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Entropy function spaces and interpolation∗

Joan Cerdà, Heribert Coll and Joaquim Mart́ın

Abstract

We associate to every function space, and to every entropy function E, a scale of spaces
Λp,q(E) similar to the classical Lorentz spaces Lp,q. Necessary and sufficient conditions for
they to be normed spaces are proved, their role in real interpolation theory is analyzed, and
a number of applications to functional and interpolation properties of several variants of
Lorentz spaces and entropy spaces are given.

1 Introduction

An analysis of classical rearrangement invariant spaces of functions, with their associated Lorentz
and Marcinkiewicz classes, suggests that a common method could be developed in order to study
functional and interpolation properties in the setting of general function spaces.

The point is that in many important cases the quantity which controls the norm involves
certain “entropy functions” which quantify precisely the size of the level sets of their elements.

In order to explain with more detail what we want to do, let us introduce some definitions.
By a quasi-Banach function space on a given measure space (Ω,Σ, µ) we denote a linear

subspace E of L0 = L0(µ), the space of all (equivalence classes of) measurable functions on Ω,
endowed with a (quasi-)norm ‖ · ‖E with the following two properties:

(i) g ∈ E and ‖g‖E ≤ ‖f‖E , whenever g ∈ L0, f ∈ E and |g| ≤ |f | a.e. (lattice property).

(ii) If 0 ≤ fn ↑ f a.e., then ‖fn‖E ↑ ‖f‖E (Fatou property).

We say that E is a Banach function space if ‖ · ‖E is equivalent to a norm.
By defining E(A) := ‖χA‖E , we obtain a quasi-entropy function on Ω, that we denote

with the same symbol E, which is a set function on Σ such that
(a) 0 ≤ E(A) ≤ ∞,
(b) E(A) = 0 if and only if µ(A) = 0,
(c) E(A) ≤ E(B) if A ⊂ B,
(d) limk E(Ak) = E(A) if Ak ↑ A, and
(e) E(A ∪B) ≤ c(E(A) + E(B)).

If c = 1, we say that E is an entropy function.
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Another example of entropy function, first considered in [11], is Shannon entropy Eϕ on
[0, 1/e]n ⊂ Rn. It is associated to ϕ(x) := x log(1/x) by defining

Eϕ(A) := inf
{ ∞∑

k=1

ϕ(|Ik|); A ⊂
∞⋃

k=1

Ik, Ik ⊂ [0, 1/e]n intervals
}

.

Here |Ik| is the volume of Ik and µ the Hausdorff measure relative to ϕ.
Given a quasi-entropy function E on Ω, we define two function spaces Λ(E) and M(E) by

the conditions

‖f‖Λ(E) :=
∫ ∞

0
E({|f | > s}) ds < ∞ and ‖f‖M(E) := sup

s>0
sE({|f | > s}) < ∞.

Since {|f + g| > s} ⊂ {|f | > s/2} ∪ {|g| > s/2} we get that ‖ · ‖Λ(E) and ‖ · ‖M(E) are quasi-
norms which are complete since our conditions on E ensure that both have the Fatou property.
It follows from the definition that, for any A ∈ Σ, ‖χA‖Λ(E) = ‖χA‖M(E) = E(A).

Observe that E({|f | > t}) is a decreasing function for 0 < t < ∞ and it will play the
role of the usual distribution function in the theory of Lebesgue spaces. In particular, for any
quasi-entropy function E, we can define in the same vein entropy Lorentz spaces with two
parameters p, q ∈ (0,∞) by

Λp,q(E) =
{

f ∈ L0; ‖f‖Λp,q(E) :=
(∫ ∞

0
tq−1E({|f | > t})q/p dt

)1/q
< ∞

}
,

and also Λp,∞(E) with ‖f‖p,∞ := supt>0 tE({|f | > t})1/p, so that Λ1,∞(E) = M(E). We denote
Λp(E) = Λp,p(E), thus Λ(E) = Λ1(E).

The significance of these spaces will appear very clearly in the setting of the real K−method
of interpolation (see Section 3 bellow).

Example 1 If E is a rearrangement invariant space on (0,∞) whose fundamental function
φE(t) := ‖χ(0,t)‖E is concave (see [12] and [4]), then Λ(E) = Λ(φE) and M(E) = M(φE),
where Λ(φE) and M(φE) are the classical Lorentz and Marcinkiewicz spaces associated to φE(t)
defined by the conditions

‖f‖Λ(φE) :=
∫ ∞

0
φE

(
µf (s)

)
ds < ∞, ‖f‖M(φE) := sup

s>0
sφE

(
µf (s)

)
< ∞.

Example 2 If Eϕ is the Shannon entropy, the corresponding spaces Λp(Eϕ) and M(Eϕ) were
considered by R. Fefferman in order to obtain entropic versions of the theorems of Hardy and
Littlewood and of Calderón and Zygmund.

Example 3 If 0 < p, q ≤ ∞ and E = Lp,q(w), a weighted Lorentz space, then E = Λp,q(L1(w)),
Λ(E) = Lp,1(w), and M(Lp,q(w)) = Lp,∞(w).

Obviously E ↪→ M(E). If E is a Banach function space, from |f | ≤
∑∞

k=−∞ 2k+1χ{|f |>2k}
we also obtain

‖f‖E ≤
∞∑

k=−∞
2k−1‖χ{|f |>2k}‖E ≤ 4

∫ ∞

0
E({|f | > s}) ds = 4‖f‖Λ(E),
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and Λ(E) and M(E) are extremal in the sense that if X is another Banach function space on Ω
such that ‖A‖X = ‖A‖E for any measurable set A ⊂ Ω, then

Λ(E) ↪→ X ↪→ M(E). (1)

If 0 < p < 1, then Λ(Lp) = Lp,1 is strictly larger than Lp, but we claim that, if E is a
quasi-Banach function space, there exits a number 0 < u ≤ 1 such that

Λ1,u(E) ⊂ E. (2)

To prove this claim, take u defined by (2c)u = 2, where c is the quasi-norm constant. Then by
the Aoki-Rolewicz theorem (cf. [3]), we know that there is a u−norm ‖·‖∗E such that

‖f‖∗E ≤ ‖f‖u
E ≤ 2 ‖f‖∗E .

Then, if 0 ≤ f ∈ E, f ≤
∑

2k+1χ{f>2k}, hence

‖f‖u
E ≤

∥∥∥∑ 2k+1χ{f>2k}

∥∥∥u

E
≤ 2

∥∥∥∑ 2k+1χ{f>2k}

∥∥∥∗
E
≤ 2

∑
2(k+1)u‖χ{f>2k}‖∗E

≤ 2
∑

2(k+1)u‖χ{f>2k}‖u
E = 2

∑
2(k+1)uE({f > 2k})u

�
∫ ∞

0
yu−1E({f > y})udy = ‖f‖u

Λ1,u(E) .

Let us now briefly summarize the contents of the paper. Section 2 deals with the basic ques-
tion of whether ‖ · ‖Λp,q(E) is a norm, and as an application we analyze subadditivity properties
for Shannon entropy spaces, and for classical Lorentz spaces and their multidimensional variants.
Our aim in Section 3 is to analyze the role of Λp,q(E) spaces in the setting of real interpolation
theory. The main idea is that it will be enough to restrict arguments to characteristic functions.
We start by considering interpolation with L∞ and we prove that

(Λ(E), L∞)θ,q = (M(E), L∞)θ,q = Λp,q(E) (p = 1/(1− θ)).

Then we describe (Λp0,q0(E0),Λp1,q1(E1))θ,q, and the main idea here is to consider the Sparr’s
interpolation method for triples. As an application we obtain the description of (E,L∞)θ,q when
E is a function space, and this allows to provide an identification of the interpolation space
(Bq, L

∞)θ,p that completes the results of [14] concerning real interpolation between Bq and Lp

when Bq is the block space introduced by M. Taibleson and G. Weiss to refine some aspects
of the theory of entropy spaces. We also obtain an interpolation result about interpolation of
classical Lorentz spaces and, finally, we characterize all the pairs (E,L∞) that are universal
right Calderón couples.

