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Abstract

When a cracked shaft rotates, the crack contained in it progressively opens and closes during a
revolution. Accordingly, the behavior of the shaft becomes nonlinear. In this paper, the propagation
of concave semi-elliptical shaped cracks contained in rotating shafts has been studied considering
the nonlinear effect of the breathing crack. To study the propagation, we propose an integration
algorithm based on the Paris- Erdogan Law which allows determining the crack shape evolution of
concave breathing cracks in rotating shafts. The Stress Intensity Factor used by the algorithm to
analyze the propagation has been computed using the four parametric expression for concave cracks
proposed by the authors in a previous work. By now, it has not been found in the literature prop-
agation studies of concave surface cracks in rotating shafts that consider the breathing mechanism
of the crack.

Keywords: Propagation of cracks, cracked shafts, concave shaped crack, breathing crack, rotating
shafts

1. Introduction

The fatigue crack growth is one of the main reasons of the failures of rotating machines. Due to
cyclic loading conditions, commonly surface cracks grow in the shafts, which are the main compo-
nents of rotating machines. These cracks may propagate during the service life of the mechanical
element until an undesirable failure occurs. So it is very important to know the fatigue crack growth
in order to predict the remaining life and to estimate the economic risks and establish maintenance
plans. Most of fatigue cracks in shafts initiate in the surface. The shape that these fatigue cracks
acquire when they propagate can be classified in three groups: straight, convex and concave.

As is well known, to study the propagation of the cracks is needful to determine a parameter
called Stress Intensity Factor (SIF). At first, many of the SIF studies focused on cracked shafts
considered straight cracks [1, 2, 3]. However, the real shafts present cracks with semi-elliptical
shape. For that, later, the studies were extended to semi-elliptical convex shaped cracks [4, 5,
6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. Nevertheless, although real cracks can also present
semi-elliptical concave shape [19, 20, 21, 22, 23, 24|, there are fewer SIF studies in the literature
related to these cracks [25, 26, 27, 28, 29, 30, 31, 32, 33, 34].
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Youngs Modulus

Poisson ratio

load

length of the shaft

diameter of the shaft

crack depth and minor semi-axe of the ellipse of a crack with
convex front

minor semi-axe of the ellipse of a crack with concave front
major semi-axe of the ellipse of a crack with concave front
major semi-axe of the ellipse of a crack with convex front
center of the ellipse of a crack with convex front

center of the ellipse of a crack with concave front

relative crack depth

relative position on the crack front

shape factor for a crack with concave front

shape factor for a crack with convex front

crack propagation rate

material constants of the Paris- Erdogan Law

SIF range

SIF in mode I at any point of the front

nondimensional SIF in mode I at any point of the front
generic point of the front

position on the front

maximum bending stress

SIF range for the whole rotation at every point of the front
maximum SIF value for the whole rotation at any point of the front
minimum SIF value for the whole rotation at any point of the front
advance at any point at the crack front

advance at the crack center

number of cycles range

number of cycles

number of cycles at each iteration

number of iterations

initial crack depth

SIF variation at the crack centre at each iteration
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On the other hand, the opening and closing of the crack during the rotation of the shaft can
be modelled in different ways. The models are generally classified as follows: open crack model,
switching model and breathing model. The first model considers that the crack does not close
during a rotation [35, 36]. The second model considers that the crack is always fully open or fully
closed [37, 38, 39, 40, 41, 42, 43]. Finally, the third model considers that the crack opens and closes
gradually during a rotation [44, 45, 46, 47, 48]. As a consequence of the opening and closing of the
crack, the behavior of the shaft becomes non-linear [49, 50]. Rubio et al. [17] determined a closed
SIF expression for convex cracks in terms of the crack geometry characteristics (shape and depth),
the relative position on the front and the rotation angle. In other work, Rubio et al. [34] obtained a
SIF expression for concave cracks in terms of the same variables. They also considered the gradual
opening and closing of the crack. In both works they considered the gradual opening and closing of
the crack and took into account that the behavior of the crack becomes nonlinear with the opening
and closing of the crack. Other works studied the SIF considering the opening and closing of the
crack [51, 52|, but they did not consider the nonlinear behavior.

