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Locomotion produces full-field optic flow that often dominates the visual
motion inputs to an observer. The perception of optic flow is in turn impor-
tant for animals to guide their heading and interact with moving objects.
Understanding how locomotion influences optic flow processing and
perception is therefore essential to understand how animals successfully
interact with their environment. Here, we review research investigating
how perception and neural encoding of optic flow are altered during self-
motion, focusing on locomotion. Self-motion has been found to influence
estimation and sensitivity for optic flow speed and direction. Nonvisual
self-motion signals also increase compensation for self-driven optic flow
when parsing the visual motion of moving objects. The integration of
visual and nonvisual self-motion signals largely follows principles of Baye-
sian inference and can improve the precision and accuracy of self-motion
perception. The calibration of visual and nonvisual self-motion signals is
dynamic, reflecting the changing visuomotor contingencies across different
environmental contexts. Throughout this review, we consider experimental
research using humans, non-human primates and mice. We highlight exper-
imental challenges and opportunities afforded by each of these species and
draw parallels between experimental findings. These findings reveal a pro-
found influence of locomotion on optic flow processing and perception
across species.

This article is part of a discussion meeting issue ‘New approaches to 3D
vision’.
1. Introduction
Locomotion produces full-field optic flow that often dominates the visual motion
inputs to an observer (figure 1) [1–7]. The perception of such visual motion is
important for animals to guide their own movement within an environment
and also to determine the relative movement of external objects, for example
during prey capture [8,9] or predator avoidance [10]. Understanding how loco-
motion influences optic flow processing and perception is therefore essential to
understand how animals successfully interact with their environment.

Perception and neural encoding of optic flow has historically been studied
in stationary, fixating subjects. While these paradigms afforded tight control
over experimental conditions necessary to investigate visual processing, they
also have clear ethological limitations. Recent developments of experimental
methods are however enabling a growing focus on the influence of self-
motion and active behaviour on visual processing and perception [11–18]. In
this article, we review research investigating the effects of self-motion on
optic flow processing and perception, with a particular focus on movements rel-
evant to locomotion. Throughout, we consider experimental research using
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Figure 1. Introduction to optic flow during locomotion. When a subject is walking toward a tree (a), they experience a characteristic optic flow pattern (b) that is
expanding outwards from the target location. When the subject moves faster (c) they experience a correspondingly faster optic flow (d ).
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humans, non-human primates and mice. In doing so we high-
light the experimental challenges and opportunities afforded
by each of these species, and, where possible, draw parallels
between experimental findings obtained from each of them.

As the review is multidisciplinary, we first introduce some
primers below to provide brief contextual background useful
for reading this review.
[Primer A] Perceptual functions of optic flow
Movement of an observer through an environment produces
relative motion of the 3D environment. This relative environ-
mental motion is focused through the optics of the eyes onto
the retinas, forming two-dimensional velocity fields, i.e. optic
flow, which are influenced by both self-motion and the struc-
ture of the environment [5,18,19]. Perceiving optic flow,
therefore, enables an observer to make inferences about
their movement within an environment. Indeed, perception
of optic flow can be used to estimate the direction [20]
and speed [21,22] of self-motion, gain information about the
structure and layout of objects within the environment [23,24]
and parse external object motion from visual motion due to
self-motion ( flow parsing; [25]).
[Primer B] Visual cues for motion-in-depth and optic
flow
A number of monocular and binocular visual cues provide
information about optic flow and self-motion to an observer.
Monocular cues include structured velocity fields as well as
changes in the size and spatial frequency of visual objects
[19,26]. Binocular cues include inter-ocular velocity differ-
ences (differences in velocity produced by a moving object
projected onto two spatially separated eyes), and changes in
binocular disparity [5,27]. Studies investigating perceptual
sensitivity have found that the use of monocular and binocu-
lar cues for motion-in-depth varies substantially both across
the visual field [28–30] and with viewing distance [31].
More generally, well-known errors in the perception of
motion-in-depth can be explained by Bayesian inference of
noisy sensory signals [32], suggesting that the influence of
different visual cues on motion perception may depend on
their reliability. Intriguingly, when humans are provided
with feedback on the accuracy of their performance in a 3D
motion perception task they can learn to leverage different
visual cues [33,34]. The usage of different visual cues for
the perception of optic flow is therefore likely to be flexible
and context-dependent. An important consideration is there-
fore how display devices used in experiments may alter their
use compared to natural viewing.

