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Abstract: 

 

The high versatility and ease of electrospinning of polymer solutions have recently resulted in 

electrospun fibers which are of interest for a wide variety of chemical and biomedical 

applications. This is partially due to the high surface area of the fibers which is attractive for 

the detection and capture of (bio)chemicals. In the present work, polystyrene (PS) fibers were 

electrospun and coated with cationic poly(allylamine hydrochloride) (PAH) or anionic dextran 

sulfate (DSS). The fibers were physicochemically characterized. Upon incubation in a 

dispersion of inactivate HIV-1, avid binding of HIV to all types of fibers occurred. By atomic 

force microscopy and spatial selective photobleaching, the binding of the inactivate HIV-1 

particles to the fibers could be confirmed. Interestingly, all fibers but especially the DSS- and 

PAH-coated ones resulted in a significant reduction of infection of CD4+ TZMb1 cells by 

replication-competent HIV-1. On top, DSS-coated PS fibers were not toxic for vaginal 

epithelial cells which may make these fibers of potential interest to inhibit HIV infection in 

the context of topical prevention. 
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1.  Introduction 

Electrospinning is gaining widespread attention as it is generally considered as one of the 

most facile methods to produce a wide range of nano- and microsized polymeric fibers.1 The 

basic process of electrospinning consists of a polymer solution or melt which is pumped 

through a needle which is connected to a high voltage source (Figure 1A). Due to the 

electrostatic forces generated, whipped polymer jets will be created at the needle tip. These 

jets can then be caught on a grounded collector, the remaining solvent evaporates and leaves 

naked electrospun fibers in a dry state.2 By modification of several processing parameters 

(voltage applied, conductivity and viscosity of the polymer solution, flow rate and distance 

between the needle tip and the collector),2 the porosity and size of the fibers (diameter 

commonly ranging from 100 nm to several micrometers with lengths of several millimeters) 

can be easily adapted to better suit the envisaged applications. As there are no stringent 

requirements regarding the type of polymer used, the process of electrospinning can be used 

to generate fibers consisting of a wide array of polymers, either natural or synthetic ones.3, 4 

Furthermore, more advanced setups are also available, such as coaxial spinning, to produce 

core/shell fibers, and the use of a rotating drum collector to generate highly aligned fibers 5, 6. 

The high number of variables made possible by the electrospinning process has resulted 

in a wide variety of applications, primarily in the biomedical field: (a) first electrospun fibers 

are often investigated as scaffolds for tissue engineering applications;7-9 (b) the wide array of 

polymers used, including stimulus-sensitive ones, conjoined with the ease of encapsulation of 

a wide variety of compounds, has resulted in a high interest in electrospun fibers for advanced 

drug delivery applications;10-12 (c) furthermore, the ability to control fiber alignment has 

resulted in the use of electrospun fibers as tools to guide stem cell differentiation;13-15 (d) the 

high porosity and specific surface area of electrospun fibers result in a high availability for 

compounds in the surrounding medium to binding sites on the fibers.4 This property has been 

exploited to develop chemical sensors, with high sensitivity and very fast reaction times16, 17 

and suggests the possible use of fibers for binding and removal of toxins or pathogens; (e) 

other applications include the encapsulation of living cells and single cell organisms,18 the 

labeling of pharmaceutical tablets against counterfeiting with encoded electrospun fibers19 
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and the design of scaffolds for wound dressing.20 

 We became interested to test the ability of electrospun fibers to capture   HIV viral 

particles as it  could become an attractive strategy to prevent HIV infection. In a first series 

of experiments we observed, by co-incidence, avid binding of HIV viral particles to the walls 

of polystyrene (PS) and polypropylene (PP) Eppendorf tubes; This presumably non-specific 

binding of inactivated HIV, dispersed in a simulated vaginal fluid (SVF) with a pH of 4.2, to 

PS and PP eppendorf tubes was quantified using an ELISA assay against the viral protein p24. 

After 2 h of incubation, about 25% of the viral particles became bound to the PP tubes wile 

binding to the PS tubes was even about 35%. This (unexpected) observation  inspired  us to 

test the ability of PS and PP electrospun fibers to bind  inactivated HIV viral particles. Being 

aware of the fact that polyelectrolytes (like polystyrene sulfonate) are under investigation as 

microbicides (to be applied intravaginally as a gel or a cream) against HIV21, 22 , we tested PS 

fibers which were coated with respectively poly(allylamine hydrochloride) (PAH, a cationic 

polyelectrolyte) or dextran sulfate sodium (DSS, a polyanionic low molecular weight 

derivative of dextran (Figure 1B)). We then compared the ability of neutral (PS), cationic 

(PAH-PS) or anionic (DSS-PS) fibers to bind HIV under conditions mimicking the healthy 

vaginal environment. Finally we evaluated whether the bound HIV particles were no longer 

able to infect CD4+ target cells.  

