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Abstract
Human mesenchymal stem cells (hMSCs), the precursors of osteoblasts during osteogene-

sis, play a role in the balance of bone formation and resorption, but their functioning in

uremia has not been well defined. To study the effects of the uremic milieu on osteogenic

properties, we applied an in vitro assay culturing hMSCs in osteogenic medium supple-

mented with serum from healthy donors and from uremic patients on hemodialysis. Com-

pared to control, serum from uremic patients induces, in hMSC cultures, a modification of

several key regulators of bone remodeling, in particular a reduction of the ratio Receptor Ac-

tivator of Nuclear factor Kappa B Receptor (RANKL) over osteoprotegerin, indicating an

adaptive response of the system to favor osteogenesis over osteoclastosis. However, the

levels of osteopontin, osteocalcin, and collagen type I, are increased in cell medium, while

BMP-2, and alizarin red staining were decreased, pointing to a reduction of bone formation

favoring resorption. Selected uremic toxins, such as p-cresylsulfate, p-cresylglucuronide,

parathyroid hormone, indoxyl sulfate, asymmetric dimethylarginine, homocysteine, were

able to mimic some of the effects of whole serum from uremic patients. Serum from

cinacalcet-treated patients antagonizes these effects. Hydrogen sulfide (H2S) donors as

well as hemodialysis treatment are able to induce beneficial effects. In conclusion, bone

modifications in uremia are influenced by the capability of the uremic milieu to alter hMSC

osteogenic differentiation. Cinacalcet, H2S donors and a hemodialysis session can amelio-

rate the hampered calcium deposition.

PLOS ONE | DOI:10.1371/journal.pone.0116468 January 30, 2015 1 / 17

OPEN ACCESS

Citation: Lanza D, Perna AF, Oliva A, Vanholder R,
Pletinck A, Guastafierro S, et al. (2015) Impact of the
Uremic Milieu on the Osteogenic Potential of Mesen-
chymal Stem Cells. PLoS ONE 10(1): e0116468.
doi:10.1371/journal.pone.0116468

Academic Editor: Giovanni Li Volti, University of Ca-
tania, ITALY

Received: October 14, 2014

Accepted: December 9, 2014

Published: January 30, 2015

Copyright: © 2015 Lanza et al. This is an open ac-
cess article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper.

Funding: This work was supported by the Italian So-
ciety of Nephrology (SIN), http://www.sin-italy.org,
GRANT “Ricercando 2011” to AFP. Project name:
“Exploring the osteogenic properties of mesenchymal
stem cells for bone structural –functional repair in he-
modialysis patients: role of uremic toxins.” The funders
had no role in study design, data collection and analy-
sis, decision to publish, or preparation of the
manuscript.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55704056?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0116468&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.sin-italy.org


Introduction
In chronic kidney disease (CKD) and especially in patients on hemodialysis, chronic kidney
disease-mineral and bone disorder (CKD-MBD) frequently affects quality of life, morbidity
and mortality [1]. These alterations are to a large extent induced by the determinants of para-
thyroid hormone (PTH) secretion [2,3], and are also influenced by uremic retention solutes, es-
pecially p-cresylsulfate (pCS) and p-cresylglucuronide (pCG), indoxyl sulfate, asymmetric
dimethylarginine (ADMA), and homocysteine [4–10].

Bone marrow-derived stem cells are either hematopoietic or non-hematopoietic (mesenchy-
mal). Human bone marrow-derived mesenchymal stem cells (hMSCs) (marrow stromal cells)
[11] can differentiate into osteoblasts, as well as chondrocytes, adipocytes and other cell types
[12–14].

During hMSCs osteoblastic differentiation, several molecules, such as osteoprotegerin
(OPG), receptor activator of nuclear factor kappa B ligand (RANKL), osteopontin, osteocalcin,
collagen type I, bone morphogenic protein-2 (BMP-2), and alkaline phosphatase play a key
role in this complex process, resulting in matrix formation and calcium deposition (Fig. 1).

OPG is a soluble cytokine belonging to the Tumor Necrosis Factor receptor superfamily act-
ing as negative regulator of RANKL, which instead induces osteoclast differentiation in bone
marrow through its receptor RANK. OPG acts as a decoy receptor that blocks RANKL, thus
preventing RANK activation, osteoclast differentiation and bone resorption. RANKL is also
produced by osteoblasts. The ratio between RANKL and OPG is considered to be a key index
in bone formation/resorption: in case of high RANKL/OPG concentration ratio, osteoclastosis
is favored, and when the opposite is present, osteoblastogenesis is preferred [15]. In