[Primer C] Optics of the primate and rodent visual
systems
In this article, we review studies from primates and rodents.
There are many obvious differences in the optics of the rodent
and primate visual systems which have implications for
optic flow processing. Whereas primate eyes face forward,
most rodents have sideways-facing eyes. While such lateral
placement gives rodents a larger field of view [35,36], it
comes at a cost—the region of visual space where the field of
view of the two eyes overlaps, known as the binocular zone,
is substantially smaller in mice (approx. 40° compared to
approx. 120° in humans; [37,38]) resulting in a smaller region
where binocular cues for depth perception are available. Never-
theless, mice can discriminate stereoscopic depths [39] and,
similar to primates, have neurons that are binocular disparity-
sensitive, throughout visual cortex [37,40,41], indicating that
binocular cues for depth are used by the mouse visual system.

The mouse retina is suitable for processing optic flow
despite its low-acuity. While the density of photoreceptors
in mouse retina is actually similar to that of primates
[42–45], the smaller size of the mouse eye coupled with a
larger field of view means that the photoreceptor per unit
area of the visual scene is smaller than in primates [46]. More-
over, the high acuity of primate vision is largely due to the
concentration of approximately 99% of cone photoreceptors
within the fovea, an area that takes up approximately 1% of
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the retina [47]. As such, mouse vision is believed to be
similar to that of primate peripheral vision [42,46,48]. Given
the importance of peripheral vision in the perception of
optic flow [49–51] and the use of optic flow in human obser-
vers to perceive visual events when low visual acuity is
simulated [52], the mouse provides an appropriate model
species for investigating perception and neural encoding of
optic flow.

[Primer D] Neural encoding of optic flow
The neural encoding of optic flow is best understood in non-
human primates. In particular, neurons in the dorsal Medial
Superior Temporal (MSTd) area, a higher visual area within
the dorsal stream of the primate visual system, have large
receptive fields often covering both ipsi- and contralateral
halves of the visual field, indicating their suitability for the
encoding of full-field optic flow caused by self-motion [53].
Indeed, neurons in MSTd are selective for complex visual
motion patterns such as expansions, contractions, rotations
and spirals [54–57] that can arise from combinations of
head and eye-movements (see [58] for a recent review). More-
over, tuning for these complex visual motion patterns can be
invariant to the precise form of the stimulus used [59], as well
as its location within the visual field [57].

Tuning for complex optic flow patterns, as observed in
primate area MSTd [54–57], has not yet been identified in
the mouse. However, neurons in a number of mouse visual
cortical areas are selective for specific combinations of bino-
cularly presented drifting gratings simulating forwards and
backwards translations, as well as rotations [60], indicating
that selectivity for optic flow patterns may be present. In par-
ticular, it was found that higher visual areas RL/A, followed
by AM and PM, were enriched with neurons selective for
translation or rotation compared to V1 [60]. Interestingly,
mouse visual area RL is biased to represent the lower
visual field [61,62], indicating that visual motion in the
lower visual field may be important for signalling self-
motion in the mouse, reflecting the proximity of mouse
eyes to the ground plane. In accordance with this, neurons
in the mouse visual cortex with receptive fields in the lower
visual field tend to respond more strongly to coherent
visual motion [63]. It will be important for future work com-
paring the neural encoding of optic flow in mice and
primates to consider their distinct ecological niches.

It is unclear to what extent an analogous area to primate
MST exists in the mouse visual system. More generally, a
number of studies have sought to determine whether
the mouse visual system has distinct processing streams
analogous to the dorsal and ventral streams in primates
[61,64–70], however, these studies have sometimes produced
conflicting results. Given that both selectivity for coherent
visual motion and tuning for visual speed are widespread
in mouse visual areas [63,70,71], there may be a more distrib-
uted code for visual motion and optic flow in the mouse
visual system.

[Primer E] Modulation of visual processing during
locomotion
Many recent studies have investigated the influence of
locomotion on visual processing in the mouse, often lever-
aging the spontaneous locomotion exhibited by mice when
head-fixed on a treadmill [72,73]. In just over a decade
these studies have revealed effects of locomotion throughout
the mouse visual system: from the outputs of the retina
[74,75], to thalamic and midbrain nuclei [76–80] and a
range of cortical areas [73,80–83]. While we provide an over-
view of the main findings below, other reviews provide a
more detailed account of the effects of locomotion and the
pathways supporting them (e.g. [17]).

The effects of locomotion on visual processing are
diverse and vary between visual areas and cortical layers
[71,76,77,79,80,84,85] as well as genetically, physiologically
and functionally defined cell-types [73,78,86–90]. Modulation
of visual responses during locomotion has been described at
multiple spatial scales. At a cellular level: membrane poten-
tials show bidirectional changes [86,91,92]; spontaneous and
evoked firing rates are altered [73,85]; and visual response
dynamics are less transient [71]. In terms of visual tuning
properties: locomotion increases spatial integration [93]; is
linked to additive and multiplicative tuning gain for visual
features such as orientation, direction and spatial frequency
[84,94]; and also altered tuning preferences for visual speed
[81]. Furthermore, joint tuning for optic flow speed and
self-motion signals correlated with running speed have
been described in a range of mouse visual areas [77,80,95],
indicating that integration of self-motion and visual motion
signals is widespread in the mouse visual system. At the
scale of neural populations: locomotion is associated with
reductions in pairwise noise correlations [76,96]; changes in
LFP power spectra [73,96]; altered functional connectivity
between brain areas [97] and changes in the geometry and
structure of latent population activity [71,98].