The propagation of fatigue cracks has been studied by different authors. Some of these works
used the Forman et al. model [53, 54], although this model is not common due to its difficulty.
Others used the Paris Erdogan Law to predict the evolution of the crack [55, 51, 56, 57, 58]. They
assumed that all the points at the crack advance in perpendicular direction to the front. Most of
these authors considered convex crack [53, 54, 55, 51, 56, 59, 57, 60, 61]. However, as mentioned
before, the cracks also can be concave and there are fewer works in which the propagation of this
type of cracks were analyzed [28, 29, 31]. Carpinteri and Vantadori [28] analyzed the growth of a
concave surface crack contained at the root of a circumferential notch in a round bar under cyclic
loading through a numerical procedure that employed the Paris Erdogan Law without considering
the nonlinear behavior of the crack. In other work, Carpinteri and Vantadori [29] studied the fatigue
propagation of an initial concave crack in a round bar under tension and bending by a step by step
procedure based on the Paris Erdogan Law. They did not consider the nonlinear behavior of the
crack either. Rubio et al. [58] studied the propagation of a convex crack in a rotating shaft taking
into account the nonlinear behavior of the crack as the shaft rotates, concluding that when the
front of a convex crack becomes straight with the propagation, the crack would change from convex
to concave shape because the advances at the ends of the crack are greater than the advances at
the crack center. Thus, the need of studying the propagation of concave cracks considering the
nonlinear behavior of the crack becomes recommendable. Moreover, numerous reference books on
failure analysis in mechanical components show the usual transverse crack paths in the case of shafts
subjected to rotational bending, for example [19, 20, 21]. All of them conclude that from a convex
elliptical crack, especially in the case of moderate and severe stresses, it will grow until having a
concave elliptical shape. However, in the literature there are few studies focused in demonstrating
experimentally the shape changes of a propagating crack during the working of a real rotating shaft,
such as [22, 23, 24]. Also, they analyze the cracked section just after failure, that is to say, they
examine qualitatively the shape of the beach marks instead of analyzing them in a quantitative
way. To the knowledge of the authors, no research has been conducted, due to the complexity of
the problem, for the measurement of the evolution of the cracks during the growth in a direct form
neither in destructive nor non-destructive experiments.

In this paper, we have studied the propagation of semi-elliptical concave cracks contained in
rotating shafts considering the nonlinear behavior of the breathing crack. We have developed a
propagation algorithm to obtain the crack front evolution, considering that the points of the front
advance according to the Paris Erdogan Law. The SIF has been computed using the four parametric
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expression for rotating concave cracks proposed by the authors in a previous work [34]. We aim
to establish quantitatively the relationship among the shaft working cycles, its stress state and the
crack characteristics (depth and shape), over time, during the crack propagation. For the first time,
in the knowledge of the authors, the propagation of concave breathing cracks taking into account
the nonlinear behavior has been studied.

2. Problem statement

In Figure 1 (a) a detailed view of the studied shaft can be seen. The solid shaft has been made
of aluminum with the material properties: Young’s Modulus £ = 72GPa, Poisson’s ratio v = 0.3
and density p = 2800 kg/m3. The shaft contains a semi-elliptical concave crack in its central section
and it is submitted to rotary bending efforts. The diameter of the shaft is D = 20 mm and the
total length is L = 900 mm [33, 34]. We have applied two loads F' = 100 N at a distande d = 225
mm from both ends of the shaft, to simulate pure bending. The cross section of the shaft with the
concave shaped surface crack can be seen in Figure 1 (b), where O’ is the central point of the ellipse.
Although in this work we have studied the propagation of concave cracks, it is also necessary to
consider convex cracks, because, as will be seen later, some concave cracks could become convex
with the propagation. Moreover, according to the work about the propagation of convex cracks
presented by Rubio et al. [58], some convex cracks could become concave with the propagation and
vice versa.

