

TRABALHO FINAL MESTRADO INTEGRADO EM MEDICINA

Laboratório de Nutrição

Theory-based physical activity and/or nutrition behaviour change interventions for cancer survivors: A systematic review

Beatriz Benquerença Marto Gouveia Francisco

Orientado por:

Professora Doutora Inês Santos

Co-Orientado por:

Professora Doutora Eliana V. Carraça

JUNHO'2022

Abstract

Purpose: Theory-based interventions aimed at promoting long-term health behaviour change in cancer survivors seem to be effective but remain scarce and target mostly short-term adherence and outcomes. This review aimed to synthesize the evidence from randomized controlled trials (RCT) evaluating the efficacy of theory-based behaviour change interventions on physical activity and/or diet behaviours targeting cancer survivors.

Methods: A systematic search in three electronic databases (PubMed, PsycInfo and Web of Science) identified studies that (i) targeted adult cancer survivors; and (ii) reported on any theory-based RCT designed to influence physical activity, diet, or weight management. Study quality was assessed with an adapted version of the EPHPP Quality Assessment Tool for Quantitative Studies.

Results: Twenty-six studies met eligibility criteria. Diet-only trials reported significant improvements on at least one aspect of dietary intake, while in multiple behaviour trials, only five out of nine showed significant improvements in at least one aspect of diet. However, six of these nine trials, reported significant improvements in physical activity. In physical activity-only trials, eleven out of fifteen RCTs showed significant improvements in physical activity. Socio-Cognitive Theory seems to be the most used theory of reference, showing promising results in changing the two target behaviours. Several other theories were used in isolation or combined, but less frequently, and others showing increased relevance in recent decades, like Self-Determination Theory, could not be identified in interventions with cancer survivors.

Conclusions: Theory-based interventions seem to be important when it comes to improving physical activity and diet behaviours in cancer survivors. Still, more studies testing theory-based interventions in good-quality studies and including thorough descriptions of intervention contents and behaviour change techniques, are required to confirm or refute these findings.

Keywords: Systematic-review, Cancer, Behaviour change interventions, Physical activity, Diet

Resumo

Objetivo: Intervenções baseadas em teoria, destinadas a promover mudanças nos comportamentos de saúde a longo prazo em sobreviventes de cancro, são eficazes, mas escassas, focando-se sobretudo no curto prazo. Esta revisão procurou sintetizar a evidência de ensaios clínicos randomizados controlados (RCT) que avaliaram a eficácia de intervenções comportamentais, baseadas na teoria, na dieta e/ou exercício físico, em pacientes com cancro.

Métodos: A pesquisa foi realizada em três bases de dados (PubMed, PsycInfo e Web of Science), procurando estudos (i) com sobreviventes de cancro adultos; (ii) reportados em RCT baseados em teoria, com o objetivo de influenciar a atividade física, dieta ou controlar o peso. A qualidade dos estudos foi avaliada com uma versão adaptada da EPHPP Quality Assessment Tool for Quantitative Studies.

Resultados: Vinte e seis estudos preencheram os critérios de elegibilidade. Os estudos focados apenas na alteração da dieta relataram melhorias significativas em pelo menos um aspeto da ingestão alimentar. Naqueles que avaliaram ambos os comportamentos, apenas cinco de nove mostraram melhorias significativas em pelo menos um aspeto da dieta. Contudo, seis desses nove estudos reportaram melhorias significativas na atividade física. Em ensaios focados apenas na alteração da atividade física, onze dos quinze mostraram melhorias significativas. A Teoria Sociocognitiva parece ser a teoria mais utilizada, com resultados promissores na mudança destes dois comportamentos. Outras teorias foram usadas isoladamente ou de forma combinada, mas menos frequentemente, e outras que têm mostrado grande relevância nas últimas décadas, como a Teoria da Autodeterminação, não foram sequer identificadas em intervenções nesta população.

Conclusões: Intervenções baseadas em teoria parecem melhorar comportamentos de atividade física e dieta em sobreviventes de cancro. Porém, são necessários mais estudos com elevada qualidade metodológica testando intervenções baseadas na teoria, com boas descrições dos seus conteúdos e técnicas de alteração comportamental, para se poderem confirmar ou refutar estes resultados.

ii

Palavras-chave: Revisão sistemática, Cancro, intervenções de mudança de comportamento, Atividade física, Dieta

O Trabalho Final é da exclusiva responsabilidade do seu autor, não cabendo qualquer responsabilidade à FMUL pelos conteúdos nele apresentados.

Contents

Abstract
Resumoii
List of Tablesvi
List of Figures vii
Glossaryviii
Acknowledgments ix
Background2
The global Cancer burden2
The importance of healthy lifestyle behaviours2
The importance of theory-based behaviour change interventions4
Aim of this review6
Methods7
Eligibility Criteria7
Search Strategy7
Study Selection
Data extraction
Study quality assessment9
Outcome measures9
Data Synthesis9
Certainty assessment10
Results11
Search results
Studies' characteristics12
Population12

Theoretical Framework	13
Intervention's mode of delivery	13
Outcomes' assessment	15
Synthesis of results	17
Diet-only Trials	17
PA-only Trials	17
Diet and PA Trials	20
Risk of Bias assessment	21
Assessment of the certainty of evidence	21
Discussion	24
Overview of findings	24
Limitations and suggestions for future research	27
Conclusions	
Final remark	
Conflict of interest	
References	
Appendix 1 - Prospero Protocol	45
Appendix 2 - Search Strategy	52
Appendix 3 – Diet-only Trials	53
Appendix 4 – Diet and PA Trials	55
Appendix 5 – PA-only Trials	65
Appendix 6 - SURE Checklist	79
Appendix 7 - Abstract ISBNPA	

List of Tables

Table 1 - Characteristics of included studies	14
Table 2 - Results by outcome	19
Table 3 - Risk of bias assessment	22

List of Figures

Figure I PRISIVIA NOW Uldgram	Figure 1 PRISMA flow diagram	1	1
-------------------------------	------------------------------	---	---

Glossary

- 7-PAR Seven-Day Physical Activity Recall
- ACT Acceptance and Commitment Therapy
- GLTEQ Godin Leisure-Time Exercise Questionnaire
- GPAQ Global Physical Activity Questionnaire
- HAPA Health Action Process Approach
- LPA Light intensity Physical Activity
- LSI Leisure Score Index
- MPA Moderate intensity Physical Activity
- MVPA Moderate to Vigorous intensity Physical Activity
- PA Physical Activity
- PASE Physical Activity Scale for the Elderly
- RCT Randomised Controlled Trial
- SCT Social Cognitive Theory
- SDT Self-Determination Theory
- SQUASH Self-reported Short QUestionnaire to ASsess Health-enhancing PA
- SRT Self-regulation Theory
- TPAQ Total Physical Activity Questionnaire
- TPB Theory of Planned Behaviour
- TTM Transtheoretical Model

Acknowledgments

I would like to express my gratitude to my primary supervisor, Professor Inês Santos, whose guidance, support, and encouragement has been invaluable throughout this project. I would also like to show my deep appreciation to the following people for helping with this research project: to my second supervisor, Professor Eliana V. Carraça, for providing guidance and feedback throughout this project and to Bruno Rodrigues and Inês Nobre for their contributions to study selection and data collection, without whom I would not have been able to complete this research. I wish to extend my special thanks to Professor Helena Cortez-Pinto for giving me the opportunity to develop my thesis at the nutrition's laboratory in an area not so accessible to medical students.

To conclude, I cannot forget to thank my family and friends for all the unconditional support, patience, and encouragement, not only in this very intense academic year, but throughout these 6 years of studies.

Background

The global Cancer burden

Cancer is expected to become the leading cause of premature death (i.e., death that occurs before the average age of death in a certain population) in the near future. In fact, some reports say cancer has already overtaken cardiovascular disease in 57 of 127 countries (Bray et al., 2021). In 2020, there were approximately 19.3 million new cancer cases and almost 10.0 million cancer deaths and the global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020. Breast cancer is now the most diagnosed cancer, followed by lung, colorectal, prostate, and stomach cancers. On the other hand, lung cancer remained the leading cause of cancer death, followed by colorectal, liver, stomach, and female breast cancers (Sung et al., 2021). The increasing number of new cancer diagnoses, which reflects the growing and aging of the world's population, combined with improvements in early detection and diagnostics and advances in treatment, are also leading to an increase in the number of cancer survivors (i.e., from diagnosis to the end of life), which brings new challenges to cancer care (Bray et al., 2021).

Despite the advances in treatment, cancer survivors still have several treatment sideeffects, experienced during or after its cessation, increased risk of cancer recurrence, and higher vulnerability to other chronic diseases (Kenneth. Miller & Triano, 2008). Cancer survivors commonly report pain, fatigue, depression or mood disturbance, sleep disruption and cognitive limitation (Wu & Harden, 2015). Combined, long-term and late effects of cancer may worsen survivors' risk of poor mental and physical health-related quality of life and are associated with disability and healthcare utilization, which can be improved through modifying behavioural and psychosocial risk factors.

The importance of healthy lifestyle behaviours

Although the causes of most cancers are not fully understood, there are some wellestablished factors that put people at a higher risk of developing cancer. Risk factors for cancer include non-modifiable factors such as age, sex, race and ethnicity, family history, and genetics, and modifiable factors related to health behaviours and lifestyle factors such as tobacco use, alcohol consumption, obesity, exposure to ultraviolet radiation and occupational carcinogens, inadequate nutrition, and physical inactivity (Lewandowska et al., 2019). Lifestyle behaviours such as physical activity (PA), which consists of any bodily movement that results in energy expenditure (Caspersen CJ et al., 1985), and healthy eating patterns have an important role in survivorship management. PA has been consistently identified as an important adjunct therapy to be incorporated in cancer care (Cormie et al., 2017), given that it optimizes health outcomes in cancer survivors (Patel et al., 2019), such as physical functioning, role function, social functioning, overall quality of life (Mishra et al., 2014), cancer-related fatigue (Cramp & Byron-Daniel, 2012), and seems to reduce the risk of recurrence (Cormie et al., 2017), mortality from cancer and from any cause (Patel et al., 2019), as well as improve the effectiveness and tolerance of anticancer treatment (Hojman et al., 2018). Simultaneously, diet also plays a major role in improving total health. Many studies have shown that cancer survivors are amongst the most malnourished of all patients (Bozzetti, 2009; Tangvik et al., 2015). Cancer cachexia, affecting 50-80% of cancer patients, is responsible for the death of at least 20%, and sarcopenia, besides being associated with asthenia, fatigue, and impaired physical function, is also associated with reduced tolerance to treatments, impaired quality of life and reduced survival (Ryan et al., 2016). On the other hand, cancer survivors with healthier diets seem to have an improved treatment response, recovery, side-effect management, and disease outcomes (Bodai & Tuso, 2015; Ornish, Lin, et al., 2008; Ornish, Magbanua, et al., 2008; Schwedhelm et al., 2016). A recent umbrella review found evidence supporting a positive association between alcohol consumption and the risk of colon, rectum, breast, oesophageal, head and neck, and liver cancer, an inverse association of calcium, dairy, and whole grain consumption and the risk of colorectal cancer, as well as an inverse association of coffee consumption and the risk of liver and skin basal cell carcinoma (Papadimitriou et al., 2021).