While these changes in neural activity observed during loco-
motion generally indicate enhanced encoding of visual inputs,
perceptual studies are thus far limited and provide mixed
results as to whether locomotion also improves visual percep-
tion [91,99,100], with changes in behavioural performance
likely dependent on the specific task context [100].

Are equivalent changes to visual processing also present
in primates? A recent preprint found that locomotion also
modulates visual responses in head-restrained marmosets, a
non-human primate [101]. By contrast to mouse V1, where
firing rates tend to increase during locomotion, firing rates
were more likely to decrease in marmosets and the magni-
tude of firing rate changes was overall weaker. Interestingly,
the effects of locomotion in marmosets varied between neur-
ons responding in the fovea and the periphery, with the latter
more likely to increase firing rates during locomotion. More
generally, the authors noted that changes in firing rates
correlated with locomotion could be explained as a shared
gain factor across the recorded population in both mice and
marmosets, suggesting that similar principles may underlie
modulation of visual systems by locomotion in mice and
primates. Further comparative experimental work should
provide insights into these principles.

[Primer F] Experimental methods for investigating
visual perception during movement
An increasing number of experimental methods are available
to investigate the neural encoding and perception of optic
flow by enabling the presentation of visual inputs to large
areas of the visual field (table 1). These display environments
can be coupled to subject self-motion (table 2) in various



Table 1. An overview of the visual environments available to investigate the neural encoding and perception of optic flow. The table also summarizes available
methods to couple visual displays to a subject’s self-motion. VR ‘CAVE’ image from: https://commons.wikimedia.org/w/index.php?curid=868395.

Real environments Large display environments Head-mounted displays

A photograph of a woodland.

— Natural visual inputs.

— World and eye cameras can be

used to reconstruct observed

visual scene [9,103].

— Lenses [106] and prisms [107]

can be used to manipulate

visual inputs.

Left: a VR ‘CAVE’. Right: two-dimensional rodent VR

[102].

— Flexible presentation of visual inputs.

— Curved or multiple display devices can achieve large

visual field coverage.

— Virtual [95,108,109] / augmented [108,110,111]

reality.

Left and right eye views of a head-mounted

display.

— Flexible stereoscopic presentations of visual

inputs.

— Virtual [104] / augmented reality [105].

Coupling with movement

— Natural free movement.

— Passive motion platforms and

treadmills can be incorporated

[112].

— One-dimensional/two-dimensional treadmills

[49,72,102].

— Passive motion platforms [113,114].

— Free movement interaction is possible with motion

tracking cameras (e.g. ‘VR CAVEs’) [115].

— Natural free movement using built-in

tracking of rotational and translational

head movements.

— One-dimensional/two-dimensional

treadmills [104].

— Passive motion platforms.
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ways, enabling the investigation of optic flow processing and
perception during subject movement.
2. Key findings
In the following sections, we highlight key findings regarding
howtheperception andneural encodingof optic floware affected
bymovement related to locomotion.Webegin each sectionwith a
description of key observations made using psychophysics in
human subjects. We then discuss physiological and perceptual
measurements in animal models that may provide mechanistic
explanations for the observed effects, focusing on findings we
feel are most relevant to perceptual phenomena.

(a) Walking slows perception of optic flow speed
A striking phenomenon of human locomotion is that optic flow
appears slower while walking [11,104,116–118]. Specifically,
walking subjects choose faster optic flow speeds to match
optic flow speeds viewed while stationary (figure 2a;
[11,104]). This suggests that locomotion has a subtractive
effect on the perception of optic flow speed. This subtractive
effect is largely specific to walking as there is a reduced effect
when self-motion is related to cycling or arm-cycling and
no observable effect for an arbitrary periodic action (finger tap-
ping; [119]). The subtractive effect can be present during
treadmill walking, suggesting a role for proprioceptive and/
or efference copy signals [104]. It is also observed during pas-
sive translation in a wheelchair [104], suggesting a role for
vestibular signals. Normal walking approximately sums the
effects of treadmill walking and passive translation in a wheel-
chair, indicating that nonvisual self-motion signals additively
contribute to the magnitude of the effect [104]. Importantly,
the effect also scales with walking speed, indicating that it
goes beyond a binary behavioural state-dependent effect, and
instead depends on continuous self-motion signals correlated
to walking speed [104,119,120]. The effect also depends on
the congruence of visual motion to self-motion [104,116] and
is larger for faster visual speeds [117], demonstrating that it
depends jointly on visual and nonvisual self-motion signals.