The geometrical configuration of the crack has been defined with the following parameters [17]:

e The relative crack depth a = 7. There are five relative crack depths that are used, ranging

from 0.1 to 0.5 with an increment of 0.1.

e The relative position on the front v = 7. We have considered eleven positions on the front

that go from -0.83 to 0.83 with increments of 0.16. We have not considered the extreme
positions (7 =1 and —1) because they are singular points [62, 9, 63, 11].

e The shape factor, 3 = 7, for concave cracks and 3 = ¢ for convex cracks (see Figure 2). Five
shape factors for concave cracks and five shape factors for convex cracks are used, ranging
from -1 to 1 with an increment of 0.25 (8 = 0 corresponds to a straight crack, g/ = —1
corresponds to a circular concave crack and 8 = 1 corresponds to a circular convex crack).

To simulate the rotation of the shaft and the breathing mechanism we have considered different
rotation angles 6, that vary from 0° to 360° with increments of 5°. The rotation of the shaft is in
clockwise direction.

3. Fatigue crack growth algorithm

The propagation of an initial concave shaped surface crack under rotary bending has been
examined. For this, we have developed an integration algorithm based on the Paris- Erdogan Law
which allows determining the crack shape evolution. The front of a concave crack has been described
by an elliptical arc with semi-axes a and b’ and center at point O’ (Figure 2). As mentioned before,
to study the propagation of concave cracks, we have to consider also convex cracks. To describe the
front of a convex crack, an elliptical arc with semi-axes a and b and center at point O has been used
(Figure 2). In the coordinate system XY, the expressions of the elliptical arcs are the following:
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Fig 1: Shaft with a concave shaped surface crack. (a) Loads locations; (b) Cross section
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Fig 2: Elliptical arcs corresponding with a convex and a concave crack respectively
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105 The proposed algorithm determines the propagation of the crack for an initial geometry given

by the integration of the Paris- Erdogan Law [64]:

da m

where AK7 is the Stress Intensity Factor range for rotating bending loading; ;—ﬁ, is the crack
propagation rate; the parameters C'y m are the constants of the Paris Law that are assumed to be

o equal to 45x1072 and 2.9 respectively (the shaft is made of aluminum).
The elliptical arc has been divided into twelve segments corresponding to the positions on the

front v mentioned before. We have calculated the SIF at each of these eleven points of the front:
Ki(Py) = Fi(Py)ov/Ta (4)

where o is the maximum bending stress of the uncracked shaft, and F7(Py) is the nondimensional
us  SIF at a generic point P, of the front. The subindex <y refers to the position in the front. The
nonsimensional SIF used by the algorithm has been obtained using the four parameter expression for



concave cracks proposed by the authors in a previous work [34]. As mentioned before, the concave
crack could become convex with the propagation, in this case, the nondimensional SIF used in the
computations has been determined using the four parameter expression for convex cracks obtained

o in [17]. Both expressions take into account the breathing mechanism of the crack. In Figure 3 we
can see an example of the evolution of the SIF during a rotation for a concave crack of o = 0.3
and S = —0.75 and for the positions on the front v = —0.83; —0.5; —0.33; 0;0.33;0.5; 0.83. We can
observe that until & = 50° the crack is fully open because all the SIF values are positive, from this
angle the crack starts to close and remains partially open until § = 160° (part of the SIF values are

s positive and part are null), between § = 160° and 6§ = 200°, the crack is fully closed with all the
SIF values null. In § = 200° the crack stars to open again.

Crack Crack Crack Crack Crack
Fully Partially Fully Partially Fully
open open closed open open

0° 45° 90° 135° 180° 225° 270° 315° 360°
0

Fig 3: Evolution of the SIF during a rotation for a concave crack of & = 0.3 and 8 = —0.75

Under rotary bending, the SIF in a whole rotation ranges from a maximum value Kj a2 (Py)
to minimum value, K min(Py), that is equal to zero according to [17, 34] due to the closing of the
crack.

