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A Hybrid UCA-RARE/Root-MUSIC Approach for
2-D Direction of Arrival Estimation in Uniform
Circular Arrays in the Presence of Mutual Coupling

Roald Goossens and Hendrik Rogier, Senior Member, IEEE

Abstract—A new hybrid algorithm that combines the uniform
circular array-RAnk REduction (UCA-RARE) and Root-MUSIC
algorithm for 2-D direction-of-arrival (DOA) estimation of az-
imuth and elevation angle is presented for uniform circular arrays
in the presence of mutual coupling. To describe mutual coupling
and platform effects we rely on the circular symmetry and expand
the open-circuit voltages into a limited number of phase modes.
This number of phase modes only depends on the electromag-
netic dimensions of the UCA and is independent of the severity
of mutual coupling in the UCA. The UCA-RARE algorithm is
then applied to estimate the azimuth angle independent from the
elevation angle. Next, for each azimuth angle we perform a new
search-free rooting algorithm based on the expansion of the array
manifold into a double Fourier series. By considering several
examples, it is shown that even in the presence of severe mutual
coupling the proposed combined technique yields very robust
DOA estimations for azimuth angle as well as for elevation angle.

Index Terms—Antenna array, array signal processing, circular
arrays, mobile communication, mutual coupling.

I. INTRODUCTION

STIMATING the directions of arrival (DOAs) of plane
E waves impinging on an antenna array is an important issue
in mobile communication systems. The knowledge of the DOAs
can tremendously improve the performance of the mobile com-
munication system. The symmetry present in a uniform circular
array (UCA) makes this configuration attractive in the context
of DOA estimation. In recent years several algorithms were pro-
posed to estimate DOAs using UCAs, such as UCA-RB-MUSIC
and UCA-ESPRIT [1]. However, the performance of these algo-
rithms is often affected by mutual coupling between the antenna
elements in the array. Especially in UCAs, mutual coupling
can be significant. In [2]-[5] mutual coupling is compensated
for by introducing a coupling matrix. The array manifold of the
UCA, which is affected by mutual coupling, is projected by a
coupling matrix onto the array manifold of an ideal UCA, where
mutual coupling is not existing. In a general UCA configuration,
however, the coupling matrix depends on the elevation angle [3].
This is especially so when platform effects, induced by scatterers
in the near field [6], play an important role. For a fixed elevation
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angle it is still possible to construct a coupling matrix to estimate
the azimuth angles of the impinging sources [7], provided that
there are enough antenna elements in the UCA compared to its
electrical dimensions. Yet, compensating for mutual coupling by
a coupling matrix is not possible when there is no prior knowl-
edge about the elevation angles, which is the case in this paper,
because both azimuth and elevation angles are to be estimated.
Besides algorithms which rely on the computation of the data
covariance matrix, there is also a tendency to estimate the DOAs
of the various signals by considering a single snapshot of the
induced voltages [8], [9]. To apply the matrix pencil method,
a method based on a single snapshot, a compensation of the
mutual coupling by a coupling matrix is once more necessary to
accurately estimate the DOAs. Another approach to compensate
for mutual coupling is to use the presence of circular symmetry
in the UCA. In spite of the presence of mutual coupling it is a
reasonable assumption that the circular symmetry in the UCA
is well preserved. In realistic UCAs the platform, the feed lines
of the antenna elements and the wiring are the most important
sources of mutual coupling. It is realistic that the geometry of
the complete antenna system, including platform and feed lines,
is carefully designed in order to preserve the circular symmetry.
Due to the circular symmetry of the UCA the electromagnetic
characteristics of all the antenna elements can be described by a
limited number of parameters. In [7] it is proven that the open-cir-
cuit voltage of each element in the UCA can be described with
a limited number of parameters by means of a spherical wave
expansion. This approach makes it possible to easily adapt the
MUSIC algorithm [10] in such manner that mutual coupling is
compensated even in the presence of platform effects.

In this paper we estimate the DOAs in two dimensions,
determining both the azimuth angle and elevation angle by
making use of this spherical wave expansion. To perform a
two-dimensional (2-D) estimation we need to ensure compu-
tational efficiency. To only estimate the azimuth angle, given
a fixed elevation angle, efficient search-free algorithms (such
as Root-MUSIC [1]), in which one can easily compensate
for mutual coupling [11], have already been developed. The
straightforward extension of MUSIC to a 2-D estimation of
the DOA results in a 2-D search over the MUSIC spectrum,
which is numerically inefficient. The UCA-ESPRIT algorithm
[1] overcomes these problems by estimating the azimuth and
elevation angles simultaneously. However, compensating for
mutual coupling is difficult. To avoid an exhaustive 2-D search
over the MUSIC spectrum we first perform the UCA-RAnk
REduction (RARE) algorithm [12]. This eigenstructure-based
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Fig. 1. Uniform circular array composed of V' antenna elements.