Figure 1. Flow chart of hMSCs culture set up and osteogenic induction. The horizontal line indicates the
time period from cell plating until the beginning of calcification. Dashed bar indicates the detection of calcium
deposition (ARS assay). Arrows indicate medium change with replacement of fresh serum from uremic
patients or from healthy control donors. Boxes highlight specific marker detection or treatments. Early
markers: OPG, sRANKL. Late markers: alkaline phosphatase, osteopontin, osteocalcin, collagen type I,
BMP-2. Calcium deposition was detected by ARS assay. Differential morphology of hMSC before (fibroblast-
like) and at the end of osteogenic differentiation process (spherical cells with calcium deposition) is also
shown (panels A and B, respectively).

doi:10.1371/journal.pone.0116468.g001
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hemodialysis patients, serum OPG concentration is higher, and serum RANKL concentration
is lower than controls [16,17].

Osteopontin is an acidic phosphoprotein of bone, and produced by fully differentiated oste-
oblasts, which is involved in regulation of mineralization by acting as an inhibitor of apatite
crystal growth, as well as promoting osteoclast function [18,19]. Serum osteopontin concentra-
tion is increased in hemodialysis patients [20,21].

Osteocalcin is a protein, which, along with collagen type I, is produced by osteoblasts and
together combine extracellularly to form osteoid, the organic substrate upon which mineraliza-
tion occurs [22]. In CKD-MBD, both markers are correlated with serum PTH levels [23].

BMP-2 is member of the Transforming Growth Factor-b (TGF-b) superfamily, which is
able to induce bone formation [24]. In CKD-MBD, serum levels are significantly higher
[25,26].

The serum concentration of bone-specific alkaline phosphatase reflects the cellular activity
of osteoblasts, and is a useful marker of bone formation, also in CKD-MBD [27].

Finally, alizarin red staining [28–31] is a measure of in vitro calcium deposition on osteoid,
thus representing the final step in bone formation.

In this study, we investigated the effects of serum from uremic patients on hemodialysis on
the osteogenic differentiation of hMSCs, which are still largely unknown, through the analysis
of the various markers. An in vitro assay system in which hMSCs cultured with osteogenic me-
dium supplemented with healthy or uremic patient serum was applied. The effect of selected
uremic solutes were tested, in particular pCS, pCG, PTH, indoxyl sulfate, ADMA, homocyste-
ine, on the above osteogenic differentiation markers.

The effects of the calcimimetic cinacalcet, a drug utilized in the therapy of CKD-MBD, as
well as the effects of hydrogen sulfide (H2S) donors were also investigated. H2S, an endogenous
vasodilator and antioxidant, which concentration is reduced in uremia [32], is involved in oste-
oblast proliferation through enhancement of the transcriptional levels of alkaline phosphatase,
osteocalcin, and collagen [33], as well as OPG/RANKL [34].

Methods

1 Products and reagents
All cell culture materials were purchased from Gibco (Life Technology, Carlsbad CA, USA),
and all chemicals, as well as PTH, indoxyl sulfate, ADMA, L-homocysteine and Diallyl disul-
fide (DADS) were from Sigma Chemical Co. (St. Louis, MO, USA), when not otherwise speci-
fied. Diallyl trisulfide (DATS) was from Cayman Chemical Co. (La Jolla, Ca, U.S.A.).
PrestoBlue Cell Viability Reagent was purchased from Invitrogen (Life Technology, Carlsbad,
CA, USA). pCS and pCG were synthesized at the organic chemistry department of the Ghent
University, Belgium. pCS was synthesized according to Feigenbaum and Neuberg as a
potassium salt [35] and pCG was synthesized and purified based on the work of Van der
Eycken et al [36]. All reagents used were of analytical grade. Vacutainer tubes were purchased
from Becton Dickinson Italia S.p.A.

2 Preparation of hMSCs
The bone marrow aspirate samples were obtained from the right or left posterior iliac crest of
17 patients (9 males and 8 females, aged>18 years) diagnosed with Non-Hodgkin Lymphoma
without bone marrow involvement and with normal renal function. The bone marrow aspira-
tion was performed before core biopsy using the same bone marrow core biopsy needle (Biop-
sybell, Modena, Italy). Written consent was obtained from all patients, and the study received
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approval from the institutional ethics committee of the Second University of Naples (Protocol
No. 283 of 12 July 2013).

HMSC cultures were initiated as described previously [37]. Briefly, the heparinized bone
marrow sample was diluted 1:5 with complete culture medium (Opti-MEM containing 10%
fetal calf serum, 100 units/ml penicillin, 100 mg/ml streptomycin and 50 mg/ml sodium ascor-
bate), and incubated at 37°C in a 5% CO2 humidified atmosphere. Although present in bone
marrow in an extremely low percentage in proportion to total mononuclear cells, hMSCs can
be easily isolated on the basis of their ability to adhere to polystyrene plates, while cells of the
hematopoietic lineage remain in suspension and can be removed.