As usual, by A ' B we mean that c−1A ≤ B ≤ cA, and by A � B that A ≤ cB, for some
constant c > 0 independent of appropriate quantities.

2 Normed Λp,q(E) spaces

We always assume that E is a quasi-entropy function on Ω. The basic problem considered here
is to know when the quasinorm ‖ · ‖Λp,q(E) is subadditive.
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In fact, a reduction to a single parameter can be performed through s-convexifications E(s).
For any entropy function E and 0 < s < ∞,

E(s)(A) := E(A)1/s.

If E is a Banach functions space, ‖f‖E(s) = ‖|f |s‖1/s
E (cf. [13]). It is readily checked that, for

any 0 < p, q < ∞,
(a) Λp(E) = Λ(E)(p).
(b) Λp,q(E) = Λ(E(p/q))(q) = Λq(E(p/q)).

Let 1 ≤ p < ∞, if ‖ · ‖Λp(E) is a norm, then ‖fδ + gδ‖Λp(E) ≤ ‖fδ‖Λp(E) + ‖gδ‖Λp(E), where
fδ = (1 + δ)χA + χB\A and gδ = (1 + δ)χB + χA\B (A ∩B 6= ∅).

It is easily checked that

‖fδ‖Λp(E) =
(1

p

)1/p(
E(A ∪B) + ((1 + δ)p − 1)E(A)

)1/p
,

and the same for gδ, with E(B) instead of E(A). Then

‖fδ + gδ‖Λp(E) =
(1

p

)1/p(
E(A ∪B)(2 + δ)q + [(2 + 2δ)p − (2 + δ)p]E(A ∩B)

)1/p
.

Now, from the estimates (x + y)1/p ≤ x1/p + y1/p ≤ 21−1/p(x + y)1/p, collecting terms and by
letting δ → 0 we have that

E(A ∪B) + E(A ∩B) ≤ E(A) + E(B). (3)

For the converse, it will be convenient to consider simple functions sN =
∑N

i=1 αiχAi with
αi ≥ 0 and Ai ∩Aj = ∅ if i 6= j, and

π(sN ) := (α1 − α2)E(A1) + (α2 − α3)E(A1 ∪A2) + · · ·+ αNE(A1 ∪ · · · ∪AN ).

We will say that E is strongly subadditive if condition (3) holds.

Theorem 1 Let 1 ≤ p < ∞. The quasi-norm ‖ · ‖Λp(E) is a norm if and only if E is strongly
subadditive.

Proof. We have seen that the condition is necessary. For the converse we may assume that
p = 1, since Λp(E) = Λ(E)(p) is a normed space provided that Λ(E) is normed.

Using Fatou property, we are allowed to consider nonnegative simple functions

sN =
N∑

i=1

αiχAi , tN =
N∑

i=1

βiχAi

and assume that α1 + β1 ≥ α2 + β2 ≥ · · · ≥ αN + βN , and Ai ∩Aj = ∅ if i 6= j. Then, since

‖sN‖Λ(E) = (ασ(1) − ασ(2))E(Aσ(1)) + (ασ(2) − ασ(3))E(Aσ(1) ∪Aσ(2))

+ · · ·+

+(ασ(N−1) − ασ(N))E(Aσ(1) ∪ · · · ∪Aσ(N−1)) + ασ(N)E(Aσ(1) ∪ · · · ∪Aσ(N))
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if σ is a permutation of {1, 2, . . . , N} such that ασ(1) ≥ ασ(2) ≥ · · · ≥ ασ(N), we only need to
check that π(sN ) ≤ ‖sN‖Λ(E) to obtain the triangle property,

‖sN + tN‖Λ(E) = π(sN ) + π(tN ) ≤ ‖sN‖Λ(E) + ‖tN‖Λ(E).

By induction, we assume that the estimate is true for sN , with N terms. Let

sN+1 = sN + αN+1χAN+1

and consider a permutation σ such that ασ(1) ≥ ασ(2) ≥ · · · ≥ ασ(N).
Let us assume that ασ(1) ≥ · · ·ασ(r) ≥ αN+1 ≥ ασ(r+1) · · · ≥ ασ(N), the extreme cases

ασ(N) > αN+1 and αN+1 > ασ(1) being similar and simpler. Then

‖sN+1‖Λ(E) = (ασ(1) − ασ(2))E(Aσ(1)) + · · ·+ (ασ(r−1) − ασ(r))E(Aσ(1) ∪ · · · ∪Aσ(r−1))

+(ασ(r) − αN+1)E(Aσ(1) ∪ · · · ∪Aσ(r))

+(αN+1 − ασ(r+1))E(Aσ(1) ∪ · · · ∪Aσ(r) ∪AN+1)

+(ασ(r+1) − ασ(r+2))E(Aσ(1) ∪ · · · ∪Aσ(r) ∪AN+1 ∪Aσ(r+1))

+ · · ·+ ασ(N)E(Aσ(1) ∪ · · · ∪Aσ(N) ∪AN+1)

and

‖sN‖Λ(E) = (ασ(1) − ασ(2))E(Aσ(1)) + · · ·+ (ασ(r−1) − ασ(r))E(Aσ(1) ∪ · · · ∪Aσ(r−1))

(ασ(r) − ασ(r+1))E(Aσ(1) ∪ · · · ∪Aσ(r))

+(ασ(r+1) − ασ(r+2))E(Aσ(1) ∪ · · · ∪Aσ(r) ∪Aσ(r+1))

+ · · ·+ ασ(N)E(Aσ(1) ∪ · · · ∪Aσ(N))

with Aσ(1)∪ · · ·∪Aσ(N) = A1∪ · · ·∪AN and Aσ(1)∪ · · ·∪Aσ(N)∪AN+1 = A1∪ · · ·∪AN ∪AN+1.
We have π(sN+1) = π(sN )−αN+1E(A1 ∪ · · · ∪AN )+αN+1E(A1 ∪ · · · ∪AN+1) and we want

to prove that
‖sN+1‖Λ(E) − π(sN+1) = ‖sN‖Λ(E) − π(sN ) + I ≥ 0,

with I = ‖sN+1‖Λ(E) − ‖sN‖Λ(E) + αN+1E(A1 ∪ · · · ∪AN )− αN+1E(A1 ∪ · · · ∪AN+1).
By induction, ‖sN‖Λ(E) − π(sN ) ≥ 0. To show that also I ≥ 0 we observe that

I = (ασ(r) − αN+1)E(Aσ(1) ∪ · · · ∪Aσ(r)) + (αN+1 − ασ(r+1))E(Aσ(1) ∪ · · · ∪Aσ(r) ∪AN+1)

−(ασ(r) − ασ(r+1))E(Aσ(1) ∪ · · · ∪Aσ(r))

+(ασ(r+1) − ασ(r+2))[E(Aσ(1) ∪ · · · ∪Aσ(r) ∪AN+1 ∪Aσ(r+1))

−E(Aσ(1) ∪ · · · ∪Aσ(r) ∪Aσ(r+1))]

+ · · ·+

(αN+1 − ασ(N))E(Aσ(1) ∪ · · · ∪Aσ(N))

+(ασ(N) − αN+1)E(Aσ(1) ∪ · · · ∪Aσ(N) ∪AN+1),

and make the substitutions

ασ(r) − ασ(r+1) = (ασ(r) − αN+1) + (αN+1 − ασ(r+1))
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and

αN+1 − ασ(N) = (αN+1 − ασ(r+1)) + (ασ(r+1) − ασ(r+2)) + · · ·+ (ασ(N−1) − ασ(N)).

