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We marry tensor network states (TNS) and projector quantum Monte Carlo (PMC) to overcome
the high computational scaling of TNS and the sign problem of PMC. Using TNS as trial wave-
functions provides a route to systematically improve the sign structure and to eliminate the bias in
fixed-node and constrained-path PMC. As a specific example, we describe phaseless auxiliary-field
quantum Monte Carlo with matrix product states (MPS-AFQMC). MPS-AFQMC improves signifi-
cantly on the DMRG ground-state energy. For the J1-J2 model on two-dimensional square lattices,
we observe with MPS-AFQMC an order of magnitude reduction in the error for all couplings, com-
pared to DMRG. The improvement is independent of walker bond dimension, and we therefore use
bond dimension one for the walkers. The computational cost of MPS-AFQMC is then quadratic in
the bond dimension of the trial wavefunction, which is lower than the cubic scaling of DMRG. The
error due to the constrained-path bias is proportional to the variational error of the trial wavefunc-
tion. We show that for the J1-J2 model on two-dimensional square lattices, a linear extrapolation of
the MPS-AFQMC energy with the discarded weight from the DMRG calculation allows to remove
the constrained-path bias. Extensions to other tensor networks are briefly discussed.

PACS numbers: 71.27.+a, 02.70.Ss, 75.10.Jm

I. INTRODUCTION

Tensor network states (TNS) and projector quan-
tum Monte Carlo (PMC) are numerically exact meth-
ods for strongly correlated quantum states.1–12 TNS
provide compact parametrizations of quantum states in
terms of local tensors, and become exact with increasing
bond dimension D.2,3,13–17 Matrix product states (MPS),
the basis of the density matrix renormalization group
(DMRG),1,18,19 are a widely successful example in one-
and quasi-two-dimensional simulations. Although TNS
provide an unbiased description of quantum states, they
exhibit high computational scaling with D. For exam-
ple, variational projected entangled pair states (PEPS)
on a finite square lattice exhibit O(χ2D8) scaling, with
χ ≥ D2 the virtual dimension trunctation in the approx-
imate contraction,2,3,13–15 which limits practical applica-
bility.

PMC encompasses multiple methods with the com-
mon feature that the ground state |Ψ∗〉 is obtained by

stochastically applying a projector, such as K̂ = e−δτĤ ,
to an ensemble of walkers

∑
k |φk〉.4,6–12,20–22 After suffi-

cient applications, this ensemble stochastically represents
the ground state |Ψ∗〉. For fermionic and frustrated sys-
tems, the walkers in PMC tend to represent both ± |Ψ∗〉,
leading to a vanishing signal-to-noise ratio for expec-
tation values, the so-called sign problem.10,23 One way
to approach fermionic and frustrated systems is to use
fixed-node (FN) or constrained-path (CP) approxima-
tions, which eliminate the sign problem by constraining
walkers to a fixed phase relative to an approximate trial
state |ΨT 〉.8,24,25 However, this introduces a bias. With
an improved description of the nodal structure in FN ap-
proximations, or the nodal plane in CP approximations,
the bias becomes smaller.10,26–34 The bias can often not
be easily removed as common choices of trial states, such

as Jastrow-Slaters,10,29 cannot be easily improved.35

Here, we present a marriage of TNS and PMC that
combines their strengths and removes their respective
weaknesses. Specifically, we combine MPS with phaseless
auxiliary field quantum Monte Carlo (AFQMC),8,9 yield-
ing MPS-AFQMC, although the ideas extend equally well
to other combinations of TNS and PMC. MPS-AFQMC
uses MPS as the trial state |ΨT 〉 as well as to represent
the walkers. This allows us to systematically remove the
CP bias and improve the sign structure by increasing the
trial bond dimension DT , eliminating the main drawback
of CP-PMC.

For the J1-J2 model on two-dimensional square lat-
tices, we observe with MPS-AFQMC an order of magni-
tude reduction in the error for all couplings, compared to
DMRG. The improvement is independent of walker bond
dimension, and we therefore use bond dimension DW = 1
for the walkers. This leads to an O(D2

T ) computational
scaling of MPS-AFQMC, which is lower than the O(D3

T )
scaling of the corresponding variational DMRG calcula-
tion. The high computational cost of TNS can therefore
be addressed by a combined TNS-PMC approach. The
error due to the CP bias is proportional to the varia-
tional error of the trial wavefunction. We show that for
the J1-J2 model on two-dimensional square lattices, a lin-
ear extrapolation of the MPS-AFQMC energy with the
discarded weight from the DMRG calculation allows to
remove the constrained-path bias.