After 48h, medium containing all non-adherent cells was centrifuged for 10min at 1000
rpm; the pellet was discarded, while the supernatant was added to the culture dish, in a 1:1
ratio with the fresh medium. In 3–4 days, several foci of adherent spindle-like cells appeared
and reached sub-confluence in 1–2 weeks. The medium was refreshed every 3 days, each time
leaving one half of conditioned medium. The cells harvested from each donor were pooled. Af-
terwards, cells were trypsinized, and their phenotype confirmed by flow cytometry using a
wide panel of labeled monoclonal antibodies, as previously reported [38]. Cultures between the
second and fourth passage were used in the experiments.

3 Serum samples
A control group of healthy donors and a group of uremic patients on hemodialysis (hemodia-
filtration, HDF) were selected. All patients were clinically stable and recruited according to the
following inclusion criteria:

- no clinical evidence of diabetes, lupus erythematosus, viral hepatitis, cancer;

- maintenance HDF thrice weekly for at least 3 months; polysulfone filters; Kt/V> 1.4.

Some of the HDF patients were treated with cinacalcet (Mimpara, Amgen Dompè, Italy).
All previous transplant recipients were excluded.

Blood samples were drawn under fasting conditions and collected in the appropriate Vacu-
tainer tubes for serum. In the patient group, this occurred immediately before the hemodialysis
session (mid-week session), and before and after the hemodialysis session (for the experiments
assessing the effects of hemodialysis). After blood withdrawal, the sample was centrifuged at
4°C for 15 min at 3000 rpm, serum was collected under sterile laminar flow hood, and stored
at-20°C. One aliquot was immediately processed for routine biochemical analysis.

In Table 1, concentrations in control and patient serum of creatinine, urea, calcium, phos-
phorus, intact PTH (iPTH), and 25-OH vitamin D are depicted.

Prior to each experiment, the required amount of serum from healthy controls (control
serum) or serum from uremic patients on hemodialysis (uremic serum) was obtained by
respectively pooling together all the various aliquots stored as above, using always the same
pool.

4 Cell treatments
The ability of isolated hMSCs to grow in the presence of human serum was tested in prelimi-
nary experiments, in order to optimize growth and viability, and these conditions were used in
experimental set-up. We initially checked the ability of hMSC to grow in medium supple-
mented with human serum at different percentage, compared to 10% fetal calf serum as a stan-
dard cell culture condition [38]. We detected optimal cell growth using 10% human serum for
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3 days, which insured excellent cell viability. Therefore in all our experiments we utilized 10%
human serum.

Isolated hMSCs were induced to differentiate into osteoblasts following a standard
protocol [38–41]. Cells were seeded at a density of 104 cells/cm2 in 6-well plates and the follow-
ing day stimulated with either standard growth (non-osteogenic) medium (Opti-MEM) or
osteogenic medium (Opti-MEM, plus 0.1 mM dexamethasone, 10 mM sodium
b-glycerophosphate, 0.05 mM L-Ascorbic acid and 0.5 mM CaCl2) for 15–21 days. Normal
or osteogenic medium were supplemented with 10% control serum, or 10% uremic serum
pools, or with 10% control serum plus toxins, at final concentrations comparable to those pres-
ent in uremia [42–44], i.e.: pCS and pCG at 0.48 mM and 80 mM, respectively; PTH 106 pM
(1000 pg/ml); indoxyl sulfate (80 mM); ADMA (1 mM); homocysteine (100 mM). Where indi-
cated, uremic serum was added with DADS or DATS (organosulfur H2S donors derived from
garlic), at 200 mM final concentration [45–47]. About 30% of uremic toxins are protein-bound
in circulation [48], while albumin binding capacity (its concentration in the serum being
530–770 mmol/L) highly exceeds in vivo, by orders of magnitude, the concentrations of most of
these protein-bound retention solutes. Therefore, we set the experimental conditions so that al-
bumin never became limiting for protein-bound retention solutes utilized. Medium was re-
freshed every 2–3 days and an aliquot of the supernatant was saved for determination of the
relevant dosages (Fig. 1).

An adequate number of culture wells was prepared in order to have, for each set of experi-
ments a sufficient number of parallel samples to test all the indicated markers during differenti-
ation, as indicated in Fig. 1.