 

2.  Materials and Methods  

Materials.  

Dimethylformamide (DMF), tetrahydrofuran (THF), poly(allylamine hydrochloride) (PAH) 

and dextran sulfate sodium (DSS) were purchased from Sigma-Aldrich (Steinheim, Germany). 

Polystyrene (PS; MW 100 000 g/mol) was purchased from Alfa Aesar (Karlsruhe, Germany). 

Polypropylene (PP) electrospun fibers were donated as a kind gift from Prof. Martin Möller 

(DWI an der RWTH, Aachen, Germany).  

 

Virus. 

HIV-1 subtype B, CCR5 co-receptor using reference strain Ba-L (NIH AIDS Research & 

Reference Reagent program, Rockville, US) M.D.), was used. A stock of cell-free virus was 
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prepared by culturing HIV-1 Ba-L in PHA/IL-2 stimulated mononuclear cells and tittered at 

10,000 TCID 50 per mL. For some experiments, the virus was inactivated by incubation with 

200 μM Aldrithiol-2 (AT2 in DMSO) for 1h at 37°C). Subsequently, virus was filtered over a 

100 kDa cut-off membrane (Millipore) to remove AT2 and was aliquotted and stored at 

-80 °C. This treatment modifies the essential Zn-fingers in the nucleocapsid protein, but 

leaves the viral envelope intact, allowing normal binding.23 

 

Preparation and functionalization of fiber webs by electrospinning. 

PS fibers were obtained through the electrospinning of a PS solution (Figure 1A) as described 

previously.19 Typically, 0.3 mg PS was dissolved in 1 mL of a solvent mixture (DMF/THF; 

1/3) and subsequently electrospun into fibers. A high voltage power supply (up to 40kv), a 

syringe, a flat-tip needle and a grounded collector were used in the electrospinning device. 

Typically, electrospinning of a 1 mL PS solution was conducted at a 2.0 mL h−1 feeding rate 

using a syringe pump (Prosense B.V. NE 300 USA). The applied voltage was kept at 8.4 kV. 

PS fiber webs were deposited on the grounded collector. 

To make functionalized fibers, electrospun PS fibers (approximately 10 mg) were immersed 

in concentrated sulfuric acid (9.8 M, 10 mL) and stirred for 2 min. The fibers were then 

removed from the acid solution and washed in distilled water until the pH of the solution was 

approximately 7. To make positively charged fibers, sulfonated PS fibers (approximately 10 

mg) were immersed in 5 mL of a PAH solution (2 mg PAH/mL in 0.5 M NaCl) for 15 min and 

then extensively washed in water. Negatively charged fibers were made by coating PAH fibers 

with DSS (0.2 mg/mL in distilled water). At the end of the procedure all types of fibers were 

thoroughly washed in distilled water. Before being used for experiments, the fibers were 

air-dried on a glass slide. 

 

SEM. 

0.1 mg of a PS fiber web was deposited onto a silicon wafer and dried under a nitrogen stream, 

followed by sputtering with gold. SEM images were recorded with a Quanta 200 FEG 

scanning electron microscope operated at an acceleration voltage of 15 kV.  
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Contact angle measurements. 

Contact angles were measured with a Kruss Drop Shape Analysis System G10/DSA10 (Krüss 

GMBH, Hamburg, Germany) from video images, using the tangent method. The focus of the 

camera lens was set at 2. The image was calibrated with a Hamilton calibration needle with a 

known diameter. A water droplet of 10 µL was dosed (with a speed of 200 µL/min) on the 

surface of the fibers. 

 

Preparation of Simulated Vaginal Fluid (SVF). 

The preparation of SVF was described earlier.24 Briefly, NaCl, (3.51 g) KOH, (1.4 g) 

Ca(OH)2, (0.222 g) bovine serum albumin, (0.018 g) lactic acid, (2 g) acetic acid, (1 g) 

glycerol, (0.16 g) urea, (0.4 g) and glucose (5 g) were dissolved in 1 L of water. The pH of the 

solution was adjusted to 4.2 with hydrochloric acid. 

 

Cell culture. 

Immortalized human vaginal epithelial cells were VK2/E6E7 were kindly provided by Dr. R. 

Fichorova (Harvard Medical School, Boston, MA) and cultured in a humid atmosphere at 

37°C and 5% CO2. Cells were kept in keratinocyte serum-free medium (Gibco, Invitrogen, 

Belgium) supplemented with human recombinant EGF (0.1 ng mL-1), bovine pituitary extract 

(0.05 mg mL-1) and calcium chloride (0.4 mM) (Gibco, Invitrogen, Belgium). Cells were 

passaged when reaching 70-80% confluency and split 1/5. TZMbl cells were obtained from  

NIH AIDS Research and Reference Reagent Program, Division of AIDS, NIAID, NIH 

(Bethesda, US)  and were cultured in DMEM (Lonza) supplemented with 10% FCS (Lonza), 

50 mg/mL gentamicin (Lonza) and 200 mM L-glutamine (Lonza). Cells were refreshed twice 

a week. 