estimation method is developed to estimate the azimuth angles
of the source directions decoupled from the elevation angles.
We prove that this UCA-RARE algorithm can be applied even
in the presence of severe mutual coupling. Although mutual
coupling influences the electromagnetic characteristics, it is still
possible to decompose the voltages induced over the antenna
elements into a limited number of phase modes [7]. Together
with the symmetry in the UCA, this is a sufficient condition
as UCA-RARE only relies on these symmetry properties of
the antenna array. In [13] we proved that UCA-RARE yields
accurate estimates for the azimuth angle. The elevation angles
were estimated by performing a one-dimensional (1-D) search
over the MUSIC spectrum, which was achieved by an expan-
sion of the array manifold into a limited number of spherical
modes. This last search step is not numerically efficient so a
new search-free rooting algorithm is proposed to estimate the
elevation angles. In [14] it is proposed that wavefield mod-
eling enables us to perform Root-MUSIC along any desired
orientation angle. By a properly chosen extension of the array
manifold we can rewrite the array manifold as a limited double
Fourier series expansion. This allows the implementation of
a Root-MUSIC algorithm in the elevation direction, which is
numerically efficient.

In Section II we describe the electromagnetic characteris-
tics of the UCA. Special attention is devoted to the situation
where all antenna elements are terminated by the same load
impedance. In Section III the UCA-RARE algorithm is pre-
sented, which delivers estimates for the azimuth angles inde-
pendent from the elevation angles. The methods to estimate the
elevation angles are explained in Section IV. In Section V some
illustrative results are presented, proving that the proposed com-
bined algorithm allows robust DOA estimation at low compu-
tational cost, delivering root-mean-square-errors (RMSEs) of
the estimates that are close to their corresponding Cramer Rao
bounds.

II. ARRAY SIGNAL MODEL

Consider a uniform circular array (UCA) consisting of V'
identical antenna elements (Fig. 1) distributed over a circle with
radius R. The antenna elements operate at frequency f with cor-
responding wave number k. We assume that antenna currents are
only z-oriented. The phase center of each antenna element is lo-
cated in the zy-plane, at azimuth angles ¢; = (¢t —1)27/V with
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Fig. 2. Circuit models for a simple antenna array in receive mode.

t=1,2,...,V.When K plane waves impinge on the UCA the
signal model of this array is given by

x(t) = A6, ) s(t) + n(t) (D

where A (8, ¢) (V x K matrix) is formed by the set of K ele-
ment space manifold vectors a(fy, o) (k = 1,2,..., K), de-
termined by the DOAs (6, ) of the plane waves

A(0,¢) = [a(01,¢1),a(02,2), ..., a0k, pr)]  (2)

s(t) is the (K x 1) signal vector and n(t) is the (V' x 1) noise
vector, where the noise is assumed to be additive white Gaussian
noise. We restrict the signal model to UCAs which are com-
posed of vertically polarized antennas, such as dipole antennas
or vertically polarized aperture antennas. Only the vertically po-
larized components of incoming plane waves induce voltages
over the loads of the UCA. The proposed combined algorithm is
easily extendable to UCAs consisting of diversely polarized an-
tenna elements, considering vertically polarized sources whose
signals impinge on the antenna array. The knowledge of the el-
ement space manifold a(, ) of the uniform circular array

a(f, ) = [a1(0, ), a2(0,9),...,av(0,0)]" 3)

is essential in most algorithms for DOA estimation. The ele-
ment space manifold a(, ) is the collection of voltages in-
duced over the loads at the different antennas of the array when a
plane wave, which is vertically polarized with a unit amplitude,
impinges at the angles of arrival (6, ¢). We assume that all an-
tennas are loaded by an identical load impedance Zj. In absence
of mutual coupling, the manifold element a.(¢, ) corresponds
to the electromagnetic (EM) characteristics of the stand-alone
antenna element £. Mutual coupling complicates the whole sit-
uvation. In this case the voltages over the loads are given by

a(0,¢) = Zo(Z + Zo 1)t agpen(t, ¢). 4)

Aopen (8, @) is the collection of voltages induced at the antenna
terminals of the array when all the antenna elements are open
circuited. Because of the presence of the neighboring open-cir-
cuited elements, which induce shadowing effects, and nearby
scatterers, which induce platform effects, these voltages differ
from the voltages in the stand-alone case [6]. In Fig. 2, the
circuit model for a simple antenna array in receive mode is
shown. Clearly, the system is completely characterized by the
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impedance matrix Z and the vector agpen(f, @), containing
the open-circuit voltage sources. The impedance matrix Z can
easily be found by exciting antenna ¢ (t = 1,2,...,V) with
a 1A current source and measuring the voltages at the other
antennas which are open circuited. The measured voltages are
[Z]t. 1A (k = 1...V). The open-circuit voltages are found in
a similar fashion. When applying the excitation scheme defined
above, the radiation pattern F;(6, ) of antenna ¢ is directly
related to the open-circuit voltage of antenna ¢ in receive mode
through [15], [16]

