielectric
substrate [26].

In the echelon configuration, the mutual coupling com-
putations versus spacing G are shown in Fig. 11 and 12
for different dipole lengths. For G = 0 both dipoles are
in the broadside configuration, while for larger distances,
the dipoles are approximately collinear.

As G increases, the coupling factor decreases rapidly from
the broadside value and ultimately shows the same behavior,
as shown by the dipoles in the collinear configuration [26].

From Figs. 11 and 12, it can be seen that, in this case,
the component 1, = 0.5 exhibits the weakest coupling effect
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FIGURE 14. Optimal combined uniaxial electrical and magnetic
anisotropy elements effect on (a): mutual coupling of broadside
configuration (G = Omm, S changed), (b): mutual coupling of
collinear configuration (S = 0Omm, G changed) and (c): mutual coupling of
echelon configuration (S = 10mm, G changed).

even for G = Omm. The contribution of this component
becomes weaker for a distance G close to Ag/2, while the
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effect of e, = 2.25 is strongly reduced for G varying between
0 and Ag/4. This is mainly due to the reduction of electrical
and magnetic inductions. The other components have no
effect on the coupling, this is due to the location of the two
dipoles, we will return to this for the broadside configuration
case presented by Figs. 7 and 8. For G beyond A4/2, the four
components contribute well in the coupling and the oscil-
lations begin to appear by the effect of surface waves, the
configuration is similar to the collinear case commented and
discussed in Figs. 9 and 10.

E. OPTIMAL UNIAXIAL ELECTRICAL AND MAGNETIC
ANISOTROPY ELEMENTS

According to Figs.13 and 14, it can be seen that one can
either decrease the peak impedance or minimize the mutual
coupling between the two dipoles only by playing on the four
parameters without altering the resonance frequency of the
isotropic case.

In the case (&, = 4.75, ¢, = 2.25, uy = 1.5and u, = 0.5),
compared to the isotropic case, it was possible to decrease
to more than a half the input impedance peak (from 3.6K<2
to 1.73K2), while saving the same resonance frequency.
Consequently, it is likely possible, in the case (¢, = 5.25,
&, = 2.25, uy = 0.5 and u, = 5.25), to decrease the mutual
coupling by more than 30dB in some cases.

V. CONCLUSION

In this paper, the mutual coupling between dipoles, printed
on an anisotropic substrate, for three different configurations:
broadband, collinear and stepped is investigated after eval-
uating the input impedance of the dipole. It is shown that
the surface waves increase the mutual coupling in a collinear
arrangement of the printed dipoles. It is also concluded that
surface waves contribute to the mutual coupling in a signif-
icant way, through the two components ¢, and ;. Further-
more, the uniaxial electrical and magnetic anisotropy offers
further degrees of freedom and more flexibility to either
realize a good matching (direct effect on the input impedance
Zin) or to control the mutual coupling between dipoles.
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