Hemofiltration is a hemodialysis technique based on uremic toxin removal obtained
through convection. Hemofiltrates from 3 patients were pooled and concentrated by reversed-
phase chromatography in the presence of a cationic ion-pair reagent (triethylammonium ace-
tate (TEAA) 40 mM) [49]. Retained substances were eluted by using increasing concentrations
of ethanol in water: 20%, 40%, 60%, 80% and 100% (20%= 20% ethanol in water, etc.), [49].
Therefore, the first fraction, obtained with 20% ethanol, contains a higher concentration of hy-
drophilic uremic toxins, and this concentration decreases with the ethanol percentage increase.
The hemofiltrates were dried in SpeedVac Concentrator (Thermo Scientific, Thermo Fisher
Scientific Inc.—Boston, MA, USA) to remove ethanol, and resuspended in absolute medium
(D-MEM). Various dilutions of the hemofiltrate pool fractions were tested on MSC viability
and osteogenic differentiation.

Table 1. Biochemical parameters of controls’ and patients’ serum

CONTROLS PATIENTS

Creatinine (mg/dL) 0.80 (0.20) 8.56 (0.74)***

Urea (mg/dL) 30.20 (10.00) 104.60 (11.00)**

Calcium (mg/dL) 9.25 (0.65) 8.72 (0.25)

Phosphorus (mg/dL) 3.60 (0.90) 5.13 (0.29)*

iPTH (pg/mL) 35.00 (5.20) 326.20 (35.93)***

Vit. D 25-OH (ng/mL) 25.60 (5.10) 8.15 (3.15)**

Serum concentrations of creatinine, urea, calcium, phosphorus, iPTH, and 25-OH vitamin D were

measured in healthy controls and uremic patients, respectively. Values were expressed as mean (SE).

*p<0.05

**p�0.01

***p<0.001.

doi:10.1371/journal.pone.0116468.t001
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5 Cell viability and osteogenic differentiation markers

5.1 Alkaline Phosphatase and Alizarin Red Staining (ARS)
After 10 days, alkaline phosphatase specific activity was evaluated. Once the medium was re-
moved, wells were rinsed with 20 mM Tris/HCl, pH 7.4, 0.5 M NaCl (TBS) and the cells lysed
by a specific buffer (20 mM Tris/HCl, pH 7.4, 0.5 mM NaCl, 0.25% Triton X-100, 0.5 mM phe-
nylmethylsulfonyl fluoride, 0.5 mM DTT). After 30 min on ice, cell lysates were centrifuged at
13000xg for 5 min. Alkaline phosphatase activity was determined on the supernatant by mea-
suring the release of p-nitrophenol from disodium p-nitrophenyl phosphate. The reaction mix-
ture contained 10 mM disodium p-nitrophenyl phosphate, 0.5 mMMgCl2, 0.1 M
diethanolamine phosphate buffer pH 10.5, and 10–30 mg of cell lysate in a final volume of
500 ml. After 30 min at 37°C, the reaction was stopped by adding 500 ml of 0.5 M NaOH;
p-nitrophenol levels were measured with spectrophotometer at 405 nm wavelength. One
unit was defined as the amount of enzyme that hydrolyzes 1 nmol of p-nitrophenyl
phosphate x min-1. Specific activity is expressed as nmol/mg x min and is corrected for protein
concentration of the cell lysates.

ARS, an anthraquinone derivative, may be used to identify calcium deposition in cell cul-
tures. After 15–21 days of differentiation, cells were fixed with 4% paraformaldehyde for
15–30 min, washed with bidistilled water and stained with ARS at 40 mM, pH 4.1. After 20
min incubation at room temperature with gentle shaking, the unincorporated dye was removed
and cells washed with bidistilled water. Calcium deposits were visible as a red staining. For
quantification, 800 ml 10% acetic acid was added to each well. Cell monolayers were then
scraped and transferred to a 1.5 ml microcentrifuge tube. After vortexing for 30 s, the tube was
heated at 85°C for 10 min, transferred on ice for 5 min, and centrifuged at 20000xg for 15 min.
Then, 500 ml of the supernatant were removed and transferred to a new tube, and 200 ml of
10% ammonium hydroxide were added to neutralize the acid. Aliquots (150 ml) of the superna-
tant were read in triplicate with a spectrophotometer set at 405 nm wavelength.

5.2 PrestoBlue viability assay
PrestoBlue is a resazurin-based solution that functions as a cell viability indicator by using the
reducing power of living cells, to quantitatively measure cell proliferation. When added to cells,
the PrestoBlue reagent is modified by the reducing environment of the viable cell and turns
red, becoming highly fluorescent. Viable cells retain the ability to reduce resazurin into resoru-
fin. Nonviable cells rapidly lose metabolic capacity and thus do not generate a fluorescent sig-
nal. This colour is detected using fluorescence or absorbance measurements. Cells were washed
with PBS, incubated�10min at 37ºC with 500 ml PrestoBlue 1X (in D-MEM without phenol
red); then, for each sample, the reagent was removed and saved in a tube, cells were washed 2
times with 1 ml PBS and the supernatant saved in the same tube and then fluorescence was
read at 560 nm wavelength [50,51]. The advantage of this assay is that it allows continuous
monitoring of cultures, as the culturing process continued after the screening test.