 

Toxicity tests. 

To test the toxicity of PS, PAH and DSS (and fibers made from these polymers), vaginal 

epithelial cells (VK2 cells) or TZMbl cellss were seeded in 24-well plates (50.000 cells/well) 

and allowed to settle overnight. The cells were then exposed to solutions of respectively PS, 

PAH, and DSS and electrospun fibers for 5 h at 37oC. Cell viability was evaluated 24 h later 
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by an MTT assay according to the manufacturer’s instructions (Roche, Vilvoorde, Belgium) 

and compared to the viability of untreated control cells. 

 

Adsorption of inactive HIV to fibers. 

Electrospun PS fibers, either naked, PAH-coated or DSS-coated (at varying concentrations 

(0-5 mg)) were incubated for 2 h in 200 µL of a dispersion of inactive HIV (solvent 

respectively SVF or PBS). The concentration of inactive HIV in the dispersion (expressed as 

HIV-p24 antigen) equaled 220 pg p24/mL, as measured by a commercial ELISA kit 

(InnoGenetics, Zwijnaarde, Belgium).All samples were kept in the dark at room temperature 

during incubation. After incubation, the p24 concentration in the supernatant (coming from 

non adsorbed HIV) was measured. 

 

Labeling of HIV. 

Inactivated HIV was covalently linked with NHS-alexa488 (Molecular Probes, Invitrogen, 

Belgium) according to the manufacturer’s recommendations. For the labeling of 50 μL 

inactivate HIV stock dispersion (660 ng p24/mL), 3 μL of NHS-alexa488 was used. The 

excess of dye was removed by overnight dialysis against 5 L of distilled water using a 

Spectra/Por microdispo dialyser (Spectrumlabs, CA, USA) with a molecular weight cut off  

of 25 kD. 

 

Confocal microscopy. 

The binding of inactivate HIV to the fibers was further studied by confocal microscopy. To 

this end, 0.1 mg of PAH-coated fibers was incubated in 1 mL of inactivate (fluorescently 

tagged) HIV (220 pg p24/mL) for 30 min at 37°C. Afterwards the fibers were washed 3 times 

with PBS to remove unbound HIV. Subsequently, specific regions of the fibers were 

photobleached and imaged using a Biorad MRC 1024 confocal system. An inverted 

microscope (Eclipse TE300D, Nikon) equipped with a 20x and 40x objective lens was used.  

 

AFM measurements. 
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For AFM measurements on free inactivate HIV, 5 µL of a diluted HIV dispersion (6.6 ng 

p24/mL) was applied onto a silicon wafer. For AFM measurements on fibers, 1 mg of PAH 

coated PS fibers was dispersed in 1 mL inactivate HIV dispersion (6.6 ng p24/mL) for 1 hour 

at room temperature after which the fibers were washed three times with PBS to remove free 

HIV. Subsequently the fibers were deposited onto a silicon wafer and studied by AFM (Veeco, 

Mannheim, Germany); the AFM instrument was equipped with an optical microscope, a video 

camera, a monitor and AFM tip. Standard V-shaped 115-μm-long silicon nitride cantilevers 

(with a spring constant of 0.32 N/m) and pyramidal tips (with an estimated tip diameter of 10 

nm; DNP-S tips, Veeco) were used. The images were recorded in the tapping mode with 512 

lines per screen and at a scan rate of 1.5 Hz.  

 

HIV infection assay. 

Various amounts (as indicated in the main text) of electrospun PS fibers (either naked, 

PAH-coated or DSS-coated) were dispersed in 200 µL of active HIV (220 pg p24/mL) in SVF 

or PBS and incubated in 96-well plates for 2h. All samples were kept in the dark at 37oC. The 

viral efficacy was then determined making use of CD4+ TZMbl cells expressing luciferase 

under the control of an LTR promoter, as described in detail elsewhere.25  

  

3.  Results  

3.1  PS and PP electrospun fibers. 

As explained in the introduction, the avid binding of HIV particles to PS and PP 

Eppendorf tubes drove us to test HIV binding to electrospun PS and PP fibers. Representative 

scanning electron microscopy (SEM) images of PS and PP fibers are shown in Figure 2A, B. 