130 A-KvI,whole'r'otation(-P'y) = KI, maaz(P'y) - KI, mzn(P'y) = KI, max(Pfy) (5)

The fatigue crack growth for each point has been deduced using the Paris Erdogan Law [55, 51,
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56, 57]:
Aa(P.
W) _ 0 AK(P)" = Aa(Py) = AN O [AK ()] (6)
being AN the number of cycles. For the central point of the front, A, the crack advance:
135 Aa(A) = AN - C- [AKI(A)]m (7)

We have included a flowchart of the procedure in Figure 4.
The propagation algorithm allows choosing the optimal value of the advance at the crack center
Aa(A) that remains constant in the propagation. Figure 5 shows the convergence study for this
variable in the cases of an initial crack of geometry ag = 0.1 By = —1 and oy = 0.2 Sy = —0.5.
1w The crack shape § has been plotted versus the relative crack depth « for different advances at
the crack center (Aa(A) = %; %; %; 2%0; 3%0). According to this convergence study, the value of
the advance at the crack center Aa(A) = T?o is adequate. The results of the convergence study
corresponding to other initial geometries of the crack are similar.
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Fig 6: Fatigue crack growth at each point of the front

Relating the equations 6 and 7, we have obtained the advance for each point of the front, Aa(P,)
as a function of the advance in the central point, Aa(A), following the expression:

AK (PO\™
Ba(P) = Bala) (S0 ) ®)
Once the advance at each point of the front has been obtained by considering that the advance
occurs in direction perpendicular to the front, the new positions A’ and Pfy can be determined
(Figure 6). The obtained points, fitted by the Least Squared Method, generate a new elliptical
front. The geometric evolution of the crack front is determined iteratively until the crack depth
reaches a predetermined value.
Additionally, it is possible to determine the total number of cycles, N, necessary to reach a
determined value of the depth, that it is calculated by adding the number of cycles obtained at
each iteration Ny:

N=>"N; (9)
f=1

10
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Fig 7: Evolution of the front of a concave crack of depth ag = 0.1 for the different shape factors

where it is de number of studied iterations. The number of cycles obtained at each iteration can
be determined as follows:

ajt+Aa(A) da
N = | f (10)
ait C(AKjy,,..(A)™

being a;; the initial crack depth at each iteration and AK f

Imaz(A) is the SIF variation at the
central point at each iteration.

4. Results

4.1. Ewvolution of concave cracks

We have analyzed the evolution of different cracks with straight and concave front. In Figure
7, the evolution of the front of a concave crack of depth ag = 0.1 has been shown for the different
shape factors By = 0, —0.25, —0.5, —0.75, —1. Moreover, in Figure 8, the propagation paths obtained
for a crack of initial depth ag = 0.1 and initial shape factor By = —1 can be observed. We can
see that, independently of the initial shape, the crack changes its shape from concave to convex
with the propagation. As the shape factor increases, the crack changes its shape to convex before,
that means for a smaller crack. Once the crack has adopted convex shape, the front becomes more
elliptical until a determined crack depth value and then becomes straighter. Later, it changes its
shape again to concave. Finally, we can observe that, regardless of the initial shape, when the crack
reaches the depth o = 0.5, the crack has adopted concave shape with an approximate shape factor
value of -0.25.

Figure 9 shows the evolution of the front of a concave crack of depth oy = 0.2 for the different
shape factors 5y = 0,—-0.25,—0.5,—0.75, —1. It can be seen that for 5y = 0 and Sy = —0.25, the
concave crack becomes straight with the propagation and it changes its shape to convex to, later,

11
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Fig 9: Evolution of the front of a concave crack of depth ag = 0.2 for the different shape factors

become again concave. However, for 5y = —0.5, By = —0.75 and By = —1, the crack becomes
straighter with the propagation, but it does not become convex. As in the previous case, regardless
of the initial shape, when the crack reaches the depth a = 0.5, the crack has adopted concave shape
with an approximate shape factor value of -0.3.

Figure 10 shows the evolution of the front of a concave crack of depth ay = 0.3 for the different
shape factors 5y = 0,—0.25,—0.5,—0.75,—1. We can observe that none of the cracks becomes
convex with the propagation. If the crack initially is straight (8y = 0), it directly becomes concave
with the propagation. If the concave crack has an initial shape factor 8y = —0.25, it maintains
practically the same shape with propagation. Finally, for 5y = —0.5, oy = —0.75 and 5y = —1, the
crack becomes straighter with the propagation until it reaches an approximate shape factor value
of -0.37 for the crack depth of 0.5.