5.3 ELISA
Enzyme concentrations in the treated hMSCs culture medium were determined utilizing the
relevant ELISA kits according to the supplier’s protocols. ELISA Kits were: Human Soluble Re-
ceptor Activator of Nuclear Factor-KB Ligand (sRANKL Total), human osteocalcin and
human Osteoprotegerin (OPG), (BioVendor—BioVendor-Laboratorni medicina a.s.,
Brno, Czech Republic), Human osteopontin and Human Bone morphogenic protein-2
(BMP-2) (Biorbyt Ltd., Cambridge, UK), Human collagen type I (Uscn Life Science,
Houston, USA).
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As illustrated in Fig. 1, for the OPG and sRANKL assays (early markers), culture media ob-
tained after 3 days of differentiation were used. For the assays of osteopontin, BMP-2, collagen
type I and osteocalcin (late markers), media after 10 days were used.

6 Statistical Analysis
Data are presented as mean (SE). All experiments were done at least in triplicate except when
otherwise stated. Within the same assay session, each sample of a set relevant to individual
treatments was run in triplicate. Results on the levels of each marker were reported in the rele-
vant units (in the experiments concerning evaluation of uremic serum effects vs. control
serum). Considering experiments using uremic toxins, the difference between the measured ef-
fects of each toxin vs. control serum was reported as percentage. A paired t Student test was
performed [52]. All calculations were performed using the software package GraphPad Prism,
Version 5.0 for Windows (GraphPad Software, San Diego, CA, USA). Statistical significance is
considered at p<0.05. Grubbs’method was used to assess outliers.

Results

1 Effects of various treatments on cells viability
We preliminarily checked cell viability under the various cell growth conditions and treatment
that we employed, using the Presto Blue test assay performed both at 3 and 10 days of culture.
Treatments with serum from healthy donors (control serum) and with serum from uremic pa-
tients on hemodialysis (uremic serum) and/or osteogenic medium as well as the addition of
uremic toxins to medium did not significantly compromised cell viability compared to stan-
dard growth conditions (data not shown); see also ref. [37–41]. Therefore, we could rule out
the occurrence of any acute or sub-acute toxic effect of added compounds in our experimental
conditions.

Also hemofiltrate fractions were tested on MSCs to study the effects on cell viability. Hemo-
filtrate fractions were diluted in the cell medium to a concentration of indoxyl sulfate (as a typi-
cal uremic toxin) in the range of 12–120 ppm, i.e. above the range of indoxyl sulfate
concentration, referred to 10% whole uremic serum (about 2 ppm); see also ref. [53]. Fig. 2
showed that both control and uremic serum provide culture conditions insuring satisfactory
cell viability, and addition of hemofiltrate fractions to cell cultures at a final toxin concentration
well above that of uremic serum, still insured suitable cell viability for experiments on osteo-
genic differentiation.

2 Cell culture in uremic medium is associated with an alteration of the
sRANKL/OPG ratio concentration
A number of key markers of bone metabolism and osteogenic differentiation were monitored
according to Fig. 1, after three days from differentiation induction of hMSCs in the presence of
uremic serum or selected uremic toxins compared to controls, at concentrations comparable to
those detected in uremia. In Fig. 3A, the effects of uremic serum vs. control serum on OPG re-
lease in the medium are displayed. Uremic serum did not significantly influence OPG concen-
tration, although there was a trend towards a decrease. Regarding sRANKL (Fig. 3B), uremic
serum decreased levels six-fold compared to control serum. The sRANKL/OPG ratio of uremic
serum vs. control serum was therefore also markedly decreased (Fig. 3C).

When checking the effects of various uremic toxins on the same markers, pCS, PTH and ho-
mocysteine decreased OPG (Fig. 3D). PTH and indoxyl sulfate significantly decreased
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sRANKL concentration (Fig. 3E). Regarding the sRANKL/OPG ratio (Fig. 3F), PTH and in-
doxyl sulfate determined an increase.

3 The uremic milieu reduces osteogenic differentiation of hMCSs
Markers of bone differentiation, ten days after the start of osteogenic induction (according to
Fig. 1), were monitored in the medium of hMSCs cultured in the presence of uremic serum vs.
control serum or, in parallel, samples in which selected uremic toxins had been added to con-
trol serum vs. no addition samples.