Average diameters were calculated to be 4.1 and 1.3 µm for PS and PP fibers, respectively 

(Figure 2C, D). Interestingly, whereas PP fibers showed a very smooth surface (Figure 2B), 

PS fibers were found to have a high porosity (Figure 2A), which may be explained by the 

differences in how the fibers were produced, as PS fibers were electrospun using a solution of 

PS in THF/DMF, while PP fibers were obtained through electrospinning of a PP melt. As one 

can expect that the high porosity increases the specific surface area, which may promote HIV 

binding, in further experiments, only the electrospun PS fibers were used. To evaluate the 
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effect of surface charge on HIV binding, PS fibers were coated with polycationic PAH or 

polyanionic DSS, as described in the Materials and Methods section. The amount of PAH or 

DSS adsorbed onto the fibers could be calculated by measuring the concentration of either 

compound in solution before and after exposure to the fibers. For instance, for DSS coating, 

10 mg of PAH-coated fibers were suspended in a DSS-solution (200 µg/mL) for 15 min 

which resulted in a total of 2.5 µg of DSS being adsorbed per mg of PAH-coated fibers.  

To further evaluate the binding of PAH or DSS to the PS fibers, water contact angles 

were measured (Figure 3E, F, G), showing a clear decrease of the water contact angle for 

PAH (11°) and DSS (25°) coated fibers, when compared to naked PS (130°) fibers. These data 

confirm the adsorption of PAH and DSS to the PS fibers. The increased hydrophilicity of 

thefibers may facilitate the binding of HIV viral particles.  

 

3.2 Adsorption of inactive HIV to electrospun PS fibers. 

Next, the adsorption of inactive HIV to naked, PAH- and DSS-coated fibers was 

measured by means of a viral p24 specific ELISA assay. To this end, various amounts of the 

fibers were exposed (for 2 h) to SVF containing 220 pg p24/mL of inactive HIV. A 

concentration-dependent adsorption of HIV viral particles to all types of fibers was observed 

(Figure 3A). PAH- and DSS-coated fibers had similar binding efficiencies, which were 

slightly better than that for the more hydrophobic “naked” PS fibers. As both DSS- and 

PAH-coated fibers resulted in similar HIV-adsorption efficiencies, this may suggest that HIV 

viral particles contain both positive and negative charges. As viruses can have a lipid 

"envelope" derived from the host cell membrane, an overall negative charge of the particles 

has been reported, though at lower pH the overall negative surface charge diminishes.26 

Furthermore, although phospholipid head groups such as phosphocholine (which is often 

present in natural membranes) have an overall neutral charge, the specific orientation of the 

negative and positive charges present may lead to local charge heterogeneities. Also, the viral 

envelope consists of several glycoproteins such as gp120, which includes several regions such 

as the V3 loop, which is known to contain high numbers of positively charged amino acids, 

resulting in local positive charges.27 Taken together, the presence of both positive and 

negative charges on the HIV surface likely results in the better adsorption of HIV to the 
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coated PS fibers compared to the neutral (non-coated) ones.  

As during sexual intercourse slightly alkaline seminal fluid, which has a high buffering 

capacity, has been described to transiently elevate the pH of the surrounding vaginal fluid,28 

we further tested the binding of HIV to fibers at a higher pH value. Inactive HIV particles 

were therefore suspended in phosphate buffered saline (PBS) with a pH of 7.0. The data in 

Figure 3B again clearly show an avid binding of the HIV viral particles to the various fibers. 

The binding efficiencies of bare, PAH- and DSS-coated PS fibers seemed rather similar. 

Interestingly, however, is the observation that in both conditions (SVF or PBS) the adsorption 

efficiency of the viral particles could be boosted up to nearly 100% upon using higher 

concentrations of the fibers.  

 

3.3 Direct analysis of inactive HIV binding to PAH-coated PS fibers. 

As PAH-coated fibers resulted in avid adsorption of inactive HIV viral particles in SVF, 

we tried to further characterize the binding through atomic force microscopy (AFM). The 

AFM data (Figure 4A) showed a flat surface with some indentations indicative of the high 

porosity of the fibers. AFM on (free) inactive HIV viral particles showed an average diameter 

of approximately 25 nm (Figure 4B). This value is significantly lower than the size (120 nm) 

reported by McPherson et al.29 and might be due to the chemical inactivation of the HIV viral 

particles which may result in a collapse of the viral core. Nonetheless, these particles were 

found to avidly bind to the PAH-coated fibers (Figure 4C, D). 