Is there a neural mechanism for optic flow to be perceived
as being slower during locomotion? It is now well established
that the encoding of visual speed by neurons throughout
the mouse visual system is dependent on concurrent self-
motion signals [71,77,80,81,95]. Of particular relevance, it
has been reported that neurons in mouse V1 and higher
visual areas AL and PM prefer faster visual speeds during
locomotion [81]. If neural tuning changes between behaviour-
al states, a downstream area trained to estimate visual
speed using neural activity in one behavioural state could
make errors estimating visual speed from neural activity
occurring in another state. Therefore, systematic changes to
tuning preferences during locomotion might result in
biased predictions. Specifically, if a decoding area generates
a model of visual speed tuning based on when the animal
is stationary and subsequently attempts to decode visual
speed when the animal is locomoting, it may underestimate
visual speed since the neurons it is decoding from now
prefer faster visual speeds. Thus, changes in visual speed
tuning preferences between behavioural states are a potential

https://commons.wikimedia.org/w/index.php?curid=868395


Table 2. An overview of the main features of different experimental
methods used to investigate visual processing and perception in moving
subjects.

Type of
movement

Active
self-
motion?

Proprioceptive
cues?

Vestibular
cues?

Free movement

Treadmills

Motion platforms

100 120 140 160 180 200
visual speed (cm/s)
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speed viewed
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optic flow appears slower
during locomotion

optic flow speed discrimination
is improved during locomotion

stationary
walking0

0.25

0.50

0.75

1.00

Figure 2. Changes in optic flow speed perception during locomotion. (a) While walking, subjects perceive faster optic flow speeds to match optic flow speeds
viewed when stationary, indicating that optic flow appears slower. This is illustrated by the point of subjective equality (indicated by dashed lines) being shifted to a
faster visual speed compared to a reference speed (indicated by black triangle) viewed when stationary (illustration of results from [11]). (b) During walking subjects
exhibit increased sensitivity to optic flow speeds faster than a threshold speed that approximately matches average walking speed (approx. 125 cm s−1 in [11]). As a
result, psychometric curves for optic flow speed discrimination are slightly steeper when subjects are walking, indicating improved discrimination of optic flow speeds
(illustration of results from [11]).
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neural mechanism underlying changes in the perceived
speed of optic flow. However, it is not yet known whether
visual speed tuning preferences similarly change between
stationary and locomoting states in primates, and compari-
sons of mouse visual speed perception between stationary
and locomoting states are not yet available. Future exper-
iments comparing neural tuning for visual speed between
stationary and locomoting states in head-fixed marmosets
[101], alongside experiments investigating changes in percep-
tual estimation of visual speed in mice, would provide the
means to test this.

(b) Walking improves optic flow speed discrimination
What is the function of the slowing down of perceived optic
flow speed during locomotion? One hypothesis is that it
enables increased sensitivity to optic flow speed [11]. This
hypothesis is based on the framework for a perceptual coordi-
nate system for correlated variables proposed by Barlow
[121,122]. The framework is based on an assumption that a
subject can discriminate a fixed number of divisions of per-
ceived optic flow speeds. Therefore, when walking reduces
the perceived speed of optic flow it also reduces the range of
perceived speeds that need to be encoded by a subject’s
visual system. This then enables the discrimination of finer
differences of speed [11,104,121,122]. In agreement with this
hypothesis, locomotion can improve the discrimination of
optic flow speed (figure 2b; [11]). A similar result has been
demonstrated using an adaptation paradigm [123]. Subjects
who viewed an initial adapting stimulus that was moving
were subsequently biased to perceive a test stimulus as
moving with a slower speed. Interestingly, the adapting stimu-
lus also improved subjects’ discrimination of the speed of the
test stimulus, with improvements in discrimination pro-
portional to the magnitude of perceptual bias. Thus, it may
be a general principle that adaptation can increase sensitivity
to visual motion at the cost of biasing perception, prioritizing
sensitivity over accuracy [124].

We recently showed that the visual speed of moving
dot fields can be better decoded from neural activity in loco-
moting mice [71], raising the possibility that perceptual
sensitivity for visual speed is also improved in mice during
locomotion, similar to humans [11]. We also found that
visual speed could be decoded earlier following stimulus
onset in locomoting mice [71], potentially reflecting an
adaptive neural mechanism enabling mice to respond more
rapidly to changing visual motion inputs. Improvements in
the neural encoding of visual speed during locomotion vary
between visual areas and are strongest in V1 and medial
higher visual areas AM and PM [71]. Interestingly, areas AM
and PM are biased to respond to the peripheral visual field
[62] where changes in optic flow during locomotion are largest
and may be best processed [125]. Mouse higher visual
areas AM and PM may therefore be specialized for the neural
encoding of optic flow during locomotion. Perceptual exper-
iments will be required to determine whether locomotion
also improves perceptual sensitivity for visual speed in
mice, as well as providing a means to investigate the neural
mechanisms underlying any changes in perception.