We note that in earlier work, TNS have been used with
variational Monte Carlo.36–41 However, this method can
only stochastically reproduce the variational TNS energy
of the ansatz under consideration, while PMC methods
allow to improve on the variational ansatz. We mention
also valence-bond basis projector Monte Carlo methods,
which similarly use walkers in a complicated valence-
bond basis, but which so far have only been formulated
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for sign-free problems.42

II. PROJECTOR MONTE CARLO

We begin with a brief overview of PMC methods before
proceeding to MPS-AFQMC. PMC, encompassing lattice
and real-space diffusion Monte Carlo (DMC), Green func-
tion Monte Carlo (GFMC), and auxiliary field quantum
Monte Carlo (AFQMC), involves a choice of projector,
walker basis, and FN or CP approximation.

Several PMC methods, including AFQMC, use the
imaginary time propagator

K̂ = e−δτĤ . (1)

The ground-state is obtained by

|Ψ∗〉 = lim
n→∞

(K̂)n |Ψ(0)〉 , for 〈Ψ∗|Ψ(0)〉 6= 0. (2)

Each application of K̂ is denoted a time step. |Ψ(n)〉,
obtained after n time steps, is represented by an ensemble
of walkers

|Ψ(n)〉 =
∑
k

|φ(n)
k 〉 . (3)

Observables are obtained as averages over the ensemble;
for example the (mixed) estimator for the energy is43

E
(n)
T =

∑
k

〈ΨT | Ĥ | φ(n)
k 〉/

∑
k

〈ΨT | φ(n)
k 〉. (4)

Common choices of walkers include real-space
coordinates,10,44 product spin states,11 and Slater
determinants (SDs),8,9,45 and we will later introduce

MPS walkers. To apply K̂ to the walkers, we first
express it as a summation (integral) over a probability

distribution function (PDF) P (x) and operators B̂(x)

K̂ =
∑
x

P (x)B̂(x), (5)

where the choices of P (x) and B̂(x) further differenti-
ate the flavours of PMC. The only restriction in Eq. (5)

is that B̂(x) maps a single walker to another walker of
the same complexity: real-space coordinates should only
change positions, SDs should remain SDs, or (in this
work) the bond dimension of an MPS should not grow.

K̂ is applied by sampling x with probability P (x), and
updating the walker:

|φ(n)
k 〉 = B̂(x) |φ(n−1)

k 〉 . (6)

A common way to improve statistics is to employ impor-
tance sampling with respect to a trial state |ΨT 〉. Then
the propagator is modified to

K̂φ =
∑
x

P (x)
〈ΨT |B̂(x)|φ〉
〈ΨT |φ〉

B̂(x) = Nφ
∑
x

P̃φ(x)B̂(x),

(7)

where Nφ is the normalization to turn P̃φ(x) into a PDF.
The importance sampling propagator biases moves to-
wards regions where the overlap with |ΨT 〉 is large. The
ensemble now consists of weighted walkers

|Ψ(n)〉 =
∑
k

w
(n)
k |φ

(n)
k 〉 . (8)

Nφ is accumulated into the weights

w
(n)
k = N

φ
(n−1)
k

w
(n−1)
k , (9)

which are controlled via branching. If the walker weights

are smaller than 0.25, or larger than 1.5, bw(n)
k +uc copies

of the walker are kept with weight 1, with u drawn from
the uniform distribution on [0, 1[. Note that this does not
change the ensemble stochastically. In the importance
sampling representation, the state and mixed estimator
for the energy are

|Ψ(n)〉 ∝
∑
k

w
(n)
k |φ

(n)
k 〉 / 〈ΨT | φ(n)

k 〉 , (10)

E
(n)
T =

∑
k w

(n)
k 〈ΨT | Ĥ | φ(n)

k 〉 / 〈ΨT | φ(n)
k 〉∑

k w
(n)
k

. (11)

After sufficient time steps, the time-averaged ensem-
ble stochastically represents |Ψ∗〉. Since only a limited
number of walkers is used, the sampling bypasses the ex-
ponential complexity for the representation of a quantum
state. The only issue is the sign (or phase) problem, i.e.
± |Ψ∗〉 (or generally, eiθ |Ψ∗〉 with θ ∈ [0, 2π[) are both

fixed points of K̂. Define the nodal plane N∗:8,27,45

|φ〉 ∈ N∗ ⇐⇒ 〈Ψ∗ | φ〉 = 0. (12)

If |φ〉 can cross N∗ to − |φ〉 by successive application

of the operators B̂(x) (which is the case for general
fermion and frustrated spin propagators) then ± |φ〉 will
occur with equal probability after infinite MC time.
The signal representing |Ψ∗〉 then arises as a vanishing
difference between populations of walkers representing
± |Ψ∗〉, and estimators, such as the projected energy in
Eq. (11), have large fluctuations from vanishing denomi-

nators 〈ΨT | φ(n)
k 〉.

