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A B S T R A C T

With the expansion of the digital world, the number of the Internet of
Things (IoT) devices is evolving dramatically. IoT devices have limited
computational power and small memory. Also, they are not part of tra-
ditional computer networks. Consequently, existing and often complex se-
curity methods are unsuitable for malware detection in IoT networks. This
has become a significant concern in the advent of increasingly unpredict-
able and innovative cyber-attacks. In this context, artificial immune sys-
tems (AIS) have emerged as effective IoT malware detection mechanisms
with low computational requirements. In this research, we present a crit-
ical analysis to highlight the limitations of the AIS state-of-the-art solutions
and identify promising research directions. Next, we propose Negative-
Positive-Selection (NPS) method, which is an AIS-based for malware de-
tection. The NPS is suitable for IoT’s computation restrictions and security
challenges. The NPS performance is benchmarked against the state-of-the-
art using multiple real-time datasets. The simulation results show a 21%
improvement in malware detection and a 65% reduction in the number
of detectors. Then, we examine AIS solutions’ potential gains and limit-
ations under realistic implementation scenarios. We design a framework
to mimic real-life IoT systems. The objective is to evaluate the method’s
lightweight, fault tolerance, and detection performance with regard to the
system constraints. We demonstrate that AIS solutions successfully detect
unknown malware in the most challenging IoT environment in terms of
memory capacity and processing power. Furthermore, the systemic results
with different system architectures reveal the AIS solutions’ ability to trans-
fer learning between IoT devices. Transfer learning is a critical feature in
the presence of highly constrained devices in the network. More import-
antly, we highlight that the simulation environment cannot be taken at face
value. In reality, AIS malware detection accuracy for IoT systems is likely
to be close to 10% worse than simulation results, as indicated by the study
results.
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1
I N T R O D U C T I O N

1.1 research introduction

Today’s world is more connected than ever before. Societies are reliant on
technology which has become inextricable from their daily lives. Smart
cities, smart homes, and e-government are applications used to improve
life quality for communities [3]. The internet of things (IoT) is a system
of connected physical objects/things embedded with small sensors with
small memory capacity and low processing power. IoT devices are able to
collect and exchange data over the internet, usually without human inter-
action [4]. Unlike the internet, where an internet protocol (IP) address is
used to connect each device to the internet for functionality, IoT devices
can still function and collect data without an internet connection. For in-
stance, a smartwatch could collect health data, such as heart rate, without
an internet connection. IoT systems provide inventive solutions to daily life
challenges. For instance, with the increasing need to develop a more cost-
efficient and personalized healthcare system, IoT devices play a massive
role in achieving this vision [5]. Today’s situation due to the Coronavirus
2019 (COVID-19) pandemic has accelerated the adoption of such techno-
logies in various ways. For instance, e-health applications are developed
to support the depleted healthcare staff and systems [6]. Moreover, IoT
devices are employed to improve energy efficiency and reduce environ-
mental impacts of energy use [7].

The continuous growth of IoT systems and the direct interaction with
the physical world make it an excellent target for cybercrimes [8]. For in-
stance, in IoMT (Internet of Medical Things) systems, a high volume of pa-
tients’ data is exchanged, raising serious security concerns. Consequently,
many standards are established to address these issues, such as imple-
menting a secure socket layer (SSL) and transport layer security (TLS)
to prevent leakage of confidential information [9]. Cybercrime is any il-
legal action committed against computers or traditional crimes targeting
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individuals using the internet [10]. Getting hold of confidential informa-
tion, such as credit card information, was the motivation behind a data
breach targeting EasyJet, the airline company [11]. Evidently, a weak se-
curity configuration enables hackers to get access to critical data [12]. One
of the major distributed denial of service cyberattacks was in 2016, target-
ing the Domain Name System provider (DYN). The type of malware used
for the attack, which used IoT devices rather than computers, resulted
in significant services being unavailable for many users in different coun-
tries. [13] Health, educational, financial, and governance institutes were
affected, which makes malware attacks a global risk factor.

Malware attack is one of the significant security threats in the IoT, and
malware detection, specifically detecting unknown malware files, is one of
the ongoing investigations. IoT devices have constrained resources, such
as small memory and processing powers, which makes applying security
solutions challenging. Also, IoT architecture allows minimal control for
the user over the IoT device, which leads to major security concerns [14].
In addition to the security challenges in the IoT systems, hackers became
more creative and use innovative tools to form an attack [15]. Intrusion
detection systems (IDS) are installed to prevent such attacks. IDS works
either as a network-based intrusion detection system (NIDS) or as a host-
based intrusion detection system (HIDS) [16]. NIDS detects attacks over
the network, ex., a network port, while HIDS detects attacks within the
system, ex. An infected operating system. Malware detection generally is
done in two phases, the malware analysis phase and the malware detec-
tion phase. In the malware analysis phase, static, dynamic, and hybrid
analyses are the three main methods to extract malware file features. After
analyzing the file, the results are passed to the next phase, which is the
malware detection phase. Three different techniques are used to detect mal-
ware files, signature-based, behavioral-based, and specification-based tech-
niques. The signature-based technique reads the file signature and runs it
against an existing database, which makes it unable to detect new malware
files. The behavioral-based and the specification-based techniques monitor
the file behavior in general or read some of its features, such as the applica-
tion interface, without reading its signature. The behavioral-based and the
specification-based techniques are proven to be able to detect unknown
malware files; however, they are computationally expensive [17].

Artificial Immune System (AIS) methods are inspired by the human im-
mune system methodology in fighting attacks [18]. They are proven to be
adaptive, distributed, robust, and not computationally expensive, which
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makes them suitable for securing the IoT. This research focuses on apply-
ing AIS strategies, inspired by adaptive immunity in the human body, to
computing algorithms to secure the internet of things. The main goal is to
detect unknown malware attacks to secure the internet of things systems.

1.1.1 Research Motivation

Since the IoT environment is dynamic and interconnective, a high risk of
malware and intrusion attacks is presented. Such an attack could cause
massive damage to the network devices and the system data. The primary
motivation of this project is designing a method to enhance the detection
performance with less false negative detection for unknown malware in
the IoT systems. Given the IoT systems properties, we design the method
to be lightweight, adaptive and distributed to meet the system require-
ments.

1.1.2 Research Questions

• What are the main security challenges in IoT systems, and what are
the IoT-specific requirements to overcome these challenges?

Chapter 2

• What are the limitations and restrictions of the current malware detec-
tion solutions?

Chapter 4

• How to design a security method to detect unknown malware that
overcomes the challenges of IoT systems’ requirements and AIS solutions’
limitations?

Chapter 5

• What are the opportunities and challenges of running AIS solutions
in realistic IoT systems?

Chapter 6

• How to improve the efficiency of AIS solutions for unknown malware
detection in constrained real-time IoT systems?

Chapter 7
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1.1.3 Research Objectives

• IoT perspective to cybersecurity threats and solutions requirements.

• Design a malware detection algorithm that is lightweight and can de-
tect unknown malware attacks.

• Validate the results of the malware detection algorithm using multiple
real-time datasets.

• Investigate the impact of IoT hardware limitations on the efficacy of
the malware detection algorithm.

• Design an AWS-enabled validation framework for the evaluation of
AIS malware detection solutions, under realistic architecture and charac-
teristics.

• Design real-life system scenarios to investigate the algorithm’s detec-
tion performance, lightweight, distribution, adaptivity, and fault tolerance
capabilities with respect to system constraints.

• Design the first trial of transfer learning within and across the IoT
systems to combat the constrained memory in IoT devices.

1.1.4 Research Challenges

(a) IoT in a Dynamic Environment
The IoT paradigm is dynamic and lightweight with constrained resources.
These devices often have limited computational powers and small memory.
IoT devices are interconnective, which means they are connected directly
to the cloud and/or other IoT devices. They are heterogeneous, which
means the connected IoT devices could be run on different platforms
with different requirements and specifications. Furthermore, connected
IoT devices can exchange services within the constraints of things. Finally,
the increasing number of IoT devices leads to generating an enormous
scale of data in a massive-scale network. The IoT System architecture con-
sists of three main layers: the perception layer, which is the physical layer,
the network layer, which is responsible for access control between the IoT
device and the cloud, and the application layer, which is the front-end layer.
Each layer is a target for a different set of attacks. For instance, malicious
node injection and battery draining from security threats to the physical
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layer. Man in the middle and denial of service are threats to the network
layers. Malware attacks are one of the main threats to the application layer.
For all these reasons, securing IoT devices is challenging. Applying tra-
ditional security solutions is very computationally expensive and apply-
ing minimal security measures is very high risk. Therefore, it is critical to
design IoT-specific security solutions.

(b) Artificial Immune Systems Characteristics
Even though many researchers implemented and used AIS solutions to se-
cure the IoT, it still has its own challenges. For instance, applying negative
selection algorithms using different formats and data representations to se-
cure the IoT has improved the depth of detection capabilities, yet high false
negative is one of the main limitations of this technique. Also, the negative
selection algorithm is unsuitable for a dense environment and cannot cope
with changing dynamics of the system with respect to time. Consequently,
it has some latency in response time. Furthermore, few implementations
have been done using the positive selection algorithm for malware detec-
tion in the IoT. The reason is that this method has many limitations when
used as the primary technique in malware detection, one of which is high
false positives.

1.2 thesis structure

Chapter 2: IoT security challenges and vulnerabilities to malware attacks
introduction

Chapter 3: Artificial Immune Systems methods- background

Chapter 4: A critical evaluation and analysis of the state-of-the-art of AIS
solutions for malware detection in the IoT

Chapter 5: A novel AIS-based method (NPS) to secure the IoT - results
analysis in comparison to the state-of-the-art

Chapter 6: Implementing the NPS in realistic IoT systems Using AWS

Chapter 7: Implementing the NPS in realistic IoT systems Using AWS -
transfer learning across IoT systems challenges and opportunities

Chapter 8: Conclusion and future research directions
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1.3 contributions to knowledge and associated publica-
tion

• A critical analysis of detection mechanisms in the context of IoT with
focus on AIS (Chapter 4).
Alrubayyi, H., Goteng, G., Jaber, M., & Kelly, J. (2021). Challenges
of Malware Detection in the IoT and a Review of Artificial Immune
System Approaches. Journal of Sensor and Actuator Networks, 10(4),
61. [1].

• A new AIS method that addresses the IoT challenges and outper-
forms the state-of-the-art (Chapter 5).
Alrubayyi, H., Goteng, G., Jaber, M., & Kelly, J. (2021, May). A novel
negative and positive selection algorithm to detect unknown mal-
ware in the IoT. In IEEE INFOCOM 2021-IEEE Conference on Com-
puter Communications Workshops (INFOCOM WKSHPS) , IEEE.,
2021, pp. 1-6. [2].

1.4 talks and presentations

• Enhancing AWS IoT Gateway Security Using Adaptive Immunology.
WMC Lab at QMUL (April 2019)

• AWS re/Start and AWS Academy: closing the digital skills gap. Insti-
tute of Coding Conference (March 2020)

• AIS for Malware Detection in the IoT Using AWS: Knowledge Trans-
fer Across Networks Study. IEEE WIE UKI Career Development Day
(September 2022).

• IoT Security Challenges and AIS Advances in Detecting Unknown
Malware. IEEE WIE UKI Ambassadors Programme, Seventh Event
of Early Career Talk (October 2022)
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I O T S E C U R I T Y C H A L L E N G E S A N D

V U L N E R A B I L I T I E S T O M A LWA R E

AT TA C K S

2.1 introduction to iot systems

IoT is a system of interconnected machines with unique identifier numbers
that can communicate and share data within a network without human
interaction. The IoT system consists of devices (often referred to as IoT
devices) with unique identifiers that integrate seamlessly into the inform-
ation network by using intelligent interfaces [19].

2.1.1 Internet of Things Characteristics

These IoT devices are physical entities interacting to form the IoT system
with essential features as follows (see Figure. 2.1):

Figure 2.1: IoT Devices Unique and Challenging Characteristics

23
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• Interconnectivity: Interconnectivity is about connecting the device to
the cloud and/or other devices. The connectivity is needed to enable the
control of the device remotely but mainly to access the data collected by
the IoT device’s sensor(s). For example, an IoMT device for heart disease
prediction is remotely controlled to monitor patients’ heart rate [20]. The
health parameters are collected in real-time and transmitted to a data cen-
ter in the cloud.

• Heterogeneity: The IoT devices are heterogeneous as these may be
built on different platforms and have different specifications. Various hard-
ware, such as a simple sensor to monitor the heart rate in [20], or a data
center built on the cloud, could be supplied by different vendors. These in-
tegrated IoT devices could use different security measures, which leads to
a lack of standardization in the network. Each connected device could use
different security protocols with its security bugs and limitations, which
expose the system to different ways of hacking.

• Things-related services: In the IoT environment, devices are capable
of exchanging services within the constraints of things. Since the commu-
nication between different IoT devices is not controlled by a central pro-
cessor/human, this could form a serious threat. A malicious device is dis-
guised as an accepted IoT device that could start disturbing other devices,
for example, by installing malicious files.

• Enormous scale: The number of IoT devices is increasing exponen-
tially and is generating an unprecedented amount of data. The expected
number of IoT devices by 2025 is between 25 billion and 50 billion [21].
The scale is simply enormous, and data privacy and integrity are critical
challenges in massive-scale networks. For instance, IoMT-based COVID-
19 applications are creating massive amounts of real-time data that gets
stored in the cloud. However, as the generated data continues to increase,
the network pressure increases, which might lead to occurrences of erro-
neous interpretations [22].

2.1.2 IoT Systems Architecture

The IoT architecture consists of three main layers, the perception layer, the
network layer, and the application layer.
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• Perception layer: This first layer is a physical layer that involves con-
nected smart devices and sensors to collect data, such as temperature, hu-
midity, and sound.

• Network layer: A middle layer is responsible for securing the connec-
tion between the perception layer and the cloud via routers and gateways.

• Application layer: This front-end layer is responsible for delivering
specific services to endpoints, such as end-users, servers, and the cloud.