For these reasons, several health organizations, such as the American Cancer Society and the World Cancer Research Fund, provide specific health behaviour recommendations to cancer survivors related to achieving and maintaining a healthy

3

body weight throughout life, being physically active, consuming a healthful diet, and avoiding or limiting alcohol intake to reduce cancer risk (Rock et al., 2022). Specifically, to achieve health benefits from PA, cancer survivors should practice at least 150 minutes/week of moderate-intensity PA, or 75 minutes/week of vigorous-intensity PA, or an equivalent combination of both intensities. Strength training should be performed at least two days a week, involving the main muscle groups (K. L. Campbell et al., 2019). There are even some studies suggesting that the amount and intensity of PA in cancer patients should be higher than the current recommendations. For example, a recent meta-analysis proposes that at least 300 mins/week of moderate-intensity PA should be recommended to reduce mortality in breast cancer patients (Lee, 2019). In what concerns to diet, the recommendations are to follow a healthy eating pattern at all ages, which includes eating nutrient-dense foods in quantities that lead to achieving and maintaining a healthy body weight, a variety of vegetables, fruits, and whole grains, and to limit the amount of red and processed meats, sugar-sweetened beverages, highly processed foods, refined grain products, and alcohol consumption (Rock et al., 2022).

Nonetheless, and despite the beneficial effects, only a minority of cancer survivors meets PA or fruit and vegetable consumption recommendations (Blanchard et al., 2008; Zhang et al., 2015), and even when there is a good compliance at the beginning of a behaviour change program, relapse is not uncommon (Glanz & Bishop, 2010). This may happen due to several factor such as lack of motivation and interest, time, or due to symptoms related to the disease and/or treatment, like fatigue and pain (Blaney et al., 2013; M. S. Lee et al., 2017).

The importance of theory-based behaviour change interventions

Given the difficulty people have in initiating and maintaining healthy behaviours over time, interventions seeking to promote health-conducive behaviours, such as increased PA and healthy eating, are of utmost importance. Consequently, in recent years, there has been a growing body of evidence trying to understand which factors explain adherence to lifestyle recommendations and which factors can increase it (e.g., Kampshoff et al., 2016; Lunde Husebø et al., 2013). Interventions based on behavioural theories seem to be more effective than atheoretical approaches and strategies that combine multiple theories and concepts appear to have larger effects on improving healthy behaviours (Glanz & Bishop, 2010; Noar et al., 2007). Moreover, they provide a better understanding of the factors that mediate behaviour change and thus why interventions might have succeeded or failed, besides offering guidance on what needs to be changed and over which determinants there is a need to intervene, how it can be changed, using which behaviour change techniques from which theory. In fact, theory-based interventions, using evidencebased behaviour change techniques, and aimed at promoting long-term health behaviour change in cancer survivors appear effective (Grimmett et al., 2019), but remain scarce (Rothman A et al., 2011), and target mostly short-term adherence and outcomes (Courneya, 2010). Besides, little information is available on what interventions work best.

A recent meta-analysis examining Social Cognitive Theory (SCT)-based PA and nutrition interventions found that these interventions are safe and result in meaningful changes in diet and PA behaviour that can result in health improvements in cancer survivors (Stacey et al., 2015). Other interventions, based on different theoretical rationales, also showed promising results in other specific populations. For instance, prior research has shown that a person-centred, need-supportive intervention climate, and internal (better quality) motivations play an important role in long-term, sustained, behaviour adoption in individuals with overweight/obesity (Silva et al., 2010; Teixeira et al., 2012; Wyke et al., 2019), suggesting the use of self-determination theory (SDT) as a valid framework also for cancer survivors. There are also other theories, such as the transtheoretical model of behaviour change (TTM), proposing the existence of different stages of change (precontemplation, contemplation, preparation, action, and maintenance) that seem to have a positive effect on diet (M. Miller et al., 2020), PA or both (Rogers et al., 2009).

5

Aim of this review

To our knowledge, there are currently no systematic reviews synthesizing the effects of theory-based behaviour change interventions on both PA and dietary patterns targeting cancer survivors with multiple types of cancer. Although there is significant evidence supporting the benefits of diet and PA on health-related outcomes, there is still insufficient information about which interventions work best for cancer survivors in what concerns to change and sustain behaviour changes in the long run, which assumes particular importance to inform future research and practice.

Therefore, this systematic review aimed to synthesize the evidence on randomized controlled trials evaluating the efficacy of theory-based behaviour change interventions on PA and/or diet behaviours in cancer survivors. To the extent of our knowledge, this is the first study providing such a comprehensive perspective.

Methods

This systematic review is reported in accordance with the PRISMA statement for reporting systematic reviews (Page et al., 2021). The methodological aspects of this review were specified in advance and documented in a protocol (PROSPERO registration number: CRD42021283338; see **Appendix 1**).

Eligibility Criteria

To be included, studies had to meet the following criteria: i) include adults aged 18 years or older, diagnosed with any type of cancer (at any point from diagnosis and at any stage of disease/treatment); ii) report on any theory-based RCT designed to influence PA and/or diet quality, including behavioural weight management interventions which typically target both these lifestyle behaviours. The intervention group could be compared with any parallel control group with no intervention/waiting list, usual care, or other interventions. The outcomes could be PA levels/volumes and/or diet quality and adherence.

Observational studies and non-intervention studies (e.g., cross-sectional and cohort studies, case reports), studies with no original data (e.g., reviews, editorials, commentaries), dissertations/thesis, qualitative studies, pilot studies, protocols and studies not published in peer-reviewed journals were excluded. All studies with children and adolescents or pharmacological or surgical interventions targeting diet and PA were also excluded.

Search Strategy

A comprehensive search of peer-reviewed articles published from inception until January 2022 (including online ahead of print publication) was conducted in three electronic databases - PubMed, PsycInfo and Web of Science -, using the following search strings:

 Terms concerning the health condition or population of interest (e.g., Cancer, cancer survivor, cancer patient);

- 2. Terms concerning the intervention (e.g., Lifestyle/behavioural interventions);
- Terms concerning the behaviour change outcomes of interest (e.g., Diet, PA, weight loss/maintenance/change);
- 4. Terms concerning the types of study to be included (i.e., RCT);

A sample of the search strategy is listed in the **Appendix 2.** Searches were limited to English language articles and humans. Other searches included manual crossreferencing of literature cited in prior reviews, and hand-searches of the content of key scientific journals.

Study Selection

All titles and abstracts identified from the literature searches were screened for potential eligibility by three researchers (BBF, BR and IN) and the full text of the remaining titles was retrieved and screened for potential eligibility by the same authors. Decisions to include or exclude studies in the review were made by consensus. When consensus was not achieved, disagreements were solved by discussion with a fourth author (IS or EVC). The study selection procedure was conducted using the CADIMA software (Kohl et al., 2018).

Data extraction

A data extraction form was developed by the authors, based on the information relevant to the present review and informed by the PRISMA statement for reporting systematic reviews (Page et al., 2021). Data extraction was conducted by three authors (BBF, BR and IN) and comprised information about the article (e.g., authors, year), participants (e.g., demographics, type of cancer, phase of treatment), brief intervention description (including the theoretical framework), outcomes of interest (instruments and time of assessment) and main findings.

Study quality assessment

Study quality was assessed with an adapted version of the Quality Assessment Tool for Quantitative Studies, developed by the Effective Public Health Practice Project (Thomas et al., 2004). The current adaptation was based on recommendations from several authors (Deeks et al., 2003; Mackenbach et al., 2014; Moher et al., 2000) and has been previously used (Mackenbach et al., 2014; Teixeira et al., 2015). This tool includes 19 items, organized in eight key methodological domains: study design, blinding, representativeness (selection bias), representativeness (withdrawals/dropouts), confounders, data collection, data analysis, and reporting. Each domain is classified as Strong, Moderate or Weak based on specific criteria. A global rating is determined based on the scores of each component. Two researchers independently rated each of the eight domains and overall quality (BBF, IN). Discrepancies were resolved by consensus. When consensus was not achieved, disagreements were solved by discussion with a third author (BR or IS or EVC).

Outcome measures

Total PA levels and/or discriminated by intensity or domains constituted one of the primary outcomes of this review, together with dietary intake and/or diet quality. Regarding PA, exercise energy expenditure (Kcal per day or week), volume (minutes per week or day), activity counts, step counts, or other measure of PA levels were considered. Concerning dietary intake, we considered caloric intake (Kcal per day or week), overall diet quality, and consumption (cup/ounces/grams/times/servings per day or week) of whole or refined grains, whole grain bread, fish, red and/or processed meat, fibre, alcohol, cruciferous, fruit, vegetables or fruit and vegetables.

Data Synthesis

This review analysed the impact of behavioural change interventions on PA and dietary outcomes in cancer survivors. Characteristics of the included studies were qualitatively synthesized and presented in tabular form, organized by i) outcome, and ii) number of theories used in each intervention.

Certainty assessment

Certainty of evidence refers to how confident we can be that a review provides a complete and accurate summary of the best available evidence, and thus, that an estimate of effect is correct (Granholm et al., 2019). Following the most recent PRISMA recommendations (Page et al., 2021), the certainty of the evidence gathered in the present review was assessed with the SURE *checklist* (The SURE Collaboration, 2011) by two researchers (*BBF, IN*). This checklist includes 5 criteria to assess the identification, selection, and appraisal of studies; 5 criteria to evaluate how findings were analysed in the review; and one criterion for other considerations). Based on the number and type of limitations identified on these criteria, a conclusion regarding the degree of confidence in the evidence of a systematic review is obtained.

Results

Search results

Database searches resulted in 2725 potentially relevant articles after duplicates removal (656 articles). Of these, 2593 were excluded based on title/abstract screening, leaving 132 articles for full-text screening. 26 articles met eligible criteria and were included in this review. **Figure 1** shows the flow diagram of studies through the review process and the reasons for exclusion.

Figure 1 PRISMA flow diagram

Studies' characteristics

Table 1 summarizes (and Appendices 3, 4 and 5 details) the characteristics of all included studies (k=26). Studies are synthetised by intervention topic: PA-only (k=15), diet-only (k=2), or multiple health behaviours (PA and diet) (k=9).

Population

Most studies (k = 13) included both men and women. Only one study (Parsons et al., 2020) focused on men only, whereas almost half of the studies (k = 12) included women only (Gruenigen et al., 2012, 2008; Hirschey et al., 2018; Kong et al., 2021; Pinto et al., 2013, 2015; Rogers et al., 2009, 2014; Short et al., 2015; Sturgeon et al., 2016; Vallance et al., 2016; Weiner et al., 2019). The mean age ranged from 46,1 to 66,5 years.