Uremic serum increased osteopontin (Fig. 4A), osteocalcin (Fig. 4B) and collagen type I
(Fig. 4C), in comparison to control serum. This effect was mimicked by ADMA and homocys-
teine for osteopontin (Fig. 4D), by homocysteine and by PTH for soluble osteocalcin (Fig. 4E).
Although a tendency of some tested toxins to influence collagen type I could be detected, no
significant changes were observed (Fig. 4F). Alkaline phosphatase expression, a typical late
marker of osteogenic differentiation, increased upon induction of osteogenic differentiation
both in uremic serum vs. control serum treated hMSC, with no significant difference between
the two, nor upon treatment with selected toxins (data not shown).

BMP-2 levels, induced upon osteogenic differentiation, were decreased when hMSCs were
treated with uremic serum compared to control serum (Fig. 5A). None of the tested uremic
toxins modified BMP-2 (Fig. 5B).

Calcium deposition, as evaluated by the ARS assay, was monitored during late osteogenic
differentiation. ARS stain was decreased in the presence of uremic serum, as shown in a repre-
sentative experiment in Fig. 5F and 5G (red staining was faded in the uremic serum treated

Figure 2. Effect of hemofiltrates on viability and osteogenic differentiation of hMCSs. PrestoBlue assay
on cells treated with the five different hemofiltration fractions (20%, 40%, 60%, 80% and 100%), at a final
concentrations of 120 or 12 ppm, still ensured suitable cell viability, compared to cell treated with serum from
healthy donors (control serum; CS) and serum from uremic patients (uremic serum; US), in normal medium
(bar plot). Photomicroscopy images of hMSCs treated with CS, US or in the presence of the five indicated
hemofiltrate fractions are also shown.

doi:10.1371/journal.pone.0116468.g002
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cells with respect to control serum) and shown as average levels in Fig. 5C, as well as levels in
the presence of pCS, PTH, indoxyl sulfate, and ADMA added to control serum, compared to
control serum per se (Fig. 5D).

H2S donors, DATS and DADS, added to hMSCs, in the presence of uremic serum, signifi-
cantly increased calcium deposition, monitored as ARS, compared to the H2S donor-untreated
cells (Fig. 5E). All other osteogenic parameters were not affected by H2S donors (data not
shown).

4 Serum of cinacalcet-treated patients antagonizes the effect of the
uremic milieu on hMSC osteogenic differentiation
We performed a set of experiments in which hMSCs were induced to differentiation by osteogen-
ic medium in the presence of a pool of sera from hemodialysis patients in therapy with cinacalcet.
Serum from cinacalcet-treated uremic patients induced a decrease of osteopontin, osteocalcin,
and collagen type I compared to serum from untreated patients. (Fig. 6A, 6B, and 6C). The other
parameters were not modified (data not shown).

Figure 3. OPG, sRANKL and their ratio in response serum from uremic patients, and the effects of
individual uremic toxins.OPG (panel A), sRANKL (panel B) and their ratio (panel C) were measured in
hMSC cell medium at 3 days after induction of osteogenic differentiation in the presence of uremic serum
(US), compared to control serum (CS). Another set of experiments was performed by inducing osteogenic
differentiation in hMSCs cultured in the presence of control serum added with the indicated uremic toxins
(pCS, p-cresylsulfate; pCG, p-cresylglucuronide; PTH, parathyroid hormone; IS, indoxyl sulfate; ADMA,
asymmetric dimethylarginine; Hcy, homocysteine), compared to control serum alone. Panel D: OPG; panel E:
sRANKL; panel F: sRANKL/OPG ratio. *p<0.05, **p�0.01, ***p<0.001.

doi:10.1371/journal.pone.0116468.g003
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5 Effects of hemodialysis
The effect of a hemodialysis session, studied by comparing hMSCs treated with pre-dialysis or
post-dialysis serum, was investigated, and we show that a single session did not induce a
change in OPG levels (Fig. 7A), while it causes a decrease of sRANKL (Fig. 7B), sRANKL/OPG
ratio (Fig. 7C), and osteocalcin (Fig. 7D). All other parameters showed no differences (data not
shown).

Discussion
A uremic environment markedly influences hMSCs, playing a central role in the balance be-
tween bone formation and resorption. The reduced bone osteogenesis present in CKD can be
explained, at least in part, by the alterations induced by the uremic milieu on hMSCs osteogen-
ic differentiation. Cinacalcet and H2S donors, as well as a hemodialysis session, can improve
some of these derangements.

CKD-MBD is frequent in CKD and in uremic patients on hemodialysis, in various forms,
predominantly adynamic bone disease or renal osteodystrophy [1], due to various determi-
nants [2–3].

HMSCs can tip the balance between bone formation and resorption, by their known capaci-
ty to differentiate into osteoblasts, which synthesize the protein components, that allow extra-
cellular osteoid generation, the organic matrix in which mineralization occurs.