To test whether the interaction between the HIV particles and the fibers was only 

transient or long-lasting, inactivate HIV was labeled with NHS-Alexa Fluor488 as described 

in the Materials and Methods section. These fluorescent viral particles were then incubated 

with PAH-coated fibers at room temperature for 1 h, after which the fibers were washed 3 

times with PBS and placed in SVF. Using an argon-ion laser beam at 488 nm, fluorescent 

viral particles were bleached by spatial selective photobleaching at precise locations on the 

fibers (Figure 4E). These bleached fibers were subsequently kept in SVF for up to 4 days, 

after which the fibers were again visualized by confocal laser scanning microscopy (CLSM; 

Figure 4F). The data clearly show that the photobleached regions remain clear after 4 days, 

suggesting that the viral particles did not desorb and were firmly bound to the fibers, as any 



10 
 

movement of viral particles along the fiber surface would have resulted in a recovery of the 

fluorescence in the bleached region.  

 

3.4 Cytotoxicity of electrospun fibers to vaginal epithelial cells. 

For an efficient inhibition of HIV transmission, electrospun fibers should be applied  

intravaginally. Of great important for maintaining the healthy vaginal environment is the 

vaginal epithelial lining. Any loss of cells or disruptions of the epithelial barrier function 

would greatly facilitate HIV transfer across the epithelial lining into deeper tissues and finally 

the blood stream, from where HIV could be spread throughout the body. To evaluate whether 

the fibers were toxic for vaginal epithelial cells, an MTT assay was performed on vaginal 

epithelial cells exposed to bare, PAH- or DSS-coated PS fibers (Figure 5A). The data show 

that DSS-coated and bare PS fibers did not have significant effects on mitochondrial 

metabolism. For bare PS fibers, a slight decrease in cell viability was noted at higher fiber 

concentrations. PAH-coated fibers resulted in a concentration-dependent decrease in cell 

viability. The toxicity of PAH-coated fibers is likely explained by the polycationic nature of 

PAH which may significantly interact with the anionic cell membrane thereby rupturing the 

cell membrane. Similar effects have been observed for other polycationic molecules such as 

poly-L-lysine.30  

 

3.5  Reduction of HIV infectivity by adsorption to electrospun PS fibers.  

The previous sections showed avid binding of inactive HIV viral particles to the 

electrospun fibers at different pH. An important question which remains is whether the 

binding of active viral particles also lowers viral infection. Therefore, active HIV viral 

particles were exposed for 2 h to electrospun PS fibers dispersed in cell medium. 

Subsequently, samples of the cell medium were taken and infectivity (due to remaining HIV) 

was evaluated using CD4+ TZMbl cells, as described in the Materials and Methods section 

(Figure 6B). The data clearly show a fiber concentration dependent reduction of the HIV 

infectivity. In line with the binding efficiency of inactive HIV viral particles to the various 

fibers, the effect was most pronounced for PAH-coated fibers, followed closely by 

DSS-coated ones. Bare PS fibers also reduced HIV infectivity, but to a lower extent. 
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Interestingly, at the highest concentration of the fibers, infection of the cells by HIV could be 

almost completely abolished. 

 

4.  Discussion  

Since HIV is characterized by a very high genetic variability, no vaccine is currently 

available. For that reason, novel strategies preventing HIV infection are highly required. One 

strategy which is currently widely investigated, is the use of microbicides31, 32 One example of 

an intravaginal microbicidal gel is VivaGel®,33 which is currently being tested for its potential 

to prevent sexually transmitted infections (STIs), including HIV infection. However, all 

gel-based microbicides suffer from several practical inconveniences such as the need to clean 

and reuse the gel applicators and washing away of the gel with urination.34 Recently, multiple 

large-scale clinical trials failed to show any effect of currently available microbicides, 

possibly due to the inability of current drug formulations to form a stable and durable barrier 

along the whole epithelial lining.33 In order to try and overcome these issues, researchers are 

exploring the use of nanotechnology, such as e.g. polystyrene nanoparticles coated with 

lectins, such as Concanavalin A which is reported to have a high affinity for the viral protein 

gp120.35 Another study reported on the use of mercaptobenzoic acid modified 2 nm diameter 

Au nanoparticles which were conjugated to SDC-1721, which is a known antagonist of CCR5 

and may thus be of use to prevent HIV infection.36 Such nanoparticles, however, still suffer 

from the same intrinsic problems as the gel-based microbicide formulations, i.e. they do not 

form a durable barrier along the entire epithelial lining and would need to be reapplied 

frequently. 

Another possible strategy relies on the intravaginal application of effective adsorptive 

films. An adsorptive film is a sort of a woman’s condom that could prevent transmission of 

HIV by virus adsorption and inactivation. The present work takes a first step in this direction, 

where electrospun fibers were found to efficiently bind and inactivate HIV viral particles. 

Moreover, from such fibers a ‘web-based’ film can be produced which may be applied as a 

condom. The high specific surface area and porosity of the electrospun PS fibers allow for a 

high binding potential which may offer great potential in the efficient capture of HIV. The 

flexibility of the electrospinning process furthermore may allow to easily incorporate 
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anti-viral drugs in the fibers to further boost the antiviral efficacy.37 Another advantage of PS 

fibers is their relative low cost compared to the expensive antiviral drugs and the ability to 

upscale production. 