The gateway layer, which sits between perception and network layers
in IoT architecture, is introduced by authors in [23, 24]. The main role
of the gateway layer is to process and classify the enormous amount of
data generated by smart devices and sensors in the perception layer. This
layer has a significant value from a security perspective. Since it is the
main link between the IoT devices and the network layer, which is mainly
linked to the cloud, it is vulnerable to many security threats. The gateway
layer processes a massive amount of system data, which makes it a target
to malicious files aiming to harm the system or gain access to valuable
data. Consequently, securing this layer improves the safety and reliability
of both the perception layer, where the limited capacity IoT devices are
installed, and the main network hub, the cloud.

2.2 iot security threats

Cybercrimes involve a wide range of illegal activities that could target dif-
ferent layers within the IoT architecture and be categorized as follows [25]:

(a) Physical attacks that target the hardware level, some of which:

• interference on Radiofrequency Identification (RFIDs): RFID works by
using radio communication to identify hardware and send noise signals to
interfere with radio communication causing a denial of service,

• malicious Node Injection: Connecting a malicious node between two
interconnected nodes and injecting the communication messages with fals-
ified information,

• battery Draining: Maximizing the node’s power consumption will
break the node, minimize its lifetime, and shut it down due to malicious
control of the device. A physical attack could use a node injection to send
false messages to vulnerable nodes that would cause them to drain the
battery. Such messages may claim that
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Figure 2.2: IoT Systems Architecture

(i) the reception is bad, pushing the transmission power to increase and
increase retransmissions until the battery is dead,

(ii) claim that the server requires data to be uploaded every millisecond
instead of an hour, thus consuming the battery power at an accelerated
rate of 106.

(b) Network attacks, some of which:

• eavesdropping attack: Intruders intercept network information by ex-
amining messages between nodes, such as gateways, and get unauthorized
access to system information,

• RFID Spoofing: Obtain transmitted data from an RFID tag and inject
the system with falsified information,

• RFID cloning: Copying data from existing tags to a new one without
the original ID to inject the signal with falsified information,

• man in the middle: Hack the communication between two nodes to
get access to network information,
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• denial of service: Overwhelming the system so it is unavailable to the
user.

(c) Software attacks that target the application layer, some of which:

• Phishing: Obtaining access to sensitive and private data records, such
as usernames, passwords, and credit card information, through email
spoofing or fake websites.

• Virus, worms, trojan Horse, and spyware: Malicious software that at-
tacks the system to obtain sensitive information, harm the hardware level
or the software level.

Given the IoT characteristics discussed in Section 2.1, it is very challen-
ging to address the security threats presented in Section 2.2 holistically.
This is further elaborated on in the next section.

2.3 iot security challenges

The IoT involves smart devices and sensors, some of which use non-
chargeable batteries, making battery life one of the predominant chal-
lenges in IoT security. Running security rules will drain the battery re-
sources; applying minimum security requirement measures is not a smart
idea, especially if these devices are responsible for collecting sensitive in-
formation. Increasing battery size and capacity is not a solution as well
because these devices are designed to be lightweight. Domain Name Sys-
tem (DNS), which is used to identify objects and their attributes, is another
IoT security challenge; data integrity is problematic here due to the pos-
sibility of being hacked by a man in the middle or a DNS cash poisoning
attack. In addition to device limitation and object identification, device
authentication and authorization is one of the IoT security challenges. Is-
suing certificates for each object in the IoT is extremely challenging due to
the number of connected objects and not having a global root certificate
authority (CA). The threat of malware attacks arises in IoT due to these
security challenges. Antivirus is the main line of defense to detect known
malware in a real-time paradigm. However, the traditional security solu-
tions /have not been efficient and do not provide decentralized and strong
security solutions in the IoT [26]. Due to the IoT device limitation and com-
puting power, shifting similar solutions from traditional platforms to IoT
might not be affordable [27]. Battery size and expected durability is a chal-
lenge that makes the implementation of security measures more limited
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as it has to be energy efficient as well as secure. Moreover, in IoT systems,
network resources are integrated into devices that were never previously
anticipated to be part of computer networks [24]. Integrating IoT devices
into traditional networks introduces a new paradigm of security. The integ-
rated system inherent the traditional network security issues besides the
ones targeting the IoT devices [26]. Consequently, using traditional secur-
ity measures is not enough to endow IoT systems with malware detection
capabilities.

2.4 malware attacks analysis and detection techniques

Based on the analysis presented in Section 2.3, malware is a major security
threat to the IoT, and detecting unknown malware is one of the key chal-
lenges. First, IoT devices’ limitations form a significant challenge when
aiming to apply security solutions. Second, introducing new ways of in-
tegrating network resources into devices that were not part of a traditional
computer network, such as smart homes, opens the door to many “un-
known” security threats, such as newly developed malware files. For these
reasons, traditional malware detection mechanisms are unsuitable for the
IoT environment.

This section presents a brief background of malware followed by classi-
fication based on their reproduction behavior and action. We also examine
IoT-related malware attacks, which have significantly increased in recent
years and require imminent attention. Next, we present a study of existing
methods for analyzing and detecting malware in general and how they
apply to IoT systems.

2.4.1 Malware Attacks

Malware is malicious software that gets executed within the system
without the user’s permission and has harmful intentions. Black hats, hack-
ers, and crackers are all names for malware writers and developers, who
have different intentions when creating this malicious executable software,
some of which are internal threats, governance purposes, and competitor’s
spies. In the past, the malware was written using simple techniques, and
for simple reasons, which we could call “traditional” [28]. Nowadays, hack-
ers have more resources and technical knowledge to develop more com-
plex malware for one or multiple reasons, which we call “next-generation
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malware”. The Figure below (Fig. 2.3) shows the predicted damage cost of
malware attacks in the IoT networks.

Figure 2.3: Predicted Damaged Cost of Malware Attacks [29]

2.4.2 Malware Analysis Techniques

Malware analysis techniques are essential to developing effective malware
detection methods. These techniques involve the analysis of the process
and functionality of the malware to build a suitable defense method. Three
main malware analysis techniques achieve the same goal of determining
how the malware works and how the attack will affect the network (see
Figure 2.4).

(a) Static analysis, also called code analysis: In this technique, the infec-
ted file is inspected and analyzed without executing it. Low-level inform-
ation is extracted, such as the control flow graph (CFG), data flow graph,
and system calls. Static analysis is fast at analyzing data and safe to use;
also, it has a low level of false positives, which means a higher detection
rate. Moreover, the static analysis tracks all possible paths, which gives it
a global view; however, it fails in detecting unknown malware using code
obfuscation [30].

(b) Dynamic analysis, also called behavioral analysis: In dynamic ana-
lysis, the infected file is inspected during execution, which is usually con-
ducted on an invisible virtual machine, so the malware file does not change
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its behaviors. Dynamic analysis is time-consuming and vulnerable, and it
can only detect a few paths based on triggered files. Furthermore, it is
neither safe nor fast, and it suffers from a high level of false positives.
However, dynamic analysis is known for its good performance in detect-
ing new and unknown malware [31].

(c) Hybrid analysis: This technique was designed to overcome the chal-
lenges and limitations of the previous two techniques. First, it analyzes the
signature descriptions of any malware code and then combines that with
other dynamic parameters to improve the analysis of malware [32].

Figure 2.4: Malware Files Analysis and Detection Methods

The connection in IoT networks is currently enabled via cloud services.
Static, dynamic, and hybrid malware analyses are mostly applied in the
cloud to protect IoT devices.

2.4.3 Malware Detection Techniques

Three main methods are used in malware detection: signature-based de-
tection technique, behavior-based detection technique, and specification-
based detection technique [33].

(a) Signature-based method: In the signature-based technique, files are
analyzed and compared to an existing list, and if they are listed in the list,
they are classified as malware. This way is ineffective in recognizing all
malware that enters the network because some malware is encrypted, so
extracting the signature takes time and a lot of processing energy. Also, it
is not effective for new or unknown malware. Some of the signature-based
technique applications are presented in [34–36].
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(b) Behavioral-based method: This technique monitors the program be-
havior rather than reading its signature. This technique follows three steps:

• data collector which collects information about the program

• interpreter which converts collected data to intermediate representa-
tions

• matcher which compares intermediate representations with behavior
signatures.

There are two approaches to this technique:

• simulates the behavior of legitimate programs and compares any new
program to that model. This approach works to detect most malware, even
new ones. However, it is hard to implement because of the different beha-
viors of each program in the network. For example, a video reader will use
different services than a mail or a web client

• simulates the behavior of known malware and compare them to new
programs, which means new malware could not be identified.

Some of the Behavioral-based technique applications are presented
in [37–39]

(c) Specification-based method: This technique was introduced to over-
come the disadvantages and limitations that the first two techniques have.
This technique uses different features for malware detection, some of
which:

• API Calls: Hofmeyr et al. were among the first to propose using ap-
plication interface and system calls sequences for malware detection [40]

• OpCode: Executable files are made of a series of assembly codes,
and in this method, researchers used this operational code to detect mal-
ware [41]

• N-Grams: This method uses executable programs’ binary codes for
malware detection [42]

• Control flow graph (CFG): It is a graph that shows the control flow of
programs, and it has been used to analyze malware behavior [43]

• Hybrid feature: In this machine learning method, researchers com-
bine different techniques for malware detection to get better results. For
example, Eskandari et al. in [44] used CFG and API calls for metamorphic
malware detection.
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2.5 malware in the iot

The malware detection techniques presented in the previous section have
been followed to implement malware detection methods in the IoT; for in-
stance, SVELTE, which is a signature and anomaly-based intrusion detec-
tion method, has been used to protect the IoT from routing attacks based
on the IPv6 routing protocol [44]. On one hand, applying a signature-based
technique for malware detection in the IoT is not the best approach be-
cause it is not designed to detect unknown/newly developed malware
files; on the other hand, designing a behavioral-based or specification-
based method to secure the IoT is computationally expensive due to the
long simulation process it requires.

Major AI solutions to securing the IoT fall under either behavior or
specification-based techniques, which are complex to implement in IoT
systems. For instance, the authors in [45] evaluate the recent advances in
AI/ML techniques in securing the IoT. They use 80% of the dataset only
to train the module, which is computationally expensive, and state that,
despite the advances in AI techniques in the IoT, the security method is
still vulnerable when implemented in a real IoT system. Other AI and ML-
based solutions for malware detection in the IoT are presented in [46–48].
Furthermore, the authors in [49–51] published surveys about AI solutions
enhancing IoT security by presenting the challenges and limitations of al-
gorithms. Besides the weak probability and instability of AI algorithms,
they are computationally complex, with high resource consumption. There-
fore, in this work, we analyze the AIS solutions to secure the IoT that are
less complex for implementation with high detection probabilities.

As businesses and consumers continue to connect devices to the Internet
without proper security measures, IoT devices are increasingly leveraged
by cybercriminals to dispense malware payloads [52]. In the first half of
2019, SonicWall observed a 55% increase in IoT attacks—a number that
outpaces the first two quarters of the previous year. A security vendor
detected over 100 million attacks on IoT devices in the first half of 2019,
highlighting the continued threat to unsecured IoT devices [53]. Kaspersky,
the Russian Anti-Virus vendor, has claimed to detect 106 million attacks
from 267,000 unique IP addresses in the first half of 2019 [53]. This number
of attacks was almost nine times more than reported for the first quarter
of 2018, when only 12 million were detected, originating from 69,000 IP
addresses. According to the authors in [53], a major reason driving this
surge is consumers’ increased propensity to buy smart home solutions
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without due diligence regarding security measures. Due to all the reasons
listed above, malware attacks are major security threats in the IoT and thus
require an IoT-specific security solution.

The best way to secure the IoT based on its characteristics and architec-
ture is to implement a distributed, dynamic, adaptive, and self-monitoring
method. This leads us to investigate the AIS solutions in the next chapter
(Chapter 3) and how these can be applied to secure the IoT against mal-
ware attacks.

2.6 summary of iot security challenges

IoT networks consist of interconnected devices with unique identifiers
that provide real-time interaction. These devices often have limited com-
putational capacity and small memory. IoT devices are interconnective,
which means they are connected to the cloud and/or other IoT devices
to enable remote control. They are heterogeneous, meaning the connected
devices might run on different platforms and have different specifications.
Moreover, connected IoT devices are capable of exchanging services within
the constraints of things. Finally, the increasing number of connected IoT
devices generates an enormous scale of data in a massive-scale network.
The IoT System architecture consists of three main layers: the perception
layer, which is the physical layer for the connected devices, the network
layer, which is responsible for securing the connection between the device
and the cloud, and the application layer, which is the front-end layer to de-
liver the service. Each layer is a target for a different set of attacks. For in-
stance, malicious node injection and battery draining from security threats
to the physical layer. Man in the middle and denial of service are threats
to the network layers. Malware attacks are one of the main threats to the
application layer.

Based on recent attack analysis, malware forms a huge security threat
to IoT systems, and detecting unknown malware files is one of the key
challenges. Static, dynamic, and hybrid analysis are three ways to analyze
a malware file. Signature and behavioral-based techniques are used to de-
tect malware files. First, the signature-based technique reads a unique part
of the file for detection. This method is efficient in detecting known mal-
ware files with known signatures; however, it can not be used to detect
unknown malware files. Second, the behavioral-based technique simulates
the behavior of a malicious or benign file for detection. This technique is
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efficient in detecting unknown malware files; however, it is expensive to
run.

Based on the IoT characteristics and malware detection techniques
presented, the best way to secure the IoT is by implementing a lightweight
and adaptive method. For these reasons, we investigate the AIS methods
for securing IoT systems.
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A RT I F I C I A L I M M U N E S Y S T E M S

M E T H O D S - B A C K G R O U N D -

3.1 introduction to artificial immune systems

Nature has crafty ways of solving problems. The knowledge retrieved from
its observation has been a source of inspiration for computer scientists
throughout the years for devising solutions to challenging problems. In
particular, problems where the traditional methods fail to provide a suit-
able solution or would result in a complex solution requiring high compu-
tational power. In the cases where analytic expressions are not available,
nature-inspired computing may be able to find sub-optimal solutions effi-
ciently. Nature-inspired algorithms abstract the phenomena found in the
wild and are subject to evolutionary steps or computing layers to converge
to a solution. Examples include Ant Colony Optimization (ACO), Particle
Swarm Optimization (PSO), Artificial Neural Networks (ANNs) [54], and
AIS [55]. AIS is a field composed of different methods inspired by many
theories of the biological immune system. The immune system is respons-
ible for protecting the body from any intrusions, and any possible danger
called an antigen. In this work, we consider malware to be an unwanted
foreign intrusion, and we examine the application of the defense mechan-
isms followed by the adaptive immune system in fighting antigens. The fol-
lowing figure (Fig. 3.1) shows five different topics discussed among AISs.