(c) Self-motion alters flow parsing and heading
perception

The subtractive effect of locomotion on the perceived speed
of optic flow may also reflect perceptual stabilization of the
visual environment [126], enabling the detection of motion
within the environment by parsing visual motion caused
by external motion from optic flow caused by self-motion.
Consistent with this hypothesis, when visual object motion is
presented simultaneously with optic flow simulating self-



estimate of object motion
due to self-movement

inferred actual
object motion

observed optic flow

optic flow vector of
stationary environment 

optic flow vector
of moving object

flow parsing
while stationary

flow parsing
while moving

(a) (b)

Figure 3. Changes in flow parsing during self-motion. (a) Forwards translation over a simple ground plane produces a pattern of expanding optic flow (black lines).
Observed visual motion of an object within the environment depends on a combination of simulated self-motion and object motion. (b) Shown is a zoomed-in view
of the dashed grey box in (a). The flow parsing hypothesis posits that observers infer actual object motion (dashed red lines) by a vector subtraction of the estimated
visual object motion due to self-motion (solid black lines) from observed object motion (solid red lines). The estimate of visual motion due to self-motion is larger in
magnitude when an observer is moving (Right panel) compared to while stationary (Left panel), resulting in changes to inferred actual object motion (illustration of
results from [129] based on schematic from [130]).
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motion, humans and non-human primates can infer object
motion by subtracting a visual estimate of self-motion based
on the global optic flow pattern (‘flow parsing’; [25,127]).
While flow parsing has primarily been investigated as a
visual process [128], the subtractive effect of self-motion on
optic flow speed perception indicates that nonvisual signals
may also contribute. Moreover, congruent vestibular stimu-
lation by passive translation promotes the perception of
pattern motion when viewing bistable plaid stimuli [113],
indicating that, when available, nonvisual self-motion signals
contribute to the perception of global motion patterns such
as optic flow. Indeed, in primates (both human and non-
human) the inclusion of congruent vestibular signals via
passive translation increases the compensation for visually
simulated self-motion when judging object motion trajectories
(figure 3; [129,131]). Furthermore, by shifting visual heading
relative to walking direction within a virtual environment, it
has been demonstrated that humans can use a combination
of visual and nonvisual cues for self-motion to plan future
interactions with objects [130,132]. Thus, when nonvisual
self-motion signals are available they can contribute to the per-
ceptual parsing of visual motion due to object motion from
optic flow generated by self-motion.

Self-motion signals can also improve the accuracy of head-
ing direction perception from optic flow in the presence of
interfering object motion. While humans and non-human pri-
mates can accurately judge self-motion heading from optic
flow in stationary environments, the presence of object motion
can bias estimates of heading (figure 4; [134,135]), particularly
when optic flow is unreliable [133]. Thus, perceptual estimation
of heading direction on the basis of visual cues alone is prone to
errors in visually ambiguous settings. However, the inclusion of
congruent vestibular stimulation via passive self-motion signifi-
cantly reduces object motion-induced biases in heading
perception (figure 4; [133]). Congruent vestibular inputs can
therefore improve the accuracy of heading perception when
visual object motion is present within the environment.

The neural mechanisms underlying flow parsing in
primates are not well established. Candidate areas which
may play a role in the primate visual system are the Middle
Temporal (MT) area and MSTd [129], which are reciprocally
connected [136]. Neurons in MSTd often have receptive
fields that cover the majority of the visual field [137] and
can encode heading direction from mixtures of visual and
vestibular inputs [114,138]. Neurons in area MT have smaller
receptive fields, are commonly tuned for visual motion direc-
tion and speed and exhibit anatomical clustering based on
motion direction and speed preferences [139,140], making
them suitable for the encoding of local object motion. As
such, heading estimates based on activity in MSTd may be
fed back to influence the representation of object motion in
area MT (and vice versa). Neurons in MSTd that selectively
respond to incongruent combinations of visual and vestibular
motion direction may also play a role in assigning visual
motion due to object motion during self-motion [141].

In the mouse, the higher-order visual thalamic Lateral
Posterior (LP) nucleus (analogous to the primate pulvinar)
contains neurons tuned for negative correlations between
visual speed and running speed [77,80]. Projections from
LP also appear to be the major driver of joint tuning for
visual speed and running speed in higher visual cortical
area AL, which also contains neurons that primarily encode
negative correlations between visual speed and running
speed [80]. These neurons are reminiscent of cells found in
primate MSTd that encode incongruent combinations of
visual and vestibular motion direction [141] and suggest a
possible role for LP and AL in detecting object motion
during self-motion. Interestingly, anatomical subregions of
LP with distinct functional connectivity to other visual
areas appear specialized for the encoding of either full-field
or object motion [142], further indicating that LP may play
a central role in flow parsing within the mouse visual
system. The emergence of a flow parsing task for non-
human primates [129] and the development of appropriate
behavioural tasks for mice should provide more opportu-
nities to investigate the neural mechanisms underlying the
perceptual parsing of visual motion due to object motion
from self-motion generated optic flow.