To recover a finite signal, we introduce the CP approx-
imation. A trial wavefunction |ΨT 〉8,10,45 constrains the
walker paths to one side of the nodal plane NT , by reject-
ing moves which change the sign of the overlap with |ΨT 〉.
This completely eliminates the sign problem. However,
if |ΨT 〉 is not exact and N∗ 6= NT , this introduces a sys-
tematic bias, which is the main drawback of CP-PMC.
This is now the only remaining error in mixed estimators
such as Eq. (11).

III. MPS-AFQMC

We now turn to MPS-AFQMC, the subject of this
work. MPS (with open boundary conditions) are defined
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by

|φ〉 =
∑
{szi ;αj}

A[1]
sz1
α1A[2]

sz2
α1;α2 ..A[L]

szL
αL−1 |sz1sz2..szL〉 ,(13)

where the summation over each bond index αj is trun-
cated to D. By using MPS as the trial state (obtained in
a prior variational DMRG calculation), we can increase
the trial bond dimension DT to improve the CP approxi-
mation. This provides a systematic route to eliminate
CP bias. We can also use MPS as walkers. To see
this, consider the AFQMC decomposition for K̂ with a
Hubbard-Stratonovich (HS) transformation.46 For con-
creteness, the spin Hamiltonian

Ĥ =
1

2

∑
ij

Jij ~̂Si. ~̂Sj +
∑
i

hiŜ
z
i (14)

is studied, with Jij =
∑
k VikγkVjk symmetric. The (non-

unique) HS transformation rewrites e−δτĤ , bilinear in the
spin operators in the exponent, in terms of propagators
with an exponent linear in the spin operators. Defining
v̂wk =

∑
i Ŝ

w
i Vik

√
−γk with w ∈ {x, y, z} we have:

Ĥ =
∑
i

hiŜ
z
i −

∑
wk

(v̂wk )
2

2
= Ĥ1 −

∑
wk

(v̂wk )
2

2
,(15)

e−δτĤ =

∫
dxP (x)B̂(x) +O(δτ2), (16)

B̂(x) = e−δτĤ1/2e
√
δτx.v̂e−δτĤ1/2, (17)

P (x) =
e−x

2/2

(2π)3L/2
, (18)

with v̂ = (v̂x1 , v̂
y
1 , v̂

z
1 , v̂

x
2 , ...) and L the number of lattice

sites. Since B̂(x) ≡
∏
i exp

(∑
w α

w
i Ŝ

w
i

)
is a product

of single-site operators, applying B̂(x) to an MPS does
not increase its bond dimension, allowing the use of MPS
walkers. The walker bond dimension DW can be smaller
than DT (if DW = 1, the walkers are product states)
and this significantly reduces computational cost, as dis-
cussed below. We have also studied other operators K̂
and other decompositions (5),47 but MPS-AFQMC was
found to be the most promising variant.

The other aspects of MPS-AFQMC are formulated
in precisely the same manner as standard phaseless
AFQMC. For completeness, we briefly describe the
phaseless CP approximation introduced by Zhang.9 Be-
cause B̂(x) in Eq. (17) can be complex, the AFQMC sign
problem appears as a phase problem. The importance
sampling propagator is implemented (up to O(δτ3/2))9

as a biased diffusion process

K̂φ =

∫
dxP (x)B̂(x− yφ)Nφ(x,yφ), (19)

where yφ applies a constant force drift, and importance

sampling is achieved by choosing yφ = −
√
δτ 〈ΨT |v̂|φ〉
〈ΨT |φ〉

which minimizes fluctuations in the normalization factor

Nφ(x,y). Nφ(x,yφ) further takes the simple evocative
form

Nφ(x,yφ) ≈ exp
[
−δτ 〈ΨT |Ĥ|φ〉

〈ΨT |φ〉

]
≈ exp [−δτEL(φ)] ,(20)

where EL(φ) = < 〈ΨT |Ĥ|φ〉
〈ΨT |φ〉 is the local energy. The phase-

less approximation is imposed by forcing walkers to main-
tain a positive overlap with the trial state, modifying
their weights by

w
(n)
k → w

(n)
k max(0, cos(∆θ)), (21)

where ∆θ is the phase of 〈ΨT |φ(n)
k 〉 / 〈ΨT |φ(n−1)

k 〉. The
quality of this nodal constraint depends on the quality of
|ΨT 〉, but as discussed above, by using MPS as |ΨT 〉, the
error can be completely removed by increasing DT .