3.2 human body immune system

The first defense line in the body is the Innate immune system; it detects
and kills any malicious activity. If the system gets attacked by an unknown
source, it kills and keeps the information about it. This system is mostly re-
sponsible for sending alerts to cells and directing them to the infected area.
If the Innate system fails to eliminate the threat (antigen), it is time for the

35
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Figure 3.1: Artificial Immune Systems Main Topics and Area of Research [56]

Adaptive Immune system to fight the (antigen). It gets information about
attacks from the Innate system to prevent the same attack from happening
again [57]. Innate immune system: it is composed of outside layers to pro-
tect the body, for example, skin, and inside defense layer, for example, the
acid in the stomach. Also, blood cells such as:

(a) Neutrophils: if this type of cell encounters an antigen, it kills it and
then die

(b) Macrophages: this type of cell can kill up to 100 germs before they
die (can also kill the infected body cells -cancer-)

Adaptive immune system: it has two lymphocyte cell types, B and T
cells [58]. The figure below (Fig. 3.2) shows the T cell immunity and the
antibody immunity.

Figure 3.2: T cell Immunity and Antibody Immunity

(a) B cells come when a pathogen enters the body and before the disease
occurs. They provide antibodies to stick to the antigen and “mark it” as a
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sign for the Macrophages to kill it. B cells have memory B cells which keep
information about the antigen.

(b) T cells: they come when the infection occurs, and it consists of:

• Helper T cells: take information about the antigen, which consists of
effector T cells, which call everyone and tell them about the antigen, and
memory T cells, which keep information about the antigen.

• Cytotoxic T cells: kill the infected body cells that cannot be treated

The figure below (Fig. 3.3) shows how B and T cells get activated.

Figure 3.3: T-cell and B-cell Activation and Function [59]

3.2.1 Adaptive Immune System Methodology

The main part of our adaptive immune system is B cells which generate the
antibodies. There are 100 million types of B cells in the human body, and
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the reason is that each kind of B cell generates different antibodies to catch
any possible attack because different antibodies handle different antigens.
Consequently, when a specific type of antigen enters the body that requires
a particular type of B cells to handle, the body starts generating more of
that specific B cell [60–62].

Antibodies generation:
It is made of a light and thick chain of different DNA. A mix and match
will be done here to generate different types of antibodies that can mark
any type of antigens. Consequently, each B cell will have its own kind of
antibodies after mixing and matching.

Clonal Selection:

(a) B cells will generate a test patch of their own antibodies that go to
the surface as “bait” called B cells receptors. B cells will be floating around
in their zone, trying to find a matching antigen (which their specific anti-
bodies can catch).

(b) When a B cell bond with a cognate antigen, it doubles its size and
divide into two B cells, and these two B cells will double in size and divide,
which makes it four B cells in total.

(c) B cells will send all generated antibodies to the bloodstream, and
most B cells die after all the hard work.
The main job for antibodies is to mark the antigen (opsonize), not to kill it!

(d) Now the antigen is marked with antibodies, so it is phagocyte’s job
(such as Macrophages) to eat it and kill it. The antibody forms a bridge
between antigens and macrophages.

Neutralizing antibodies : when an antigen enters the body, it uses its re-
ceptor to hang on a cell and then enter that cell. What happens is that the
antigen uses the cell to generate duplicate copies of itself, then kill the cell
and moves to neighbor cells. Antibodies can hang on the antigen receptors
preventing them from entering the cell or making more copies.

3.3 artificial immune systems methods

Understanding how the adaptive immune system works to defend the hu-
man body, researchers have started developing different methods that im-
itate a similar process to protect computer networks. The use of AIS in
security applications is mostly in detecting security incidences, such as in-
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trusions at the host or the network carried out by malicious actors, using
low-level scripts, automated tools, or malware [63].

(a) Negative Selection Method: supervised learning classification al-
gorithm, which was inspired by the “process of self-tolerance of B-cells,
and CLONALG, which is inspired by clonal selection theory and con-
sists of mutation and selection processes” [64]. The method works in two
phases: the detector generation phase (see Figure. 3.4) and the matching
and detection phase (see Figure. 3.5). First, it generates detectors that do
not match the protected data, and then it keeps matching these detectors
with that data. If a match occurs, it means a change has happened in the
protected data, and action must be taken. This method was first introduced
in [56], and the main idea was to come up with a method that has similar
techniques to the human immune system, where the system is capable of
distinguishing between self-cells (the body cells) and non-self-cells (anti-
gens). In computer networks, we map the self-cells to authorized system
files and non-self cells to malicious files [65]. This approach relies on three
main points:

• in the negative selection, the detector generation stage is run when
the method is deployed/activated on a new site. For this reason, different
detectors that do not match self are generated each time this stage is run.
Consequently, if a copy of a detector set at one site is found, the other sites
still have different copies.

• we match the self-data of each site to generate the required negative
detectors, which means we have different sets of detectors to protect each
entity based on its own data.

• unlike the signature-based method, the negative selection method
should detect any foreign activities that do not match the self-data rather
than checking for a certain pattern in each file.

The technique in the negative selection method relies on two main
factors:

• data representation: this is a fundamental difference between many
models of negative selection algorithms. It changes the matching rule pro-
cess, detectors’ generation, and the detection process. The main data rep-
resentation for this method is binary, assuming that all datasets are even-
tually implemented as binary bits. Other representations include numeric
data, categorical data, boolean data, and textual data. These different rep-
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resentations could be grouped into two different categories: String Repres-
entation and Real-Valued Vector representation.

• matching rule: matching rule defines matching or recognition, which
is the distance measured between tested data and generated detectors. It
is used in both detectors’ generation stage and detection stage. For all
data presentation, matching rule M can be formally defined as a distance
measure between d and x within a threshold, where d is a detector, and x
is a data instance [66]. This matching rule introduces the concept of partial
matching, where the detector and the data instance do not have to be
exactly the same in every single bit to be matched. For example, if we have
this data: 11001100, and we are applying matching distance = 3, matched
detectors could be (11001100, 11001111, 11001000, 00101100, etc.) where at
least 5 bits match in the original data the detector.

Figure 3.4: Negative Selection Method’s Detectors Generation Stage [67]

(b) Positive Selection Method (inspired by negative selection): the pos-
itive selection method is inspired by the process of T-cells selection where
only T-cells that can recognize self-molecules (body cells) will be used
in the immune system. Unlike the negative selection method, this posit-
ive selection will generate detectors that recognize and match with self-
protected data (see Figure. 3.7). Then, during the detection stage, is a de-
tector that does not match the protected data, which means some changes
have occurred to the protected data. The positive Selection Classification
algorithm (PSCA) is a general classification algorithm that classifies un-
known data using classifiers that can recognize self-class (system files)
data. Authors in [64] applied PCSA in malware detection following the
next steps:
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Figure 3.5: Negative Selection Method’s Detection Stage [67]

• learning stage: In this stage, the method learns how to classify data
into two different classes (self and non-self)

• classification stage: The authors implemented the positive selection
classification stage using radius presentation. Unlike the binary presenta-
tion of data where minimal distance is applied using a matching threshold,
in the radius presentation, the distance between a detector and a system
file is presented in a circle format. To simplify, we show the radius present-
ation in the figure below (Fig. 3.6). Detectors are generated given a fixed
radius (R) for coverage (presented in a black border circle). All files close
to any detector less than R are classified as benign/self-data (presented
in green). Other files that are outside the range of the given radius of the
detectors are classified as non-self-data (represented in red). The authors
in [68] present more examples on fixed and flexible radius range for de-
tector generation.

(c) Clonal Method: the clonal selection theory was proposed in [70],
and states that B-cells undergo cloning, variation, and selection to mature
affinity. The CLONALG method was proposed by Castro and Zuben, and
it is inspired by the clonal selection theory; the CLONALG method was
initially designed for optimization and pattern recognition issues [71]. Ac-
cording to authors in [55], CLOALG requires the definition of five main
factors:

• size of receptors population

• selection strategy
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Figure 3.6: Radius Presentation of Detectors and Self/Non-Self Data

Figure 3.7: Detector Generation and Matching in Positive Selection [69]

• number of receptors

• affinity function that returns real-valued measures

• function to assign the rate of mutation and the number of clones ac-
cording to the affinity.

To simplify, the cloning method is a supervised data mining technique.
When an antigen enters the body, B-cells start cloning specific antibodies
for that type of antigen. However, if it is new, the immune system clones
the most stimulated lymphocytes. Similarly, in CLONALG method gener-
ate a set of receptors R that can recognize a set of patterns P.
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(d) Artificial Immune Networks Method: artificial immune networks
(AIN) theory was proposed in [67]. AIN is an unsupervised learning
algorithm inspired by B-cells’ immunological memory due to the exist-
ence of a mutually reinforcing network of themselves. This process means
that B-cells interact to spread information so that memory can be pre-
served, displaying active behavior even when no immune response is tak-
ing place [55]. AIN mimics the immune network theory and parts of clonal
selection as well. The AIN system process aims to set up a collection of rep-
ertoires for a given issue, where better-performing cells stifle low-similarity
(comparable) cells in the system. This standard is accomplished through
an intuitive procedure of presenting the population to outer data, to which
it reacts with both a clonal selection reaction and inner meta-elements of
intra-population reactions that balances out the reactions of the population
to the outside boosts.

As the human immune system can detect and react to antigens in our
body, the AIS can determine and respond to malicious files different from
system files used in the training phase [69]. AIS can detect discrepancies in
the system behavior and identify attacks without prior knowledge, mak-
ing them ideal candidates for detecting unknown malware files. In the
next section, we investigate the state-of-the-art AIS solutions in malware
detection and securing the IoT.

(e) Danger Theory: against the self and non-self theories, danger the-
ory is based on the idea that the immune system in the human body is
not necessarily capable of detecting self and non-self cells. However, the
immune system is capable of detecting cells that might cause danger to the
body, which triggers an immune response by sending a danger signal [72].
These cells could be infectious self, such as cancer cells, or infectious non-
self cells, such as virus infection. The recognition of the infectious cells
happens by analyzing the cell context, "tissue context," and the balance
between two types of cell death, necrosis, and apoptosis. On one hand, in
apoptosis cell death, the cell contents are easily reduced, breaking the cell
from the inside out. Dendritic cells are sensitive to an increase in the sig-
nals of apoptosis and are attracted to the dying cell. Eventually, the dead
cell is found by a dendritic cell and absorbed. On the other hand, in nec-
rosis cell death, the cell could die because of cell stress, such as irradiation
or lack of oxygen. In this case, the cell contents degrade chaotically in the
body, which might cause irregular fragments of DNA to be produced and
become uric acid crystals. Dendritic cells are sensitive to changes in the
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concentration of the molecules released as a result of necrosis death. Dend-
ritic cells move from the tissue and present and collect debris as antigen to
T cells to trigger an immune response [73].

3.4 summary of artificial immune system methods

AIS is a field based on mimicking the human immune system mechanisms.
Mainly, AIS is based on how the B and T cells defend the human body dur-
ing an attack. B cells get activated when an attack (antigen) enters the body.
B cells’ main role is to provide antibodies to mark the antigen by getting
attached to it. T cells get activated when an infection occurs, and t cells kill
the infected body cells and keep a record of the attack using memory T
cells. AIS applications are used widely in the area of security. For instance,
the AIS methods are used in malicious process detection, anomaly detec-
tion, intrusion detection, scan and flood detection, and fraud detection.

We discuss for main AIs methods used in security. The first is the neg-
ative selection method which is a supervised learning classifying method.
Negative selection is based on the B cells technique in marking an antigen.
The second is the positive selection method based on the T cells technique
in defending the human body. Next is the clonal method, based on the
B cells cloning antibodies for specific antigens. Finally, artificial immune
networks are an unsupervised classification method based on B memory
cells for identifying an attack.
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4.1 introduction to ais methods in securing the iot

AIS applications are artificial intelligence (AI) techniques inspired by the
intelligence of the human body’s immunology. Given its ability to detect
unseen attacks and its low complexity, various AIS-based methods are pro-
posed in the literature for IoT security. An immune-based architecture
was presented in [69] to secure the IoT using edge technologies based
on IoT system requirements. As highlighted by the authors, the architec-
ture meets IoT security requirements, such as adaptability and lightweight,
and can secure IoT nodes from various security threats and attacks. How-
ever, the proposed method is to secure the IoT using edge technologies,
which means it is limited to a certain IoT system architecture. Moreover,
the availability of this method has not been considered during the evalu-
ation process. In addition, to secure Internet protocol version 6 (Ipv6) in the
IoT, a bio-inspired method was presented in [74]. An AIS-based method
is implemented in the routing protocol for low-power and lossy networks
to enhance the security level and performance with the given limited re-
sources in the IoT. The main limitation of this approach is that it is time
and energy-consuming, which makes it difficult to secure IoT devices with
limited resources. The following section reviews AIS methods for IoT mal-
ware detection, including negative and positive selection algorithms and
immune and artificial immune-based methods.

45
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4.2 ais in malware detection in the iot

This section highlights the work conducted in malware detection using AIS
in the IoT. The original negative selection algorithm uses Binary Encod-
ing to represent self and non-self-datasets. Later on, real-valued methods
were proposed, and some researchers adopted different types of malware
detection techniques such as variable-sized detectors [75], hypercube de-
tectors [76], hyper-ellipsoid detectors [77], and multi-shaped detectors [78].
Deeper investigations have been conducted using a Hypersphere detector
because it has simple mathematic calculations compared to the other types.
These different data representation methods have not been applied to se-
curing the IoT since they are not sufficiently lightweight to meet the IoT
system requirements.

4.2.1 Negative and Positive Algorithms

One of the objectives of the main concept of negative selection is to pro-
duce enough detectors to cover the non-self-area. Most approaches gener-
ate these detectors randomly in different ways to cover holes and overlaps
and improve the detection rate. Many researchers have proposed combin-
ing two AIS methods to overcome this challenge.