 

5. Conclusions 

Based on our initial observations that inactivate HIV viral particles avidly bound to PS 

and PP Eppendorf tubes at low pH, the binding of the HIV to electrospun PS fibers was 

investigated. The electrospun PS fibers were characterized and showed a highly porous 

structure. Coating of the PS fibers with PAH or DSS resulted in charged fibers with increased 

hydrophilicity. Interestingly, the coated fibers were found to have even higher HIV binding 

efficiencies than naked PS fibers. Using AFM the binding of the viral particles to PAH fibers 

could be directly demonstrated while fluorescence recovery after photobleaching experiments 

revealed a strong binding. Naked and DSS-coated fibers were not toxic to vaginal epithelial 

cells while PAH-coated fibers affected their viability. Finally we showed that the coated PS 

fibers efficiently captured  HIV thereby avoiding the infection of CD4+ TZMb1 cells.   

 

6. Acknowledgments 

We thank Prof. Martin Möller (DWI an der RWTH, Aachen, Germany) for his kind donation 

of electrospun PP fibers. SJS is a post-doctoral fellow from the FWO-Vlaanderen. Financial 

support from Ghent University is greatly acknowledged. 

 

7. References 

1. Greiner, A.; Wendorff, J. H., Electrospinning: A fascinating method for the preparation of 

ultrathin fibres. Angew Chem Int Edit 2007, 46 (30), 5670-5703. 

2. Sill, T. J.; von Recum, H. A., Electrospinning: applications in drug delivery and tissue 

engineering. Biomaterials 2008, 29 (13), 1989-2006. 

3. Kumbar, S. G.; James, R.; Nukavarapu, S. P.; Laurencin, C. T., Electrospun nanofiber 

scaffolds: engineering soft tissues. Biomed Mater 2008, 3 (3), 034002. 

4. Huang, C.; Soenen, S. J.; Rejman, J.; Lucas, B.; Braeckmans, K.; Demeester, J.; De 

Smedt, S. C., Stimuli-responsive electrospun fibers and their applications. Chem Soc Rev 

2011. 

5. Li, D.; Wang, Y. L.; Xia, Y. N., Electrospinning nanofibers as uniaxially aligned arrays 

and layer-by-layer stacked films. Adv Mater 2004, 16 (4), 361-366. 

6. Li, D.; Xia, Y. N., Electrospinning of nanofibers: Reinventing the wheel? Adv Mater 

2004, 16 (14), 1151-1170. 



13 
 

7. Ji, W.; Sun, Y.; Yang, F.; van den Beucken, J. J.; Fan, M.; Chen, Z.; Jansen, J. A., 

Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering 

applications. Pharm Res 2011, 28 (6), 1259-72. 

8. Gillette, B. M.; Rossen, N. S.; Das, N.; Leong, D.; Wang, M.; Dugar, A.; Sia, S. K., 

Engineering extracellular matrix structure in 3D multiphase tissues. Biomaterials 2011, 32 

(32), 8067-76. 

9. Kurpinski, K.; Patel, S., Dura mater regeneration with a novel synthetic, bilayered 

nanofibrous dural substitute: an experimental study. Nanomedicine (Lond) 2011, 6 (2), 

325-37. 

10. Chew, S. Y.; Mi, R.; Hoke, A.; Leong, K. W., Aligned Protein-Polymer Composite Fibers 

Enhance Nerve Regeneration: A Potential Tissue-Engineering Platform. Adv Funct Mater 

2007, 17 (8), 1288-1296. 

11. Saraf, A.; Baggett, L. S.; Raphael, R. M.; Kasper, F. K.; Mikos, A. G., Regulated 

non-viral gene delivery from coaxial electrospun fiber mesh scaffolds. Journal of controlled 

release : official journal of the Controlled Release Society 2010, 143 (1), 95-103. 

12. Szentivanyi, A.; Chakradeo, T.; Zernetsch, H.; Glasmacher, B., Electrospun cellular 

microenvironments: Understanding controlled release and scaffold structure. Adv Drug 

Deliver Rev 2011, 63 (4-5), 209-20. 

13. Sefcik, L. S.; Neal, R. A.; Kaszuba, S. N.; Parker, A. M.; Katz, A. J.; Ogle, R. C.; 

Botchwey, E. A., Collagen nanofibres are a biomimetic substrate for the serum-free 

osteogenic differentiation of human adipose stem cells. J Tissue Eng Regen Med 2008, 2 (4), 

210-20. 

14. Xie, J.; Willerth, S. M.; Li, X.; Macewan, M. R.; Rader, A.; Sakiyama-Elbert, S. E.; Xia, 

Y., The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural 

lineages. Biomaterials 2009, 30 (3), 354-62. 