Figure 4. Levels of osteopontin, osteocalcin and collagen type I in response to serum from uremic
patients, or individual uremic toxins, during osteogenic differentiation.Osteopontin (OPN, panel A),
osteocalcin (OST, panel B) and collagen type I (COL1, panel C) were measured in the medium of hMSCs
cultured in the presence of uremic serum (US) vs. control serum (CS). OPN (panel D), OST (panel E) and
COL1 (panel F) were also monitored in parallel experiments in which hMSCs were cultured in the presence of
control serum added with the indicated uremic toxins (pCS, p-cresylsulfate; pCG, p-cresylglucuronide; PTH,
parathyroid hormone; IS, indoxyl sulfate; ADMA, asymmetric dimethylarginine; Hcy, homocysteine)
compared to NS as such. *p<0.05.

doi:10.1371/journal.pone.0116468.g004
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Figure 5. Levels of BMP-2 and ARS in hMSCmedium in response to serum from uremic patients or
selected uremic toxins and effect of H2S donors, during osteogenic differentiation. BMP-2 levels in
uremic serum (US) treated hMSCs (panel A) or upon treatment with selected toxins added to control serum
(CS) (panel B), and ARS in CS or US treated hMSCs (panel C) or upon treatment with selected toxins (pCS,
p-cresylsulfate; pCG, p-cresylglucuronide; PTH, parathyroid hormone; IS, indoxyl sulfate; ADMA, asymmetric
dimethylarginine; Hcy, homocysteine) added to NS (panel D) are shown. Effects of H2S donors DADS and
DATS on ARS in US treated cells (panel E). Examples of ARS stain in hMSCs treated with CS or US, as
culture well picture (panel F) and as microscopy images (panel G). *p<0.05.

doi:10.1371/journal.pone.0116468.g005

Figure 6. Levels of osteopontin, osteocalcin and collagen type I, in response to uremic serum from
patients under cinacalcet treatment.Osteopontin (OPN, panel A), osteocalcin (OST, panel B) and collagen
type I (COL1, panel C) during hMSC differentiation in the presence of serum from hemodialysis patients
treated with cinacalcet (US cinacalcet), compared to serum from non-treated patients (uremic serum, US).
Results from control serum (CS) were added for comparison. *p<0.05, ***p<0.001.

doi:10.1371/journal.pone.0116468.g006
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Up till now, hMSCs have essentially been used to study calcification occurring in the vascu-
lar system, in that the serum from uremic patients (uremic serum) induces a procalcific pheno-
type, accompanied by matrix remodeling and actual calcification [54]. However, to the best of
our knowledge, the effect of uremic milieu on hMSCs differentiation into osteoblasts has never
been studied.

Many uremic toxins may be expected to influence hMSCs function and osteogenic differen-
tiation. Several retention compounds in uremia display noxious effects on bone metabolism
and function [4–10]. We investigated the effects of the uremic milieu, as well as that of selected
uremic toxins (pCS, pCG, PTH, indoxyl sulfate, ADMA, and homocysteine), chosen in consid-
eration of their effects on bone function [4–10].

Compared to serum from healthy control donors (control serum), uremic serum treatment
determines several modifications of key regulators of bone remodeling, first of these being a re-
duction of the ratio sRANKL/OPG, which conforms to what is found in vivo in hemodialysis
patients [15–17]. The lower ratio sRANKL/OPG is compatible with an initial compensatory re-
sponse to the uremic environment of the system to favor osteogenesis over osteoclastosis, act-
ing as a limiting factor to excessive resorption.

However, later in the osteogenic differentiation (see Fig. 1), the levels of osteopontin, osteo-
calcin, collagen type I, are significantly increased under these conditions, while BMP-2, and
ARS (a marker of calcium deposition) are decreased, indicating, in the end, that bone forma-
tion is reduced in favor of bone resorption.

Osteopontin, a positive modulator of osteoclastosis to prevent excessive bone formation, is
increased in cell culture medium upon treatment with uremic serum, consistent with in vivo
data [18, 21]. The increase of osteopontin in vitro during late differentiation opposes the de-
crease of the sRANKL/OPG ratio (pro-osteogenesis), which is prominent during the first phase
of osteogenesis.