The authors in [79] proposed the MNSA algorithm, a combination of
negative and positive selection detectors. The first set of detectors can
recognize self-data, and the other set of detectors is used to detect non-
self-data. Combining the results of these two detector sets is supposed to
improve the system’s detection rate for unknown malware files. To test
the method’s efficiency, randomly generated 12-bit long strings are used
for both the training and detecting stages of the algorithm. As a result, it
was claimed in [79] that the MNSA algorithm could detect up to 34% of
all intrusions without any prior knowledge about the non-self, and it can
confirm more than 90% of those detected files. The main limitation of this
research is that it was tested on random strings and not actual malware
files. Furthermore, this method uses too many detectors in both negative
and positive sets.

The authors in [55] proposed using the positive selection algorithm
(PCSA) for malware detection. They define the PCSA as a general clas-
sification algorithm for unknown data classification. Positive selection and
clonal selection algorithm techniques were applied to secure the IoT. The
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algorithm has different stages, starting with the learning stage to produce
classifiers: self and non-self. The main goal of this algorithm is to recognize
self-data, and after the learning stage, the authors claim that all classifiers
are available to classify unknown data. They also define two states after
classification: overlap, where more than two kinds of classifiers recognize
the unknown data, and hole, where the unknown data cannot be recog-
nized by any classifier. To evaluate the proposed algorithm, the research-
ers in [55] compared their solution to another algorithm in [80]. In total,
3721 Windows malicious executables and 3458 benign Windows execut-
ables were collected for the experiment. There are four types of malicious
files: backdoor, spyware, trojans, and worms. The main feature captured and
used for malware detection here is I/O request packets (IRPs), for which
they developed an MBMAS tool presented in [81] that can associate a pro-
cess with its child process in run time. Researchers claimed a 99.30% accur-
acy result for the PSCA algorithm that they developed. The only limitation
that this paper claimed is that IRP traces of programs vary from one host
to another, and some IRPs repeat sometimes. This method has not been im-
plemented in an IoT system, and we find this work not sufficiently robust
to cope with the interconnective environment of the IoT.

4.2.2 Negative and Neural Networks

An artificial neural network-based algorithm for intrusion detection in the
IoT is presented in [82]. The algorithm uses three neural network layers,
input, hidden, and output layer. The input layer feeds the model with
data passed to the hidden layer, which can not be accessed outside the
environment. The third layer is to show the output of the hidden layer.
The method achieves an 84% detection accuracy rate and less than 8%
false negatives. The authors only presented the results of a simulation of
the algorithm; no real-time data or platform was used.

The authors in [83] proposed using a negative selection algorithm com-
bined with neural networks (NSNN) for intrusion detection in the IoT. The
research goal is to develop an algorithm that meets IoT requirements, is
lightweight enough to apply to a wide range of IoT use cases, is capable of
detecting previously unknown intrusion vectors, and provides an accept-
able detection rate. The dataset used in this experiment is KDD NSL [84].
The authors use only the basic traffic features, which provide most of the
needed information. The different types of intrusions are divided into 23
different sets (22 types of attacks and one normal). Then, the attack types
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are divided into three attack sets: denial of service (DOS), PROBE, and
All Attack Types (AAT). They tested the algorithm against different per-
centages of normal and attacks of each type (10%, 20% ...90% attack and
subsequently 10%, 20%...90% of normal). Each one of the 27 sets iterated
100 times with different test data sets every time. The trained NSNN al-
gorithm was tested against the dataset. The following coefficients were
calculated: positive predictive value, negative predictive value, sensitivity,
specificity, accuracy, Matthews correlation coefficient (MCC), and F1-Score
(the harmonic mean of the precision and recall). This research achieved
an F1-Score of 0.77 in the DOS simulation, 0.72 in the PROBE simulation,
and 0.73 in all AAT simulation results. The researchers in [83] claimed that
their work is limited to creating the negative selection and neural network
algorithm only. Currently, they make no claims about the best way to im-
plement an online learning mechanism for it. Furthermore, they noted that
the test set used in the experiment is dated, and the results should be used
only for comparison purposes and not to demonstrate the actual perform-
ance of the algorithm. In addition to the presented shortcomings, we find
the F1-Score of this algorithm to be unreliable in securing the IoT systems.

4.2.3 Danger Theory Algorithms

There are different implementations of danger theory to detect malware
attacks with minimizing false negative detection. However, most of these
solutions are complicated enough not to fit the constrained IoT devices [85].
For instance, authors in [86] presented a hybrid solution (MANET) for mal-
ware detection using negative selection and danger theory. They use the
idea of memory cells to provide a better structure for the generated de-
tector sets, which increases the expandability of the detectors. Meaning
having a larger scope to detect malware files. Even though the proposed
method is promising for malware detection, the structure is complicated
enough, making it expensive for IoT systems. Moreover, authors in [87]
presented a method to detect and extract danger signals for malware de-
tection with the goal of minimizing the false positive detection rate. The
proposed method collects information from network traffic, analyzes the
collected data, and then marks each file as either good or bad. The files
that are marked as bad then get deleted from the system. Considering the
massive scale of traffic data produced and managed in the IoT systems,
this approach is not lightweight to fit the IoT-specific requirements.
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4.2.4 Immune and Artificial Immune Based Algorithms

An AIS-based approach for malware detection in the IoT is presented
in [88]. The authors develop an algorithm for intrusion detection in smart
homes using negative selection and random input parameter selection. The
experiment uses a Raspberry Pi connecting smart home devices to the in-
ternet via a router. One of the drawbacks of this project is that no results
were published for the experiment.

Celosia is an immune-inspired intrusion detection technique for the IoT
devices presented in [89]. Celosia is a non-supervised method that consists
of subsystems of many network structures that are individually trained.
This method is evaluated only for detecting botnet attacks that enable the
attacker to access devices connected to the internet.

The authors in [90] presented an AIS-based algorithm for malware de-
tection (DeepDCA). DeepDCA uses a dendritic cell algorithm (DCA), a
danger theory technique, and Self-Normalizing Neural Networks (SNN).
The proposed approach focuses on the preprocessing phase, presenting the
feature selection, the SNN signal categorization, signal processing, and an-
omaly metrics steps. The Bot-IoT dataset was used in the experiment, con-
verting some categorical variables to apply the feature selection method
easily. The method was evaluated using different file features, resulting in
an F1-Score less than 50% when using imbalanced data for the best ten
file features in the dataset. When using balanced data for the ten best file
features in the dataset, the F1-Score increased to over 90%. Although this
method achieves a high detection accuracy rate with low false negatives,
it is neither sufficiently lightweight nor distributive to be implemented in
IoT devices.

The authors proposed the artificial awareness architecture (AWA) in [91]
as a model for artificial immune ecosystems. Their experiment shows that
the proposed algorithm can detect intrusions in specific given IoT architec-
tures; however, it does not detect outliers–anomalies.

Moreover, the researchers in [92] proposed a novel approach to securing
the IoT based on immunology techniques. The proposed method adopts
dynamic and circular defense processes against a security threat. It incor-
porates five links: security threat detection, danger computation, security
response, security defense strategy formulation, and security defense. The
first link collects and analyzes IoT network traffic, and the other links func-
tion based on the produced results. The method simulates AIS techniques
for intrusion detection based on the following mechanisms: capturing the
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IoT traffic data and simulating the data to antigens in AIS; representing
the detector simulation for the detection elements, such as the lifetime
and the number of recognized antigens; thirdly, implementing a matching
mechanism to determine if there is a match between a detector and an
antigen. Also, the evolution process is represented by classifying the de-
tectors into immature detectors, mature detectors, and memory detectors.
In the experiment, cloning attacks, mutated cloning attacks, replay attacks,
and mutated replay attacks were simulated. Even though this method can
detect security threats and change detectors to adapt to the dynamic IoT
environment, no real malware files were used in this experiment. In addi-
tion, this work was not implemented in a real IoT scenario.

Furthermore, the authors in [93] proposed an artificial immune-based
method for intrusion detection in the IoT. The method involves many local
intrusion detection sub-models that share their learning attainments. The
signature information in the IoT sense layer represents antigens in this
method as binary strings. Detector sets are generated, including a number
of antigens matched by the detector and the generation life of the detector.
One of the main limitations of the proposed method is that it is not suffi-
ciently lightweight to meet the IoT system requirements.

Finally, the authors in [94] proposed an AIS-based algorithm for intru-
sion detection in the IoT. It was claimed that the main signature informa-
tion on the IoT datagram is extracted to be switched to a binary character
string for experiment purposes. Different detector stages are identified as
immature, mature, and memory detectors. The authors stated that imma-
ture detectors meet the recognition diversity of intrusion detection, while
mature detectors evolve to be immature detectors. Although this paper
presents a new method of detecting unknown malware in the IoT environ-
ment, no simulation results were given. In addition, we find this method
to be memory space and time-consuming for IoT devices.

Table 4.1 shows a comparison of the AIS-implemented solutions for se-
curing the IoT.
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Table 4.1: Comparison of AIS applications for securing the IoT.

Method Year
Experiment

Results
Included Malware Files

Used in the
Experiment

Limitations and
Shortcoming

Presented

Method Covers
Holes and
Overlaps

Danger
theory-
based [87]

2003 ✘ NA ✔ ✘

PCSA [55] 2011 ✔ ✔ ✔ ✔

MANET
[86]

2014 ✘ NA ✔ ✘

MNSA [79] 2017 ✔ ✘ ✔ ✘

Neural
network-
based [82]

2019 ✔ ✔ ✘ ✘

NSNN [83] 2018 ✔ ✔ ✘ ✘

AIS-based
[88]

2020 ✘ NA ✘ ✘

Celosia [89] 2020 ✔ ✔ ✘ ✘

DeepDCA
[90]

2020 ✔ ✔ ✘ ✘

AWA [91] 2017 ✔ ✘ ✔ ✘

Immune-
based [92]

2013 ✔ ✘ ✘ ✘

AIS-based
[93]

2012 ✘ NA ✘ ✘

Immune-
based [94]

2011 ✘ NA ✘ ✘

4.3 iot system security requirements

In the previous section, various implementations of AIS for securing the
IoT were reviewed. Our study shows a revived interest in addressing mal-
ware detection using the AIS method accompanying the spread of IoT
systems. Table 4.2 highlights five main properties to be considered when
applying AIS applications to the IoT.
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Table 4.2: IoT Systems’ Properties.

Property Definition

Robust The capability of a system to cope with issues during
execution and continue operating despite data conditions

Lightweight The capability to operate and execute with minimal com-
putational complexity

Fault tolerance
The capability to function given a defect within hardware
or software in the system,
and adapt to the changing environment to build up a
trustworthy network

Adaptive The capability to adapt and learn the system behavior
over runtime

Distributed The capability to run and communicate within a distrib-
uted environment

4.3.1 Immune-Based Implementations Challenges

Many AIS applications contain some of these properties, but implementing
an AIS algorithm that meets all the requirements remains unsolved. For
instance, designing an immune-based method results in implementing a
robust and adaptive solution for securing the IoT; however, the method is
neither lightweight nor fault-tolerant and not necessarily distributed [92–
94].

4.3.2 AIS Hybrid Solution Challenges in the IoT

Implementing a method based on AIS techniques is difficult. For instance,
clonal selection algorithms are adaptive but computationally expensive.
Moreover, clonal selection suffers from high false positives, and the degree
of damage cannot be inferred instantly. On the other hand, the negative
selection algorithm has high false negatives and is unsuitable for dense en-
vironments. Combining two or more AIS algorithms might be the solution
to overcome some of these challenges, such as applying negative selection
and neural network techniques in NSNN, which results in fault-tolerant,
adaptive, and distributed solutions; however, it is not lightweight [83]. Fur-
thermore, negative and positive selection algorithm techniques were com-
bined in MNSA to improve the detection rate in the IoT [79]. Even though
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the goal of implementing this method was met, the solution does not meet
all the IoT system’s requirements, such as robustness. The same scenario
applies to PCSA, which is not fault-tolerant as well [55]. Based on the char-
acteristics of AIS methods and IoT system properties, we contemplated
the reviewed AIS solutions in IoT and investigated which properties are
applied in each solution. Table 4.3 below shows the result of this analysis.
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Table 4.3: IoT system properties adopted in AIS solutions.

Method/
Properties

Robust Lightweight Fault
Tolerant Adaptive Distributed

Danger Theory +
Negative Selection
[86]

✘ ✘ ✘ ✔ ✔

PCSA: Positive
Selection [55]

✘ ✔ ✘ ✔ ✔

Danger Theory
[87]

✘ ✘ ✘ ✔ ✔

MNSA: Negative
Selection + Posit-
ive
Selection [79]

✘ ✘ ✘ ✔ ✔

Neural Network
based [82]

✘ ✘ ✘ ✔ ✔

NSNN: Negative
Selection + Neural
Network [83]

✘ ✘ ✔ ✔ ✔

Artificial Immune
based method [88]

✘ ✔ ✘ ✔ ✘

Celosia: Immune
System based [89]

✘ ✔ ✘ ✔ ✘

DeepDCA: Artifi-
cial
Immune-based
[90]

✔ ✘ ✘ ✔ ✘

AWA: Artificial
Immune Ecosys-
tem
[91]

✔ ✘ ✘ ✔ ✔

Immune System
based method [92]

✔ ✘ ✘ ✔ ✘

Artificial Immune
based method [93]

✔ ✘ ✘ ✔ ✔

Immune System
based method [94]

✔ ✘ ✘ ✔ ✔
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4.4 summary of ais applications

AIS methods are generally attractive for malware detection owing to their
ability to detect unknown attacks and intelligently keep records of any at-
tack for future use. In addition, they are a prime contender in the design
of IoT malware detection because the offered features best match IoT sys-
tem characteristics. The features of AIS methods, such as their adaptivity,
distributed implementation, lightweight computation, and robustness, are
compatible with the IoT devices’ specific requirements. To this end, we
survey recent research in the field of AIS for malware detection. We crit-
ically analyze existing works, draw key insights, and identify promising
future research directions in which novel AIS techniques can be developed
to address imminent and increased IoT security challenges.
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A N O V E L A I S - B A S E D M E T H O D T O

S E C U R E T H E I O T - S I M U L AT I O N

R E S U LT S

5.1 introduction to a novel ais-based method

In this chapter, we present a Negative-Positive Selection (NPS) algorithm, a
novel AIS method, for detecting unknown malware in the area of IoT. NPS
addresses two dominant challenges in IoT security: the dynamic and ever-
changing nature of IoT malware attacks and the lightweight restrictions of
IoT devices that limit the choice of security measures. The NPS algorithm
is a hybrid method inspired by negative and positive selection techniques
to overcome the challenges and limitations in the state-of-the-art. Specific-
ally, the NPS algorithm is designed to overcome the challenges in the neg-
ative selection and the multiple negative selection algorithms [79]. First, in
the NPS, we use the exhaustive detector generation method because time
and space complexity are proven to be better than other methods, e.g.,
self-linear and greedy. Second, we generate the negative and positive de-
tector sets separately, in parallel, to produce the exact number of required
detectors. This is done to overcome generating an unnecessary number of
detectors. Moreover, we overcome generating premature detectors in the
detectors generation stage by increasing the detector’s size from 12-bit to
16-bit. Finally, in the detection stage of the NPS, we match the incoming
traffic first with the negative detectors and then with the positive detectors
as opposed to matching the files to each set separately and then combin-
ing the results. Thus, the NPS algorithm is lightweight and suitable for IoT
systems.