15. Xie, J.; Macewan, M. R.; Willerth, S. M.; Li, X.; Moran, D. W.; Sakiyama-Elbert, S. E.; 

Xia, Y., Conductive Core-Sheath Nanofibers and Their Potential Application in Neural Tissue 

Engineering. Adv Funct Mater 2009, 19 (14), 2312-2318. 

16. Choi, S. H.; Hwang, I. S.; Lee, J. H.; Oh, S. G.; Kim, I. D., Microstructural control and 

selective C(2)H(5)OH sensing properties of Zn(2)SnO(4) nanofibers prepared by 

electrospinning. Chem Commun 2011, 47 (33), 9315-7. 

17. Ding, B.; Wang, X. F.; Yu, J. Y.; Wang, M. R.; Pan, F. K., A highly sensitive humidity 

sensor based on a nanofibrous membrane coated quartz crystal microbalance. Nanotechnology 

2010, 21 (5). 

18. Liu, Y.; Rafailovich, M. H.; Malal, R.; Cohn, D.; Chidambaram, D., Engineering of 

bio-hybrid materials by electrospinning polymer-microbe fibers. Proc Natl Acad Sci U S A 

2009, 106 (34), 14201-6. 

19. Huang, C. B.; Lucas, B.; Vervaet, C.; Braeckmans, K.; Van Calenbergh, S.; Karalic, I.; 

Vandewoestyne, M.; Deforce, D.; Demeester, J.; De Smedt, S. C., Unbreakable Codes in 

Electrospun Fibers: Digitally Encoded Polymers to Stop Medicine Counterfeiting. Adv Mater 

2010, 22 (24), 2657-+. 

20. Varshosaz, J.; Jannesari, M.; Morshed, M.; Zamani, M., Composite poly(vinyl 

alcohol)/poly(vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix 

for controlled release of drugs. Int J Nanomed 2011, 6. 



14 
 

21. Ariën KK, Jespers V, Vanham G. HIV sexual transmission and microbicides. Rev Med 

Virol 2011, 21: 110–133. 

22. McGowan I., Microbicides for HIV prevention: reality or hope? Curr Opin Infect Dis 

2010, 23(1): 26-31. 

23.  Rossio JL, Esser MT, Suryanarayana K, Schneider DK, Bess JW Jr, Vasquez GM, 

Wiltrout TA, Chertova E, Grimes MK, Sattentau Q, Arthur LO, Henderson LE, Lifson JD., 

Inactivation of human immunodeficiency virus type 1 infectivity with preservation of 

conformational and functional integrity of virion surface proteins. J Virol. 1998, 72(10), 

7992-8001. 

24. Owen, D. H.; Katz, D. F., A vaginal fluid simulant. Contraception 1999, 59 (2), 91-95. 

25. Jay, J. I.; Lai, B. E.; Myszka, D. G.; Mahalingam, A.; Langheinrich, K.; Katz, D. F.; Kiser, 

P. F., Multivalent benzoboroxole functionalized polymers as gp120 glycan targeted 

microbicide entry inhibitors. Mol Pharm 2010, 7 (1), 116-29. 

26. Lai, S. K.; Hida, K.; Shukair, S.; Wang, Y. Y.; Figueiredo, A.; Cone, R.; Hope, T. J.; 

Hanes, J., Human immunodeficiency virus type 1 is trapped by acidic but not by neutralized 

human cervicovaginal mucus. J Virol 2009, 83 (21), 11196-200. 

27. Clapham, P. R.; McKnight, A., HIV-1 receptors and cell tropism. Brit Med Bull 2001, 58, 

43-59. 

28. TeviBenissan, C.; Belec, L.; Levy, M.; SchneiderFauveau, V.; Mohamed, A. S.; Hallouin, 

M. C.; Matta, M.; Gresenguet, G., In vivo semen-associated pH neutralization of 

cervicovaginal secretions. Clin Diagn Lab Immun 1997, 4 (3), 367-374. 

29. McPherson, A.; Kuznetsov, Y. G.; Victoria, J. G.; Robinson, W. E., Atomic force 

microscopy investigation of human immunodeficiency virus (HIV) and HIV-Infected 

lymphocytes. J Virol 2003, 77 (22), 11896-11909. 

30. Hategan, A.; Law, R.; Kahn, S.; Discher, D. E., Adhesively-tensed cell membranes: lysis 

kinetics and atomic force microscopy probing. Biophys J 2003, 85 (4), 2746-59. 

31. Pauwels, R.; DeClercq, E., Development of vaginal microbicides for the prevention of 

heterosexual transmission of HIV. J Acq Immun Def Synd 1996, 11 (3), 211-221. 