Now we may associate similar terms of I and check that everyone is nonnegative. We have that
αN+1 − ασ(r+1) ≥ 0 multiplies

−E(Aσ(1)∪· · ·∪Aσ(r))+E(Aσ(1)∪· · ·∪Aσ(r)∪AN+1)+E(A1∪· · ·∪AN )−E(A1∪· · ·∪AN∪AN+1),

which is nonnegative, by condition (3). Similarly, ασ(r+1) − ασ(r+2) ≥ 0 is multiplied by

−E(Aσ(1) ∪ · · · ∪Aσ(r+1)) + E(Aσ(1) ∪ · · · ∪Aσ(r) ∪AN+1 ∪Aσ(r+1))

+E(A1 ∪ · · · ∪AN )− E(A1 ∪ · · · ∪AN ∪AN+1),

also nonnegative, and the same for the remaining terms.

Remark 1 Not all Banach function norms are strongly subadditive. The mixed norm spaces
Lp[Lq] (1 ≤ p, q < ∞), with

‖f‖(p,q) :=
(∫

R

(∫
R
|f(x, y)|qdy

)p/q
dx
)1/p

< ∞,

satisfy condition (3) if p ≤ q. If 0 < a < 2r − 2 with r := p/q > 1, then (3) fails for
A = (0, a + 1)× (0, 1) and B = ((0, a)× (1, 2)) ∪ ((1, 2)× (0, 1)).

As a simple application we may give a very simple proof of the subadditivity of the maximal
function

f∗∗(t) :=
1
t

∫ t

0
f∗(s) ds, (t > 0),

where f∗(t) := inf{s : µf (s) ≤ t} and µf is the distribution function of |f |.

Example 4 The entropy function E(A) := min(µ(A), t) is strongly subadditive and, if f and g

are two measurable function on Ω, then (f + g)∗∗ ≤ f∗∗ + g∗∗.

Since µ(A ∪B) + µ(A ∩B) = µ(A) + µ(B) it follows that E is strongly subadditive. Since∫ t

0
f∗(s) ds =

∫ ∞

0
µf∗χ[0,t]

(s) ds =
∫ ∞

0
min(µf (s), t) ds = ||f ||Λ(E),

it follows that t(f + g)∗∗(t) = ‖f + g‖Λ(E) ≤ ‖f‖Λ(E) + ‖g‖Λ(E) = tf∗∗(t) + tf∗∗(t).

Let us now consider the counterpart of Theorem 1 for Λp,∞(E) spaces.

Theorem 2 Let E be a quasi-Banach function space and 1 ≤ p < ∞. The following properties
are equivalent:
(a) ‖ · ‖Λp,∞(E) is a norm.
(b) If A and B are two disjoint measurable sets, then E(A ∪B) = max(E(A), E(B)).
(c) Λp,∞(E) is an AM -space, i.e.,

‖f + g‖Λp,∞(E) = max(‖f‖Λp,∞(E)), ‖g‖Λp,∞(E)) if min(|f |, |g|) = 0.

6



Proof. Let us start with the case p = 1. Obviously, (c) implies (a).
To show that (a) implies (b), assume that there exist A and B such that E(A ∪ B) >

max(E(A), E(B)) with A ∩B = ∅ and let f = (1 + δ)χA + χB, g = (1 + 3δ/2)χA + (1 + 2δ)χB.
Then a simple computation shows that

‖f‖M(E) = max((1 + δ)E(A), E(A ∪B)), ‖g‖M(E) = max((1 + 2δ)E(B), (1 + 3δ/2)E(A ∪B))

and
‖f + g‖M(E) = max((2 + 5δ/2)E(A), (2 + 2δ)E(A ∪B)).

If we choose δ > 0 such that (1 + δ)E(A) < E(A∪B), (1 + 2δ)E(B) < (1 + 3δ/2)E(A∪B) and
(2 + 5δ/2)E(A) < (2 + 2δ)E(A ∪B), it follows that ‖ · ‖M(E) is not a norm since

‖f‖M(E) + ‖g‖M(E) < (2 + 2δ)E(A ∪B) = ‖f + g‖M(E).

Assume now that (b) holds true. For any sN =
∑N

i=1 αiχAi ≥ 0 (Ai ∩ Aj = ∅), where we may
assume α1 > α2 > . . . > αN > 0, let us check that

‖sN‖M(E) = max(α1E(A1), . . . , αNE(AN )).

If

‖sN‖M(E) = max(α1E(A1), α2E(A1 ∪A2), . . . , αNE(A1 ∪ · · · ∪AN )) = αjE(A1 ∪ · · · ∪Aj),

then E(A1 ∪ · · · ∪Aj) > E(A1 ∪ · · · ∪Aj−1) since αj < αj−1, and it follows from (b) that

E(A1 ∪ · · · ∪Aj) = E(Aj).

Now, if sN =
∑N

i=1 αiχAi ≥ 0, tN =
∑M

i=N+1 αiχAi ≥ 0 (Ai ∩ Aj = ∅) are two disjoint simple
functions, we obtain

‖sN + tN‖M(E) = max(α1E(A1), . . . , αME(AM )) = max(‖sN‖M(E), ‖tN‖M(E)).

Moreover, for any couple sN =
∑N

i=1 αiχAi , tN =
∑N

i=1 βiχAi (Ai ∩ Aj = ∅) of simple
functions, ‖sN + tN‖M(E) ≤ ‖sN‖M(E) + ‖tN‖M(E), since

‖sN + tN‖M(E) ≤ max((α1 + β1)E(A1), . . . , (αN + βN )E(AN ))

≤ max(α1E(A1), . . . , αNE(AN )) + max(β1E(A1), . . . , βNE(AN ))

= ‖sN‖M(E) + ‖tN‖M(E).

The case p > 1 reduces to the previous one, since if M(E) is a normed space, Λp,∞(E) =
M(E)(p) is also a normed space. Conversely, if Λp,∞(E) is a normed space, then Λp,∞(E) =
M(Λp,∞(E)) since ‖f‖M(Λp,∞(E)) = supy>0 y‖χ{|f |>y}‖Λp,∞(E) = supy>0 yE({|f | > y})1/p; thus
M(Λp,∞(E)) is normed space.

2.1 Applications

Very often, the proof of a subadditivity property requires some careful work. Theorem 1 can be
useful for this purpose, as we have seen in Example 4. Let us also show how the subadditivity
of the norm follows very easily from that theorem for Shannon entropy spaces, and for classical
Lorentz spaces and their multidimensional variants.
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2.1.1 Shannon entropy spaces

For ϕ(x) := x log(1/x) on [0, 1/e], in [11] it is proved that Λ(Eϕ) is a normed space by first
checking the easy fact Eϕ(I ∪ J) + Eϕ(I ∩ J) ≤ Eϕ(I) + Eϕ(J) for intervals of [0, 1/e]. Starting
also from this fact, we can provide a new short proof as an application of Theorem 1.

Proposition 1 Λ(Eϕ) is a normed space.

Proof. We prove that ‖ · ‖Λ(Eϕ) is a norm by directly checking that, for all sets, Eϕ(A ∪ B) +
Eϕ(A ∩B) ≤ Eϕ(A) + Eϕ(B) holds. Observe that Eϕ(I) = ϕ(|I|), if I is an interval in [0, 1/e].

If ε > 0, let
A ⊂

⋃
k

Ik, B ⊂
⋃
j

Jj

such that
∑

k Eϕ(Ik) +
∑

j Eϕ(Jj) ≤ (1 + ε)(Eϕ(A) + Eϕ(B)).
Denote D0 := {(k, j); Ik ∩ Jj 6= ∅}, D1 := {k; Ik ∩ Jj = ∅ ∀j}, D2 := {j; Ik ∩ Jj = ∅ ∀k}.