56
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5.2 methodology

As shown in Fig. 5.1, the NPS method works in two stages: a detector
generation stage and a detection stage. The first stage is done once when
running the algorithm. The second stage runs in a loop whenever a new
file is introduced to the system for detection.

In this work, we propose to generate negative and positive detector sets
separately, in parallel processes, to avoid the risks of previous AIS meth-
ods (see Fig. 5.2). Negative selection algorithms commonly use randomly
generated 12 bits strings as input files to the malware detection mechan-
ism. Differently, our proposed method allows input files to go up to 16-bit
strings in order to capture the destination port address. This approach is
thus designed to produce better detection results for the state-of-the-art.
The NPS generates the same number of detectors in each set (the negative
and the positive detector sets).

The detectors generation stage shown in Fig. 5.2 and Algorithm 1 com-
prises the generation of two different sets of detectors, a positive detector
set (PDS) and a negative detector set (NDS). PDS contains detectors that
match self-data based on the positive selection concept, and NDS con-
tains detectors that do not match self-data based on the negative selection
concept. A matching threshold (see Algorithm 1 variable R) is used in both
stages of this algorithm, which defines the level of similarity between two
strings to be considered matching.

Figure 5.1: The NPS Workflow

Once the first stage of detector generation is completed, both sets of PDS
and NDS are ready for detection. The second stage is the detection stage
described in Fig. 5.3 and Algorithm 2. The proposed method is designed
to store information related to previously detected attacks in the first layer
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Figure 5.2: The NPS Detectors Generation Stage

(see Fig. 5.3 process (1)). Access to this data renders the proposed method
faster and more accurate in detecting known malware. The first step in
this stage is comparing an incoming file to the existing database on known
attacks. If there is no match, it indicates that either the file is self-data or
is an unknown malware file. As shown in Fig. 5.3 process (3), the file is
first processed by the NDS, which is able to detect an unseen malware
file. In this case, the system is alerted, and the new data is stored in the
database. Otherwise, the file is processed by the PDS. If the incoming file
matches any detector in PDS, it is considered benign. Else, it is flagged as
a malware attack.

5.2.1 Detectors Generation Calculations

Captured data conversion:

S = d||d| = L, d = toString(OriginalDataset) (5.1)

Where

L ∈ N (5.2)

L is the length of self-data
N is nature number set
toString() is the function to convert captured self-data into binary
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Figure 5.3: The NPS Detection Stage

Algorithm 1: The NPS Detectors Generation Stage
Input
NS = set of self-data
R = the number of contiguous matches required for
a match
DS = Detectors set size
Output
PDS= set of detectors capable of classifying self-data
NDS= set of detectors capable of classifying non-self-data
begin
while i ≤ DS do

D = a randomly generated detector
if D ∈ NS then

PDS = PDS + Detector
else

NDS = NDS + Detector
end if
i← i + 1

end while
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Algorithm 2: The NPS Detection Stage
Input
PA = previous attacks data
Dataset = dataset to be recognized
Dataset = dataset to be recognized
R = the number of contiguous matches required for
a match
PDS= set of detectors capable of classifying self-data
NDS= set of detectors capable of classifying non-self-data
Output
Attack = malicious files
Benign = systems files

begin
while i ≤ DatasetSize do

if Dataset[i] ∈ PA then
Attack← 2
EXIT

else if Ddataset[i] ∈ NDS then
Attack← Attack + 1

else
Benign← Benign + 1

else if Dataset[i] ∈ PDS then
Benign← Benign + 1

else
Attack← Attack + 1

end if
i← i + 1

end while
switch Attack do

case 1 do
Low detection

case 2 do
Malware detected

switch Benign do
case 1 do

Low detection
case 2 do

Benign file detected
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Initialization:
Data will be represented in Binary: 0,1
We will define self data as S and non self data as N where:

D = S ∪ N (5.3)

And

S ∩ N = Ø (5.4)

D = Training Data set
d = a training data set

d ∈ D (5.5)

Detectors Generation:

In this research, we will use the Exhaustive detector generation method,
which is the original method proposed by authors in [95].

m = the number of alphabet symbols (m = 2 in string representation)
L = the number of symbols in a string (length of the string)
r = the number of contiguous matches required for a match
Pm = the matching probability between a detector string and a randomly
chosen self string
Nr0 = The number of initial detector strings (before censoring)
Nr = The number of detector strings after censoring (size of the repertoire)
Ns = The number of self string
f = The probability of a random string not matching any of the Ns (self
strings)

f = (1− Pm)NS (5.6)

P f = The probability that Nr detectors fail to detect an intrusion

THEN

Pm ≈ m−r (L− 1)× (m˘1)
m + 1

(5.7)
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Pm ≈ 1
Ns

(5.8)

Nr0 =
−LnP f

Pm× (1− Pm)Ns
(5.9)

Nr =
−LnP f

Pm
(5.10)

P f ≈ e− Pm× Nr (5.11)

Positive Detection:

all detectors Dp are chosen among S (self data)

Dp = Dp1, Dp2, . . . . . . , Dpi (5.12)

Negative Detection:

all detectors Dn are chosen among N (non self data)

Dn = Dn1, Dn2, . . . . . . , Dni (5.13)

Where
Dpn = Dp ∪ Dn (5.14)

RCB (r-contiguous bits) matching rule:

In this algorithm, we will use a “Matching threshold.”

Dpni M d↔ distance measure between a detector and a training data set

is within a threshold

The matching between the two strings will be calculated using the Euc-
lidean equation:

D =

√√√√ l

∑
i=1

(Di− Dpni)2 (5.15)
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5.3 design and implementation

In order to validate and evaluate the effectiveness of NPS in IoT malware
detection, we have implemented the methodology using a real dataset. We
present the dataset and implementation setup in the following paragraphs.

5.3.1 Dataset

There are different datasets used to evaluate IoT security solutions. As
listed in [96], the most used datasets are the NSL-KDD, the Bot-IoT, the
Botnet, and the Android malware datasets. In this project, we chose to
use the NSL-KDD [84] for two reasons. First, unlike the other datasets,
the NSL-KDD eliminates the redundant records in the previous dataset
(KDD’99), reducing the number of borderline records compared to any
other dataset [96]. This leads to more accurate results when evaluating an
AIS-based security solution. Also, by eliminating the borderline records,
we reduce the total number of records (see details in Table 5.1), unlike
the Bot-IoT [97], which has 72,000,000 records. Using a larger number of
records to evaluate an IoT security solution might overwhelm the system
when running the solution in an actual IoT system setup. Please refer to
Appendix A A.1 for the dataset records extraction.

Table 5.1: NSL-KDD Dataset Used in the Experiment.

Total number of records used 1,074,992

Number of attack files 262,178

Number of benign files 812,814

List of attacks
Brute-force, Heartbleed attack, Botnet,
Denial of service, Distributed Denial of
Service, Web attacks, and infiltration
of the network from inside

Number of traffic features 80

Some of the traffic features
Destination port, flow duration, average
size of packet, number of forward packets
per second, number of backward packets
per second
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5.3.2 Simulation Setup

The experiment has two stages: a detector generation and a detection stage.
The first stage is a training model based on a data file that includes benign
(harmless) data records. The data file is extracted from the system’s files.
Within the file, the destination port is used to generate and test the de-
tectors, thus, resulting in 16-bit string detectors. If the generated detector
matches one of the records in the file, it is added to the positive detector
set. Otherwise, it is added to the negative detector set (as shown in Fig. 5.2).
The second stage of this experiment is the detection stage, where a file with
benign and malicious records (different than the ones used in the training
stage) is used to test the method.

To evaluate the method detection rate and efficiency, we use the follow-
ing calculations:

• True positive (TP): malware is detected as a malicious application

• True negative (TN): benign is detected as non-malicious application

• False positive (FP): benign is detected as a malicious application

• False negative (FN): malware is detected as non-malicious applica-
tion

Accuracy =
TP + TN

TP + TN + FP + FN
(5.16)

Precision =
TP

TP + FP
(5.17)

Recall =
TP

TP + FN
(5.18)

A malware detection method is first evaluated based on its achievable
accuracy rate as defined in Equation5.16, with higher accuracy as the ob-
jective. A more revealing performance indication is precision and recall as
defined in Equation5.17 and Equation5.18. For instance, let us consider a
dataset that includes 80 benign and 20 malware files. If Method A results in
all benign files being correctly identified but all malware incorrectly iden-
tified, the result is 80% accuracy. However, the performance of Method A
is unacceptable as it is incapable of detecting malware with precision and
recall being null. Method B, on the other hand, detects 60 benign files and
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all 20 malware files correctly, the accuracy is still 80%, but the performance
is much more reliable in detecting malware. The precision for method B
is 50%, and the recall is 100%. The ultimate goal in securing the IoT is to
maximize the recall percentage in detecting malware attacks.

The experiment undergoes multiple iterations where each employs a
different number of detectors. As such, comparing the results of these iter-
ations reveals the combination that yields the highest detection rate with
the minimal number of detectors. Using fewer detectors reduces time and
space complexity in the implementation of the NPS, as discussed in the
results section.

5.4 the nps simulation results and discussion

5.4.1 Detection Accuracy

As aforementioned, to increase the detection rate and decrease the number
of used detectors, we use 16-bit strings and the same number of detectors
in both positive and negative sets. In the first iteration, we create 40 de-
tectors, which means 20 detectors in each set, and we achieve close to 92%
detection rate. When increasing the number of detectors to 60 in total, 30
detectors in each set, the detection rate is increased to 99% as shown in
Fig. 5.4. To compare our method to the state-of-the-art, we run different
iterations using the MNSA [79] technique which uses 12-bit strings and a
different number of detectors (5/10, 10/50, 15/100, 20/150, and 30/200)
positive negative detectors, respectively. The highest detection rate is close
to 89% with 30/200 positive and negative detectors. When increasing the
string size to 16-bit, the detection rate increase to up to 99% with 20/150
positive and negative detectors as shown in Fig. 5.4.

5.4.2 Detection Precision and Recall

One of the main goals of this hybrid method is to reduce the FN rate
since it is one of the negative selection challenges. The risk of a FN in mal-
ware detection is obvious; it means that a malware file is allowed into the
network, which would cause serious harm to any application, e.g., traffic
signals, e-health, and smart homes. On the other hand, a FP does not have
a direct security impact, but a high rate of FP would reduce the usabil-
ity of any application. In other words, if many benign files are treated as
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Figure 5.4: The NPS Simulation Results

malware, the efficiency of the information exchange gets negatively im-
pacted at a high cost, e.g., unjustified long traffic queues and emergency
health services being triggered when not needed. This would eventually
limit the progress in IoT-enabled applications. To this end, starting the
detection process by comparing incoming files to the negative detectors,
then confirming the detection results with the positive detectors improves
the classification of malware as a non-malicious application rate. Running
NPS for unknown malware detection, we achieve almost 0% FN and less
than 1% FP detection rates. Moreover, we achieve up to 95% precision rate
and 96% recall rate when generating 20 positive and 20 negative detectors
using the precision and recall formulations in (2) and (3), respectively. The
precision and recall rates both increase to 99% when 30 detectors are gen-
erated in both sets, as shown in Fig. 5.5. This means that the NPS method
could be implemented on its own to protect IoT devices, which require
less complicated security measurements taken. Even though this is an im-
portant metric to evaluate intrusion detection methods’ preciseness, there
were no results given in this regard in the MNSA algorithm [79].

5.4.3 Space and Time Complexity

As aforementioned, IoT devices are lightweight, with less computational
power and memory capacity than traditional networks, which makes im-
plementing security solutions challenging. In this section, we calculate the
time and space complexity to validate that the NPS algorithm is not com-
putationally expensive, which makes it suitable to be implemented in the
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Figure 5.5: The 12-bit & 16-bit String Results

IoT. After running these two stages, the time and space complexity is cal-
culated using the following equations [56]:

Time = (mL × NS × NR) (5.19)

Space = (L× NS × NR) (5.20)

Where: m is alphabet size (m = 2 in binary representation), L is string size,
NS is a number of self-data, and NR is a number of detectors. Space com-
plexity based on (5) is reduced by 1.4% when the number of detectors NR

is reduced for two settings of NS=12,16. Using an equal number of detect-
ors with 16-bit string results in a 65% decrease in space complexity than
using the 12-bit string technique. 64% is the decrease in time complexity
when using the 16-bit string with an equal number of detectors than using
a 12-bit string with larger detectors set.

5.5 quantitative performance analysis

In this section, we highlight the main criteria to evaluate the performance
of the most promising AIS methods in the literature for malware detection
in the IoT [79, 83] and the presented novel method [1]. The most recent
AIS solutions for securing the IoT are selected to present a quantitative per-
formance analysis. These methods are selected because of their promising
results (accuracy and false negatives), which we were able to reproduce
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to enable the quantitative performance analysis. A false-negative denotes
malware that is falsely classified as benign. It follows that a better malware
detection method results in fewer false negatives.