Seventeen studies focused on one type of cancer only and, in this subgroup, breast cancer (k = 10) was the most studied cancer (Gruenigen et al., 2012, 2008; Hirschey et al., 2018; Kong et al., 2021; Pinto et al., 2013, 2015; Rogers et al., 2009, 2014; Short et al., 2015; Sturgeon et al., 2016; Vallance et al., 2016; Weiner et al., 2019), followed by colorectal (k = 4) (M. Campbell et al., 2009; Courneya et al., 2016; Hawkes et al., 2013; C. F. Lee et al., 2018), endometrial (k = 2) (Gruenigen et al., 2012, 2008) and prostate cancer (k = 1) (Parsons et al., 2020). Two studies included two types of cancer (breast + prostate) (Mosher et al., 2012), (colorectal + prostate) (Golsteijn et al., 2018) and seven studies included \geq 3 cancers (Bélanger et al., 2014; Kanera et al., 2016; May et al., 2009; McGinnis et al., 2021; M. Miller et al., 2020; Ungar et al., 2016; Webb et al., 2019).

The two diet-only trials reported a total of 496 participants (range 53 – 443). One of them targeted prostate cancer survivors (Parsons et al., 2020) and the other included cancers of mixed diagnoses (M. Miller et al., 2020). The fifteen PA-only trials reported a total of 2567 participants (range 33 – 478). Eight trials targeted breast cancer survivors (Hirschey et al., 2018; Kong et al., 2021; Pinto et al., 2013, 2015; Rogers et al., 2014; Short et al., 2015; Vallance et al., 2016; Weiner et al., 2019), one colon cancer (Courneya et al., 2016), one targeted both colorectal and prostate cancer survivors (Golsteijn et al., 2018), and five included cancers of mixed diagnoses (Bélanger et al., 2014; May et al., 2009; McGinnis et al., 2021; Ungar et al., 2016; Webb et al., 2019). There were nine PA and diet trials, comprising a total of 2012 participants (range 35 – 489). Two trials

targeted breast cancer survivors (Rogers et al., 2009; Sturgeon et al., 2016), one targeted both breast and prostate cancer survivors (Mosher et al., 2012), two targeted endometrial cancer (Gruenigen et al., 2012, 2008), three colorectal (M. Campbell et al., 2009; Hawkes et al., 2013; C. F. Lee et al., 2018) and one included cancers of mixed diagnoses (Kanera et al., 2016).

Theoretical Framework

Most studies (k = 15) were based on one theory only, ten studies were based on two theories and one study was based on more than three theories.

The most used theory was the Social Cognitive Theory (k = 17) (M. Campbell et al., 2009; Golsteijn et al., 2018; Gruenigen et al., 2012, 2008; McGinnis et al., 2021; M. Miller et al., 2020; Mosher et al., 2012; Parsons et al., 2020; Pinto et al., 2013, 2015; Rogers et al., 2009, 2014; Short et al., 2015; Sturgeon et al., 2016; Webb et al., 2019; Weiner et al., 2019), which includes the Self-Efficacy Theory (a subset of Bandura's SCT) that was mentioned in one RCT (Hirschey et al., 2018), followed by the Transtheoretical Model (k = 7) (M. Campbell et al., 2009; Golsteijn et al., 2018; Kong et al., 2021; M. Miller et al., 2020; Pinto et al., 2013, 2015; Rogers et al., 2009) and the Theory of Planned Behaviour (k = 6) (Bélanger et al., 2014; Courneya et al., 2016; C. F. Lee et al., 2018; Short et al., 2015; Vallance et al., 2016; Webb et al., 2019). Other theories mentioned include: the Health Action Process Approach (HAPA), mentioned in 3 studies, the Integrated Model for Change (I-Change Model), mentioned in 2 studies, and the Self-Regulation Theory mentioned in 2 studies. All other theories, such as the Self-Management Theory, the Control Theory, Goal setting Theory, the Acceptance and Commitment Therapy, the Health Belief Model and Precaution Adoption Process Model were mentioned only once.

Intervention's mode of delivery

In what concerns to the **diet-only trials**, one intervention was delivered by telephone (Parsons et al., 2020) and divided in 4 phases: The first phase included 6 counselling telephone calls over 1 month; the second included 4 calls over 2 months; the third 4 calls over 4 months; and the fourth included 8 calls over 16 months plus one month of followup. The other intervention (M. Miller et al., 2020) was delivered weekly in face-to-face

Characteristics	Number of Studies
Sample Size	
<100	11
100-199	3
200-299	6
300-399	1
>=400	5
Participants	
Gender	
Both genders	13
Menonly	1
Women only	12
Mean age, years	
>= 18*	2
45-54,9	8
55-64	12
>=65	4
Types of cancers	
Breast	10
Colon	1
Colorectal	3
Endometrial	2
Prostate	1
2 types of cancer	2
Multiple Cancers	7
Theories used	
1 Theory	15
2 Theories	10
>= 3 Theories	1
Outcome Assessment	
< 6 months	9
= > 6 months	8
Both	9
Quality assessment score	
Weak	18
Moderate	8
Strong	0

Table 1 - Characteristics of included studies.

* Participants' age was grouped into ranges

90-min group meetings, during the 8-week intervention period plus 15 weeks of followup.

Regarding **PA-only trials**, interventions were delivered face to face (k = 3) (May et al., 2009; McGinnis et al., 2021; Rogers et al., 2014), by email or with online tools (k = 3) (Bélanger et al., 2014; Golsteijn et al., 2018; Webb et al., 2019), by telephone (k = 1) (Pinto et al., 2015) or by mail (k = 1) (Short et al., 2015), and using a booklet/resource kit (k=2) (Hirschey et al., 2018; Vallance et al., 2016). The other interventions (k = 5) used a combination of delivery formats, including telephone (Courneya et al., 2016; Kong et al., 2021; Pinto et al., 2013; Ungar et al., 2016; Weiner et al., 2019), face-to-face counselling (Courneya et al., 2016; Kong et al., 2021; Pinto et al., 2019), mail (Courneya et al., 2016) and email (Weiner et al., 2019). Interventions lasted 12 weeks on average (May et al., 2009; McGinnis et al., 2021; Pinto et al., 2015; Rogers et al., 2014; Short et al., 2015; Webb et al., 2019; Weiner et al., 2019) ranging from 1 week (Hirschey et al., 2018) up to 3 years (Courneya et al., 2014). The majority were home-based, with only 4 interventions reporting supervised PA sessions (Courneya et al., 2016; May et al., 2009; McGinnis et al., 2014).

In **combined trials**, interventions were delivered via an online program platform (k = 2) (Kanera et al., 2016; Sturgeon et al., 2016) by telephone (k = 1) (Hawkes et al., 2013), with face to face counselling (k = 1) (Rogers et al., 2009), mail (k = 1) (Mosher et al., 2012) and all others (k = 4) used a combination of delivery formats, including telephone (M. Campbell et al., 2009; Gruenigen et al., 2012, 2008; C. F. Lee et al., 2018), face-to-face counseling (Gruenigen et al., 2012, 2008; C. F. Lee et al., 2018), face-to-face counseling (Gruenigen et al., 2012, 2008; C. F. Lee et al., 2018), mail (C. F. Lee et al., 2018) and online tools (M. Campbell et al., 2009). Intervention duration was variable: 3 months (Rogers et al., 2009), 6 months (Gruenigen et al., 2012, 2008; Hawkes et al., 2013; Kanera et al., 2016), 10 months (Mosher et al., 2012) or 12 months (M. Campbell et al., 2009; C. F. Lee et al., 2018; Sturgeon et al., 2016). Only one study had supervised exercise training (Rogers et al., 2009).

Outcomes' assessment

The two **diet-only** studies evaluated dietary intake in terms of nutritional composition with interviews and a Nutrition Data System for Research software and

nutrient database(Parsons et al., 2020) or the Dietary Screener Questionnaire (DSQ) (M. Miller et al., 2020). During the 2-year intervention (Parsons et al., 2020), outcomes were assessed at baseline, 12-month and 24-month follow-up. In the other RCT (M. Miller et al., 2020), outcomes were assessed at baseline, post-intervention (9 week), and at follow-up (15 week).

Regarding **PA-only trials**, one trial used an objective measure (accelerometer) to assess PA behaviour change (Weiner et al., 2019), while eight studies relied on selfreported measures such as the original or adapted versions of the Seven-Day Physical Activity Recall (7-PAR), the Global Physical Activity Questionnaire (GPAQ), the Godin Leisure-Time Exercise Questionnaire (GLTEQ), the Leisure Score Index from Godin Leisure-Time Exercise Questionnaire (LSI), the Physical Activity Scale for the Elderly (PASE), the Self-reported Short Questionnaire to Assess Health-enhancing PA (SQUASH), the Total Physical Activity Questionnaire (TPAQ) (Bélanger et al., 2014; Courneya et al., 2016; Kong et al., 2021; May et al., 2009; McGinnis et al., 2021; Pinto et al., 2013; Ungar et al., 2016; Webb et al., 2019). All others (k = 6) used both a subjective and an objective measure (such as an accelerometer, a pedometer and a Fitbit®) to assess PA. Outcomes were assessed at baseline, immediately post-intervention (Courneya et al., 2016; Kong et al., 2021; May et al., 2009; McGinnis et al., 2021; Pinto et al., 2013, 2015; Rogers et al., 2014; Ungar et al., 2016; Webb et al., 2019; Weiner et al., 2019), during the intervention (Courneya et al., 2016; Golsteijn et al., 2018; Pinto et al., 2013), and at follow-up (Golsteijn et al., 2018; Hirschey et al., 2018; Kong et al., 2021; Pinto et al., 2013, 2015; Rogers et al., 2014; Short et al., 2015; Ungar et al., 2016; Vallance et al., 2016; Webb et al., 2019).

In the nine **PA and diet trials**, two types of dietary outcomes were evaluated, using a range of self-reported measures and questionnaires: caloric intake (Gruenigen et al., 2012, 2008; Mosher et al., 2012; Rogers et al., 2009; Sturgeon et al., 2016) and dietary intake (M. Campbell et al., 2009; Gruenigen et al., 2012; Hawkes et al., 2013; Kanera et al., 2016; C. F. Lee et al., 2018; Mosher et al., 2012), with one study assessing overall diet quality using the 100-point Diet Quality Index-Revised score (Mosher et al., 2012). In terms of PA assessment two trials used an objective measure (accelerometer) to assess PA behaviour change (Lee et al., 2018; Rogers et al., 2009) while six studies relied on self-reported measures such as the original or adapted versions of the Seven-Day Physical Activity Recall (7-PAR), the Leisure Score Index from Godin Leisure-Time Exercise Questionnaire (LSI), the Self-reported Short QUestionnaire to ASsessHealth-enhancing PA (SQUASH), and an interviewer administered Modifiable Activity Questionnaire (M. Campbell et al., 2009; Gruenigen et al., 2008; Hawkes et al., 2013; Kanera et al., 2016; Mosher et al., 2012; Sturgeon et al., 2016). The last study used both an objective (pedometer) and a subjective measure to assess PA (V. von Gruenigen et al., 2012). Outcomes were assessed at baseline, immediately after the end of intervention (M. Campbell et al., 2009; Gruenigen et al., 2012, 2008; Hawkes et al., 2013; Kanera et al., 2016; C. F. Lee et al., 2018; Rogers et al., 2009; Sturgeon et al., 2016), and before, during the intervention (Gruenigen et al., 2012, 2008; C. F. Lee et al., 2013; C. F. Lee et al., 2012; Rogers et al., 2012, 2008; Hawkes et al., 2013; C. F. Lee et al., 2012; Rogers et al., 2012, 2008; Hawkes et al., 2013; C. F. Lee et al., 2012; Rogers et al., 2012, 2008; Hawkes et al., 2013; C. F. Lee et al., 2012; Rogers et al., 2012, 2008; Hawkes et al., 2013; C. F. Lee et al., 2012; Rogers et al., 2012, 2008; Hawkes et al., 2013; C. F. Lee et al., 2012; Rogers et al., 2009).