. 2.})‘ einc(67 (p)Ft(67 QO)
R, 1A '

aopen,t(67 ‘P) = (5)
e'"(f, ¢) represents an incoming plane wave at angles (6, ¢),
where ) is the wavelength and R, the impedance of the medium
in which the antenna radiates. One of the advantages of uniform
circular arrays is the existence of a high degree of symmetry (we
assume that mutual coupling, shadowing and platform effects
are such that the circular symmetry is maintained). In a UCA,
the following relationship exists between the radiation patterns/
open-circuit voltages of the different antenna elements

{Ft(e/@) = Fl(avtp_ QOt) . (6)
aopen,t(07 410) = aopen,1(07 2 wt)

Eventually, the array signal model can be described in full elec-
tromagnetic detail by a single column of the impedance ma-
trix Z and the open-circuit voltage aopen,1(f, ¢). Notice that we
opt for describing mutual coupling by measuring the far-fields
emitted by the different antenna elements. Mutual coupling can
also be described by considering the detailed current distribution
on all the antennas and nearly scatterers. However, our descrip-
tion is more compact, since all near field information has been
removed. Yet the description remains rigorous in describing the
radiated fields (transmit mode of the antenna array) or in de-
scribing the voltages induced by an incident plane wave (receive
mode of the antenna array).

In order to implement numerical efficient DOA estimation al-
gorithms we describe the electromagnetic characteristics, i.e.,
the array manifold, by a limited number of parameters. In [1],
eigenstructure techniques with UCAs are proposed in absence
of mutual coupling. The UCAs are composed of omnidirectional
antenna elements, so the voltages induced over the antennas de-
pend only on the position of the elements (no mutual coupling
is considered)

aomni-,t(07 90) = e]kR sinf cos (¢ =)

—+oo

- Z ™ T (ERsin §)e m#t ™ (7)
where J,,,(kRsin 6) is the Bessel function of the first kind of
order m. The mode amplitude J,,, (kR sin 6) is small when the
Bessel function order m exceeds its argument kR sin §. So the
summation can be truncated from — M to +M, where M ~ kR.
In combination with a sufficiently large number of antenna el-
ements a phase mode excitation-based beamforming can be re-
alized. The structure of the array manifold, after the beamspace
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operation, is the basis for the development of algorithms such as
UCA-RB-MUSIC [1] and UCA-RARE [12]. In [7] it is shown
that the open-circuit voltage of an antenna in the UCA, as con-
sidered in this paper, can be described in a similar way:

+M
Gopen,t (6, ) =sinf Z V,%(H)e_jmwej"w. )
m=—M
The Bessel function of the first kind of order m is replaced by
sin 0 V.2 (6) and these coefficients, which are obtained by mea-
suring the radiation pattern F(6, ¢), describe the electromag-
netic characteristics of the UCA, including mutual coupling.
The electromagnetic dimensions of the UCA restrict the number
of terms in the summation (8) to 2M + 1, where M > kR.
Given (4) and given that Z is a circulant matrix, because of the
circular symmetry of the array, we can derive similar properties
for the element space manifold a(6, ) of the loaded voltages

?

as for the manifold a,pe, (6, ) of the open-circuit voltages

at(07(10) :al(evtp - @t) (9)
+M
a(f,0) =sind " V5(6)eT "o (10)
m=—M

There exists a simple relation between V2 (6) and VL () [7]

Zo
VL(9) = Ve (o (11)
= e
V -
Z5 =3 [Z)y e MY, (12)
n=1

With this description of the element array manifold we now pro-
ceed to apply UCA-RARE on the UCA in the presence of mu-
tual coupling.

III. UCA-RARE

The MUSIC eigenstructure technique [10] can be easily
adapted to account for mutual coupling. Only the knowledge of
the array manifold, affected by mutual coupling, is necessary
to perform DOA estimation based on the MUSIC algorithm in
the presence of mutual coupling. Yet it requires an extensive
2-D search to obtain estimates for both azimuth and elevation
angles. The introduction of a mutual coupling matrix [2]-[5]
which maps the array manifold of a UCA with mutual coupling
onto the array manifold of an ideal UCA, is not applicable in
the situation where severe mutual coupling effects exist, such
as platform effects (in Section V examples will be given). In
this case the coupling matrix (notice that this matrix differs
from the impedance matrix Z defined in this paper) depends on
the elevation angle. In this paper we simultaneously estimate
azimuth angle as well as elevation angle, so no prior knowledge
about the elevation angle is assumed. Nevertheless, we avoid
the computationally expensive 2-D search by applying the
UCA-RARE algorithm. This algorithm estimates the azimuth
angles of the impinging sources without prior knowledge of the
elevation angles. This algorithm was developed by Pesavento
and Bohme [12] for the case of unknown directional patterns.
In [12] no mutual coupling effects were considered. Mutual
coupling in the UCA deforms the directional patterns, yet the
symmetry property (9) still holds. As UCA-RARE only relies
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on this symmetry property and not on the detailed knowledge
of the antenna patterns, it can be used in array configurations in
which mutual coupling effects are significant.