(d) Visual and nonvisual signals are integrated for
perception of self-motion

The perception of self-motion is a multisensory experience,
combining visual, proprioceptive and vestibular signals with
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Figure 4. Changes in estimates of heading in the presence of object motion
during self-motion. The presence of moving objects can bias estimates of
heading from optic flow. For example, the presence of a rightward
moving object can bias estimates of visual heading to the left (green
trace). The addition of congruent vestibular signals reduces these biases
resulting in more accurate estimates of heading (red trace). Illustration of
results from [133].
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a range of other cues. Humans and non-human primates can
integrate visual and nonvisual cues to estimate heading direc-
tion [143,144] and distance travelled [145–148], which can in
turn increase perceptual precision (figure 5a; [133,149–151]).
Integration of visual and nonvisual self-motion signals is
largely consistent with Bayesian cue integration, whereby per-
ceptualweights for each cue are proportional to their reliability,
albeit with a tendency to overweight body-based vestibular
(figure 5b; [149–151]) and proprioceptive cues [146–148]. Nota-
bly, inclusion of stereoscopic visual information results inmore
optimal cue integration in humans [152], indicating that the
richness of sensory information available may be important
for how cues are integrated. More generally this suggests that
the integrative process is flexible and context-dependent.

In primates, multisensory perception of heading direction
has been strongly linked to activity of neurons in MSTd
which respond to combinations of optic flow and vestibular
input using a reliability-dependent weighted sum [153,154].
In addition, causally manipulating MSTd activity can alter
behavioural reports of heading perception [155,156], indicat-
ing that it plays an important role in primate multisensory
heading perception.

Recent experimental findings demonstrate that mice can
also combine vestibular and visual cues to improve percep-
tual discrimination of angular velocity [157], as has been
demonstrated in humans [158]. Mouse perceptual perform-
ance could be accounted for by linear decoding of neurons
tuned to both visual and vestibular cues in the retrosplenial
cortex [157], an area that may be important for integrating
visual, vestibular and motor signals associated with self-
motion in rodents [17] and also conveys vestibular infor-
mation and influences turning-related signals in mouse V1
[103,159–161]. Mice also integrate visual and nonvisual sig-
nals to estimate distance travelled [162]. Mice trained to lick
for reward at a given visual location within a virtual corridor
exhibited biased licking responses when the visual gain of the
environment was altered [162], indicating that they combined
visual and nonvisual signals to estimate distance travelled.
Simultaneously measured spatial position tuning of neurons
in primary visual cortex and hippocampal CA1 shifted during
gain changes, with the resulting decoded spatial position from
these neurons correspondingwell with the animals’ behavioural
performance [162,163]. Additionally, a range of mouse visual
areas contain neurons tuned to combinations of visual speed
and locomotion speed [77,80,95] which may play a role in the
integration of visual and nonvisual self-motion signals for per-
ceptual inference of self-motion speed. Thus, in both primates
and mice, perception of self-motion is based on integration of
optic flow with nonvisual signals.

(e) Visual and nonvisual self-motion signals are
dynamically calibrated

Multisensory integration leverages the relationships between
different senses to enable more precise perceptual judgements
[133,164]. However, the relationship between the visual and
nonvisual signals associated with locomotion is contingent
upon environmental context. For example, the visual speed
of a textured surface is inversely proportional to its viewing
distance. As such, a dynamic, context-dependent calibration
process is necessary to maintain a valid model of the relation-
ship between nonvisual locomotion signals and optic flow
(multisensory cue calibration). Such dynamic calibration of
visual and nonvisual signals has been observed in both
humans and non-human primates using a number of exper-
imental paradigms [112,132,165–170]. Many of these studies
involved exposing subjects to a recalibrating context, with the
after-effects of a potential recalibration assessed in a short
time period following exposure. In one set of experiments,
the recalibrating context was walking on a treadmill [166].
After spending approximately 10 min walking on a treadmill,
subjects reported an accelerated perception of self-motion
speed while walking normally in stationary surroundings.
This effect was quantified by the time taken to walk a 5 m
lap following treadmill exposure—despite subjects being
instructed to walk at a constant, pre-specified speed, they
gradually sped up over a duration of 2–3 min. This result can
be interpreted as a series of recalibrations between walking
speed and optic flow. During treadmill walking subjects
recalibrated a slower optic flow speed to be associated with a
given walking speed due to the lack of normal optic flow on
a treadmill. When subjects were subsequently re-exposed to
the normal contingency between optic flow and walking,
the addition of normal optic flow then produced an accelerated
sense of self-motion. As subjects then recalibrated to the
normal contingency between optic flow and walking, the
effect of treadmill walking wore off and subjects increased
their walking speed to maintain a perception of constant
perceived self-motion speed.