Then
A ∩B ⊂

⋃
D0

(Ik ∩ Jj), A ∪B ⊂
(⋃

D0

(Ik ∪ Jj)
)
∪
(⋃

D1

Ik

)
∪
(⋃

D2

Jj

)
and

Eϕ(A ∪B) + Eϕ(A ∩B) ≤
∑
D0

((Eϕ(Ik ∪ Jj) + Eϕ(Ik ∩ Jj)) +
∑
D1

((Eϕ(Ik) +
∑
D2

Eϕ(Jj))

≤
∑
D0

((Eϕ(Ik) + Eϕ(Jj)) +
∑
D1

((Eϕ(Ik) +
∑
D2

Eϕ(Jj))

≤ (1 + ε)(Eϕ(A) + Eϕ(B)).

As also observed in [11], the condition Eϕ(I ∪ J) + Eϕ(I ∩ J) ≤ Eϕ(I) + Eϕ(J) is false for
cubes of [0, 1/e]n if n > 1. But Eϕ is equivalent to

Ed
ϕ(A) := inf

{ ∞∑
k=1

ϕ(|(Qk|); A ⊂
∞⋃

k=1

Qk, Qk ⊂ [0, 1/e]n dyadic cubes
}

,

and the property Ed
ϕ(A ∪ B) + Ed

ϕ(A ∩ B) ≤ Ed
ϕ(A) + Ed

ϕ(B) is checked as above, since it is
trivially true for dyadic cubes. Hence, Λ(Eϕ) is a Banach space.

2.1.2 Classical Lorentz Spaces

We shall start by giving a very short proof of a well known fact.

Proposition 2 If 1 ≤ p < ∞, Λp(w) is a normed space if and only if the weight w is nonin-
creasing.

Proof. Recall that ‖f‖p
Λp(w) =

∫∞
0 f∗(x)pw(x)dx =

∫∞
0 W (µ|f |p(t))dt, where W (s) =

∫ s
0 w(s) ds.

With our notations, Λp(w) = Λp(Λ1(w)), since

‖f‖p
Λp(w) = p

∫ ∞

0
tp−1W (µf (t)) dt = p

∫ ∞

0
tp−1‖χ{|f |>t}‖Λ1(w) dt,
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which yields ‖f‖Λp(w) = p1/p‖f‖Λp(Λ1(w)). We have seen that this is a norm if and only if

‖χA∪B‖Λ1(w) + ‖χA∩B‖Λ1(w) ≤ ‖χA‖Λ1(w) + ‖χB‖Λ1(w). (4)

Let 0 < ε < a < b. For A = (0, a) and B = (ε, b), (4) reads W (b) − W (b − ε) ≤ W (a) −
W (a− ε), thus w(b) ≤ w(a) and w is nonincreasing.

Conversely, if W is concave, then W (x + y− t) ≤ W (x) + W (y)−W (t) if 0 ≤ t ≤ min(x, y),
and W (µ(A ∪ B)) ≤ W (µ(A)) + W (µ(B)) − W (µ(A ∩ B)). Since W (µ(A)) = ‖χA‖Λ1(w), we
obtain condition (4).

To consider multidimensional analogs of classical estimates, the corresponding variant of
Lorentz spaces have been also introduced. Let us recall the definitions.

For every measurable set E ⊂ R2 let ϕE(x) := µ({y; (x, y) ∈ E}) the measure of the
x-section of E,

E∗
2 :=

{
(s, t) ∈ (0,∞)2; 0 < t ≤ ϕ∗E(s)

}
,

where f∗E is the decreasing rearrangement of fE , and

f∗2 (x) :=
∫ ∞

0
χ{|f |>y}∗2(x) dy (x ∈ (0,∞)2)

the 2-dimensional decreasing rearrangement of f .
Then, if ω > 0 is a locally integrable weight on (0,∞)2 and p ≥ 1, the 2-dimensional

Lorentz space Λp
2(ω) contains all functions f ∈ L0((0,∞)2) such that

‖f‖Λp
2(ω) :=

(∫
(0,∞)2

f∗2 (x)pω(x) dx
)1/p

< ∞.

It is a result of [2] that ‖ · ‖Λp
2(ω) is a norm if and only if an equivalent condition to (3) holds

true. Let us see how this is again an easy consequence of the above results.

Proposition 3 Λp
2(ω) = Λp(Λ1

2(ω)), and it is a normed space if and only if

‖χA∪B‖Λ1
2(ω) + ‖χA∩B‖Λ1

2(ω) ≤ ‖χA‖Λ1
2(ω) + ‖χB‖Λ1

2(ω).

Proof. Since f∗2 (x)p = (fp
2 )∗(x) = p

∫∞
0 tp−1χ{|f |>t}∗2(x) dt (cf. [2]), we obtain

‖f‖p
Λp

2(ω)
=

∫
(0,∞)2

(
p

∫ ∞

0
tp−1χ{|f |>t}∗2(x) dt

)
ω(x) dx

= p

∫ ∞

0
tp−1‖χ{|f |>t}‖Λ1

2(ω)dt = p‖f‖p
Λp(Λ1

2(ω))
.

The last part is a direct application of Theorem 1.

3 Interpolation

Recall that, if Ā = (A0, A1) is a couple of quasi-Banach spaces, 0 < θ < 1 and 0 < q ≤ ∞, the
interpolation space Āθ,q is the quasi-Banach space of all f ∈ A0 + A1 such that

‖f‖θ,q :=
(∫ ∞

0
(t−θK(t, f, Ā))q dt

t

)1/q
< ∞
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where K(t, f, Ā) is the K-functional,

K(t, f ; Ā) := inf
{
‖f0‖A0 + t‖f1‖A1 ; f = f0 + f1

}
(‖f‖X := ∞ if f 6∈ X). In the case of function spaces on Ω, there exists Ωf (t) ⊂ Ω such that

K(t, f ; Ā) ' ‖fχΩf (t)‖A0 + t‖fχΩ\Ωf (t)‖A1 . (5)

This well known fact is easily checked: if f = f0 + f1 and ‖f0‖A0 + t‖f1‖A1 ≤ 2K(t, f ; Ā), take
Ωf (t) := {ω ∈ Ω; |f0(ω)| ≥ |f1(ω)|}, and then |f |χΩf (t) ≤ 2|f0| and |f |χΩ\Ωf (t) ≤ 2|f1|. Also

K(t, χB; Ā) ' inf{A0(B0) + tA1(B1); B = B0 ∪B1, B0 ∩B1 = ∅}. (6)

if f = χA. Here, Aj(B) := ‖χB‖Aj .
We refer to [3], [4], [5] and [12] for undefined facts concerning interpolation and function

spaces.

3.1 Interpolation with L∞

Let now E be any quasi-entropy function, and 0 < r < ∞. It follows from (6) that

K(t, χA; Λ1,r(E), L∞) ' K(t, χA;M(E), L∞) ' min(E(A), t) (7)

since ‖χA‖Λ1,r(E) ' E(A) = ‖χA‖M(E) . Moreover, if A = A0 ∪ A1 with A0 ∩ A1 = ∅ and
E(A) ≤ t, then

E(A) ≤ E(A0) + t = E(A0) + t ‖χA1‖∞ ,

and t ≤ E(A0) + t ‖χA1‖∞ if E(A) > t. In both cases, min(E(A), t) ≤ cK(t, χA;M(E), L∞).

Theorem 3 If E is a quasi-entropy function on Ω and 0 < p < ∞, then

(a) K(t, f ; Λp(E), L∞) '
(∫ ∞

0
yp−1 min(E({|f | > y}), tp) dy

)1/p

, and

(b) K(t, f ;M(E), L∞) ' sup
y>0

y min(E({|f | > y}), t).