The NSL-KDD dataset is used to evaluate the NPS [1] and NSNN [83]
methods. Consequently, in order to enable a quantitative performance ana-
lysis, we reproduce the results of the MNSA using the same NSL-KSS
dataset. The traffic data were captured by running 420 machines and 30
servers in 5 different departments. Although the NSL-KDD dataset is not
IoT-specific, it contains various malware attack types. It offers different
file features to test security solutions, which makes it a good fit for this
experiment’s purposes. In contrast to other machine learning approaches
presented in the literature review (Chapter 4), AIS requires minimal data
to create necessary detectors later used in the detection phase. In our case,
10% of randomly selected samples of the dataset are used in the detector
generation phase, and the remaining 90% are used for testing. We com-
pare the performance from two perspectives: in Section 5.5.1, we analyze
the detection accuracy and F1-Score of each; in Section 5.5.2, we examine
the complexity of each algorithm from both time and memory perspect-
ives.

5.5.1 Detection Accuracy and F1-Score

The NPS [1] uses both negative and positive detectors and overcomes two
main challenges in securing IoT applications. First, the method is light-
weight, as it generates a smaller number of detectors compared to other
AIS algorithms, such as the MNSA [79], with a higher detection rate ac-
curacy, calculated using Equation (5.16). With 40 detectors in total (20 neg-
ative and 20 positive detectors), the NPS achieves up to a 92% detection
rate and a rate of up to 99% when using 60 detectors in total (30 negative
and 30 positive detectors; see Figure 5.6). When reproducing the results of
the MNSA, the detection rate accuracy increases to 80% when using 170
detectors in general (150 negative and 20 positive detectors). The mean de-
tection accuracy rate for the NSNN [83] is close to 73%, which is lower than
both NPS and MNSA algorithms. Second, it overcomes the false-negative
detection challenge. As explained earlier, accuracy alone does not fully
capture the detection performance as it does not highlight the false neg-
atives. In other words, a detection accuracy of 75% may result from a
100% misclassification of malware (since 25% of the records are labeled
as attacks—262.178/1,074,992, as shown in Table 5.1). To this end, we cal-
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culate the F1-Score (see Equation (5.21)), which is more representative of
the performance when the data are not balanced.

Figure 5.6: Accuracy and F1-Score Results of NPS, MNSA, and NSNN using NSL-
KDD dataset

As shown in Figure 5.6, calculating the F1-Score for the NPS, we obtain
a score of 96% when using 40 detectors in total. When using 60 detectors,
the F1-Score for the NPS algorithm increases to 99%. The F1-Score for the
MNSA increases to 87% when using 170 detectors, and the F1-Score for
the NSNN is 73%. Overall, the NPS achieves almost a 14% improvement.

We calculate the detection rate accuracy, Precision, and recall using Equa-
tions (5.16),(5.17), and (5.18), respectively. We calculate the F1-Score using
the following equation (Equation 5.21).

F1− Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(5.21)

5.5.2 Memory and Time Complexity

IoT devices are lightweight with limited computing power; therefore, redu-
cing memory usage and computing time when applying security methods
is essential. We calculate the space complexity for the NPS, MNSA, and
NSNN using Equations (5.19) and (5.20), where m is the alphabet size (m
= 2 in binary representation), L is the string size, NS is the amount of self-
data, and NR is the number of detectors. Table 5.2 shows the values of the
three methods for each parameter.



70

Using 16-bit strings with an equal number of detectors in both negat-
ive and positive sets in the NPS results in a 65% decrease in memory us-
age compared to generating 12-bit strings with larger detector sets in the
MNSA. To calculate the space complexity for the NSNN, we assume that
the string length is ≥7 since the R-Continuous Bit Matching (RCBM) is 7.
RCBM is the number of matching bits between two strings: self and non-
self. In this case, the NPS uses 90% less memory space than the NSNN.

When calculating the time complexity using Equation (5.19), the res-
ults show that the NSNN needs less computing time than the other two
methods—MNSA and NPS. The following Figure 5.7 shows the result of
the space and time complexity analysis.

Figure 5.7: Memory and Time Complexity of NPS, MNSA, and NSNN

Table 5.2: Space and time complexity calculations.

Method M L NS NR

NPS 2 16 1000 60
MNSA 2 12 1000 170
NSNN 2 7 1000 1000
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5.6 validating the nps simulation results using the bot-iot

and unsw-nb15 datasets

In this chapter, we use two state-of-the-art datasets widely used to evaluate
intrusion detection methods in the IoT. For the first dataset, we use the Bot-
IoT dataset (see details in 5.6.1), and the second one is the UNSW-NB15
(see details in 5.6.2). The two datasets have been created by the intelligent
security group at the University of New South Wales (UNSW) Canberra.
We run the NPS using the two datasets and conduct a performance ana-
lysis. Next, we benchmark the obtained results against the state-of-the-art
intrusion detection methods that use the same datasets.

5.6.1 Bot-IoT Dataset

The Bot-IoT dataset was created by designing a realistic network environ-
ment incorporating both normal and botnet traffic. The dataset includes
DDoS, DoS, Operating System (OS) and Service Scan, Keylogging, and
Data exfiltration attacks (see Table 5.3). The authors introduced and ex-
plained the Bot-IoT in [98–102]. The dataset records are available to be ex-
tracted in different formats, including the original pcap files. Please refer
to Appendix A A.2 for the dataset records extraction.

Table 5.3: Bot-IoT Dataset

Total number of records over 73,000,000

Number of attack files 73,360,900

Number of benign files 9543

List of attacks
DDoS, DoS,
Operating System (OS) and Service Scan,
Keylogging and Data exfiltration attacks

Number of traffic features 46

Some of the traffic features
Destination port, flow duration, average size of
packet, number of forward packets per second,
number of backward packets per second
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5.6.2 UNSW-NB15 Dataset

The UNSW-NB15 dataset was created by the IXIA PerfectStorm tool for
generating a hybrid of real modern normal activities and synthetic con-
temporary attack behaviors. The dataset includes nine types of attacks:
Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance,
Shellcode, and Worms (see Table 5.4). The UNSW-NB15 is introduced and
explained by the authors in [103–108]. The dataset records are available to
be extracted in different formats, including the original pcap files. Please
refer to Appendix A A.3 for the dataset records extraction.

Table 5.4: UNSW-NB15 Dataset

Total number of records over 25000,000

Number of attack files 321,283

Number of benign files 2,218,761

List of attacks
Fuzzers, Analysis, Backdoors,
DoS, Exploits, Generic,
Reconnaissance, Shellcode, and Worms

Number of traffic features 49

Some of the traffic features
Destination port, flow duration, average size of
packet, number of forward packets per second,
number of backward packets per second

5.7 results and discussion of using multiple datasets

This section presents the performance results of running the NPS using
the Bot-IoT and UNSW-NB15 datasets. We then benchmark the results
against the state-of-the-art advances in malware detection in the IoT us-
ing these two datasets. We use Equations 5.16,5.17,5.18, and 5.21 presented
in Chapter 5 to calculate the presented results.

5.7.1 The NPS Results and Discussion

The figure below (Fig. 5.8) shows the performance analysis of running the
NPS using the NSL-KDD, Bot-IoT, and UNSW-NB15 datasets with 20 de-
tectors in each set, negative and positive. The NPS achieves high detection
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performance using all three datasets. The detection accuracy is up to 92%,
the precision rate is up to 95%, and the recall rate is up to 97%. The results
of creating 30 detectors in each set, negative and positive, using multiple
datasets are shown in Fig. 5.9. The detection accuracy goes up to 99%, the
precision rate is 99%, and the recall rate is close to 100%.

We can see a negligible gap when running the NPS using the three data-
sets. This difference is justifiable by the different number of records and
types of attacks in each of the datasets. Therefore, this performance ana-
lysis shows the effectiveness of the NPS in detecting unknown malware
attacks in IoT systems.

Figure 5.8: Running the NPS Using Multiple Datasets - 20 Detectors Results

5.8 state-of-the-art using the unsw-nb15 and the bot-iot

datasets

In this section, we present a compression of the results we obtain running
the NPS using multiple datasets and state-of-the-art solutions for malware
detection in the IoT. Since detection accuracy is the common factor to high-
light the performance in the published work, we use the detection accuracy
rate in this comparison. First, the authors in [109] presented the LSTM-
based unsupervised deep learning model for malware detection in the
IoT. The authors reported 96% detection rate accuracy for running their
model using both the Bot-IoT and UNSW-NB15 datasets combined. The
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Figure 5.9: Running the NPS Using Multiple Datasets - 30 Detectors Results

main focus of this work is on detecting DoS and DDoS attacks. Second,
the method presented in [110] achieves a 99% detection accuracy rate us-
ing the UNSW-NB15 dataset. However, the number of classes used for
classification is unclear. Next, the method presented in [111] achieves a
70% detection accuracy rate using the UNSW-NB15 dataset. The results
were obtained using only 10% of the total number of records of the data-
set. Similarly, the authors in [112] used only 10% of the total number of
records of the UNSW-NB15 dataset and reported 89% detection rate accur-
acy. Finally, feed-forward ANN (FNN) and self-normalized neural network
(SNN) presented in [113] use the Bot-IoT for the experiment. They repor-
ted a 95% detection accuracy rate for FNN and 91% for SNN. They only
use 20% of the total number of records and the ten best features to run the
proposed solutions.

As anticipated, the NPS outperforms the state-of-the-art solutions detec-
tion accuracy rate by up to 42%. This validates the claim that the NPS is fit
to secure the IoT from unknown malware attacks.

5.9 summary of the novel ais-based method

AIS methods are adaptive, distributive, and lightweight, which makes
them an ideal fit to secure IoT networks. This chapter presents the NPS
algorithm based on negative and positive selection techniques to improve
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the unknown malware detection rate. The performance of NPS is bench-
marked against state-of-the-art malware detection schemes using a real
dataset. We achieve close to a 22% increase in the accuracy of detection
rate using 16-bit strings with an almost 65% decrease in space complexity,
which resolves one of the main challenges in securing the IoT. Another
limitation to be overcome by the NPS is the false negative detection which
was reduced to almost 0% of detected files resulting in a 99% recall rate.

Moreover, we run the NPS using multiple datasets to validate the ob-
tained results and benchmark the performance against state-of-the-art ad-
vances. We create 20 and 30 detectors in each set, negative and positive.
We use the Bot-IoT and USNW-NB15 datasets, two of the most recent and
widely used datasets, to evaluate malware detection solutions in the IoT.
We obtain similar results running the NPS using both datasets compared
to the ones we obtain from the NSL-KDD dataset. There is a negligible
difference in the detection performance due to the differences in the num-
ber of records and the number of attacks in each one of the datasets. We
benchmark the results we achieve against the state-of-the-art methods in
malware detection in the IoT using the same datasets.
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I M P L E M E N T I N G T H E N P S I N

R E A L I S T I C I O T S Y S T E M S U S I N G AW S

6.1 introduction to the implementation

In Chapter 4, we present the IoT systems’ properties in Table 4.2. Robust,
lightweight, fault-tolerant, adaptive, and distributed are the five main char-
acteristics of a security solution in IoT systems. This chapter highlights the
AIS solutions’ lightweight and distributed abilities.

The advantages of using AIS to secure the IoT systems are discussed
in the previous chapters, showing that the NPS is the most promising
method compared to state-of-the-art solutions. This was further demon-
strated when simulation results showed the superiority of the NPS with
respect to the recent promising methods in [79, 83]. However, these meth-
ods’ results are insufficient to fully validate the method under a realistic
setup. Real-life IoT systems follow different system architectures and em-
ploy devices with different characteristics.

In this work we implement the NPS and MNSA using a real-time plat-
form. We create different IoT system architectures to test the AIS solu-
tions efficiency in detecting unknown malware attacks with minimizing
the memory utilization in the IoT device. We conduct a quantitative ana-
lysis studying the detection behavior of AIS solutions in a realistic setup.
In the next sections, we present the implementation methodology, IoT sys-
tem architectures, problem formulation, and results and discussion.

Section 6.2 presents the AIS solutions implementation in a realistic setup.
We describe the methodology of this research, the dataset used, IoT sys-
tems architectures, and the problem formulation. Section 6.3 presents the
implementation results, performance analysis, and discussion.

76
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6.2 ais solutions implementation

This work investigates the relationship between, on one hand, the achiev-
able performance of AIS malware detection algorithms and the hardware
and system architecture limitations, on the other hand. In this section, we
first present the AIS solutions methodology in Section 6.2.1. Second, we
present the dataset we use in this implantation in Section 6.2.2. Then, we
present the IoT system architectures. We identify the hardware and soft-
ware factors and their realistic range in Section 6.2.3. Finally, we formulate
the malware detection problem as a function using these factors and the
related labeled dataset in Section 6.2.4.

6.2.1 AIS Solutions Methodology

We implement the NPS and the MNSA in a real-time platform using AWS.
This allows us to conduct a quantities performance analysis and study the
behavior of the AIS solutions in realistic setups. Both the NPS and MNSA
work in two stages: the detector generation stage and the detection stage.
In the detectors generation stage, two different sets of detectors are gen-
erated: the negative detectors, represented as DNeg, which do not match
self-data. The positive detectors, represented as DPos, match self-data. In
the detection stage, if an incoming file matches one of the negative detect-
ors, it is tagged as malicious. In contrast, if an incoming file matches one
of the positive detectors, it is tagged as benign. The size of each detector is
represented as DSize. Where:

DPos+Neg = DPos ∪ DNeg (6.1)

The table below (Table 6.1) shows the size and the number of detectors
used in this implantation for each method. The aim of choosing different
detector sizes for both methods is to test the method’s detection rate accur-
acy while also considering the method’s complexity. The goal is to achieve
high detection accuracy rate by minimizing the space and time complexity
of running the method.
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Table 6.1: Detectors Size

NPS MNSA

DPos 30 20
DNeg 30 150
DSize 16 12

6.2.2 Dataset Used

We use the NSL-KDD dataset (available in [84]) in this implementation. We
use this particular dataset for mainly two reasons, first is the fact that it
was used in the simulation experiment for both methods, NPS and MNSA.
The other reason for using this dataset is that AWS computing platforms
were used to collect the traffic data for this dataset. Consequently, we run
the implementation on AWS using the IDS2018 dataset to obtain more co-
herent and accurate results. This dataset contains seven different malware
attacks, brute-force attacks, heartbleed attacks, botnet, denial-of-Service,
distributed denial-of-service, web Attacks, and infiltration of the network
from inside [2].