Synthesis of results

The characteristics extracted from the included RCTs are detailed in **Appendixes 3, 4** and **5** and summarized in **Table 2.**

Diet-only Trials

In diet-only trials, one RCT was based on **Social Cognitive Theory** (Parsons et al., 2020) and reported significant improvements in every aspect of dietary intake. The other RCT was based on **Social Cognitive Theory and the Transtheoretical Model**, reporting significantly lower daily servings of processed meat at 9 weeks and 15 weeks in the intervention group, but no statistically significant differences in fruits and vegetables and whole grain consumption between groups (M. Miller et al., 2020).

PA-only Trials

Regarding PA-only trials, the RCT which was based on the **HAPA** (Ungar et al., 2016) reported significant behaviour changes on self-reported PA 4 weeks after intervention, but no significant differences 14 weeks after intervention, when compared to the control group. Interventions based on the **Self-Management Theory** (May et al., 2009), or the **Transtheoretical Model** (Kong et al., 2021), reported no effect on subjectively measured PA between groups. Three studies used the **Theory of Planned Behaviour**; of

these, one reported that the intervention was not statistically superior when compared to a standard recommendation for both objective (daily average pedometer steps) and subjective PA (light intensity PA (LPA) minutes, moderate intensity PA (MPA) minutes, vigorous intensity PA minutes and total moderate to vigorous PA (MVPA) minutes per day) (Vallance et al., 2016); significant differences were reported in PA from baseline to 1 year (Courneya et al., 2016) and in total PA at 3 months in the subgroup of participants who initially reported ≤300 minutes/week of PA and participated in the intervention group compared to the control group (Bélanger et al., 2014). Of the two studies based on Social Cognitive Theory (SCT), one study reported a greater increase in minutes per week of MVPA in the intervention group compared to the control group, although hypothesis testing was not performed (McGinnis et al., 2021) and the other reported significant improvements for PA measured by accelerometery at 3 months and in selfreported PA at 3 and 6 months, when compared with the control group (Rogers et al., 2014). There was still an RCT based on Self-Efficacy Theory (a subset of Bandura's SCT) that reported positive significant differences in objectively measured steps but not in self-reported PA between intervention and control groups (Hirschey et al., 2018). Five RCTs used a combination of SCT and another theory. Considering the two interventions using SCT plus Theory of Planned Behaviour, there was an improvement in selfreported PA at 3 months (Webb et al., 2019) compared to the control arm. At 4 months, the tailored intervention group significantly reduced the odds of not doing any resistance-based PA, while increasing the odds of meeting resistance training guidelines (Short et al., 2015); no change was observed in the odds of meeting aerobic guidelines or on mean daily steps. Regarding the two RCTs using SCT plus the Transtheoretical Model, increases in intervention participants' subjectively measured MPA (Pinto et al., 2013) and in both self-reported and accelerometer measured MVPA (Pinto et al., 2015) were reported at both 3 and 6 months, when compared to the control group, although this beneficial effect dissipated at 12 months (Pinto et al., 2013). The intervention which used SCT plus Control Theory reported no differences between groups in objectively measured LPA but positive significant differences in accelerometer measured MVPA (Weiner et al., 2019).

Outcome	Number of Reports	Positive Results	Theories used	Negative Results	Theories used	
Diet-only Trials						
Dietary Intake	2	2	1 SCT 1 SCT + TTM	-	-	
PA-only Trials						
Objective PA	8	5	1 SCT 1 SCT + TTM 1 SCT + Control Theory 1 SCT + TTM + HAPA + I- Change + 1 Self-Efficacy	3	1 SCT + Control Theory 1 SCT + TPB 1 TBP	
Subjective PA	14	9	1 SCT 2 SCT + TTM 2 SCT + TPB 2 TBP 1HAPA 1 SCT + TTM + HAPA + I- Change +	5	1 SCT* (p-value NA) 1 TTM 1 TBP 1 Self-Efficacy 1 Self-Management	
Diet and PA Trials						
Caloric intake	5	2	2 SCT	3	2 SCT 1 SCT + TTM	
Diet quality	1	1	1 SCT	-	-	
Dietary intake	8	3	1 SCT 1 SCT + TTM 1 TPB + HAPA	5	1 SCT 2 SCT + TTM 1 ACT 1 I-Change + SRT	
Objective PA	4	4	1 SCT 2 SCT + TTM 1 TBP + HAPA	-	-	
Subjective PA	7	5	4 SCT 1 ACT	2	1 SCT + TTM 1 I-Change + SRT	

Table 2 – Summary of results by outcome.

One study (Golsteijn et al., 2018)) used **multiple theories**: SCT, Transtheoretical Model, HAPA, Integrated Model for Change (I-Change Model), Health Belief model, goal setting theories, self-regulation theories and the Precaution Adoption Process Model. At 3 months, participants in the intervention group significantly improved MVPA and days with at least 30 min of PA, and at 6 months, results indicated significant improvements in self-reported PA. Objectively measured MVPA also increased significantly in the intervention group, whereas the increase in objectively assessed days \geq 30 min of PA was borderline significant.

Diet and PA Trials

In combined trials, the RCT based on **Acceptance and Commitment Therapy** (Hawkes et al., 2013) had no significant group differences found at 6 or 12 months for fruit, fibre, or alcohol intake but the intervention group was more likely to meet Australian PA recommendations, when compared to the control group.

Four RCTs used **Social Cognitive Theory** (Gruenigen et al., 2012, 2008; Mosher et al., 2012; Sturgeon et al., 2016). One (Gruenigen et al., 2012) reported significant improvements between intervention and control groups, in every aspect of diet intake including caloric intake and another RCT showed significant differences in total percent of calories from fat, and in diet quality, measured with the Diet Quality Index-Revised score, although fruit and vegetable intake did not significantly differ between groups at the 2-year follow-up (Mosher et al., 2012). The remaining two studies reported non-significant differences for caloric intake (Gruenigen et al., 2008; Sturgeon et al., 2016) in the intervention groups.

As for PA, one study reported positive results on both objectively and subjectively measured PA: at 3 months, only the PA subjectively measured with the LSI reported significant improvements, while at 6 months positive significant differences were reported for steps per day, LSI and in PA minutes; at 12 months there were still positive significant differences in LSI and in PA minutes (Gruenigen et al., 2012). The remaining three studies focused only on subjectively measured PA and reported significant differences in PA measured with the LSI at 3, 6 and 12 months (Gruenigen et al., 2008), and for daily caloric expenditure by the end of the 12-month intervention (Sturgeon et al.)

al., 2016). One study reported non-significant differences between groups (Mosher et al., 2012).

Risk of Bias assessment

Risk of bias results are reported in **Table 3**, which shows the detailed classification of each quality domain and the overall methodological quality of each study.

The two diet-only studies were classified as having weak methodological quality (M. Miller et al., 2020; Parsons et al., 2020). Of the fifteen PA-only studies, five were rated as moderate (May et al., 2009; Pinto et al., 2013; Rogers et al., 2014; Short et al., 2015; Webb et al., 2019), and ten as weak (Bélanger et al., 2014; Courneya et al., 2016; Golsteijn et al., 2018; Hirschey et al., 2018; Kong et al., 2021; McGinnis et al., 2021; Pinto et al., 2015; Ungar et al., 2016; Vallance et al., 2016; Weiner et al., 2019). In the nine multiple behaviour studies, three were rated as moderate (M. Campbell et al., 2009; Hawkes et al., 2013; C. F. Lee et al., 2018) and six as weak (Gruenigen et al., 2012, 2008; Kanera et al., 2016; Mosher et al., 2012; Rogers et al., 2009; Sturgeon et al., 2016).

Every study scored strong on the study design, as they were experimental. The most common areas with a high risk of bias were selection bias, given that all studies involved samples of volunteers, being classified as weak. Blinding was not performed in several studies, constituting an additional source of bias. This happened because all participants were aware of the research question, and if the outcome assessor was also aware of the intervention status of participants, studies were rated as weak methodological quality. Seven studies were rated as weak as the control of confounders was not described. In terms of data collection tools, all studies were rated as strong, discussing validity and reliability of data collection tools, except for one study (Gruenigen et al., 2012), which was classified as moderate. Most studies (n=18) scored strong in the use of appropriate statistical analyses, while the rest scored moderate.

Assessment of the certainty of evidence

Assessment of the certainty of evidence results are reported in **Appendix 6.** The SURE checklist (The SURE Collaboration, 2011) indicated that this systematic review has

Diet only	rating
Diet only	ag Weak
	og Wook
(M. Miller et Strong Weak Weak Moderate Weak Strong Moderate Stro	ig weak
al., 2020)	
(Parsons et Strong Weak Weak Strong Weak Strong Str	ng Weak
al., 2020)	
PA only	
(Webb et al., Strong Moderate Weak Strong St	ng Moderate
2019)	
(Hirschey et Strong Weak Weak Strong Strong Strong Moderate Stro	ng Weak
al., 2018)	
(Pinto et al., Strong Moderate Weak Strong S	ng Moderate
2013)	
(Ungar et al., Strong Weak Weak Strong Weak Strong Moderate Stro	ng Weak
2016)	
(Weiner et Strong Weak Weak Moderate Strong	ng Weak
al., 2019)	
(Kong et al., Strong Weak Weak Strong	ng Weak
2021)	
(Courneya, Strong Weak Weak Strong Weak Strong Moderate Stro	ng Weak
2010)	
(Bélanger et Strong Weak Weak Strong	ng Weak
al., 2014)	
(Rogers et al., Strong Moderate Weak Strong	ng Moderate
2014)	
(Vallance et Strong Weak Weak Strong	ng Weak
al., 2016)	
(McGinnis et Strong Moderate Weak Strong Weak Strong Moderate Mode	rate Weak
al., 2021)	
(May et al., Strong Moderate Weak Strong Strong Strong Strong Mode	rate Moderate
2009)	

Table 3 – Risk of bias assessment.