Proof. (a) Let 0 ≤ f ∈ Λp(E) + L∞. For a given t > 0, if we consider

y∗ := inf{y > 0; E({f > y}) ≤ tp}

and

f0(x) :=
∫ ∞

y∗
χ{f>y}(x) dy, f1(x) :=

∫ y∗

0
χ{f>y}(x) dy, (8)

then f = f0 + f1 and {f0 > y} = {f > y + y∗}. Hence

‖f0‖p
Λp(E) =

∫ ∞

0
yp−1E({f > y + y∗}) dy

≤
∫ y∗

0
yp−1E({f > y + y∗}) dy +

∫ ∞

y∗
yp−1E({f > y}) dy

� E({f > y∗})y∗p +
∫ ∞

y∗
yp−1E({f > y}) dy

≤ tpy∗p +
∫ ∞

y∗
yp−1E({f > y}) dy,
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and then

K(t, f ; Λp(E), L∞) ≤ ‖f0‖Λp(E) + t‖f1‖∞

≤
(

tpy∗p +
∫ ∞

y∗
yp−1E({f > y}) dy

)1/p

+ ty∗

�
(

tpy∗p +
∫ ∞

y∗
yp−1E({f > y}) dy

)1/p

+

(
t p

∫ y∗

0
yp−1dy

)1/p

�

(∫ ∞

y∗
yp−1E({f > y}) dy + t p

∫ y∗

0
yp−1dy

)1/p

�
(∫ ∞

0
yp−1 min(E({|f | > y}), tp) dy

)1/p

For the converse we use (5) and set f0 := fχΩ(t), f1 := fχΩ\Ω(t). Then

K(t, f ; Λp(E), L∞) ' ‖f0‖Λp(E) + t‖f1‖∞.

By (7), and since χ{f>y} = χ{f0>y} + χ{f1>y} (f0, f1 are disjointly supported),

min(E({f > y}), t) ' K(t, χ{f>y}; Λ(E), L∞) ≤ E({f0 > y}) + t‖χ{f1>y}‖∞.

Using now that ‖f1‖∞ =
∫∞
0 ‖χ{f1>y}‖∞dy '

(∫∞
0 yp−1‖χ{f1>y}‖∞dy

)1/p, we obtain

K(t, f ; Λp(E), L∞) '
(∫ ∞

0
yp−1E({f0 > y})dy

)1/p

+
(

tp
∫ ∞

0
yp−1‖χ{f1>y}‖∞dy

)1/p

'
(∫ ∞

0
yp−1

(
E({f0 > y}) + tp‖χ{f1>y}‖∞

)
dy

)1/p

≥
(∫ ∞

0
yp−1

(
K(tp, χ{f>y}; Λ(E), L∞)

)
dy

)1/p

'
(∫ ∞

0
yp−1 min(E({f > y}), tp) dy

)1/p

.

(b) We observe that K(t, f ;M(E), L∞) ≥ supy yK(t, χ{f>y};M(E), L∞), since f ≥ yχ{f>y},
and that K(t, χ{f>y};M(E), L∞) ' min(E({f > y}), t), by (7). Hence

K(t, f ;M(E), L∞) ≥ c sup
y

y min(E({f > y}), t).

Conversely, let f0 and f1 be as in (8), but with p = 1 in the definition of y∗. Then

K(t, f ;M(E), L∞) ≤ ‖f0‖M(E) + t‖f1‖∞ ≤ sup
y≥y∗

yE({f > y}) + ty∗

� max( sup
y≥y∗

yE({f > y}), sup
y≤y∗

yt) ≤ sup
y

y min(E({f > y}), t).

If f is a measurable function on Ω, f∗E will be the distribution function of E({|f | > ·}) with
respect to the Lebesgue measure m on (0,∞), i.e.

f∗E(y) := mE({|f |>·})(y) = m ({s > 0 : E({|f | > s}) > y}) .
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Then we have the estimates∫ ∞

0
yp−1 min(E({|f | > y}), tp) dy '

∫ tp

0
f∗E(y)pdy

and

‖f‖Λp,q(E) =
(∫ ∞

0
yq−1E({|f | > y})q/p

)1/q

'
(∫ ∞

0

(
y1/pf∗E(y)

)q dy

y

)1/q

,

that follow from the fact that mf∗E
(y) = E({|f | > y}) a.e. y > 0.

Theorem 4 Let E be a quasi-entropy function and 0 < θ < 1. Then
(a) (Λp0(E), L∞)θ,q = Λp,q(E), with 1/p = (1− θ)/p0, and 0 < p0 < q ≤ ∞ or 0 < p0 ≤ q < ∞
(b) (Λ1,r(E), L∞)θ,q = (M(E), L∞)θ,q, 0 < r < ∞ and 0 < q ≤ ∞.

Proof. (a) Let q < ∞ and denote ‖ · ‖θ,q be the norm of (Λp0(E), L∞)θ,q. Then

‖f‖p0

θ,q '
(∫ ∞

0

(
t−θp0

∫ tp0

0
f∗E(y)p0dy

)q/p0 dt

t

)p0/q

'
(∫ ∞

0

(
t−θp0+p0

∫ 1

0
f∗E(ytp0)p0y

dy

y

)q/p0 dt

t

)p0/q

and, by Minkowski inequality,

‖f‖p0

θ,q �
∫ 1

0

(
yq/p0

∫ ∞

0
t(1−θ)q(f∗E(ytp0))q dt

t

)p0/q dy

y
�
(∫ ∞

0

(
z

(1−θ)
p0 f∗E(z)

)q dz

z

)p0/q

with (1− θ)/p0 = 1/p, hence
‖f‖θ,q � ‖f‖Λp,q(E).

Conversely, f∗E being decreasing,

‖f‖Λp,q(E) =
(∫ ∞

0

(
z

(1−θ)
p0 f∗E(z)

)q dz

z

)1/q
'
(∫ ∞

0
(t−θp0tp0(f∗E(tp0))p0)q/p0

dt

t

)1/q
� ‖f‖θ,q.

(b) If q = ∞, then Λ1,r(E) = Λr(E(1/r)), by (a),

(Λr(E(1/r)), L∞)θ,∞ = Λ
1−θ

r
,∞(E(1/r)); (9)

moreover, since

‖χ{f>y}‖
Λ

1−θ
r ,∞(E(1/r))

= E(1/r)({f > y})
1−θ

r = E({f > y})1−θ, (10)

we have that ‖f‖
Λ

1−θ
r ,∞(E(1/r))

= supy>0 yE({f > y})1−θ. Now, by Theorem 3, (10) and (9),

‖f‖(M(E),L∞)θ,∞ ' sup
t>0

t−θ sup
y>0

y min(E({|f | > y}), t) = sup
y>0

y sup
t>0

t−θ min(E({|f | > y}), t)

= sup
y>0

y‖χ{f>y}‖
Λ

1−θ
r ,∞(E(1/r))

' sup
y>0

yE({f > y})1−θ

= ‖f‖
Λ

1−θ
r ,∞(E(1/r))

' ‖f‖(Λr(E(1/r)),L∞)θ,∞
.

The case 0 < q < ∞ is proved by reiteration considering 0 < θ0 < θ < θ1 < 1. Observe that

(M(E), L∞)θ,q = ((M(E), L∞)θ0,∞, (M(E), L∞)θ1,∞)η,q
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if θ = (1− η)θ0 + ηθ1, and

(Λ1,r(E), L∞)θ,q = ((Λ1,r(E), L∞)θ0,∞, (Λ1,r(E), L∞)θ1,∞)η,q

with (M(E), L∞)θj ,∞ = (Λ1,r(E), L∞)θj ,∞ (j = 0, 1) as we have seen above.

Corollary 1 If M is the Hardy-Littlewood maximal operator, 1 ≤ q ≤ ∞ and 1 < p < ∞, then

M : Λp,q(Eϕ) −→ Λp,q(Eϕ).

Here Eϕ is the Shannon entropy.

Proof. In [11] it is seen that

Eϕ({Mg > t}) ≤ c

t

∫ ∞

0
Eϕ({|g| > s}) ds,

which means that M : Λ(Eϕ) −→ M(Eϕ). By interpolation,

M : (Λ(Eϕ), L∞)θ,q −→ (Λ(Eϕ), L∞)θ,q.

The following result follows from (1) and Theorem 4 (see also [9] for related results).