Figure 7. Levels of OPG, sRANKL, sRANKL/OPG, osteocalcin and collagen type I in response to
serum from uremic patients after a single hemodialysis session.OPG levels (panel A), sRANKL (panel
B) and their relevant ratio (panel C), osteocalcin (OST, panel D) were measured, in the medium, during
osteogenic differentiation of hMSC grown in the presence of uremic serum from the same patients before
(PRE) and after hemodialysis (POST). Results from control serum (CS) were added for comparison.
*p<0.05.

doi:10.1371/journal.pone.0116468.g007

Uremic Milieu on the hMSCs Osteogenic Potential

PLOS ONE | DOI:10.1371/journal.pone.0116468 January 30, 2015 12 / 17



Also osteocalcin and collagen type I levels mimic what found in vivo [22,23]. This could in-
dicate that they are secreted, and persist in the supernatant in their soluble form, instead of
being incorporated into the matrix, thus explaining the reason why in vitro calcium deposition
is reduced.

On the contrary, BMP-2 levels are lower in our experimental setting, while serum levels are
usually higher [55]. BMP-2 is a procalcific protein, and the fact that its levels are lower in vitro
is in accordance with the hypothesis that the uremic milieu creates an altered microenviron-
ment where bone calcium deposition is reduced. In fact, we also detected lower ARS levels.

All in all, these effects show that, in the balance between bone formation and bone resorp-
tion, hMCSs, under uremic medium conditions, uncouple these two processes and are prone
towards bone resorption instead of bone formation.

The effects of the selected uremic toxins mimic some of the effects observed in the presence
of whole uremic serum. None of the toxins is able to completely replicate the pattern exerted
by uremic serum on hMSCs; however, almost all of them reduce ARS levels, and therefore re-
duce calcification. Regarding sRANKL/OPG, PTH and indoxyl sulfate act in an opposite man-
ner with respect to uremic serum, in that they both increase the ratio. This result is not
unexpected for PTH, since this hormone physiologically stimulates bone resorption over depo-
sition. It must be considered that the hMSCs used in our model are exposed to toxins for a lim-
ited period of time with respect to cells exposed in vivo to the same toxins in the chronic
condition of uremia. In addition, it should be noted that many other compounds present in the
uremic milieu deserve being tested, aside from the ones we analyzed, for example those that
may responsible for the decrease in BMP-2.

Calcimimetics are agents that allosterically increase the sensitivity of the calcium-sensing re-
ceptor in the parathyroid gland to calcium [56]. Cinacalcet, the only currently available calci-
mimetic, is an emerging option in the treatment of secondary hyperparathyroidism in CKD
patients on hemodialysis [57–59]. We therefore expect that the serum microenvironment of
CKD patients treated in vivo with cinacalcet could be more similar to a normal condition, with
respect to the alterations of bone metabolism, compared to what was detected in cinacalcet-
untreated CKD patients. Results from treatment of hMCSs with cinacalcet-treated patients
serum actually showed that the uremic microenvironment was favorably influenced by this in
vivo treatment, since osteopontin, osteocalcin, and collagen type I behaved more similarly to
what was observed in cell cultures grown with control serum. This indicates that therapy with
cinacalcet positively modifies the uremic microenvironment with respect to parameters in-
volved in hMSC osteogenic differentiation.

H2S, an endogenous vasodilator and antioxidant, is also involved in bone formation and os-
teoblast proliferation through enhancement of the transcriptional levels of alkaline phospha-
tase, osteocalcin, and collagen [33], as well as RANKL/OPG [34]. Its levels are low in the
plasma of uremic patients on hemodialysis [32], and we have seen in vitro experiments that
H2S treatment decreases the inflammation typical of this condition [60]. It has been already
demonstrated that H2S regulates bone marrow MSCs in mice [61] and it has been shown that
in H2S-deficient mice, that display an osteoporotic phenotype, restoring H2S via non-toxic do-
nors may provide treatment for diseases such as osteoporosis [61].

Slow-releasing H2S donors, such as DADS and DATS, incubated in vitro with hMSCs are
able to counteract the decrease in ARS levels induced by uremic serum. This finding indicates
that these compounds can be of potential therapeutic use, not only with respect to the inflam-
matory effects of uremia, but also on hMSCs osteogenic differentiation.

Serum from patients after a single hemodialysis session induces a decrease of sRANKL/OPG,
because a tendency to a further reduction of sRANKL. Osteocalcin levels were decreased, which
is a finding that goes in the opposite direction of what found in cells treated with uremic serum.
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Therefore, findings are in accordance with the idea that hemodialysis restores the situation in
favor of bone formation.

In conclusion, bone modifications in uremia, mediated by secondary hyperparathyroidism
and its determinants, can be also influenced by the capability of uremic milieu to alter hMSCs
osteogenic potential and differentiation. New therapeutic strategies, such as cinacalcet and H2S
donors, can be utilized to intervene on these alterations, which need to be further explored. In
this respect, the in vitro system we set up can be considered as a useful way to study how vari-
ous conditions and treatments may influence the effects of the uremic microenvironment on
hMSC osteogenic differentiation.
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