We represent the total number of dataset records as DTotal, and we rep-
resent each record in DTotal as Di where:

i = [1to|DTotal|] (6.2)

The size of Di is represented as S, and each Di includes the same number
of features represented as FS where:

F = [ f1, f2, f3, . . . FS] (6.3)

Each record Di is associated with the ground truth Yi where Yi = 0, 1.
Yi = 0 indicates that the record is benign and Yi = 1 indicates that it is
malicious. We define Y as the vector including all the labels of Yi for:

i = [1to|DTotal|] (6.4)

The dataset DTotal is split into two parts: DTrain and DTest where:

DTotal = DTrain ∪ DTest (6.5)
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We use a 25:75 ratio of DTotal to define the size of the DTrain and DTest,
respectively. DTrain is used to train the model using a supervised learning
technique. The second part, DTest, is used to test the model performance.
We compare the actual label Yi to the predicted label by the model repres-
ented as Ŷi.

6.2.3 IoT System Architecture

In this work, we use AWS to create the desired architecture for the imple-
mentation. We introduce the main services used in this section and briefly
describe each service [114].

• Amazon Elastic Compute Cloud (Amazon EC2): providing scalable
computing capacity in the AWS Cloud. Users have total control over the
EC2 configuration as it is not an AWS-managed service.

• Virtual Private Cloud (Amazon VPC): creating a logically isolated vir-
tual network when launching AWS resources. This service provides an
extra layer of security to the implementation by using public and private
subnets and Network Access Control List configuration.

• AWS IoT Core: enabling IoT devices connected to the AWS cloud. It
supports a large number of devices and messages by providing reliable
and secure services.

• Device Gateway: the entry point for IoT devices connected to AWS

• AWS Lambda: running programming code in a serverless computing
service in response to events and automatically managing the underlying
computing resources.

• Cloudwatch: monitoring and management services for AWS re-
sources.

In this implementation, since we have total control over the configura-
tion of the EC2, we use it to configure the IoT device to be connected to
the network. We create five different system architectures to run this exper-
iment to mirror real system scenarios and conduct a performance analysis.
The system configuration and the memory size range are inspired by the
IoMT devices presented in [115] for heart monitoring. First, the volume
size represents the memory size of the IoT device used in each system. The
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memory size ranges between 30GB and 128GB. Since IoT devices are light-
weight with small memory and computation capacity, we only increase the
volume size to 128GB to fit the IoT devices’ requirements and mimic real-
life scenarios. Second, the value of DTotal ranges between 12,000 to 40,000
records. This is decided based on the memory capacity, method perform-
ance, and CPU utilization. In all five systems, we use only one memory and
one CPU in the IoT device. We set the memory performance to moderate
to low and use only the TCP protocol. This setup mimics the lightweight
with low memory capacity IoT devices often connected to the network.

Next, we explain the setup and the variable values for each system. We
set the values for the following variables in Table 6.2: volume size, DTotal,
and the number of devices to be connected to the network.

Table 6.2: IoT System Specifications

System1 System2 System3 System4 System5

Volume Size 30GB 32GB 64GB 128GB 30GB
DTotal 12,000 14,000 28,000 40,0000 24,000
Number of
IoT devices One One One One Two

We use the system architecture shown in Fig. 6.1 for the first four sys-
tems, where we connect only one IoT device. In the fifth setup of this
implementation (System 5), we connect two IoT devices to the IoT core,
as shown in Fig. 6.2. As demonstrated in the Figure, The traffic goes both
ways between the two IoT devices. The algorithm is implemented and
trained on one IoT device, and then it is tested using the traffic coming
from the IoT Core and the other IoT device. Since the load is divided
between two devices in this setup, we use the total number of DTotal in one
of the IoT devices in the detector generation stage of the method. Then we
use the total number of DTotal in the other IoT device in the detection stage.
Meaning DTrain and DTest both have the size of 12,000 records.

6.2.4 Problem Formulation

This work examines the realistic implementation of AIS solutions in con-
strained IoT systems. The objective of malware detection mechanisms is
surely to maximize the detection rate of unknown malware while redu-
cing false alarms (when benign files are wrongly classified as malicious).
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Figure 6.1: AWS Architecture Implementation-1-

Meaning, we maximize the number of correct predictions (Ŷ) by the AIS
solutions as:

Ŷ == Y (6.6)

In this work, we study how the different parameters of AIS algorithms
can be tuned to accommodate the given constrained conditions of the IoT
systems. While we still achieve a high detection performance of unknown
malware. In particular, we find the suitable number of positive and neg-
ative detectors, DPos and DNeg, the size of each detector DSize, and the
possible size of DTrain (indicated as |DTrain|), that would allow the highest
number of correct predictions. We define the minimum and the maximum
number of detectors as ND function, and the minimum and the maximum
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Figure 6.2: AWS Architecture Implementation-2-

number of DTrain as NT. Equation (6.7) presents the problem formulation
and the optimization constraint defined by the total memory TM.

max
|DTrain|,DPos,DNeg,DSize

|DTest|

∑
k=1

Ŷk == Yk (6.7)

s.t.

ND((Dpos + Dneg)× Dsize) + NT(DTrain × S) <= TM (7.7.(a))

6.3 the implementation results and discussion

This section presents the results of our implementation, followed by a dis-
cussion and interpretation. We calculate the detection accuracy, precision,
recall, and F1-Score using the equations presented in Chapter 5. An im-
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portant characteristic in the context of malware detection is to reduce false
alarms, and this metric is referred to as detection recall. An increase in
false alarms may slow down the data acquisition process and may affect
the acceptance of a malware detection algorithm. Also, it is critical that
any algorithm successfully identifies all malicious files as malware, and
this metric is referred to as detection precision. To this end, the F1-score
of the proposed methods is measured as this captures the accuracy of
detecting malware and the rate of false alarms jointly. The detection per-
formance results are presented in Section 6.3.1. Then, we present the CPU
Utilization for the NPS and MNSA in Section 6.3.2. Finally, we present the
implementation and simulation performance analysis in Section 6.3.3.

6.3.1 Detection Performance

The figure below (Fig. 6.3) shows the results for the five system scenarios
implemented in this project for both the NPS and MNSA. Since the F1-
Score takes both negative and positive detection into account, we use it
as the main metric to evaluate the performance in this analysis. First, we
start with Systems 1 to 4, using only one IoT device in the implementation.
As predicted in Chapters 4 and 5, the NPS succeeds in better malware
detection than MNSA in all four systems, as evidenced by the higher F1-
Score by up to 20% than the MNSA. As anticipated, the performance of
both the NPS and MNSA improves when we move from System 1 to 4 by
8% and 10% for the NPS and MNSA, respectively. Increasing the volume
size allows for an increase in the number of DTrain. Therefore, this results
in better detection performance in all four systems for both methods.

In System 5, we connect two IoT devices to the system. This system archi-
tecture is used to evaluate the method’s transfer learning abilities within
the network. Each IoT device has its own incoming data traffic from the IoT
gateway and/or other IoT devices connected to the same network. Trans-
fer learning in this context means testing the method’s ability to be trained
and create detectors using an IoT device traffic, then running the detec-
tion stage using another IoT device traffic. The aim is to test the generated
detectors’ ability to detect malware attacks targeting both IoT devices con-
nected to the system with being only trained using one of the IoT devices.
Since we train the method on one IoT device, we can use the total number
of DTotal to create the detectors. Both AIS solutions, the NPS and MNSA,
show the capability of transfer learning and protecting both IoT devices
connected to the system. However, as anticipated, the NPS succeeds in
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a better detection performance protecting the two IoT devices than the
MNSA by 16%. This shows that the NPS has better transfer learning abilit-
ies than the MNSA. Therefore, the NPS is better for protecting distributed
and robust IoT systems.

We demonstrate the NPS and MNSA detection performance and light-
weight abilities on one IoT device using Systems 1 to 4. System 5 demon-
strates the transfer learning abilities. In this implementation, by increasing
the volume size of the device, we can use a larger number of dataset re-
cords in the detector generation stage. This results in a better learning
curve, thus, a better classification accuracy when detecting malware files.
Furthermore, AIS solutions can secure the IoT system with multiple IoT
devices if only installed on one IoT device, as demonstrated in System 5.

Figure 6.3: The NPS Implementation Using AWS Results

6.3.2 CPU Utilization

One of the AWS services we use in this implementation is cloudwatch
which is for monitoring and managing services. Cloudwatch shows the
CPU Average utilization for AWS resources, the implemented IoT devices
in this case. The objective is to validate the claims in Chapters 4 and 5 that
AIS solutions are lightweight in realistic settings. To this end, the CPU
utilization is measured in each system for both the NPS and MNSA, as
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shown in Fig. 6.4. The NPS requires less CPU utilization by up to 37% than
the MNSA, hence is more suitable for lightweight IoT systems under all
conditions depicted by all five systems. The results also show that the CPU
utilization drops systematically when moving from System 1 to System 5
for both the NPS and MNSA. We see a decrease close to 13% and 10% in
CPU utilization for the NPS and MNSA, respectively. By increasing the
volume size of the IoT device, we can decrease the CPU utilization in the
device, which is one of the main objectives when implementing security
methods in IoT devices.

Figure 6.4: CPU Average Utilization for Each System

6.3.3 Algorithm Simulation and Implementation Performance Analysis

In this section, we compare the actual implementation results shown in
Fig. 6.3 and the ideal simulation results in Chapters 4 and 5. In this work,
we use the F1-Score as the main factor to compare the implementation
and the simulation results of the AIS solutions. In this implementation,
The size of DPos+Neg when we run the NPS is 60 detectors, and it is 170
detectors for the MNSA. Consequently, to present an accurate quantitat-
ive analysis, we compare the results for the same size of detectors in the
simulation. Moreover, since the simulation is run as one entity, we analyze
the performance of the first four systems architectures where we run the
implementation using one IoT device. Fig. 6.5 shows the analysis of the
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results for both the ideal simulation and the actual implementation results
for the NPS and MNSA.

We compare the simulation results with System 1 results since we use
one IoT device with the most constrained memory size. The MNSA shows
a decrease close to 13% from the simulation and System 1 results, while
the NPS performance decreases by 8% when compared to the simulation
results. As anticipated, both AIS solutions, the NPS and the MNSA, under-
performed compared to their simulation results. This validates the claim
that IoT security solutions should be tested in a realistic environment to
demonstrate sufficient findings.

Figure 6.5: Comparing the Actual to the Ideal Performance of AIS for Different
IoT Systems

6.4 summary of implementing ais using aws

In the previous chapters, we demonstrated that AIS solutions are an ex-
cellent fit to secure IoT systems. However, the published results are based
on computer simulations only. This chapter presents the first implantation
of AIS solutions using AWS. We use AWS to create different IoT system
architectures mirroring real-life scenarios. We demonstrate the lightweight,
transfer learning, and detection capabilities of the AIS methods. The res-
ults show that increasing the size of the IoT device memory allows us to
increase the dataset size to train the module, which leads to better detec-
tion performance. The results also show that running an AIS solution on
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one of the IoT devices could secure the device itself from malware attacks
and any other IoT devices connected to the same network. Finally, we val-
idate the claim that AIS security solutions should be tested in a real setup
to obtain accurate results.



7
I M P L E M E N T I N G T H E N P S I N

R E A L I S T I C I O T S Y S T E M S U S I N G AW S

- 2 -

7.1 introduction to the implementation methodology

In this chapter, we investigate the transfer learning abilities of the NPS
across IoT networks. Transfer learning or adaptive learning is defined
in [116] as utilizing the knowledge from one or more site to facilitate learn-
ing in a targeted site. In this context, we examine adapting the knowledge
by a different IoT device connected to a different IoT network. We do not
only deploy the module from one site to another; rather, we build on the
existing knowledge. The first layer of the detection stage of the NPS is a
memory of previously detected malware files. Therefore, once the NPS is
run on one site, it collects information and adds that knowledge to the
memory. Then, when the module is transferred to another IoT device to
test incoming traffic, it first matches the file with its own memory of mal-
ware files before it is matched with the negative and positive detectors. We
create two IoT systems with the same architecture presented in 6.1. We
use the first IoT system to run the NPS and create the required number
of detectors in both sets, DPos and DNeg. Then, we copy the created de-
tectors into another IoT device connected to the second IoT system and
run the detection stage. The objective of this experiment is to examine the
following:

• The knowledge transfer of the NPS across networks

• Maximizing the malware detection performance of the NPS

• Minimizing the average utilization of the CPU in the IoT device

• The fault-tolerance abilities of the NPS in case of a network failure

We do that by following these steps:
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• Optimizing the number of detectors created and copied by the NPS,
which means less processing time for both devices

• Minimizing the CPU average utilization by using different IoT
devices to run each stage, detectors generation stage, and detection
stage

• Maximizing the number of DTrain for a better learning curve. Thus,
better detection performance

7.2 problem formulation

In this chapter, we continue the experiment of implementing the NPS in a
realistic setup. We follow the implantation methodology, dataset, and prob-
lem formulation presented in Sections 6.2.1, 6.2.2, and 6.2.4. For the prob-
lem formulation, the objective is still to maximize the number of correctly
predicted labels by optimizing the DTrain and the number of detectors. Un-
like the experiment in Chapter 6, in this experiment, we optimize not only
the number of created detectors but also the number of copied/transferred
detectors. To this end, we present the number of created detectors as NCRD

and the number of copied detectors as NCOD. Also, we refer to the first IoT
device’s total memory as TMIoT1 and TMIoT2 for the second IoT device.
We present the problem formulation for this experiment below:

max
|DTrain|,NCRD,NCOD,DSize

|DTest|

∑
k=1

Ŷk == Yk (7.1)

s.t.

NCRD((Dpos + Dneg)× Dsize) + (DTrain × S) <= TMIoT1 (8.1.(a))

NCOD((Dpos + Dneg)× Dsize) + (DTest × S) <= TMIoT2 (8.1.(b))

7.3 copying detectors results and discussion

We use Equations 5.16,5.17,5.18, and 5.21 presented in Chapter 5 to calcu-
late the presented results.
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7.3.1 Experiments Results

(a) Copying the same number of created detectors This experiment
aims to evaluate the transfer of the knowledge of the NPS and make the
method as lightweight as it could be. We create 20 detectors in each set
during the training stage of the NPS on one IoT device, then copy all 20
detectors to run the detection stage of the NPS on another IoT device.
Next, we create 30 detectors in each set, then copy all 30 detectors to run
the detection stage. We use 25:75 for DTrain and DTest, respectively.