We start from the data model of Section II. K plane waves
impinge on the UCA. First of all the data undergo an FFT (Fast
Fourier Transform). This beamspace transformation is a first
step in a well-established method for DOA estimation in UCAs
[1]. It transforms the array manifold into a beamspace manifold,
which is more convenient for rooting algorithms that estimate
the DOAs

Xbeam(t) = W x(1)

(W], = L e vis—ar-1) 1)

13)

with t=1...V and s=1...2M+ 1. (14)

M is the same as in the expansion of the open-circuit voltages
(8) and only depends on the dimensions of the array. The co-
variance matrix R of the beamspace data is constructed and an
eigendecomposition of R results in a signal and noise subspace

R = E{Xheam(t) X},eam(t)H} =Eg AS Eg +ExAn E%

15)
The diagonal matrices Ay € REMH1-K)XEM+1-K) apq
As € REXE contain the noise subspace and signal subspace
eigenvalues of R, respectively. In turn, the columns of the
matrices Ey € CEMAXQM+1-K) 34q By € CEM+1)xK
denote the corresponding noise subspace and signal subspace
eigenvectors. The beamspace MUSIC algorithm estimates the
signal DOAs (6, ¢) from the K deepest nulls of the MUSIC
function, which is the projection of the beamspace array mani-
fold onto the noise subspace

fMUSIC(Hv (,0) = abHoam(07 90) EN E% aboam(g, 90) (16)

with the beamspace manifold apeam (6, ¢) = W a(f, ¢). When
the number of antenna elements V' is sufficiently high, i.e., V >
2M + 1, the beamspace transformation (13) will excite one
single phase mode such that

‘/7
Z[W]m+M+1,t a(0, ) = sin§ V,,,(6) e’
t=1
with m=—-M,...,+M.

a7

In combination with the symmetry property, V!, (8) = V.., (9),
which is generally valid for UCAs consisting of vertically po-
larized antennas (this implies a symmetric antenna pattern, e.g.,
F(0, —¢) = F(0, v)), the factorization of the beamspace man-
ifold is achieved

abeam(67(p) :T(e]’\r’) g(e)a (18)
&)k =sin0 Vi () k=1...M+1 (19)

Qz) 0
T(z) = 0 1 (20)

nQ(:) o

Q(z) = diag{z_M, ZMAL 7Y z_l}
with

z=el? 1)

where II is the M x M anti-diagonal unit matrix. In spite of
the presence of mutual coupling the beamspace manifold can
still be factorized into a function of the azimuth angle ¢ and the
elevation angle 6, in the same manner as in [12].

Notice that in absence of mutual coupling and using omnidi-
rectional antenna elements V! (6) is replaced by j™ J (kr sin f),
the Bessel function of the first kind of order m. Replacing the
beamspace manifold by its factorization (18), the MUSIC func-
tion becomes

Suausic(8, ) = g (8) T (2) Exy EY T(2) g(6).

If the source signals impinge on the UCA at a known eleva-
tion angle, the MUSIC function (22) can be written as a poly-
nomial in z = ¢’% and a Root-MUSIC algorithm can deliver
estimates for the azimuth angles [1]. However, no prior infor-
mation about the elevation angle is available. The factoriza-
tion of the beamspace manifold enables us to perform a rank
reduction algorithm, namely UCA-RARE. The minimization
problem (22) is relaxed by extending the set of possible solu-
tions in the original manifold {apcam (0, ¢), (6, 9) € Q} to a
larger set of possible solutions in the so-called RARE manifold
{T(e’%)c, ¢ € [0,27],c € CPM+1X11 ¢ is an arbitrary com-
plex vector. Equation (22) becomes

(22)

fuusic(8,0) = TH () Ey ER T(2)c = 0. (23)

Estimates for the azimuth angles are obtained, independent of
the elevation angle, by searching for the nulls of (23). This can
be reduced to the 1-D polynomial criterion

1 T
PrarE(2)|z=1 = det {T (;) EyE¥ T(z)} =0. (24

The study of the larger set of the manifold shows that spurious
states might be introduced. In [12] one proves that the spurious
states also satisfy

Pspur(2))z)=1 = det {Efg{ T(z)AT <1> Es} =0

z
(25)
with A = (T(1/2)T T(z))~!. Estimates of ¢ which are a so-
lution of both (24) and (25) are rejected.

Notice that the azimuth estimates, a result of the UCA-RARE
algorithm, satisfy the property that ¢ as well as the anti-supple-
mentary angle m + ¢ are possible estimates. The appearance of
these pairs of estimates is used in Section IV where a new algo-
rithm to estimate the corresponding elevation angle is discussed.