(Short et al.,	Strong	Moderate	Weak	Strong	Moderate	Strong	Strong	Strong	Moderate
2015)									
(Pinto et al.,	Strong	Weak	Weak	Strong	Moderate	Strong	Moderate	Moderate	Weak
2015)									
(Golsteijn et	Strong	Weak	Weak	Moderate	Strong	Strong	Strong	Strong	Weak
al., 2018)									
Diet + PA									
(M. Campbell	Strong	Moderate	Weak	Strong	Strong	Strong	Moderate	Moderate	Moderate
et al., 2009)									
(Sturgeon et	Strong	Moderate	Weak	Strong	Weak	Strong	Moderate	Strong	Weak
al., 2016)									
(Lee et al.,	Strong	Moderate	Weak	Strong	Strong	Strong	Strong	Strong	Moderate
2018)									
(Hawkes et	Strong	Moderate	Weak	Strong	Strong	Strong	Strong	Strong	Moderate
al., 2013)									
(Gruenigen et	Strong	Weak	Weak	Strong	Moderate	Strong	Strong	Strong	Weak
al., 2008)									
(Kanera et	Strong	Weak	Weak	Strong	Strong	Strong	Strong	Strong	Weak
al., 2016)									
(Mosher et	Strong	Weak	Weak	Strong	Strong	Strong	Strong	Strong	Weak
al., 2012)		_							
(Rogers et al.,	Strong	Weak	Weak	Strong	Weak	Strong	Strong	Strong	Weak
2009)	_				_			_	
(Gruenigen	Strong	Weak	Weak	Moderate	Strong	Moderate	Strong	Strong	Weak
et al., 2012)									

important limitations. First, language bias was not avoided, considering that the search was restricted to papers written in English. Therefore, a more comprehensive search could have resulted in a higher number of retrieved papers. Second, the list of excluded studies was not provided. Third, results could not be combined, and heterogeneity could not be explored due to methodological differences in studies and to scarcity of studies per theory. Nevertheless, the findings of the current systematic review can be considered as reliable.

Discussion

Overview of findings

The aim of this systematic review was to synthesize the existing literature on the effectiveness of theory-based behaviour change interventions on PA and/or diet targeting cancer survivors, to better inform future interventions designed to assist cancer survivors in making positive PA and diet behaviour changes. Twenty-six trials were included, generally supporting the efficacy of theory-based interventions in changing PA and diet behaviour in cancer survivors.

Our results indicated that diet-only interventions have beneficial effects on at least one aspect of dietary intake (e.g., reducing the consumption of processed meat), while only five out of nine interventions focusing on multiple behaviours showed statistically significant improvements in at least one aspect of diet. Three of the four trials that did not find improvements in dietary intake had the primary aim of decreasing weight (Gruenigen et al., 2008), improving PA and health-related quality of life (Hawkes et al., 2013), and improving cardiovascular and bone health outcomes (Sturgeon et al., 2016), which may explain the absence of results in diet-related aspects. On the other hand, six of these nine multiple behaviour trials reported significant improvements in PA. In PAonly trials, eleven out of fifteen RCTs showed beneficial effects on PA. SCT seems to be the most studied theory when it comes to interventions designed to change and maintain PA and dietary behaviours, followed by the Transtheoretical Model (n = 7) and the Theory of Planned Behaviour (n = 6). All other theories were addressed in 3 or less interventions.

In diet-only RCTs, interventions based on SCT only or in combination with TTM, showed significant improvements in at least one aspect of diet. The same happened with PA-only trials, where interventions based on SCT only or in combination with other theories, such as TTM, TPB and Control Theory, and Self-Efficacy Theory (a subset of Bandura's SCT), showed beneficial effects on PA. As for combined trials, of the four RCTs that used SCT, two had significant improvements in at least one aspect of diet while 3 had significant improvements in PA. Of the other two RCTs which were based in SCT plus

TTM, one reported significant improvement in one aspect of diet and the other one in accelerometer measured PA. Our positive results mirror the results reported in a recent meta-analysis (Stacey et al., 2015) which found that SCT-based interventions targeting diet or physical activity, in cancer survivors, are safe and result in meaningful changes in diet and physical activity behaviours that can result in health improvements. In fact, self-efficacy is the central construct in SCT, among other key constructs, influencing behaviour directly (i.e., by believing in their abilities to apply skills effectively in difficult situations, individuals change their behaviour) and indirectly (i.e., by influencing their motivation to change the behaviours (Bandura, 2004, 2007).

Three of the PA-only RCTs were based on TPB and reported positive results in at least one aspect of PA in each of these studies. Three of the interventions that used TPB in combination with other theories (HAPA or SCT) also reported positive results in PA, and in both diet and PA. This theory proposes that attitudes, subjective norms, and perceived behavioural control are antecedents of intentions, which is one of the best predictors of behaviour (Ajzen, 1991), and has been previously used in many interventions in different contexts/populations. For example, one RCT targeting the general population, found an increase in perceived behavioural control, and that attitudes and intentions became stronger; objectively measured walking increased from 20 minutes on the day after the intervention to 32 minutes per day at 6-week follow-up (Darker et al., 2010). Previous meta-analyses (Godin & Kok, 1996; McEachan et al., 2011) have also demonstrated the capacity of the TPB-based interventions to predict dietary behaviours.

One RCT that used TTM showed no significant improvements in PA; three out of four RCTs that were based in TTM together with other theories, reported beneficial effects in PA, and two out of three RCTs showed significant improvements in at least one aspect of diet. Taken together, these results seem to be in line with those reported by a recent review examining mediators of PA behaviour change in healthy adults (Rhodes & Pfaeffli, 2010), which stated that TTM-based interventions show mixed results in terms of efficacy. When it comes to diet, an RCT using TTM and targeting people with diabetes (Jones et al., 2003) reported a significant decrease in energy intake from fat, higher daily vegetable and fruit intake, and a decrease in HbA1C, when compared to usual care,

25

acknowledging, however, the importance of more studies to validate the efficacy of the TTM in nutrition counselling.

Interventions based on HAPA showed improvements in every outcome tested, related to PA or diet, at least at some moments in time, even when based also in other theories. These results are consisted with those found in a pilot RCT that tested a HAPA-based intervention and showed significant increases in the frequency of breaks from sitting in full-time university students (Sui & Prapavessis, 2018).

Other theories such as ACT, Control Theory (used in combination with SCT), I-Change, the SRT or the Self-Management Theory, were used in very few RCTs, thus making it difficult to draw conclusions about their effectiveness. Interestingly, no selfdetermination theory (SDT)-based behavioural interventions targeting dietary and/or PA changes in cancer survivors were found, although prior research has shown that internal (better quality) of motivations play an important role in long-term, sustained, behaviours adoption (Silva et al., 2010; Teixeira et al., 2012; Wyke et al., 2019), supporting the use of SDT as a valid framework.

Most studies (k = 13) included both men and women, although almost half of the studies (k = 12) included women only. Seventeen studies focused on one type of cancer only, two studies included two types of cancer and seven studies included \geq 3 cancers. Breast cancer was the most studied type of cancer, which is consistent with the fact that it is the most diagnosed cancer in women, and also the leading cause of cancer death in this population. In men, lung cancer is the most diagnosed cancer and the number one cause of cancer death (Sung et al., 2021). Nevertheless, none of the studies focusing in one or two types of cancer addressed it and only one of the studies with multiple cancer mentioned it, even in a small percentage of its population. Colorectal and prostate cancer, which are highly diagnosed (Sung et al., 2021), were also some of the cancers most studied in this systematic review. Intervention duration was highly variable, ranging from 1 week up to 3 years, as well as outcome assessment, with most studies assessing its outcomes 6 or more months after intervention.

Most interventions (k=13) used face-to-face counselling, others (k=12) were delivered by phone, and many (k=7) were delivered by email or other online

26

tools/platforms. In some RCTs, interventions were also delivered through mail and using a booklet/resource kit. This is an important aspect to be taken into consideration since the way interventions are delivered may influence their outcomes and because healthpromotion interventions should be as entertaining and engaging as possible specially when compared with other competing activities. Communication technologies play an essential role in everyday life and should therefore be used to engage people's interest in a better healthy life (Glanz & Bishop, 2010).

This is the first study summarising the evidence of RCTs evaluating the effects of multiple behaviour change theories on both PA and dietary patterns targeting cancer survivors with multiple types of cancer, providing a broad overview over a large number of theory-based interventions by gathering the most relevant evidence published so far.

Limitations and suggestions for future research

The present systematic review has a number of limitations that should be taken into consideration when interpreting the results. This review comprehensively searched several databases; however, it made no attempt to search for non-English publications or unpublished literature and the list of excluded studies was not provided.

Pilot studies were excluded as well as study protocols. Studies needed to explicitly state that the intervention was based on a behaviour change theory, which was very dependent on the author's trial description. Consequently, in trials where it was unclear if the study was based on a theoretical framework or that did not specify which theory the intervention was based on, were excluded. The review included a broad definition of cancer survivors, including those both during and after completion of active treatment. While this increases the breadth of evidence, it likely contributed to the heterogeneity of the included studies.

Outcomes regarding body weight and sedentary behaviour were not included; therefore, some studies indirectly targeting PA may have been excluded. The limited number of trials addressing diet only limits the conclusions that can be drawn regarding this type of interventions although the literature suggests that behaviour change
interventions should aim to promote changes in both diet and physical activity concomitantly (Greaves et al., 2011).

In this review, more than two thirds of the studies were scored as "weak quality" and the remaining interventions were scored as "moderate quality". This finding suggests the need for improvements in research methodologies, especially regarding the process of selection of participants, the blinding of participants and staff assigned to assess the outcomes, and the need for adjustment of the analysis for confounders. However, these are characteristics under researchers' control and therefore are simple to solve in future research if careful planning and implementation procedures are taken.

Additionally, PA outcomes were predominantly based on self-reported data, with only 7 PA-only and 3 combined PA and diet trials reporting objectively measured PA. Only 2 of the trials included in this review focused on promoting resistance training (May et al., 2009; Short et al., 2015), despite current recommendations saying that strength training should be performed at least two days a week, involving the main muscle groups (K. L. Campbell et al., 2019) and despite the clinically important positive effects on muscular function and body composition resistance training has shown to produce in cancer patients during and after cancer treatment in a recent review and meta-analysis (Strasser et al., 2013). Moreover, trials that focused on PA behaviours had predominantly unsupervised interventions, that can limit the involvement and motivation of participants and thus, the beneficial effects of these types of interventions.

Furthermore, results could not be combined and quantitatively summarised due to methodological differences in studies and to the scarcity of studies per theory. Comparing the effectiveness between interventions using different health theories through meta-analysis would be a useful gap to address in the future, as would be research assessing whether single or multiple health behaviour interventions have the greatest benefit to improve PA and diet behaviours. Additionally, the testing of moderators, such as the mode of delivery, may help to enlighten future interventions targeting this specific population.

Further work should also include trials which focus on resistance training that meet current recommendations, as well as supervised exercise training. The development of criteria to assess to what extent interventions are based on theoretical frameworks, so that scientist can understand which components and behaviour change techniques are essential to initiate and maintain healthy behaviours and therefore develop programs and guidelines to support this population to increase and maintain PA levels and a healthy diet, is critical.

Despite the limitations of this review, it seems that theory-based interventions are useful for improving PA and diet behaviours of cancer survivors.

Conclusions

This systematic review suggest that theory-based interventions seem to be important when it comes to improving PA and diet behaviours in cancer survivors. SCT seems to be the most used theory of reference when it comes to interventions designed to change and maintain PA and dietary behaviours, showing promising results. Other theories, such as TPB, TTM and HAPA also show favourable results.

Further work is required to understand how and why these interventions offer promise for improving behaviour. This information can contribute to the development of more effective interventions designed to promote adherence to lifestyle behaviours. Notwithstanding the beneficial effects of the 21 interventions included in this systematic review and the valuable indications about the theories behind, more research is needed to identify optimal features of interventions for cancer survivors.