The main cost of MPS-AFQMC comes from comput-
ing the local energies EL(φk) at each time step. If |ΨT 〉
has bond dimension DT and the walkers bond dimension
DW (DW < DT ), then this only costs O(DWD

2
T ), lower

than the O(D3
T ) associated with expectation values in a

variational DMRG calculation. For the J1-J2-model on
2D square lattices, both MPS-AFQMC and DMRG scale
as O(L

3
2 ) in the system size, with L the total number of

lattice sites.

IV. SPIN- 1
2
J1-J2 MODEL ON 2D SQUARE

LATTICES

To demonstrate the power of this new MPS-AFQMC
approach, we now apply it to calculate the ground-state
energies of the spin-1

2 J1-J2 model on two-dimensional
square lattices of sizes 4 × 4 and 6 × 6 with periodic
boundary conditions (PBC), and 8× 8 and 10× 10 with
open boundary conditions (OBC). The J1-J2 model is
defined by

Ĥ = J1

∑
〈ij〉

Si · Sj + J2

∑
〈〈ij〉〉

Si · Sj (22)

in which J1 is the coupling for nearest-neighbour spins,
and J2 the coupling for next-to-nearest neighbour spins.
The J1-J2 model is of fundamental interest because it is
one of the simplest models with frustration. For J2 = 0,
the model is the spin- 1

2 Heisenberg model, whose ground-
state is gapless and unfrustrated, and when J2/J1 = 1,
the ground-state displays collinear striped magnetic or-
der. In between, calculations show an intermediate phase
in the region 0.4 . J2/J1 . 0.62 which appears gapped,
and may be a Z2 spin-liquid.21,48

The calculations begin with variationally optimizing
an MPS (using a DMRG code) with trial dimension DT .
Subsequently, we use MPS-AFQMC to propagate an en-
semble of MPS walkers with bond dimensions DW . All
calculations have been performed with a time step of
δτ = 0.01, which was verified to yield a Trotter error
within the range of the statistical error. We used suffi-
cient time samples to obtain statistical error bars below
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FIG. 1. Imaginary time evolution for a 4 × 4 J1-J2 model
with J2 = 0 using different values for the trial bond dimension
DT and walker bond dimension DW .

0.01% in the energy. As a first check, we examine the
dependence of the projected energy in Eq. (11) on the
walker dimension DW . Fig. 1 shows the projected en-
ergy as a function of imaginary time in the smallest 4×4
lattice with J2/J1 = 0.0, for a selection of DW and DT .
The zero-time energy (y intercept) is close to the DMRG
energy, and the decrease of the curves shows the gain
in accuracy using MPS-AFQMC. Interestingly, there ap-
pears to be no effect of walker bond dimension on either
the final MPS-AFQMC energy or its statistical fluctua-
tions. Thus the quality of the phaseless approximation
depends only onDT . We have therefore used walker bond
dimension DW = 1 for the other calculations.

As seen from Fig. 1, MPS-AFQMC provides a substan-
tial gain in accuracy over the initial DMRG energy. To
see this more clearly, in Fig. 2 we show the converged
MPS-AFQMC and DMRG energies for a variety of DT

for the 4× 4 lattice, with J2/J1 = 0.6. For this case, an
MPS-AFQMC calculation with given DT reproduces the
DMRG energy with a larger bond dimension of roughly
4DT . Further, the convergence with DT is smooth for
this system, resembling that of the DMRG energy it-
self. It is known that the DMRG energy can be extrap-
olated as a linear function of the discarded weight in the
DMRG sweep algorithm.47,49,50 Here, we obtain a simi-
lar linear dependence of the MPS-AFQMC energy with
the DMRG discarded weight, as shown in the inset of
Fig. 2. The CP error is therefore proportional to the
variational error of the trial wavefunction. This allows
us to perform high quality extrapolations to DT = ∞:
in the case shown (4× 4 lattice, J2/J1 = 0.6), we obtain
E(DT =∞) = −8.4133± 0.0014, in accordance with the
exact result −8.4143.