IV. RooT-MUSIC IN ELEVATION DIRECTION

Through polynomial rooting, the UCA-RARE algorithm pro-
vides estimates of the azimuth angles {(p1, %1 + ), (P2, P2 +
), .., (Pq, Pq + m)} without requiring any information about
the elevation angle. The estimates appear in pairs and we as-
sume that the UCA-RARE algorithm yields ¢ pairs of azimuth
angles. However, given that K sources impinge on the array, we
do not consider that ¢ = K. It is possible that several signals
hit the UCA along the same azimuth angle and so this can re-
duce the value of g. In the presence of strong noise (low SNR)
it is not certain that spurious states, which are introduced by
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the relaxation of the search procedure in Section III, still satisfy
the condition (25). This results in an increase of the value ¢. In
this section we describe how estimates for the elevation angles
are obtained on the basis of the paired estimates of the azimuth
angle.

In [14] it is reported that wavefield modeling enables us to
perform a Root-MUSIC algorithm along any desired orientation
angle. We apply this principle by performing a Root-MUSIC
algorithm to estimate the elevation angle 6 for every estimate of
the azimuth angle, which is obtained by UCA-RARE. For that
purpose we extend the element array manifold in such a manner
that the element manifold is defined for values of 6 in [0, 27]

b (9 )_ at(&@) for @:[072’”]70:[07’”]
N P)IT —an(2r — 0,1 + @) for ©=[0,2x],0=[r, 2x].
(26)

In the Appendix, we prove that it is possible to apply a double
Fourier transform on the extended element manifold

M N

S S freimeme it
m=—M n=—N

M N

P>

m=—M n=—

bt(&@)

FrnzMw"eIme 27)
N

In both dimensions the summation is restricted to a finite
number of terms M and N, which are bounded by the electro-
magnetic dimensions of the UCA

M >EkR

N>kVR2+ 22, +1

where z,.x is the maximal dimension of the UCA in z-direc-
tion. This expansion describes the electromagnetic characteris-
tics of the UCA in full detail, because it is based on the knowl-
edge of the impedance matrix Z and the open-circuit voltage
Gopen.t (8, ). The coefficients of this double Fourier expansion
{fmn} are further in this paper denoted as the f-coefficients of
the UCA. The element manifold can be written as a multivariate
polynomial in z = ¢’% and w = e7%. This property opens up
new possibilities to estimate the elevation angle in a computa-
tionally efficient manner. We perform a beamspace operation
(13) to the extended element manifold

(28)
(29)

bbeam(97 (P) =W b(g7 (p) = I‘((p) Fw (30)
with
4—M
T(p) =
Z]M
with 2z = ej‘r’7 (31)
[F]m+M+1,n+N+1 = fmn’ m=-M---+M
n=—-N-1...N+1 (32)
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and

[Wagngr =" =w™ n=—-N...N. (33)

The beamspace MUSIC function becomes

.fNIUSIC(a"/ <P) = bbeam(97 Qa)H EN E% bbeam(97 Qa) (34)
=wlFITH () ENyERT(0)Fw (35
=w?QQfw. (36)

The noise subspace E in (34) is the same as the noise sub-
space used in the UCA-RARE algorithm (15). Given a paired
estimate of the azimuth angle {®;, ¢; + 7} we evaluate Q =
FHZTH(3;) Ex and perform a rooting algorithm over the ele-
vation angle 6. The phases of the complex zeros of (34), that lie
the closgst to the unit circle, serve as estimates for the elexation
angle {#%} with s = 1....5;. Depending on the value of #¢, we
pair these estimates to p; or p; + 7

{é\; € [077r] = (/0\;/ Ai) (37)

52 € [r, 2] = (27 — ai@ + 7).

Notice that the UCA-RARE algorithm delivers 2¢g estimates
for the azimuth angle (¢ paired estimates). By a properly
chosen extension of the array manifold only ¢ implementa-
tions of the Root-MUSIC algorithm in elevation angle have
to be performed, because in one implementation the nulls are
searched in elevation direction for an azimuth angle and its
anti-supplementary angle.

Also in this procedure spurious states might be introduced,
so that some nulls obtained in the Root-MUSIC algorithm will
not correspond to a realistic DOA. To solve this problem we
calculate the MUSIC function for every paired estimate (6%, 3;)
(i=1...qands =1...5;). Only the K smallest values of the
MUSIC function are considered as final estimates for the DOAs

(8, 9).

V. RESULTS

Consider a uniform circular array consisting of nine
dipole antenna elements tuned to 900 MHz (dipole length
[ = 16.12 ¢m). The array elements are distributed uniformly on
a circle with diameter d = [ (= A/2). In the center of the circle
there is a short-circuited dipole with length [ = 16.12 cm.
All numerical results given in this section pertain to this array
configuration. The short-circuited dipole acts as a platform
effect and compensation of mutual coupling by means of a
coupling matrix is not straightforward. This is illustrated in
Fig. 3, where the open-circuit voltages of an antenna element in
different array configurations are shown. In the UCA without
central short-circuited dipole the open-circuit voltage of an
array element is slightly different from the open-circuit voltage
of a stand-alone dipole element. In presence of the center
element the open-circuit voltage is much more dependent on
the azimuth angle of the incoming plane wave. Yet, it is still
possible to introduce a coupling matrix that maps the array
manifold of the UCA, which is affected by platform effects,
onto the array manifold of an ideal UCA [7]. Yet this mutual
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270
¢ [deg]
Fig.3. Open-circuit voltage of an antenna element at @ = 90° for a: UCA with

short-circuited dipole, b: UCA without short-circuited dipole, c: stand-alone
dipole.