Finally, in Figure 11 we can see the evolution of the front of a concave crack of depth ay = 0.4
for the different shape factors. We can observe a very similar trend to that we saw in the previous
case of ag = 0.3. None of the cracks becomes convex with the propagation in this case.

Summarizing, independently of the initial depth and shape, concave cracks tend to conserve the
concave shape when they reach sufficiently large depths. For all the concave cracks of ag = 0.1
and for g = 0.2 and Sy = —0.25, the concave crack becomes straight with the propagation and it
changes its shape to convex to later again become concave. For g = 0.2 and Sy = —0.5, By = —0.75
and By = —1, the crack becomes straighter with the propagation, but it does not become convex.
For ay = 0.3,0.4, the crack also maintains the concave shape with the propagation.

4.2. Number of cycles

Also, we have analysed the number of cycles necessary to reach the crack depth a = 0.5. In
Figure 12 the number of cycles for a concave crack of initial depth «g = 0.1 has been plotted
versus the relative crack depth for the different shape factors. We can see that the number of cycles
necessary to reach the crack depth a = 0.5 increases when the initial crack is straighter. When

13



0,5

0,3

0,1

== flo=-1
0,55 =& fo=-0.75
— fo=-05
¢ flo= -0.25
== o= 0

005 o001 015 02 025

Fig 10: Evolution of the front of a concave crack of depth ap = 0.3 for the different shape factors

== flo= -1
0,55 =& fo=-0.75
=i Po=-05
= Po=-0.25
5= fio=0

o0s o1 015 02 025 03 0,35

L

Fig 11: Evolution of the front of a concave crack of depth ap = 0.4 for the different shape factors

14



205

210

215

220

8000000

7000000
6000000
5000000
——p=0
Z, 4000000 -==f=-025
—f = -0.5
3000000
-B=p=-0.75
2000000 == -1
1000000
0

o] 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5

Fig 12: Number of cycles for a concave crack of initial depth ag = 0.1

the crack is initially straight 8y = 0, the number of cycles is similar than for a concave crack with
shape factor Sy = —0.25, and and it is triple that for a concave circular crack (8y = —1).

4.8. Evolution of elliptical cracks

Finally, we have plotted jointly the evolution of convex and concave semi-elliptical cracks for the
initial depths cg = 0.1,0.2,0.3 and for all the different inital shapes in the Figure 13. We can see
that, independently of the initial depth and shape, both convex and concave cracks tend to adopt
the concave shape when they reach large depths.

5. Conclusions

In the present paper, the propagation of concave shaped surface cracks contained in the studied
shaft under rotary bending have been examined. The breathing mechanism of the crack has been
considered. The following conclusions have been obtained:

e For initial small concave cracks (ap = 0.1) the crack becomes straight with the propagation
and it changes its shape from concave to convex. Once the crack has adopted convex shape,
the front becomes more elliptical until a determined crack value and then it becomes straight
and concave again.

e For cracks of ag = 0.2, if 5y = —0.25, the concave crack becomes straight with the propagation
and it changes its shape to convex to later again become concave. However, if g = —0.5,
Bo = —0.75 and By = —1, the crack becomes straighter with the propagation, maintaining
the concave shape.

e For longer concave cracks (ag = 0.3,0.4), the crack maintains the concave shape with the
propagation.

15
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e Independently of the initial depth and shape, both convex and concave cracks tend to adopt
concave shape with the growth.

e The number of cycles necessary to reach the crack depth a = 0.5 increases when the initial
crack is less concave.

The methodology proposed in the paper is general and could be applied to any shaft. The
conclusions shown in this paper are specific to the studied shaft made of aluminum, because the
parameters C and m of the Paris Law are specific for the aluminum and the maximum bending
stress to calculate the KI is specific for the shaft of the study. Thus, changing them, the evolution
of a concave shaft contained in any shaft could be determined using the proposed methodology.
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