Corollary 2 If E is a Banach function space, 0 < θ < 1 and 1 ≤ q ≤ ∞, then (Λ(E), L∞)θ,q =
(M(E), L∞)θ,q = (E,L∞)θ,q = Λp,q(E), 1/p = 1−θ. In particular, Λp,q(E) are Banach function
spaces if p > 1 and 1 ≤ q ≤ ∞.

3.2 Interpolation of Lorentz spaces with two parameters

We say that Ē = (E0, E1) is an entropy couple if E0 and E1 are two entropy functions on the
same measure space Ω. Then, if Λ(E) = (Λ(E0),Λ(E1)) and t > 0,

[E0 + tE1] (A) := K(t, χA; Λ(E))

is an entropy function. It follows from (6) that, for any couple X̄ = (X0, X1) of quasi-Banach
function spaces such that ‖χA‖Xi = Ei(A) (i = 0, 1),

[E0 + tE1](A) ' K(t, χA; X̄). (11)

Proposition 4 Let Ē = (E0, E1) be an entropy couple.
(a) If f and g are two nonnegative measurable disjointly supported functions, then

K(t, f + g; Λ(E)) ≤ K(t, f ; Λ(E)) + K(t, g; Λ(E)).

(b)

K(t, f ; Λ(E)) '
∫ ∞

0
[E0 + tE1] ({|f | > y}) dy.

13



Proof. (a) Since f and g are disjointly supported, χ{f+g>y} = χ{f>y} + χ{g>y} and then

‖f + g‖Λ(Ei)
≤ ‖f‖Λ(Ei)

+ ‖g‖Λ(Ei)
(i = 0, 1).

But if f = f0 + f1 and g = g0 + g1 (with fi and gi nonnegative) then fi and gi are disjointly
supported (i = 0, 1). Hence

K(t, f + g; Λ(E)) ≤ inf
f=f0+f1
g=g0+g1

{
‖f0 + f1‖Λ(E0) + t ‖g0 + g1‖Λ(E1)

}
≤ inf

f=f0+f1
g=g0+g1

{
‖f0‖Λ(E0) + ‖f0‖Λ(E0) + t ‖g0‖Λ(E1) + t ‖g0‖Λ(E1)

}
≤ K(t, f ; Λ(E)) + K(t, g; Λ(E)).

(b) We may assume that f ≥ 0. Using (5) we have

K(t, f ; Λ(E)) ' ‖f0‖Λ(E0) + t‖f1‖Λ(E1)

where f0 , f1 are disjointly supported, thus χ{f>y} = χ{f0>y} + χ{f1>y} and

K(t, f ; Λ(E)) '
∫ ∞

0

(
E0({f0 > y}) + tE1({f1 > y})

)
dy ≥

∫ ∞

0
[E0 + tE1]({f > y})dy.

For the reverse estimate, since f ≤
∑

k∈Z 2k+1χ{2k<f≤2k+1}, from (a) we get

K(t, f ; Λ(E)) ≤
∑
k∈Z

2k+1[E0 + tE1]({2k < f ≤ 2k+1}) ≤ 4
∑
k∈Z

2k−1[E0 + tE1]({f > 2k})

≤ 4
∫ ∞

0
[E0 + tE1]({f > y}) dy.

If 0 < θ < 1 and 0 < q ≤ ∞, we denote

Ēθ,q(A) :=
(∫ ∞

0
(t−θ [E0 + tE1] (A))q dt

t

)1/q
(A ∈ Σ).

Corollary 3 If 0 < θ < 1, Λ(E)θ,1 = Λ(Ēθ,1).

New interpolation results for couples of Λp,q-spaces can be obtained by combining Theorem 4
with Sparr’s interpolation method for several spaces (cf. [17]).

Let X̄ = (X0, X1, X2) be a compatible quasi-Banach triple, and (α, β) ∈ (0, 1)2 such that
α + β < 1 and 1 ≤ q ≤ ∞. The corresponding interpolated space X̄α,β,q;K is defined by the
condition

‖x‖X̄α,β,q;K
:=
(∫ ∞

0

∫ ∞

0

(
t−α
1 t−β

2 K(t1, t2, x; X̄)
)q dt1

t1

dt2
t2

)1/q
< ∞ (x ∈ X0 + X1 + X2),

with

K(t1, t2, x; X̄) := inf
x=x0+x1+x2

{
‖x0‖X0 + t1‖x1‖X1 + t2‖x2‖X2

}
(t1, t2 > 0).

In our setting of function spaces, as shown in [17] and [1], the reiteration formulae

((X0, X2)θ,∞, (X1, X2)θ,∞)η,∞ = (X0, X1, X2)(1−θ)η,θ,∞. (12)
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and
((X0, X2)α0,q0 , (X1, X2)α1,q1)η,q = (X0, X1, X2)θ1,θ2,q. (13)

hold if 1 ≤ q0, q1, q < ∞, 1/q = (1− η)/q0 + η/q1, θ1 = (1− α1)η and θ2 = α0(1− η) + α1η.

Lemma 1 Let Ē = (E0, E1) be an entropy couple, and 1 ≤ r < ∞. Then

K(t1, t2, f ; Λr,1(E0),Λr,1(E1), L∞) '
∫ ∞

0
min

(
[E(r)

0 + t1E
(r)
1 ]({|f | > y}), t2

)
dy,

Proof. Obviously,

K(t1, t2, f ; Λr,1(E0),Λr,1(E1), L∞) = K(t2, f ; Λr,1(E0) + t1Λr,1(E1), L∞).

Moreover since Λ(Λr,1(Ej)) = Λr,1(Ej) = Λ(E(r)
j ) (j = 0, 1), and (E(r)

0 , E
(r)
1 ) is an entropy

couple (since 1 ≤ r < ∞) we have that

Λr,1(E0) + t1Λr,1(E1) = Λ([E(r)
0 + t1E

(r)
1 ])

since, by Proposition 4,

‖g‖Λr,1(E0)+t1Λr,1(E1) '
∫ ∞

0
K(t1, χ{|g|>y}; Λ

r,1(E0),Λr,1(E1)) dy

=
∫ ∞

0
[E(r)

0 + t1E
(r)
1 ]({|g| > y})dy = ‖g‖

Λ([E
(r)
0 +t1E

(r)
1 ])

.

Now the result follows from Theorem 4.

Theorem 5 Let Ē = (E0, E1) be an entropy couple. Let 0 < η < 1. Then
(a) If 1 < p0, p1 < ∞, 1 ≤ q0, q1 < ∞, 1/p = (1− η)/p0 + η/p1 and 1/q = (1− η)/q0 + η/q1,

(Λp0,q0(E0),Λp1,q1(E1))η,q = Λp,q(Ēηp/p1,q/p).

(b) If 1 < p < ∞,
(Λp,∞(E0),Λp,∞(E1))η,∞ = Λp,∞(Ēη,∞).

(c)
(M(E0),M(E1))η,∞ = M(Ēη,∞).

Proof. (a) Let 1 < r < min(p0, p1). Since

Λpi,qi(Ei) = (Λr,1(Ei), L∞)αi,qi (αi = (pi − r)/pi = ε/p; i = 0, 1),

we may use (13) to obtain

(Λp0,q0(E0),Λp1,q1(E1))η,q = X̄θ1,θ2,q,

with X̄ = (Λr,1(E0),Λr,1(E1), L∞) , θ1 = (1 − α1)η and θ2 = α0(1 − η) + α1η. Moreover, by
Lemma 1,

K(t1, t2, f ; X̄) '
∫ ∞

0
min([E(r)

0 + t1E
(r)
1 ]({|f | > y}), t2) dy
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Hence,

‖f‖q
X̄θ1,θ2,q

'
∫ ∞

0

∫ ∞

0

(
t−θ1
1 t−θ2

2

∫ ∞

0
min([E(r)

0 + t1E
(r)
1 ]({|f | > y}), t2) dy

)q dt2
t2

dt1
t1

,

where, by Theorem 4,∫ ∞

0

(
t−θ2
2

∫ ∞

0
min([E(r)

0 + t1E
(r)
1 ]({|f | > y}), t2)dy

)q dt2
t2

' ‖f‖
(Λ([E

(r)
0 +t1E

(r)
1 ]),L∞)θ2,q

= ‖f‖
Λ1/(1−θ2),q([E

(r)
0 +t1E

(r)
1 ])

'
∫ ∞

0
yq−1([E(r)

0 + t1E
(r)
1 ]({|f | > y}))(q(1−θ2)) dy.