Fig. 4. The f-coefficients | f,. | for the nine-element array at 900 MHz.

coupling matrix depends on the elevation angle 6 because of
the platform effects. To obtain accurate estimates of the DOAs
in two dimensions it is necessary to rely on the double Fourier
expansion proposed in (27). Mutual coupling and generally the
global electromagnetic characteristics of the UCA, including
the platform effects, are described by the f-coefficients. In
Fig. 4 the f-coefficients are plotted for the UCA under study.
Only a limited number of coefficients is necessary to de-
scribe the induced voltages over the antenna elements. f,,
is sufficient small when m > 4 and n > 4, so M = 4 and
N = 4. This complies with the conditions (28) and (29):
M=4>kR=16and N =4 > k\/R?+ 22, +1=232.
To perform UCA-RARE, the number of antennas has to be
sufficiently large (V' > 2M + 1). Hence, nine antenna elements
are sufficient to perform a beamspace operation which results
in a factorization following (18).

Now all antenna elements are loaded with a termination
Zy = 73 Q. To demonstrate the new algorithm proposed
in this paper, consider three uncorrelated sources emitting
100 bit pseudo-random bit sequences. The DOAs of the three
signals are (61, 1) = (60°,20°), (62, 2) = (70°,200°) and

(03, 3) = (55°,285°). All sources impinge on the array from
the upper hemisphere. This restriction counteracts the ambi-
guity in the elevation angle. The symmetry in the considered
UCA results in the fact that the DOAs (6, ¢) and (7 — 6, ¢)
cannot be distinguished because sources from both DOAs
result in the same voltages induced over the antenna elements.
UCAs which are not symmetric in elevation angle do not suffer
from this ambiguity. The signals are received in the presence
of additive white Gaussian noise. We estimate the azimuth
and elevation angle by the combined algorithm proposed in
Sections III and IV. All results are averaged over 1000 en-
sembles and the RMSE is calculated. These calculations are
repeated for different SNR levels.

Prudence is called for the definition of the SNR level. Gen-
erally omnidirectional antenna elements are used in DOA esti-
mation algorithms. In this paper more realistic antenna configu-
rations are considered. In the case of omnidirectional elements
the situation is clear, the SNR level is defined by

Elaomni(0, 9) acmni(0, 0)s*(t)s(t)] _ VP
NR = =
SNR En(t)"n(t)] Vo2 (38)
where P = E[s*(t)s(t)] is the source variance, 02 =

E[n}(t)n;(t)] the noise variance and V' the number of antenna
elements. There is no angular dependency as aspected. In case
of our realistic UCA, the SNR level is defined by

Ela(t, 9)"a(6, p)s*(1)s(t)] _ g(6)P
En(t)"n(1)] Vo?

Because of the circular symmetry in the array there is a de-
pendency in the elevation angle only. In Fig. 6 g(f) is shown
for the UCA with the short-circuited element in the center. Be-
cause of the vertical dipole elements in the UCA we notice that
for elevation angles near the poles # = 0° and § = 180° sig-
nals are hardly received and the SNR level will tend to zero,
while for the elevation angle # = 90° there is a maximum re-
ceive capacity. When several signals hit the UCA, one signal
is chosen as reference signal to define the SNR level. In our
first example we chose the third signal as a reference signal.
We assume also that all signals have an equal source variance
E[s3(t)s1(t)] = E[s5(t)s2(t)] = E[s5(t)ss(t)] = P. This as-
sumption does not affect the generality of the results. Yet, due to
this assumption the electromagnetic characteristics of the UCA
are well illustrated. Depending on the elevation angle, the signal
will be received properly and this results in a lower or higher
SNR level. A lower SNR level is obtained than the reference
SNR level when the signal reception is worse in comparison
with the reference signal. In the first example the SNR levels
are defined by

SNR =

(39)

SNR; = SNRs? (1) _ | 64sNR

9(03)

SNR, = SNR;? (02) _ 5 365NR
9(93)

SNR;3 = SNR.

Expressed in decibels the equations become

SNR; (dB) = SNR(dB) + 4.30 dB
SNR(dB) = SNR(dB) + 7.45 dB.
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2 (UCA-RARE + Root-MUSIC) and corresponding CRBs of azimuth and ele-
vation angles for the 3 different sources versus SNR level (SNR3).

Fig. 6. ¢(9) for the considered UCA.