Final remark

This systematic review is being prepared to be submitted to Cancer, one of the American Cancer Society journals (IF 6.860).

Part of the results of this systematic review was presented in the Annual Meeting of the International Journal of Behavioural Nutrition and Physical Activity (ISBNPA), which took place in Phoenix, Arizona, USA, during May 2022 (**Appendix 7**).

Conflict of interest

The authors have no potential financial or personal conflicts of interest to disclose in relation to this work.

References

- Ajzen, I. (1991). The theory of planned behavior. *Organizational Behavior and Human Decision Processes*, *50*(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T
- Bandura, A. (2004). Health promotion by social cognitive means. Health Education & Behavior : The Official Publication of the Society for Public Health Education, 31(2), 143–164. https://doi.org/10.1177/1090198104263660
- Bandura, A. (2007). Health promotion from the perspective of social cognitive theory. *Https://Doi.Org/10.1080/08870449808407422, 13*(4), 623–649. https://doi.org/10.1080/08870449808407422
- Bélanger, L. J., Mummery, W. K., Clark, A. M., & Courneya, K. S. (2014). Effects of Targeted Print Materials on Physical Activity and Quality of Life in Young Adult Cancer Survivors During and After Treatment: An Exploratory Randomized Controlled Trial. *Https://Home.Liebertpub.Com/Jayao*, 3(2), 83–91. https://doi.org/10.1089/JAYAO.2013.0021
- Blanchard, C. M., Courneya, K. S., & Stein, K. (2008). Cancer survivors' adherence to lifestyle behavior recommendations and associations with health-related quality of life: Results from the American Cancer Society's SCS-II. *Journal of Clinical Oncology*, 26(13), 2198–2204. https://doi.org/10.1200/JCO.2007.14.6217
- Blaney, J. M., Lowe-Strong, A., Rankin-Watt, J., Campbell, A., & Gracey, J. H. (2013). Cancer survivors' exercise barriers, facilitators and preferences in the context of fatigue, quality of life and physical activity participation: a questionnaire-survey. *Psycho-Oncology*, 22(1), 186–194. https://doi.org/10.1002/PON.2072
- Bodai, B. I., & Tuso, P. (2015). Breast cancer survivorship: a comprehensive review of long-term medical issues and lifestyle recommendations. *The Permanente Journal*, 19(2), 48–79. https://doi.org/10.7812/TPP/14-241

- Bozzetti, F. (2009). Screening the nutritional status in oncology: a preliminary report on 1,000 outpatients. *Supportive Care in Cancer : Official Journal of the Multinational Association of Supportive Care in Cancer, 17*(3), 279–284. https://doi.org/10.1007/S00520-008-0476-3
- Bray, F., Laversanne, M., Weiderpass, E., & Soerjomataram, I. (2021). The everincreasing importance of cancer as a leading cause of premature death worldwide. *Cancer*, 127(16), 3029–3030. https://doi.org/10.1002/CNCR.33587
- Campbell, K. L., Winters-Stone, K. M., Wiskemann, J., May, A. M., Schwartz, A. L., Courneya, K. S., Zucker, D. S., Matthews, C. E., Ligibel, J. A., Gerber, L. H., Morris, G. S., Patel, A. v., Hue, T. F., Perna, F. M., & Schmitz, K. H. (2019). Exercise Guidelines for Cancer Survivors: Consensus statement from International Multidisciplinary Roundtable. *Medicine and Science in Sports and Exercise*, *51*(11), 2375. https://doi.org/10.1249/MSS.00000000002116
- Campbell, M., Carr, C., Devellis, B., Switzer, B., Biddle, A., Amamoo, M. A., Walsh, J., Zhou, B., & Sandler, R. (2009). A randomized trial of tailoring and motivational interviewing to promote fruit and vegetable consumption for cancer prevention and control. *Annals of Behavioral Medicine : A Publication of the Society of Behavioral Medicine*, 38(2), 71–85. https://doi.org/10.1007/S12160-009-9140-5
- Caspersen CJ, Powell KE, & Christenson GM. (1985). Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. *Public Health Reports*, *100*(2), 126. /pmc/articles/PMC1424733/?report=abstract
- Cormie, P., Zopf, E. M., Zhang, X., & Schmitz, K. H. (2017). The Impact of Exercise on Cancer Mortality, Recurrence, and Treatment-Related Adverse Effects. *Epidemiologic Reviews*, 39(1), 71–92. https://doi.org/10.1093/EPIREV/MXX007
- Courneya, K. S. (2010). Efficacy, effectiveness, and behavior change trials in exercise research. *International Journal of Behavioral Nutrition and Physical Activity*, 7(1), 1–12. https://doi.org/10.1186/1479-5868-7-81/FIGURES/3
- Courneya, K. S., Vardy, J. L., O'Callaghan, C. J., Friedenreich, C. M., Campbell, K. L., Prapavessis, H., Crawford, J. J., O'Brien, P., Dhillon, H. M., Jonker, D. J., Chua, N. S.,

Lupichuk, S., Sanatani, M. S., Gill, S., Meyer, R. M., Begbie, S., Bonaventura, T., Burge, M. E., Turner, J., ... Booth, C. M. (2016). Effects of a Structured Exercise Program on Physical Activity and Fitness in Colon Cancer Survivors: One Year Feasibility Results from the CHALLENGE Trial. *Cancer Epidemiology, Biomarkers & Prevention : A Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology, 25*(6), 969–977. https://doi.org/10.1158/1055-9965.EPI-15-1267

- Cramp, Fiona., & Byron-Daniel, James. (2012). Exercise for the management of cancerrelated fatigue in adults. *Cochrane Database of Systematic Reviews*, 2012(11). https://doi.org/10.1002/14651858.CD006145.PUB3/INFORMATION/EN
- Darker, C. D., French, D. P., Eves, F. F., & Sniehotta, F. F. (2010). An intervention to promote walking amongst the general population based on an "extended" theory of planned behaviour: a waiting list randomised controlled trial. *Psychology & Health*, 25(1), 71–88. https://doi.org/10.1080/08870440902893716
- Deeks, J. J., Dinnes, J., D'Amico, R., Sowden, A. J., Sakarovitch, C., Song, F., Petticrew, M.,
 & Altman, D. G. (2003). Evaluating non-randomised intervention studies. *Health Technology Assessment* (Winchester, England), 7(27). https://doi.org/10.3310/HTA7270
- Glanz, K., & Bishop, D. B. (2010). The role of behavioral science theory in development and implementation of public health interventions. *Annual Review of Public Health*, 31, 399–418. https://doi.org/10.1146/ANNUREV.PUBLHEALTH.012809.103604
- Godin, G., & Kok, G. (1996). The theory of planned behavior: A review of its applications to health- related behaviors. *American Journal of Health Promotion*, *11*(2), 87–98. https://doi.org/10.4278/0890-1171-11.2.87
- Golsteijn, R. H. J., Bolman, C., Volders, E., Peels, D. A., de Vries, H., & Lechner, L. (2018).
 Short-term efficacy of a computer-tailored physical activity intervention for prostate and colorectal cancer patients and survivors: A randomized controlled trial. *International Journal of Behavioral Nutrition and Physical Activity*, 15(1), 1–14. https://doi.org/10.1186/S12966-018-0734-9/TABLES/4

- Granholm, A., Alhazzani, W., & Møller, M. H. (2019). Use of the GRADE approach in systematic reviews and guidelines. *British Journal of Anaesthesia*, 123(5), 554–559. https://doi.org/10.1016/J.BJA.2019.08.015
- Greaves, C. J., Sheppard, K. E., Abraham, C., Hardeman, W., Roden, M., Evans, P. H., & Schwarz, P. (2011). Systematic review of reviews of intervention components associated with increased effectiveness in dietary and physical activity interventions. *BMC Public Health*, *11*(1), 1–12. https://doi.org/10.1186/1471-2458-11-119/TABLES/2
- Grimmett, C., Corbett, T., Brunet, J., Shepherd, J., Pinto, B. M., May, C. R., & Foster, C. (2019). Systematic review and meta-analysis of maintenance of physical activity behaviour change in cancer survivors. *International Journal of Behavioral Nutrition and Physical Activity*, *16*(1), 1–20. https://doi.org/10.1186/S12966-019-0787-4/TABLES/3
- Gruenigen, V., Frasure, H., Kavanagh, M. B., Janata, J., Waggoner, S., Rose, P., Lerner, E., & Courneya, K. S. (2012). Survivors of uterine cancer empowered by exercise and healthy diet (SUCCEED): A randomized controlled trial. *Gynecologic Oncology*, *125*(3), 699–704. https://doi.org/10.1016/J.YGYNO.2012.03.042
- Gruenigen, Vivian., Courneya, K. S., Gibbons, H. E., Kavanagh, M. B., Waggoner, S. E., & Lerner, E. (2008). Feasibility and effectiveness of a lifestyle intervention program in obese endometrial cancer patients: A randomized trial. *Gynecologic Oncology*, *109*(1), 19–26. https://doi.org/10.1016/J.YGYNO.2007.12.026
- Hawkes, A. L., Chambers, S. K., Pakenham, K. I., Patrao, T. A., Baade, P. D., Lynch, B. M., Aitken, J. F., Meng, X., & Courneya, K. S. (2013). Effects of a telephone-delivered multiple health behavior change intervention (CanChange) on health and behavioral outcomes in survivors of colorectal cancer: a randomized controlled trial. *Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology*, *31*(18), 2313–2321. https://doi.org/10.1200/JCO.2012.45.5873
- Hirschey, R., Kimmick, G., Hockenberry, M., Shaw, R., Pan, W., Page, C., & Lipkus, I. (2018). A randomized phase II trial of MOVING ON: An intervention to increase

exercise outcome expectations among breast cancer survivors. *Psycho-Oncology*, 27(10), 2450–2457. https://doi.org/10.1002/PON.4849

- Hojman, P., Gehl, J., Christensen, J. F., & Pedersen, B. K. (2018). Molecular Mechanisms
 Linking Exercise to Cancer Prevention and Treatment. *Cell Metabolism*, 27(1), 10–
 21. https://doi.org/10.1016/J.CMET.2017.09.015
- Jones, H., Edwards, L., Vallis, T. M., Ruggiero, L., Rossi, S. R., Rossi, J. S., Greene, G., Prochaska, J. O., & Zinman, B. (2003). Changes in diabetes self-care behaviors make a difference in glycemic control: the Diabetes Stages of Change (DiSC) study. *Diabetes Care*, *26*(3), 732–737. https://doi.org/10.2337/DIACARE.26.3.732
- Kampshoff, C. S., Stacey, F., Short, C. E., van Mechelen, W., Chinapaw, M. J. M., Brug, J., Plotnikoff, R., James, E. L., & Buffart, L. M. (2016). Demographic, clinical, psychosocial, and environmental correlates of objectively assessed physical activity among breast cancer survivors. *Supportive Care in Cancer*, 24(8), 3333. https://doi.org/10.1007/S00520-016-3148-8
- Kanera, I. M., Bolman, C. A. W., Willems, R. A., Mesters, I., & Lechner, L. (2016). Lifestyle-related effects of the web-based Kanker Nazorg Wijzer (Cancer Aftercare Guide) intervention for cancer survivors: a randomized controlled trial. *Journal of Cancer Survivorship : Research and Practice*, 10(5), 883–897. https://doi.org/10.1007/S11764-016-0535-6
- Kohl, C., McIntosh, E. J., Unger, S., Haddaway, N. R., Kecke, S., Schiemann, J., & Wilhelm,
 R. (2018). Online tools supporting the conduct and reporting of systematic reviews and systematic maps: A case study on CADIMA and review of existing tools. *Environmental Evidence*, 7(1), 1–17. https://doi.org/10.1186/S13750-018-0115-5/TABLES/3
- Kong, S., Lee, J. K., Kang, D., Kim, N., Shim, Y. M., Park, W., Choi, D., & Cho, J. (2021). Comparing the Effectiveness of a Wearable Activity Tracker in Addition to Counseling and Counseling Only to Reinforce Leisure-Time Physical Activity among Breast Cancer Patients: A Randomized Controlled Trial. *Cancers 2021, Vol. 13, Page* 2692, 13(11), 2692. https://doi.org/10.3390/CANCERS13112692