On the other hand, E
(r)
i (A) = ‖χA‖Λ(Ei)(r) (i = 0, 1). Then, by (11),

[E(r)
0 + t1E

(r)
1 ](A) ' K(t1, χA; Λ(E0)(r),Λ(E1)(r))

and, since K(|g|r, tr;X0, X1) ' K(g, t;X(r)
0 , X

(r)
1 )r, it follows that∫ ∞

0
yq−1([E(r)

0 + t1E
(r)
1 ]({|f | > y}))q(1−θ2) dy

'
∫ ∞

0
yq−1K(t1, χ{|f |>y}; Λ(E0)(r),Λ(E1)(r))(1−θ2)qdy

'
∫ ∞

0
yq−1K(tr1, χ{|f |>y}; Λ(E0),Λ(E1))(1−θ2)q/r dy

=
∫ ∞

0
yq−1([E0 + tr1E1]({|f | > y}))(1−θ2)q/r dy.

Thus

‖f‖q
X̄θ1,θ2,q

'
∫ ∞

0
t−θ1q
1

∫ ∞

0
yq−1([E0 + tr1E1]({|f | > y}))(1−θ2)q/rdy

dt1
t1

=
1
r

∫ ∞

0
yq−1

(∫ ∞

0
(τ−θ1 [E0 + τE1]({|f | > y}))(1−θ2)q/rdτ

)
dy,

where θ1 = rη
p1

and 1− θ2 = r
p . Hence

‖f‖q
X̄θ1,θ2,q

'
∫ ∞

0
yq−1

∫ ∞

0
(τ−ηp/p1 [E0 + τE1]({|f | > y}))q/pdτ dy

=
∫ ∞

0
yq−1‖χ{|f |>y}‖

q/p

Ēηp/p1,q/p
dy = ‖f‖q

Λp,q(Ēηp/p1,q/p)
.

(b) Let 1 < r < p. Since Λp,∞(Ei) = (Λr,1(Ei), L∞)θ,∞ when θ = (p− r)/p (by Theorem 4), we
obtain from (12) that (Λp,∞(E0),Λp,∞(E1))η,∞ = X̄(1−θ)η,θ,∞ if X̄ = (Λr,1(E0),Λr,1(E1), L∞),
and

‖f‖X̄(1−θ)η,θ,∞
' sup

t1>0
t
−(1−θ)η
1 sup

t2>0
t−θ
2

∫ ∞

0
min([E(r)

0 + t1E
(r)
1 ]({|f | > y}), t2) dy

with

sup
t2>0

t−θ
2

∫ ∞

0
min([E(r)

0 + t1E
(r)
1 ]({|f | > y}), t2) dy ' sup

y>0
y([E(r)

0 + t1E
(r)
1 ]({|f | > y}))1−θ,
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since, again by Theorem 4, (Λ([E(r)
0 + t1E

(r)
1 ]), L∞)θ,∞ = Λp,∞([E(r)

0 + t1E
(r)
1 ]). Thus,

‖f‖X̄(1−θ)η,θ,∞
' sup

t1>0
t
−(1−θ)η
1 sup

y>0
y
(
[E(r)

0 + t1E
(r)
1 ]({|f | > y})

)1−θ

' sup
t1>0

t
−(1−θ)η
1 sup

y>0
K(t1, χ{|f |>y}; Λ (E0)

(r) ,Λ (E1)
(r))1−θ

' sup
y>0

sup
τ>0

τ−(1−θ)η/r ([E0 + τE1]({|f | > y}))(1−θ)r

= sup
y>0

y‖χ{|f |>y}‖
1/p

Ēη,∞
= ‖f‖Λp,∞(Ēη,∞)

and also X̄(1−θ)η,θ,∞ = Λp,∞(Ēη,∞).
(c) Let 1 < p < ∞. Since (Λp,∞(E0),Λp,∞(E1))η,∞ = Λp,∞(Ēη,∞) (by (b)). And Λp,∞(E) =
M(E)(p), we have

(M(E0)(p),M(E1)(p))η,∞ = M(Ēη,∞)(p)

and, using again that K(t, f ;M(E0)(p),M(E1)(p)) ' K(tp, |f |p;M(E))1/p, an easy computation
shows that (M(E0)(p),M(E1)(p))η,∞ = M(E)

(p)

η,∞.

3.3 Applications

We shall finish the paper by showing how the previous work, that allow us to restrict arguments
to characteristic functions, can be applied to study interpolation properties of some variants of
Lorentz spaces, and of entropy spaces and the related block spaces.

Let us start by describing the real interpolated space (E,L∞)θ,q when E is quasi-Banach
function space

Theorem 6 Let E be a quasi-Banach function space, 0 < θ < 1 and 1 ≤ q ≤ ∞. Then

(E,L∞)θ,q = Λp,q(E),

where 1/p = 1− θ.

Proof. As in (2), we take 0 < u ≤ 1 such that Λ1,u(E) ↪→ E ↪→ M(E). Then(
Λ1,u(E), L∞)

θ,q
↪→ (E,L∞)θ,q ↪→ (M(E), L∞)θ,q

and, by Theorem 4,(
Λ1,u(E), L∞)

θ,q
= (M(E), L∞)θ,q = (Λ(E), L∞)θ,q = Λp,q(E).

3.3.1 Block spaces

Let X denote the Euclidean space Rn or the fundamental cube of Rn. For 1 ≤ q ≤ ∞, a
measurable function b(x) is said to be a q−block if there is a cube Q ⊂ X containing the
support of b such that (∫

|b(x)|q dx

)1/q

≤ 1

|Q|1−1/q
.
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Classes of functions generated by q−blocks and numerical sequences c = {ck} satisfying

M(c) =
∞∑

k=1

|ck|
(

1 + log+ 1
|ck|

)
< ∞ (14)

were introduced in [18] in connection with the convergence of Fourier series.
The block space (Bq(X), Nq) is defined as the class of all functions f which can be written

as
f(x) =

∑
ckbk(x), (15)

where the bk are q−blocks and {ck} satisfies (14), and

Nq(f) := inf

{ ∞∑
k=1

|ck|
(

1 + log+

∑∞
k=1 |ck|
|ck|

)}
< ∞,

where the infimum is taken over all representations (15) of f.

Its topology can also be define through the metric d(f, g) = Mq(f − g), where

Mq(f) := inf

{ ∞∑
k=1

|ck|
(

1 + log+ 1
|ck|

)}
.

We refer to [14], [16] and [18] for the details.
The entropy space Λ(Eϕ) is related with the block space B∞ on [0, 1/e], since, as shown

in [15,Theorem 3.3 and Remark 3.6],

Eϕ(A) '
∫ ∞

0
‖χ{χA>t}‖M∞ dt = M∞(A).

Using Theorem 6 we can give the following description of (Bq, L
∞)θ,r.

Theorem 7 Let Bq endowed with the quasi-norm Nq (1 ≤ q ≤ ∞). If 0 < θ < 1 and 1 ≤ r ≤ ∞
and 1/p = 1− θ, then

(Bq, L
∞)θ,r = Λp,r(Nq) and ‖f‖Λp,r(Nq) =

(∫ ∞

0
yr−1Nq ({|f | > y})r/p dy

)1/r

.