In Fig. 5 the RMSEs obtained by the combined algorithm are
compared to the RMSEs obtained by means of a well-known
technique, a search over the 2-D MUSIC spectrum. This tech-
nique is the most straightforward technique to estimate the
DOAs. The knowledge of the array manifold, e.g., obtained by
measurements or by simulations to incorporate all mutual cou-
pling effects, enables us to calculate the 2-D MUSIC spectrum.
Obviously searching the highest local peaks in this spectrum
yields the DOA estimates. In our case the MUSIC spectrum is
calculated for every degree in elevation and azimuth direction,
obtaining a 360 x 181 matrix. In Fig. 5 we see that both tech-
niques have almost the same estimation accuracy. Nevertheless
the computational efficiency differs for both techniques. The
average MatLab-runtime to estimate the DOAs by the com-
bined algorithm is 0.11s (simulated on a 2.4 GHz Pentium
IV Processor), whereas the average MatLab-runtime by the
traditional search of the 2-D MUSIC spectrum is 1.87s. This
reduction of the Matlab-runtime can be attributed to the two
computational efficient rooting algorithms (UCA-RARE and
the modified Root-MUSIC algorithm) which replace the 2-D
search in the traditional 2-D MUSIC algorithm. In Fig. 5 the
corresponding Cramer Rao bounds (CRB) are also shown. The
CRB defines the ultimate accuracy of any estimation procedure
in the presence of noise. It is clear that the RMSE obtained by
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Fig. 7. The DOA estimates of 500 implementations when two sources with
strongly different SNR level are impinging on the UCA.

our proposed combined estimation algorithm is close to the
corresponding CRB and so we conclude that our algorithm
delivers accurate estimates and it is an efficient algorithm.
Notice that the traditional search of the 2-D MUSIC spectrum
for high SNR values results in RMSEs which are smaller than
the corresponding CRBs. This is due to the fact that the 2-D
MUSIC spectrum is calculated for a discrete grid of possible
DOAs and the DOAs of the three different signals are all ele-
ment of this grid. So the probability to estimate the exact DOA
is much larger than in the case that we study a continuous grid.

In a second example we study whether the algorithm is able
to detect signals with different strength. We consider two uncor-
related sources emitting 100 bit pseudo-random bit sequences.
The DOAs of the two signals are (61, ¢1) = (70°,57°) and
(62, 2) = (70°,128°). The two signals have the same eleva-
tion angle, so the UCA receives the two signals in a similar way.
The SNR level of the first signal is 5 dB, while the second source
is 20 dB stronger (SNR2 = 25 dB). In Fig. 7 the result of 500
implementations of estimating the DOAs by the combined al-
gorithm is shown. The two sources are well detected. In some
cases the error on the estimated DOA of the weakest signal is
significant. This effect reflects in the RMSEs of the signals. The
RMSE of the signals are RMSE; = (5.9°[2.48°],1.5°[0.62°])
and RMSE; = (0.49°]0.24°], 0.14°[0.06°]). Between brackets
the corresponding CRBs are given. It is clear that the elevation
angle of the weakest signal is hard to estimate. On the one hand,
the low SNR level results in a large RMSE and on the other hand,
a circular geometry has intrinsically smaller resolution for de-
tecting the elevation angle. To obtain better performances for
the elevation angle, more complex array configurations have to
be considered.

In the last example we examine the capability of the pro-
posed algorithm to estimate the DOAs of closely spaced sig-
nals. Subspace methods, such as MUSIC, have superb resolu-
tion properties compared to the traditional methods such as the
Capon method [17]. They are called superresolution methods
because they can detect two signals which are situated closer to
each other than the beamwidth of the considered antenna array.
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Fig. 8. RMSEs and corresponding CRBs of azimuth and elevation angles for
two closely spaced sources versus source separation 6.

In the first two examples we estimate the DOAs with an ex-
tremely small UCA. The radius of this array is A/4 and the cor-
responding 3 dB beamwidth of this array is 116°. The advantage
of this antenna array is the limited number of antenna elements
which is necessary to realize a beampattern with a constant
beamwidth for every azimuth angle. In order to clearly illustrate
the superresolution properties of the proposed algorithm, a UCA
with a larger radius (r = ) is used to study whether the pro-
posed method can handle signals which are closely spaced. The
beamwidth of such a UCA is now reduced to 28°. Compared to
the smaller UCA, a larger number of antenna elements is nec-
essary to perform UCA-RARE. For this array 21 elements are
considered and this is sufficient to properly describe all relevant
phase modes of the UCA. Again an additional short-circuited
dipole is placed in the center of the circle. Now we consider
two uncorrelated sources emitting 100 bit pseudo-random bit se-
quences. The DOAs of the two signals are (61, ¢1) = (70°,0°)
and (02, p2) = (70° — 4, 6). The DOA of the second source is
varied as ¢ increases from 0° to 20°. Again we assume that all
signals have equal source variance

Els1(t)*s1(t)] = E[s2(t)*s2(t)] = P. (40)
The SNR level is referred to the first source, which has a con-
stant DOA. The SNR level of the first source is chosen 20 dB
(SNR; = 20 dB). The SNR level of the second source depends
on d

g(70° = §)
9(70°)

Again we estimate the DOAs with the combined algorithm
and we calculate the RMSE of the estimates by averaging over
an ensemble of 500 bit sequences. In Fig. 8 the RMSE of the
estimates and the corresponding CRBs are shown. It is clear
from the figure why subspace methods, such as MUSIC, are
called superresolution methods. Although the beamwidth of the
UCA is 28°, the UCA is still capable to estimate the DOAs of

SNR, = SNR;. 1)

the two sources accurately when the source separation ¢ is 3°.
For smaller separation angles the accuracy decreases drastically.
Again we see that the proposed algorithm remains an efficient
algorithm because the RMSEs are close to the corresponding
CRBs.