When we run the detection stage for both 20 and 30 detector sets, we get
similar results to training and testing the method on the same IoT device
for both sets in Chapter 6. However, the CPU average utilization of the IoT
device in the detection stage is lower in both experiments, with 20 and 30
detector sets (see Table 7.1 and Table 7.2).

Table 7.1: CPU Average Utilization for 20 Detectors

System 1 51%
System 2 49%
System 3 48%
system 4 45%

Table 7.2: CPU Average Utilization for 30 Detectors

System 1 54%
System 2 52%
System 3 50%
system 4 49%

(b) Copying the same number of created detectors with a larger num-
ber of records used in DTrain Since creating 30 detectors in each set results
in better detection performance, we experiment more with copying detect-
ors from one IoT device to another. The only thing we change here is the
number of records used to train the method in DTrain. Instead of doing
25:75 of the dataset records, we use 100% of the total number of records in
DTotal to train the method. Also, we use 100% of DTotal in the second IoT
device for DTest.
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The CPU average utilization is the same as copying 30 detectors
(Table 7.2). The figure below shows the performance results for the four
IoT system architectures (Fig. 7.1).

Figure 7.1: Copying the Same Number of Generated Detectors Results

(c) Copying Partial Number of Detectors We experiment more with the
30 detector sets. In this experiment, we also use 100% of the total dataset
record in DTrain and DTest. We create 30 detectors in each set, negative and
positive, then copy only a partial number of detectors to another IoT device
to run the detection stage. We copy 20 detectors in each set out of the total
number of 30 detectors. The figure below (Fig 7.2) shows the performance
results of copying 20 detectors out of the created 30 detectors.

7.3.2 Discussion

From the first experiment, creating the required number of detectors on
one IoT device and then copying that exact number to another IoT device
is very efficient. The NPS achieved the same performance as it was in-
stalled and trained on the same device. More importantly, as anticipated,
we reduced the CPU average utilization to 45% of the total capacity. This
proves the claim that the NPS is adaptive and can transfer knowledge with
excellent detection results. Next, when we create 30 detectors in each set,
DPos and DNeg, with the maximum number of records in DTrain, we achieve
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Figure 7.2: Copying Partial Number of the Generated Detectors Results

a 100% detection recall rate and up to 99% F1-Score. These remarkable de-
tection results show that the NPS achieved zero false negative detection
and almost correctly labeled all the records in DTest with low CPU average
utilization.

In the last experiment, the NPS detection performance is better than
creating 20 detectors but less than creating 30 detectors because of the
increased number of records in DTrain. The CPU average utilization is still
low, as we aimed. The CPU average utilization is similar to copying 20
detectors out of the created 20 detectors (Table 7.1), which means it is
lightweight with better malware detection performance.

The results for all the presented experiments demonstrate the method’s
ability to detect unknown malware attacks with low computational power.
Moreover, creating detectors using one IoT device and running the detec-
tion stage on another IoT device demonstrate the method’s ability to trans-
fer knowledge with high detection performance and low memory utiliza-
tion. Also, the results show that the NPS is fault-tolerant. This means that
if part of the network fails, another part of the network will still be able to
detect any malware attack during the failure.
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7.4 summary of implementing ais using aws -2-

We present the implementation of the NPS in realistic IoT systems. This
chapter demonstrates the NPS’s transfer learning across different IoT net-
works and fault tolerance abilities. We use the same system architectures
created in Chapter 6 and the same dataset. The objective is to investigate
the AIS solutions’ adaptivity by maximizing the malware detection per-
formance and minimizing the CPU average utilization of the IoT device.
We run multiple experiments, creating the detectors on one IoT device
connecting to the first IoT system. Then, we optimize copying the created
detectors to another IoT device connected to a different IoT system.

The performance analysis shows an excellent ability to transfer know-
ledge across IoT networks while achieving a remarkable detection per-
formance. We achieve a 100% detection recall rate, which means zero false
negatives. Also, we achieve up to 99% F1-Score and minimize the CPU
average utilization to less than 45% of its total capacity. As anticipated, the
NPS is adaptive, lightweight, and fault-tolerant, which makes it a strong
candidate to secure IoT systems.
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C O N C L U S I O N A N D F U T U R E

R E S E A R C H D I R E C T I O N S

8.1 research conclusion

The number of IoT devices is increasing rapidly, and the amount of data
exchanged between these devices is enormous and expected to reach 175
zettabytes by 2025 [117]. Nevertheless, cyberattacks are rapidly increasing
alongside the adoption of IoT applications. A malware attack is a form of
cyberattack in the IoT, consisting of malicious software executed without
user permission. Hackers continuously develop new malware files that are
hard to detect using common techniques such as anti-virus applications. To
this end, it is vital to devise a real-time IoT security solution that addresses
this challenge adequately.

8.1.1 Research Structure

To secure the IoT systems, the method should be lightweight, adaptive,
distributed, and fault-tolerant to meet the IoT requirements as presen-
ted in Chapters 2 and 4. Therefore, we present the NPS method for un-
known malware detection that fits the IoT systems’ requirements. We
demonstrate the NPS’s high detection performance with low computa-
tional power. Then, we validate the obtained results using multiple real-
time datasets in Chapter 5. Next, we demonstrate the method’s distribu-
tion ability in Chapter 6. Finally, we demonstrate the method’s adaptivity
and fault-tolerance abilities in Chapter 7.

8.1.2 Research Discussion

In this research, we investigate the AIS solutions for malware detection the
IoT systems. We present the NPS algorithm based on negative and positive
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selection techniques to improve the unknown malware detection rate. We
achieve a 21% increase in the accuracy of detection rate using 16-bit strings
with an almost 65% decrease in space complexity, which resolves one of
the main challenges in securing the IoT. Another limitation to be overcome
by the NPS is the false negative detection which was reduced to almost 0%
of detected files resulting in a 99% recall rate.

Next, we validate the results of the NPS using multiple real-time data-
sets, and we benchmark the results against state-of-the-art methods. We
initially use the NSL-KDD dataset to evaluate the NPS, and then we use
the UNSW-NB15 and the Bot-IoT datasets. The NPS performance is re-
markable using all three datasets with a negligible difference due to the
different number of records and types of attacks in each one of the data-
sets.

Then, we implement the AIS solutions in a realistic setup. We present
the implantation of the NPS method using AWS. We create different sys-
tem architectures mirroring real-life scenarios to demonstrate the method’s
lightweight, distribution, and detection capabilities. The results show that
running the algorithm on one of the IoT devices could secure the device
itself from malware attacks and any other IoT devices connected to the
same network. We achieve up to 97% detection accuracy rate, 100%, and
97% recall and precision rate, respectively, which test the method’s sens-
itivity and reliability. Furthermore, we obtain a high F1-Score up to 98%
and reduce the average CPU use in the IoT device to less than 50% of its
total capacity.

Finally, we conduct a performance analysis for the different systems im-
plemented. The results show better detection performance by increasing
the volume size of the IoT device and the number of dataset records used
to generate detectors. Furthermore, we run different experiments using
AWS to demonstrate the method’s adaptivity, transfer of knowledge, and
fault tolerance abilities. We create detectors using one IoT device and copy
the detectors to another IoT device. We achieve high detection perform-
ance up to 99%. We also manage to reduce the CPU average utilization to
almost 45% of its total capacity. The method is proven effective and out-
performs the state-of-the-art methods in detecting malware files with less
computational power needed.
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8.1.3 Limitations and Future Research Directions

As with any research work, our project has some limitations. One of the
main limitations of this project was the lack of conducted experiments
using AIS for malware detection in IoT systems. Although this topic is
well-researched theoretically with exceptionally promising research direc-
tions, implemented solutions in IoT environments are limited. Therefore,
in this research, we thoroughly analyze the state-of-the-art solutions and
present detailed performance analysis, both theoretically and pragmatic-
ally, to be a reference to build on for future AIS implementation in the IoT.
The second limitation of this research is the IoT devices’ constrained re-
sources, making the implementation for research purposes especially more
challenging. For instance, using a large number of dataset records to train
the module on an IoT device with small memory and computing power is
not feasible. Therefore, we suggest training the module with larger dataset
records and perhaps different malware attack types on the IoT gateway
for future research since it usually has more computing power. Then, de-
ploying the module to be tested on constrained IoT devices. Next, in this
research, we adjust the detectors and detector sets sizes to present the ana-
lysis of detection accuracy with regard to the module complexity. Even
though we achieve a high detection rate with small space complexity to fit
the IoT systems requirements, the NPS still has high time complexity. Con-
sequently, more research could be done to adapt different detector sizes to
improve the time complexity of the module. In addition to the time and
space complexity, the features used to test the AIS solutions in this pro-
ject are also one of the limitations. Although we succeeded in achieving
a high detection rate, the NPS method is implemented and tested on the
destination port. Therefore, more research could be done on other network
traffic features to detect different types of attacks to improve the classifica-
tion results. Moreover, in the implementation of the NPS, we use only one
or two IoT devices connected to the system. More research could be done
connecting more IoT devices to the same network to investigate further the
method’s robustness to meet the IoT systems’ requirements. Finally, in this
research, we use AWS to implement the NPS. Even though we mimic real-
life IoT systems, for future research, physical IoT networks could be used
to test and run the module in an environment with different challenges,
such as connectivity and access control.
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A P P E N D I X 1

This appendix contains the features extraction process for the NSL-KDD,
Bot-IoT, and UNSW-NB15 Datasets used in the implementation of this

project.

a.1 nsl-kdd dataset

To extract features needed from the NSL-KDD dataset, we used CICFlow-
Meter [118] which is a network traffic flow generator. Comma-separated
values files are generated with more than 80 network traffic features
including destination port, source IP, flow ID, and protocol. As advised by
the dataset authors, we install the Amazon Web Services Command Line
Interface (AWS CLI) and run the following command:

awss3sync−−no− sign− request−−regioneu− west− 2
”s3 : //cse− cic− ids2018/”dest− dir

That enable us to download events log files and extracted features to use
in Machine Learning (ML) -saved in .csv format- as shown in the following
figures (Fig. A.1 - A.5).

Figure A.1: Event Log Screenshot
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Figure A.2: Event Log Details Screenshot

Figure A.3: Some Extracted Records Screenshot-1-

Figure A.4: Some Extracted Records Screenshot-2-
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Figure A.5: Some Extracted Records Screenshot-3-

a.2 bot-iot dataset

The Bot-IoT dataset records are available on [98]. We use the .CSV format-
ted files for this experiment. The following figures (Fig. A.6 - A.9) show
some examples of the dataset records and data features that are extracted
and used to run the NPS.

Figure A.6: Data Features Distribution Screenshot-1-
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Figure A.7: Data Features Distribution Screenshot-2-

Figure A.8: Some Extracted Records Screenshot-1-

Figure A.9: Some Extracted Records Screenshot-2-
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a.3 unsw-nb15 dataset

The UNSW-NB15 records are available on [103]. We use the .CSV formatted
files for this experiment. The following figures (Fig. A.10 - A.13) show
some examples of the dataset records and data features that are extracted
and used to run the NPS.

Figure A.10: Data Features Distribution Screenshot-1-

Figure A.11: Data Features Distribution Screenshot-2-
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Figure A.12: Some Extracted Records Screenshot-1-

Figure A.13: Some Extracted Records Screenshot-2-
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A P P E N D I X 2

b.1 the nps step by step

In this section, we present the NPS algorithm step by step. Starting by
reading the training data file, and then generating two sets of detectors,
negative and positive. Next is reading the testing data file, followed by the
detection stage.

Algorithm 3: The main class of the NPS
1: Read the destination port from the training data file

(Algorithm4)
2: Create the required number of negative and positive detectors

(Algorithm5)
3: Read the destination port and record label from the testing data file

(Algorithm6)
4: Run the detection stage

(Algorithm7)
5: Calculate detection results of the NPS (Algorithm8)

Algorithm 4: Read the destination port from the training data file
1: Input Training data file
2: Output

DestinationPort =
Destination port for each record in the training file in binary

3: while i ≤ training data file length do
4: Read destination port
5: convert destination port to binary
6: end while
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Algorithm 5: Create the required number of negative and positive
detectors

1: Input
DestinationPort =
Destination port for each record in the training file in binary
Numbero f Matches =the required number of matches
DetectorSize = the detector size
DetectorSetSize = the detector set size

2: Output
NegativeDetectors = Negative detectors sets
PositiveDetectors = Positive detectors sets

3: while i ≤ DetectorSetSiz do
4: D = a generated random string using detectorsize
5: Match D with DP
6: if D ∈ DP then
7: add D to PositiveDetectors
8: else
9: add D to NegativeDetectors

10: end if
11: end while

Algorithm 6: Read the destination port from the testing data file
1: Input Testing data file
2: Output

DestinationPort =
Destination port for each record in the testing file in binary
RecordLabel = the label of each record (malware or benign)

3: while i ≤ testing data file length do
4: Read destination port
5: Convert destination port to binary
6: Read the label of the record
7: end while
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Algorithm 7: Detection Stage
1: Input DestinationPort =

Destination port for each record in the testing file in binary
RecordLabel = the label of each record (malware or benign)
PreviouslyDetectedFiles =
a database of previously detected malware files
NegativeDetectors = Negative detectors sets
PositiveDetectors = Positive detectors sets

2: Output
TheNPSDetection = marking each file as malware or benign

3: while i ≤ DP do
4: if DP ∈ PreviouslyDetectedFiles then
5: the file is labeled as malware
6: EXIT
7: else if DP ∈ NegativeDetector then
8: the file is labeled as malware
9: EXIT

10: else if DP /∈ PositiveDetector then
11: the file is labeled as malware
12: EXIT
13: end if
14: end while
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Algorithm 8: Calculate detection results of the NPS
1: Input TheNPSDetection =

Detection results of each file (malware or benign)
RecordLabel = the label of each record (malware or benign)

2: Output
TP = malware is detected as a malicious application TN =
benign is detected as non-malicious application FP =
benign is detected as a malicious application FN =
malware is detected as non-malicious application

3: while i ≤ RecordLabel do
4: if TheNPSDetection = RecordLabel then
5:

6: if RecordLabel = Malware then
7: TP
8: else
9: TN

10: end if
11: end if
12: if TheNPSDetection ̸= RecordLabel then
13:

14: if RecordLabel = Benign then
15: FP
16: else
17: FN
18: end if
19: end if
20: end while
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