Proof. The quasi-Banach space (Bq, Nq) has the lattice property, since, if f ∈ Bq and |g| ≤ |f |,
then (g/f)bk is a q−block,

g = f
g

f
=
∑

k

ck

(
g

f
bk

)
and Nq(g) ≤ Nq(f). Although it is not known whether Fatou property holds for Bq, still

Λ1,u(Bq) ⊂ Bq ⊂ M(Bq)

and the spaces are complete. Thus, as in Theorem 6,

(Bq, L
∞)θ,r = Λp,r(Nq)

The inclusion Λ1,u(Bq) ⊂ Bq and the completeness of both Λ1,u(Bq) and M(Bq) follow from the
completeness of Bq and the embedding in L0.

Remark 2 Real interpolation for the couple (B∞, L∞), with B∞ endowed with M∞, has been
considered by M. Milman in [15] using the error functional.
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3.3.2 Interpolation of Lorentz spaces with change of measures

The above results are also useful for interpolation of classical Lorentz spaces Λp(w), with

‖f‖p
Λp(w) =

∫ ∞

0
f∗(x)pw(x) dx =

∫ ∞

0
W (µ|f |p(t)) dt,

where W (s) :=
∫ s
0 w(s) ds.

Remark that, since we will be dealing with rearrangement invariant spaces, it follows from [8]
(see also [7]) that in this case

K(t, χA; Λp0(w0),Λp1(w1)) ' min(W0(µ(A))1/p0 , tW1(µ(A))1/p1). (16)

Weighted Lorentz spaces with two parameters Λp,q(w) can be considered as in [6], with
‖f‖Λp,q(w) = ‖yW (µ|f |(y))1/p‖Lq(dy/y), and it follows from the definition that

Λp,q(w) = Λp,q(Λ1(w)).

Theorem 8 Let w0 and w1 be two decreasing weights, and 0 < η < 1. Then
(a) If 1 < p0, p1 < ∞ and 1 ≤ q0, q1 < ∞,

(Λp0,q0(w0),Λp1,q1(w1))η,q = Λq(dW ),

where 1/q = (1− η)/q0 + η/q1 and W = W
(1−η)p/p0

0 W
ηp/p1

1 .
(b) If 1 ≤ p0 ≤ p1 < ∞ and 1 ≤ q ≤ ∞, then

(Λp0,1(w0),Λp1,1(w1))η,1 = Λ(W ) and (Λp0,∞(w0),Λp1,∞(w1))η,∞) = M(W ),

where W = W
(1−η)/p0

0 W
η/p1

1 , and Λ(W ) and M(W ) are the Lorentz and the Marcinkiewicz
spaces associated to the concave function W , as in Example 1.

Proof. (a) By Theorem 5, if 1/p = (1− η)/p0 + η/p1 and 1/q = (1− η)/q0 + η/q1,

(Λp0,q0(w0),Λp1,q1(w1))η,q = Λp,q((Λ1(w0),Λ1(w1))ηp/p1,q/p).

By (16)
K(t, χA; Λ1(w0),Λ1(w1)) ' min(W0(µ(A)), tW1(µ(A)))

and, if we denote ‖f‖ := ‖f‖Λp,q((Λ1(w0),Λ1(w1))ηp/p1,q/p), we have

‖f‖q =
∫ ∞

0
yq−1

(∫ ∞

0

(
tηp/p1 min(W0(µf (y)), tW1(µf (y)))

)q/p dt

t

)p/q
dy

'
∫ ∞

0
yq−1W0(µf (y))(1−η)p/p0W1(µf (y))ηp/p1dy

'
∫ ∞

0
W0(µ|f |q(y))(1−η)p/p0W1(µ|f |q(y))ηp/p1dy =

∫ ∞

0
W (µ|f |p(y)) dy.

(b) Since Λp1,1(wi) = Λ(Λpi(wi)) (i = 0, 1), by Theorem 5,

(Λp0,1(w0),Λp1,1(w1))η,1 = (Λ(Λp0(w0)),Λ(Λp1(w1)))η,1 = Λ
(
(Λp0(w0),Λp1(w1))η,1

)
.
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Then, using again (16), we obtain

‖f‖
Λ
(
(Λp0 (w0),Λp1 (w1))η,1

) =
∫ ∞

0

∫ ∞

0
t−η min(W0(µf (y))1/p0 , tW1(µf (y))1/p1)

dt

t
dy

'
∫ ∞

0
W0(µf (y))(1−η)/p0W1(µf (y))η/p1 dy =

∫ ∞

0
W (µf (y)) dy.

The last identity (Λp0,∞(w0),Λp1,∞(w1))η,∞ = M(W ) follows from Λpi,∞(wi) = M(Λpi(wi))
and by applying Theorem 5 once again.

3.3.3 Universal right Calderón couples (E,L∞)

Our last application is devoted to the problem of finding the relative interpolation spaces for
the couple (E,L∞).

Let X and Y be two intermediate Banach spaces for the Banach couples X̄ and Ȳ , respec-
tively. It is said that they are relatively K-monotone with respect to X̄ and Ȳ if the property

K(·, y; Ȳ ) ≤ K(·, x; X̄), x ∈ X

implies y ∈ Y . In this case, X and Y are relative interpolation spaces with respect to X̄ and Ȳ ,
i.e., T (X) ⊂ Y for every T ∈ L(X̄; Ȳ ).

We say that Ȳ is a universal right Calderón couple (or, as in [10], that it has the universal right
K property) if the converse is true for every Banach couple X̄, i.e., if all relative interpolation
spaces X and Y with respect to X̄ and Ȳ are relatively K-monotone.

If a couple of Banach function spaces Ē is a universal right Calderón couple, then

Ē(θ) = Ēθ,∞ (17)

for some (or for all) θ ∈ (0, 1), and the converse is true when Ē = (E,L∞) (see [10]). Here
Ē(θ) := E1−θ

0 Eθ
1 is the Calderón product, defined by the norm

‖f‖E(θ) := inf
{

t > 0; |f | ≤ t|f0|1−θ|f1|θ, ‖f0‖E0 ≤ 1, ‖f1‖E1 ≤ 1
}

.

The following theorem characterizes this property for (E,L∞) in terms of the maximal space.
We shall use that, for 1− θ = 1/p, E1−θ(L∞)θ = E(p), the p-convexification of E (cf. [10]).

Theorem 9 If E is a Banach function space, then
(a) For all 0 < θ < 1, (E,L∞)θ,∞ = M(E)(p) (1− θ = 1/p), and
(b) (E,L∞) is a universal right Calderón couple if and only if E = M(E).

Proof. If 1− θ = 1/p and f ≥ 0, by Theorem 4,

‖f‖M(E)(p) = sup
y>0

y1−θE({fp > y})1−θ = sup
s>0

sE({f > s})1−θ = ‖f‖(M(E),L∞)θ,∞

and (M(E), L∞)θ,∞ = (E,L∞)θ,∞.
To prove (b) assume first that (E,L∞) is a universal right Calderón couple. It follows

from (a) and (17) that E(p) = M(E)(p), and then E = M(E).
Conversely, if E = M(E), then M(E) is a Banach function space and, if 1 − θ = 1/p,

M(E)1−θ(L∞)θ = M(E)(p) = E(p) = E1−θ(L∞)θ. ¿From (a) we obtain (E,L∞)θ,∞ = M(E)(p) =
E1−θ(L∞)θ, and (E,L∞) is a universal right Calderón couple, by (17).
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Corollary 4 If E0 and E1 are two Banach function spaces such that (Ei, L
∞) is a universal

right Calderón couple (i = 0, 1) and 0 < θ < 1, then (Ēθ,∞, L∞) is also a universal right
Calderón couple.

Proof. This follows from Theorem 9, since (M(E0),M(E1))θ,∞ = M(Ēθ,∞) by Theorem 5.

Acknowledgments. We are very grateful to M. Carro and J. Soria for several iluminating
discusions when preparing this paper.
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