VI. CONCLUSION

A new method for combined azimuth and elevation DOA es-
timation in UCAs is presented. Special attention is devoted to
the presence of mutual coupling which is a major issue in cir-
cular arrays. In a first step, an estimation of the azimuth angles
is performed by the UCA-RARE algorithm which decouples the
estimation of the azimuth angles from the estimation of the el-
evation angles. It is proved by means of a decomposition of the
element manifold into phase modes that UCA-RARE is still ap-
plicable in the presence of mutual coupling. The obtained esti-
mates of ¢ by UCA-RARE reduce the DOA estimation to a 1-D
search over the elevation angle . This 1-D search can be easily
performed by extending the element manifold and applying a
double Fourier expansion. The expansion of the array manifold
into a double Fourier series enables us to perform a numerically
efficient Root-MUSIC algorithm in elevation direction along the
estimated azimuth angles. By means of some relevant examples
it is proved that the proposed hybrid algorithm yields good esti-
mates for both azimuth and elevation angles. The RMSEs tend
to the CRB, which defines the ultimate accuracy of any estima-
tion procedure. Special attention is paid in the examples to the
definition of the SNR level which is not unambiguously defined
in realistic antenna arrays. A challenge for further research is to
incorporate a spatial smoothing scheme to deal with incoherent
signals. It is far from evident to apply a spatial smoothing tech-
nique while estimating the azimuth angle as well as the elevation
angle in the presence of mutual coupling.

APPENDIX

The foundation of the new algorithm in Section IV is the ca-
pability to express the element manifold as a multivariate poly-
nomial in z = e/# and w = e7?. In [7] it is already proven that
the element manifold can be expanded into a limited Fourier
series of phase modes by considering a general multiport an-
tenna, carrying a current distribution C(R, ¢, z) on the sur-
face S of a cylinder with radius R and height z,,,x. This cur-
rent distribution includes all full-wave effects, such as mutual
coupling. In a same manner we prove that the element mani-
fold can be expanded similarly into a limited Fourier series in
elevation direction. Assuming that the currents are z-oriented
C(R,p,z) = C(R,p,z)u,, the f-oriented radiation pattern
Fy = F(6, p)uy is related to the current distribution by

F(8,¢) =—jwugsin b
2w
/ /C(R,@17Z)ejk(Rsinecos(4,974,9')+zcos€)dwldz‘ (42)
p'=0Jz

To perform a Fourier transformation in elevation angle the radi-
ation pattern is extended to the interval § € [0, 27]. Therefore,
we define the modified radiation pattern

G(0,¢)

:{F(ﬂw)
—FQ2r — 0,7+ @)

when 0<f<7m O<p<m

when 1< 0 <21 O<p<m’ “43)
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2%

z
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(48)

In (43) the — sign appears because uy flips at the poles. The
modified radiation pattern is now expanded into a Fourier series

n=+4oo

G, 0)= > gnlp)e’™. (44)

The nth phase mode is then given by

[ ;
w(p) ==— [ F(8,0)e”"dg
gn(0) = 5 /O (0, 0)e
1 27 .

- = F(2r — 0,7 4+ ¢)e "?df (45)

27
_ 1 / /
=5 [P//ZC(R,¢7z)d¢dz
27

A / sin Hejk(Rsin@cos (¢—¢')+z cos Q)e—ande
0

_ 1 / ,
= Ir AI/ZC(R,w,z)dwdz

02T
/ ejaCOS(G—ﬂ)(e—j(n—l)O _ej(n+l)9)dg (46)
0

with  a = kv/22 + R2cos2(p — ¢')
and = Rcos(np—go')-
z

Equation (46) can be simplified by using the Jacobi-Anger ex-
pression. This results are shown in (48) at the top of the page. It
is clear that g,, (¢) quickly decreases when the order n increases.
When the order of the Bessel function is larger than its argu-
ment, g, (¢) will become sufficiently small. This occurs when
n —1 > ky/R?+ 22,... The voltage induced at an antenna is
directly related to the radiation pattern, so the modified array
manifold can be decomposed into a limited number of phase
modes with N > k+/R?+ 22, + 1. This argumentation is
valid for a general multiport antenna, so in particular it is valid

for UCAs considered in this paper.

(47)
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