In another set of experiments subjects walked on a tread-
mill while being pulled by a tractor moving either faster or
slower than treadmill speed so as to alter the gain of optic
flow associated with locomotion and induce visuomotor reca-
libration [112]. Afterward, subjects were shown targets at a
distance and, subsequently, asked to walk to them while
blindfolded. Subjects who had been pulled by the tractor
slower than their walking speed (low visual gain) overesti-
mated distance to the targets, suggesting that they had
calibrated a longer walking distance to be necessary to
travel a set visual distance. By contrast, subjects pulled
faster than their walking speed (high visual gain) underesti-
mated distance to targets. Interestingly, a related study
found that prolonged walking on a rotating circular disc in
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a visually stationary room caused subjects to subsequently
walk in a circular trajectory when trying to walk in place
while blindfolded [165], indicating that subjects had recali-
brated a circular walking trajectory to be required to remain
visually stationary. Thus, humans dynamically recalibrate
nonvisual locomotion signals with optic flow, even when
the contingency between them is unusual.

A commonperceptual bias in virtual reality environments is
the underestimation of distances. However, experience of
closed-loop feedback can significantly improve these perceptual
judgements [171–174], indicating that a calibration process
between self-motion and corresponding optic flow can reduce
naively occurring biases in virtual environments. The mechan-
isms underlying this recalibration remain poorly understood,
although experiments manipulating the availability of specific
visual cues may provide useful insights [34].

It has been proposed that multisensory cue calibration
consists of two distinct processes—‘unsupervised’ and ‘super-
vised’ calibration [175,176]. Unsupervised cue calibration acts
on cues that signal discrepant information by shifting per-
ceptual estimates based on each cue toward each other.
Unsupervised cue calibration, therefore, aims to achieve
‘internal consistency’ and does not depend on external feed-
back. By contrast, supervised cue calibration uses external
feedback to shift perceptual estimates based on each cue with
the aim of achieving accurate perception of the environment.

Multisensory cue calibration underlying the perception of
heading direction has been investigated using an adaptation
paradigm [175,176]. In a series of experiments, unisensory
heading direction perception of humans and non-human pri-
mates was tested following adaptation to a visual-vestibular
contingency whereby visual heading was 10° offset to
heading signalled by vestibular stimulation during passive
self-motion [175,176]. By contrast to multisensory integration,
unsupervised cue calibration was independent of the relative
reliability of cues (controlled by the motion coherence of
the optic flow stimulus). Instead, vestibular adaptation
was approximately twice as strong as visual adaptation, as
assessed by reports of heading direction reported in unisen-
sory trials following adaptation [175]. However, during
supervised calibration, which was controlled using reward
as external feedback for cue accuracy, calibration depended
on both cue reliability and accuracy. When the less reliable
cue was also inaccurate it was calibrated alone (figure 6a),
but when the more reliable cue was inaccurate both cues
were calibrated together as a combined percept (figure 6b).
As a result, the reliable, inaccurate cue became more accurate,
however, the less reliable, initially accurate cue became
less accurate [176]. A recent study investigating the neural
correlates of supervised multisensory calibration found that
neurons in the Ventral Intraparietal (VIP) area, but not
MSTd, exhibited shifts in tuning for vestibular and visual
heading following adaptation that were correlated with
behavioural performance in the task [177], in line with
increased choice-related activity in VIP [178].

The neural mechanisms underlying cue calibration of
visual and nonvisual self-motion signals have not been expli-
citly investigated in the mouse. A subset of V1 neurons has
been identified that may play a role in detecting discrepancies
between optic flow and nonvisual self-motion signals, as
would occur during unsupervised calibration [109]. These
neurons selectively respond to halts or perturbations of optic
flow during locomotion [109,179,180]. While these responses
are partly influenced by inputs from secondary motor and
anterior cingulate cortex [181,182], the precise mechanisms
driving responses to optic flow perturbations are debated
[180]. Regardless of their mechanism, the responses of such
neurons may be suited to trigger recalibration of optic flow
and nonvisual self-motion signals by signalling when these
signals disagree. Experiments combining perception and neu-
rophysiology, alongsidemodelling approaches, would provide
a means of investigating self-motion related multisensory cue
calibration in mice and determine whether similar principles
apply to those observed in primates.
3. Some considerations
(a) Dissociating the effects of self-motion from changes