- Lee, C. F., Ho, J. W. C., Fong, D. Y. T., MacFarlane, D. J., Cerin, E., Lee, A. M., Leung, S., Chan, W. Y. Y., Leung, I. P. F., Lam, S. H. S., Chu, N., Taylor, A. J., & Cheng, K. K. (2018). Dietary and Physical Activity Interventions for Colorectal Cancer Survivors: A Randomized Controlled Trial. *Scientific Reports 2018 8:1*, 8(1), 1–9. https://doi.org/10.1038/s41598-018-24042-6
- Lee, J. (2019). A meta-analysis of the association between physical activity and breast cancer mortality. *Cancer Nursing*, 42(4), 271–285. https://doi.org/10.1097/NCC.000000000000580
- Lee, M. S., Small, B. J., & Jacobsen, P. B. (2017). Rethinking barriers: a novel conceptualization of exercise barriers in cancer survivors. *Psychology, Health and Medicine*, 22(10), 1248–1255. https://doi.org/10.1080/13548506.2017.1325503
- Lewandowska, A. M., Rudzki, M., Rudzki, S., Lewandowski, T., & Laskowska, B. (2019). Environmental risk factors for cancer – review paper. *Annals of Agricultural and Environmental Medicine*, *26*(1), 1–7. https://doi.org/10.26444/AAEM/94299
- Lunde Husebø, A. M., Dyrstad, S. M., Søreide, J. A., Bru, E., Professor, A., Surgeon, A., & Marie Lunde Husebø, A. (2013). Predicting exercise adherence in cancer patients and survivors: a systematic review and meta-analysis of motivational and behavioural factors. *Journal of Clinical Nursing*, *22*(1–2), 4–21. https://doi.org/10.1111/J.1365-2702.2012.04322.X
- Mackenbach, J. D., Rutter, H., Compernolle, S., Glonti, K., Oppert, J. M., Charreire, H., de Bourdeaudhuij, I., Brug, J., Nijpels, G., & Lakerveld, J. (2014). Obesogenic environments: A systematic review of the association between the physical environment and adult weight status, the SPOTLIGHT project. *BMC Public Health*, *14*(1), 1–15. https://doi.org/10.1186/1471-2458-14-233/TABLES/1
- May, A. M., van Weert, E., Korstjens, I., Hoekstra-Weebers, J. E. H. M., van der Schans,
 C. P., Zonderland, M. L., Mesters, I., van den Borne, B., & Ros, W. J. G. (2009).
 Improved physical fitness of cancer survivors: A randomised controlled trial comparing physical training with physical and cognitive-behavioural training. *Https://Doi.Org/10.1080/02841860701666063*, 47(5), 825–834.
 https://doi.org/10.1080/02841860701666063

- McEachan, R. R. C., Conner, M., Taylor, N. J., & Lawton, R. J. (2011). Prospective prediction of health-related behaviours with the theory of planned behaviour: A meta-analysis. *Health Psychology Review*, 5(2), 97–144. https://doi.org/10.1080/17437199.2010.521684/SUPPL_FILE/RHPR_A_521684_S UP_17658691.DOC
- McGinnis, E. L., Rogers, L. Q., Fruhauf, C. A., Jankowski, C. M., Crisafio, M. E., & Leach, H. J. (2021). Feasibility of Implementing Physical Activity Behavior Change Counseling in an Existing Cancer-Exercise Program. *International Journal of Environmental Research and Public Health 2021, Vol. 18, Page 12705, 18*(23), 12705. https://doi.org/10.3390/IJERPH182312705
- Miller, Kenneth., & Triano, Laura. (2008). Medical issues in cancer survivors A review. *Cancer Journal*, 14(6), 375–387. https://doi.org/10.1097/PPO.0B013E31818EE3DC
- Miller, M., Li, Z., & Habedank, M. (2020). A Randomized Controlled Trial Testing the Effectiveness of Coping with Cancer in the Kitchen, a Nutrition Education Program for Cancer Survivors. *Nutrients 2020, Vol. 12, Page 3144, 12*(10), 3144. https://doi.org/10.3390/NU12103144
- Mishra, S. I., Scherer, R. W., Snyder, C., Geigle, P., & Gotay, C. (2014). Are exercise programs effective for improving health-related quality of life among cancer survivors? A systematic review and meta-analysis. *Oncology Nursing Forum*, 41(6), E326–E342. https://doi.org/10.1188/14.ONF.E326-E342
- Moher, D., Cook, D. J., Eastwood, S., Olkin, I., Rennie, D., & Stroup, D. F. (2000).
 Improving the Quality of Reports of Meta-Analyses of Randomised Controlled
 Trials: The QUOROM Statement. *Oncology Research and Treatment*, 23(6), 597–602. https://doi.org/10.1159/000055014
- Mosher, C. E., Lipkus, I., Sloane, R., Snyder, D. C., Lobach, D. F., & Demark-Wahnefried,
 W. (2012). Long-term outcomes of the FRESH START trial: Exploring the role of selfefficacy in cancer survivors' maintenance of dietary practices and physical activity. *Psycho-Oncology*, 22(4), 876–885. https://doi.org/10.1002/PON.3089

- Noar, S. M., Benac, C. N., & Harris, M. S. (2007). Does tailoring matter? Meta-analytic review of tailored print health behavior change interventions. *Psychological Bulletin*, 133(4), 673–693. https://doi.org/10.1037/0033-2909.133.4.673
- Ornish, D., Lin, J., Daubenmier, J., Weidner, G., Epel, E., Kemp, C., Magbanua, M. J. M., Marlin, R., Yglecias, L., Carroll, P. R., & Blackburn, E. H. (2008). Increased telomerase activity and comprehensive lifestyle changes: a pilot study. *The Lancet. Oncology*, 9(11), 1048–1057. https://doi.org/10.1016/S1470-2045(08)70234-1
- Ornish, D., Magbanua, M. J. M., Weidner, G., Weinberg, V., Kemp, C., Green, C., Mattie, M. D., Marlin, R., Simko, J., Shinohara, K., Haqq, C. M., & Carroll, P. R. (2008). Changes in prostate gene expression in men undergoing an intensive nutrition and lifestyle intervention. *Proceedings of the National Academy of Sciences of the United States of America*, 105(24), 8369–8374. https://doi.org/10.1073/PNAS.0803080105
- Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., ... Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ*, *372*. https://doi.org/10.1136/BMJ.N71
- Papadimitriou, N., Markozannes, G., Kanellopoulou, A., Critselis, E., Alhardan, S., Karafousia, V., Kasimis, J. C., Katsaraki, C., Papadopoulou, A., Zografou, M., Lopez, D. S., Chan, D. S. M., Kyrgiou, M., Ntzani, E., Cross, A. J., Marrone, M. T., Platz, E. A., Gunter, M. J., & Tsilidis, K. K. (2021). An umbrella review of the evidence associating diet and cancer risk at 11 anatomical sites. *Nature Communications 2021 12:1*, *12*(1), 1–10. https://doi.org/10.1038/s41467-021-24861-8
- Parsons, J. K., Zahrieh, D., Mohler, J. L., Paskett, E., Hansel, D. E., Kibel, A. S., Liu, H., Seisler, D. K., Natarajan, L., White, M., Hahn, O., Taylor, J., Hartman, S. J., Stroup, S. P., van Veldhuizen, P., Hall, L., Small, E. J., Morris, M. J., Pierce, J. P., & Marshall, J. (2020). Effect of a Behavioral Intervention to Increase Vegetable Consumption on Cancer Progression Among Men With Early-Stage Prostate Cancer: The MEAL

Randomized Clinical Trial. *JAMA*, *323*(2), 140–148. https://doi.org/10.1001/JAMA.2019.20207

- Patel, A. v., Friedenreich, C. M., Moore, S. C., Hayes, S. C., Silver, J. K., Campbell, K. L., Winters-Stone, K., Gerber, L. H., George, S. M., Fulton, J. E., Denlinger, C., Morris, G. S., Hue, T., Schmitz, K. H., & Matthews, C. E. (2019). American College of Sports Medicine Roundtable Report on Physical Activity, Sedentary Behavior, and Cancer Prevention and Control. *Medicine and Science in Sports and Exercise*, *51*(11), 2391. https://doi.org/10.1249/MSS.00000000002117
- Pinto, B. M., Papandonatos, G. D., & Goldstein, M. G. (2013). A Randomized trial to promote physical activity among breast cancer patients. *Health Psychology*, 32(6), 616–626. https://doi.org/10.1037/A0029886
- Pinto, B. M., Stein, K., & Dunsiger, S. (2015). Peers promoting physical activity among breast cancer survivors: A randomized controlled trial. *Health Psychology : Official Journal of the Division of Health Psychology, American Psychological Association*, 34(5), 463–472. https://doi.org/10.1037/HEA0000120
- Rhodes, R. E., & Pfaeffli, L. A. (2010). Mediators of physical activity behaviour change among adult non-clinical populations: A review update. *International Journal of Behavioral Nutrition and Physical Activity*, 7(1), 1–11. https://doi.org/10.1186/1479-5868-7-37/TABLES/1
- Rock, C. L., Thomson, C. A., Sullivan, K. R., Howe, C. L., Kushi, L. H., Caan, B. J., Neuhouser,
 M. L., Bandera, E. v., Wang, Y., Robien, K., Basen-Engquist, K. M., Brown, J. C.,
 Courneya, K. S., Crane, T. E., Garcia, D. O., Grant, B. L., Hamilton, K. K., Hartman, S.
 J., Kenfield, S. A., ... McCullough, M. L. (2022). American Cancer Society nutrition
 and physical activity guideline for cancer survivors. *CA: A Cancer Journal for Clinicians*, 72(3), 230–262. https://doi.org/10.3322/CAAC.21719
- Rogers, L. Q., Courneya, K. S., Anton, P. M., Hopkins-Price, P., Verhulst, S., Vicari, S. K., Robbs, R. S., Mocharnuk, R., & McAuley, E. (2014). Effects of the BEAT Cancer physical activity behavior change intervention on physical activity, aerobic fitness, and quality of life in breast cancer survivors: a multicenter randomized controlled

trial. Breast Cancer Research and Treatment, 149(1), 109–119. https://doi.org/10.1007/S10549-014-3216-Z