32. Neurath, A. R.; Strick, N.; Li, Y. Y.; Debnath, A. K., Cellulose acetate phthalate, a 

common pharmaceutical excipient, inactivates HIV-1 and blocks the coreceptor binding site 

on the virus envelope glycoprotein gp120. Bmc Infect Dis 2001, 1, art. no.-17. 

33. das Neves, J.; Amiji, M. M.; Bahia, M. F.; Sarmento, B., Nanotechnology-based systems 

for the treatment and prevention of HIV/AIDS. Adv Drug Deliver Rev 2010, 62 (4-5), 

458-477. 

34. Neurath, A. R.; Strick, N.; Li, Y. Y., Water dispersible microbicidal cellulose acetate 

phthalate film. Bmc Infect Dis 2003, 3, -. 

35. Akashi, M.; Niikawa, T.; Serizawa, T.; Hayakawa, T.; Baba, M., Graft copolymers 

having hydrophobic backbone and hydrophilic branches part XIV - Capture of HIV-1 gp120 

and virions by lectin-immobilized polystyrene nanospheres. Bioconjugate Chem 1998, 9 (1), 

50-53. 

36. Bowman, M. C.; Ballard, T. E.; Ackerson, C. J.; Feldheim, D. L.; Margolis, D. M.; 

Melander, C., Inhibition of HIV fusion with multivalent gold nanoparticles. J Am Chem Soc 

2008, 130 (22), 6896-+. 

37. Chunder, A.; Sarkar, S.; Yu, Y.; Zhai, L., Fabrication of ultrathin polyelectrolyte fibers 



15 
 

and their controlled release properties. Colloids Surf B Biointerfaces 2007, 58 (2), 172-9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

 

Figure 1.  Schematic representation of the electrospinning setup and fiber functionalization.  

A) Electrospinning setup. B) Functionalization of electrospun fiber webs with H2SO4 to 

generate sulfonated fibers, after which the fibers can be covered with the polyelectrolyte PAH 

resulting in a positive surface  (red). , These positive fibers can then be further  

functionalized  through electrostatic interactions  with PAH and DSS, resulting in a DSS 

(negatively charged) surface (green). 
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Figure 2. A) SEM image of PS electrospun fibers, the insert is a high magnification image. 

Scale bar: 10 µm. B) SEM image of PP electrospun fibers (as obtained from a melt). Scale bar: 

1 µm. C, D) Histograms indicating the distribution of fiber diameters for PS fibers (C) and PP 

fibers (D). E-G) Representative images showing the typical structure of a water drop 

deposited at the surface of the electrospun fibers. Naked PS fibers (E), PAH-coated PS fibers 

(F) and DSS-coated PS fibers (G). 

 

 

   

   

     

  

  

 

A  B

     

C  D

E  F  G



3 
 

 

Figure 3. The binding of inactivate HIV-1 to three types of electrospun fibers (naked PS 

fibers (red), PAH-coated PS fibers (black) and DSS-coated PS fibers (green) at concentrations 

ranging from 0 to 5 mg/ml in respectively simulated vaginal fluid (A) and PBS (B). The 

results were obtained by measuring the p24 concentration by an ELISA assay. Data are shown 

as mean + SEM (n = 3). 
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Figure 4. A-D) Atomic force microscopy images of A) PAH-coated PS fiber surface, B) 

inactivated HIV deposited on a silicon wafer, C) inactivated HIV adsorbed onto PAH-coated  

PS fibers, D) is a magnified view of image. E, F) Representative confocal fluorescence 

images of PAH-coated PS fibers incubated with fluorescently-tagged inactivate HIV (green). 

Regions 1 and 2 indicated by the red rectangles are areas which were bleached by spatial 

selective photobleaching. E) Representative image immediately after bleaching. F) 

Representative image after keeping the fibers for 4 days in SVF at room temperature. Scale 

bars: 20 μm.  
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Figure 5. A) Viability of vaginal epithelial cells exposed to varying concentrations (2, 5 or 10 

mg/ml) of naked PS fibers (black) and functionalized PS fibers (PAH coated (red), DSS 

coated (green) and sulfonated fibers (purple)). Data are shown as mean + SEM (n = 5). B) 

Inhibition of HIV-1 infection by electrospun PS fibers as determined by measuring the 

luminescence of CD4+ TZMbl target cells expressing luciferase. Active HIV was 

pre-incubated with three types of electrospun PS fibers (naked fibers (red), PAH coated fibers 

(black), DSS coated fibers (green)) for varying concentrations of the fibers after which 

samples of the supernatant were taken and incubated with vaginal endothelial cells. The 

infectivity of the viral particles is expressed as relative to that of viral particles which were 

treated similarly but not exposed to any fibers. Data are shown as mean + SEM (n = 3) 
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