We next examine the accuracy of MPS-AFQMC across
different regimes of frustration by studying the energy as
J2/J1 is varied. Figs. 3, 4 and 5 present the percentage

-8.42
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-8.34
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-8.28
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FIG. 2. Converged MPS-AFQMC and DMRG energies for
different DT for a 4×4 J1-J2 model (PBC) with J2/J1 = 0.6.
Inset: extrapolation of the MPS-AFQMC energy with respect
to discarded weight of the trial state.
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FIG. 3. Relative energy errors (from the exact result) for
MPS-AFQMC and DMRG, as a function of DT , for a 6 × 6
J1-J2 model (PBC) with J2 ranging from 0 to J1.

error in the MPS-AFQMC and DMRG energies relative
to exact results for the 6×6, 8×8 and 10×10 lattices. The
exact results were obtained from spin-adapted DMRG
calculations with DSU(2) = 2000 reduced renormalized
basis states. Across all frustration regimes, the MPS-
AFQMC energy significantly improves on the DMRG
energy, reducing the error by as much as 80%, even in
the highly frustrated regime. Overall, the MPS-AFQMC
error tracks the modulations of the DMRG error as a
function of J2/J1, with the energies being more accurate
in the gapped intermediate coupling regime than in the
gapless J2/J1 = 0 and J2/J1 = 1 limits.

The MPS-AFQMC calculations, which did not use
symmetries, required comparable time to a toy varia-
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FIG. 4. Relative energy errors (from the exact result) for
MPS-AFQMC and DMRG, as a function of DT , for a 8 × 8
J1-J2 model (OBC) with J2 ranging from 0 to J1, compared
to PEPS results from Ref. 38.
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FIG. 5. Relative energy errors (from the exact result) for
MPS-AFQMC and DMRG, as a function of DT , for a 10×10
J1-J2 model (OBC) with J2 ranging from 0 to J1.

tional DMRG optimization of the trial state without sym-
metries for DT ≈ 100. In practice, we generated our trial
states using our optimized spin-adapted DMRG code
(with SU(2) symmetry). However, it is clear that for typi-
cal bond dimensions employed in DMRG (D ≈ 1000) and
typical MPS-AFQMC parameters (100 walkers, 10000
time steps) PMC calculations will be highly competitive,
if not faster, in timings, while achieving higher accuracy
due to the effective bond dimension increase.

For higher-order TNS, the reduction in computational
complexity due to the single-layer structure (DW = 1)
should be even more considerable. Further, PMC is
highly parallel, in contrast to standard TNS optimiza-

tion techniques.

When an MPS is used as a trial wavefunction for two-
dimensional lattices, DT has to increase exponentially
with lattice width to maintain a constant accuracy. For
large lattices, it is therefore better to resort to PEPS to
parameterize the trial wavefunction.

V. SUMMARY

In conclusion, in this work we have described the mar-
riage of tensor network states (TNS) and projector quan-
tum Monte Carlo (PMC). The matrix product state aux-
iliary field quantum Monte Carlo (MPS-AFQMC) is a
concrete realization of this marriage, which shows great
promise. The use of an MPS trial wavefunction allows for
a systematic removal of the CP error, which is the pri-
mary weakness of PMC methods in frustrated systems.

Further, the MPS-AFQMC method improves signif-
icantly on the variational DMRG ground-state energy,
and does not depend on the bond dimension of the walk-
ers. Product states (DW = 1) can therefore be chosen
as walkers. This leads to a computational cost which
scales only quadratically in the bond dimension of the
trial wavefunction. The increase in MPS-AFQMC accu-
racy over DMRG can also be interpreted as an effective
bond dimension increase. We demonstrated these im-
provements for the spin-1/2 J1-J2 model on the square
lattice. In addition, we observed a linear dependence
of the MPS-AFQMC energy with the DMRG discarded
weight. The CP error is therefore proportional to the
variational error of the trial wavefunction.

While we have only presented energies in this work,
other observables and correlation functions can be
obtained in MPS-AFQMC following standard PMC
techniques.10 In addition, while we have discussed spin
systems in this work, fermionic MPS allow for a direct
extension to fermions, including long-range Hamiltonians
such as the Coulomb interaction in ab initio DMRG.49–53

Finally, an important next step will be to extend these
ideas to higher dimensional tensor networks, such as pro-
jected entangled pair states,13–15 where the prohibitive
computational scaling with bond dimension will be sub-
stantially reduced by PMC techniques, while providing
greater accuracy than the corresponding variational cal-
culation for the same bond dimension.

During the revision process, we discovered Refs. 54
and 55. Ref. 54 provides an earlier combination of
DMRG with a different kind of MC, lattice DMC, within
the fixed-node approximation, and contains similar ideas
to the current work. Ref. 55, which appeared after our
submission, also considered the combination of MPS and
tree TNS with lattice DMC, with results that are com-
parable to using lattice AFQMC.
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