in behavioural state
A key challenge for future research is dissociating effects of
self-motion from co-occurring changes in behavioural and
brain state. The mouse, in particular, has provided a number
of insights into the effects of behavioural state on visual
processing and perception [13,15,96,183,184]. For example,
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orofacial movements including whisking strongly correlate
with locomotion and can drive large changes in neural activity
[98,184,185], which if not carefully accounted for can confound
inferences about neural activity underlying perception and
behaviour [186]. Comparing the effects of different types of
active and passive self-motion [104,187], alongside manipu-
lation of visual inputs and their relationship to self-motion
[82,104,187], can be used to carefully dissect and dissociate
the various factors that may contribute to the influence of
self-motion on visual processing and perception. A further
consideration is that both mice and humans make distinct
sets of eye movements during unrestrained active self-motion
in order to stabilize visual flow [9,18,103,188], indicating
that locomotion is associated with distinct perceptual
strategies for sampling the visual scene. Moving forward, care-
ful quantification of brain and behavioural state information
[184,186,189–191] will be essential to dissociate the various
factors that co-occur with locomotion.

(b) Conscious awareness
Towhat extent does the integration of visual andnonvisual cues
for self-motion occur without conscious awareness? Humans
automatically adjust their locomotion speed to changes in
optic flow patterns [21,192–194] and these adjustments are pre-
sent in subjects with cortical blindsight [118], suggesting that
visual control of locomotion can occur without explicit con-
scious awareness in humans. Changes in locomotion speed
also bias human subjects’ ability to discriminate between
visual speeds in a 2-interval forced choice task [117], indicating
that there is a degree of mandatory perceptual fusion of optic
flowwith nonvisual self-motion signals that prevents conscious
access to isolated optic flow during locomotion. Evidence for
the mandatory fusion of vestibular and visual cues has also
been observed for the perception of heading direction [158],
suggesting that this may be a general phenomenon in the
multisensory perception of self-motion.
4. Conclusion and future directions
In this review,we brought together findings fromdistinct fields
of research. While the influence of self-motion on optic flow
perception has been most-studied in humans and non-
human primates, the effects of locomotion on neural activity
are best characterized in mice. We believe each of these species
affords unique insights into the influence of self-motion
on optic flow processing and perception, and ultimately
that a multi-species approach, therefore, provides the best
way forwards. To this end, we hope this review provides a
useful starting point by highlighting existing cross-over in
these areas of research as well as the distinct experimental
opportunities afforded by each of these species.

Experimental approaches to investigate vision during
movement have had various constraints in available method-
ologies for each species. For example, non-human primate
studies have generally investigated the influence of vestibular
signals on optic flow processing and perception during passive
movement usingmotion platforms. However, developing tech-
nologies are expanding experimental opportunities (see [195]
for a useful review of recording methodologies available in
moving subjects). For example, recordings of head-restrained
marmosets free to locomote on a treadmill [101] should
enable the investigation of optic flow processing and percep-
tion during active locomotion in a non-human primate and
therefore enable more direct comparisons with findings from
mice using similar experimental assays.

The recent development of lightweight eye tracking
cameras for mice [9,103,188,196–198] enables simultaneous
monitoring of head and eye movements during free
movement, making it possible to reconstruct on a moment-
by-moment basis the visual scene as viewed by a subject. Con-
tinued development of this technology alongside appropriate
analysis methods will enable experimental investigation of
visual encoding and perception in unrestrained, naturally
behaving subjects, for example during prey capture [8,9] or
predator avoidance [10]. This can be further enhanced by the
ability to present interactive augmented reality environments
to animals [110,111].

In humans, wireless head-mounted displays (HMDs) allow
for precise control of binocular visual stimulation to a subject
during active unrestrainedmovement. The continued develop-
ment of this technology should allow for more comfortable,
realistic and immersive visual experiences. Moreover, a
number of groups have begun to combine head-mounted
displays with non-invasive recording methods such as
electroencephalography [199], and functional near-infrared
spectroscopy [200], enabling simultaneous recording of
neural activity during visual behavioural tasks.

As the availabilityof experimental technologies increases, so
does the capacity for analogous experiments across species. This
in turn allows for more direct comparisons of the effects of
self-motion on optic flow processing and perception. Indeed,



royalsocietypublishing.org/journal/rstb

10
advances in training protocols mean that mice can now be rou-
tinely trained to perform a range of visual psychophysics tasks
[100,157,159,201–204] similar to those successfully used to
investigate visual perception in humans and non-human pri-
mates. Using approaches across animal species and with
different brain recording techniques,we are now ina strongpos-
ition to investigate the influence of self-motion on optic flow
processing and perception. These approaches will be essential
to understand how animals successfully interact with dynamic
environments and should, moreover, provide insights into
principles of sensorimotor coding in mammalian species.
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