- Rogers, L. Q., Hopkins-Price, P., Vicari, S., Markwell, S., Pamenter, R., Courneya, K. S., Hoelzer, K., Naritoku, C., Edson, B., Jones, L., Dunnington, G., & Verhulst, S. (2009).
 Physical activity and health outcomes three months after completing a physical activity behavior change intervention: persistent and delayed effects. *Cancer Epidemiology, Biomarkers & Prevention : A Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology*, *18*(5), 1410–1418. https://doi.org/10.1158/1055-9965.EPI-08-1045
- Rothman A, Baldwin A, Hertel A, & Fuglestad F. (2011). Self-regulation and behavior change: Disentangling behavioral initiation and behavioral maintenance. 106–122. https://psycnet.apa.org/record/2010-24692-006
- Ryan, A. M., Power, D. G., Daly, L., Cushen, S. J., Ní Bhuachalla, E., & Prado, C. M. (2016). Cancer-associated malnutrition, cachexia and sarcopenia: the skeleton in the hospital closet 40 years later. *Proceedings of the Nutrition Society*, 75(2), 199–211. https://doi.org/10.1017/S002966511500419X
- Schwedhelm, C., Boeing, H., Hoffmann, G., Aleksandrova, K., & Schwingshackl, L. (2016). Effect of diet on mortality and cancer recurrence among cancer survivors: a systematic review and meta-analysis of cohort studies. *Nutrition Reviews*, 74(12), 737–748. https://doi.org/10.1093/NUTRIT/NUW045
- Short, C. E., James, E. L., Girgis, A., D'Souza, M. I., & Plotnikoff, R. C. (2015). Main outcomes of the Move More for Life Trial: a randomised controlled trial examining the effects of tailored-print and targeted-print materials for promoting physical activity among post-treatment breast cancer survivors. *Psycho-Oncology*, 24(7), 771–778. https://doi.org/10.1002/PON.3639
- Silva, M. N., Vieira, P. N., Coutinho, S. R., Minderico, C. S., Matos, M. G., Sardinha, L. B., & Teixeira, P. J. (2010). Using self-determination theory to promote physical activity and weight control: a randomized controlled trial in women. *Journal of Behavioral Medicine*, 33(2), 110–122. https://doi.org/10.1007/s10865-009-9239-y

- Stacey, F. G., James, E. L., Chapman, K., Courneya, K. S., & Lubans, D. R. (2015). A systematic review and meta-analysis of social cognitive theory-based physical activity and/or nutrition behavior change interventions for cancer survivors. *Journal of Cancer Survivorship : Research and Practice*, 9(2), 305–338. https://doi.org/10.1007/s11764-014-0413-z
- Strasser, B., Steindorf, K., Wiskemann, J., & Ulrich, C. M. (2013). Impact of resistance training in cancer survivors: A meta-analysis. *Medicine and Science in Sports and Exercise*, 45(11), 2080–2090. https://doi.org/10.1249/MSS.0B013E31829A3B63
- Sturgeon, K. M., Dean, L. T., Heroux, M., Kane, J., Bauer, T., Palmer, E., Long, J., Lynch, S., Jacobs, L., Sarwer, D. B., Leonard, M. B., & Schmitz, K. (2016). Commercially available lifestyle modification program: randomized controlled trial addressing heart and bone health in BRCA1/2+ breast cancer survivors after risk-reducing salpingo-oophorectomy. *Journal of Cancer Survivorship : Research and Practice*, 11(2), 246–255. https://doi.org/10.1007/S11764-016-0582-Z
- Sui, W., & Prapavessis, H. (2018). Standing Up for Student Health: An Application of the Health Action Process Approach for Reducing Student Sedentary Behavior— Randomised Control Pilot Trial. *Applied Psychology: Health and Well-Being*, *10*(1), 87–107. https://doi.org/10.1111/APHW.12105
- Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. *CA: A Cancer Journal for Clinicians*, 71(3), 209–249. https://doi.org/10.3322/caac.21660
- Tangvik, R. J., Tell, G. S., Guttormsen, A. B., Eisman, J. A., Henriksen, A., Nilsen, R. M., & Ranhoff, A. H. (2015). Nutritional risk profile in a university hospital population. *Clinical Nutrition (Edinburgh, Scotland), 34*(4), 705–711. https://doi.org/10.1016/J.CLNU.2014.08.001
- Teixeira, P. J., Carraça, E. v., Markland, D., Silva, M. N., & Ryan, R. M. (2012). Exercise, physical activity, and self-determination theory: A systematic review. *International Journal of Behavioral Nutrition and Physical Activity*, 9(1), 1–30. https://doi.org/10.1186/1479-5868-9-78/FIGURES/2

- Teixeira, P. J., Carraça, E. v., Marques, M. M., Rutter, H., Oppert, J. M., de Bourdeaudhuij,
 I., Lakerveld, J., & Brug, J. (2015). Successful behavior change in obesity interventions in adults: A systematic review of self-regulation mediators. *BMC Medicine*, *13*(1), 1–16. https://doi.org/10.1186/S12916-015-0323-6/FIGURES/1
- The SURE Collaboration. (2011). SURE Guides for Preparing and Using Evidence-Based Policy Briefs (2.1). https://epoc.cochrane.org/sites/epoc.cochrane.org/files/public/uploads/SURE-Guides-v2.1/Collectedfiles/sure guides.html
- Thomas, B. H., Ciliska, D., Dobbins, M., & Micucci, S. (2004). A Process for Systematically Reviewing the Literature: Providing the Research Evidence for Public Health Nursing Interventions. In *Worldviews on Evidence-Based Nursing* (Vol. 1, Issue 3).
- Ungar, N., Sieverding, M., Weidner, G., Ulrich, C. M., & Wiskemann, J. (2016). A self-regulation-based intervention to increase physical activity in cancer patients.
 Psychology, Health and Medicine, 21(2), 163–175. https://doi.org/10.1080/13548506.2015.1081255
- Vallance, J. K., Friedenreich, C. M., Lavallee, C. M., Culos-Reed, N., MacKey, J. R., Walley, B., & Courneya, K. S. (2016). Exploring the Feasibility of a Broad-Reach Physical Activity Behavior Change Intervention for Women Receiving Chemotherapy for Breast Cancer: A Randomized Trial. *Cancer Epidemiology, Biomarkers & Prevention : A Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology, 25*(2), 391–398. https://doi.org/10.1158/1055-9965.EPI-15-0812
- Webb, J., Fife-Schaw, C., & Ogden, J. (2019). A randomised control trial and costconsequence analysis to examine the effects of a print-based intervention supported by internet tools on the physical activity of UK cancer survivors. *Public Health*, 171, 106–115. https://doi.org/10.1016/J.PUHE.2019.04.006
- Weiner, L. S., Takemoto, M., Godbole, S., Nelson, S. H., Natarajan, L., Sears, D. D., & Hartman, S. J. (2019). Breast cancer survivors reduce accelerometer-measured sedentary time in an exercise intervention. *Journal of Cancer Survivorship*, 13(3), 468–476. https://doi.org/10.1007/S11764-019-00768-8/FIGURES/1

- Wu, H. S., & Harden, J. K. (2015). Symptom Burden and quality of life in survivorship: A review of the literature. In *Cancer Nursing* (Vol. 38, Issue 1, pp. E29–E54). Lippincott Williams and Wilkins. https://doi.org/10.1097/NCC.00000000000135
- Wyke, S., Bunn, C., Andersen, E., Silva, M. N., van Nassau, F., McSkimming, P., Kolovos, S., Gill, J. M. R., Gray, C. M., Hunt, K., Anderson, A. S., Bosmans, J., Jelsma, J. G. M., Kean, S., Lemyre, N., Loudon, D. W., Macaulay, L., Maxwell, D. J., McConnachie, A., ... van der Ploeg, H. P. (2019). The effect of a programme to improve men's sedentary time and physical activity: The European Fans in Training (EuroFIT) randomised controlled trial. *PLOS Medicine*, *16*(2), e1002736. https://doi.org/10.1371/JOURNAL.PMED.1002736
- Zhang, F. F., Liu, S., John, E. M., Must, A., & Demark-Wahnefried, W. (2015). Diet quality of cancer survivors and noncancer individuals: Results from a national survey. *Cancer*, *121*(23), 4212–4221. https://doi.org/10.1002/CNCR.29488

Appendix 1 - Prospero Protocol

Theory-based physical activity and/or nutrition behaviour change interventions for cancer survivors – A systematic review

Beatriz Benquerença Francisco, Bruno Rodrigues, Eliana V. Carraça, Inês Nobre, Helena Cortez-Pinto, Inês Santos

Citation

Review question

What is the current state of the evidence on the effect of theory-based physical activity (PA) or nutrition intervention that target cancer survivors?

Searches

A comprehensive search of peer-reviewed articles published until January 2022 (including online ahead of print publication) was conducted in 3 electronic databases (PubMed, PsycInfo and Web of Science).

Searches included various combinations of three sets of terms:

- 1. Terms concerning the health condition or population of interest (e.g., Cancer, cancer survivor, cancer patient).
- 2. Terms concerning the intervention (e.g., Lifestyle/behavioural interventions)
- Terms concerning the behaviour change outcomes of interest (e.g., Diet, Physical activity, weight loss/maintenance/change)
- 4. Terms concerning the types of study to be included (i.e., RCT);

INCLUDED: experimental designs (i.e., randomized controlled trials).

EXCLUDED: Observational studies and non-intervention studies (e.g., cross-sectional and cohort studies, case reports), studies with no original data (e.g., reviews, editorials, commentaries), dissertations/thesis, qualitative studies, protocols, pilot studies. Studies not published in peer-reviewed journals were excluded.

Condition or domain being studied

Theory-based interventions, using evidence-based behaviour change techniques, aimed at promoting long-term health behaviour change in cancer survivors are effective [eg, Grimmett et al., 2019], but remain scarce (Rothman et al., 2011) and target mostly shortterm adherence and outcomes [Courneya et al., 2010].

Prior research has shown that internal (better quality) motivations play an important role in long-term, sustained, behaviour adoption (eg, Silva et al., 2010; Teixeira et al., 2012; Wyke et al., 2019)- Previous studies have also shown that a person-centred, need-supportive intervention climate enhances people's wellbeing, body image, and their ability to self-regulate and sustain behaviour changes (Martinez et al., 2016; Carraça et al., 2011; Carraça et al., 2012).

Participants/population

INCLUSION CRITERIA: Samples of adults aged 18 years or older, diagnosed with any cancer (at any stage of disease/treatment)

EXCLUSION CRITERIA: Children and adolescents.

Intervention(s), exposure(s)

INCLUSION: Clinical or community "lifestyle/behavioural interventions" defined as interventions that promote change in energy balance-related behaviours (such as diet

and physical activity). Interventions targeting weight loss and/or maintenance through the promotion of changes in physical activity and/or diet will also be included.

EXCLUSION: pharmacological or surgical interventions targeting diet and physical activity.

Comparator(s)/control

Studies might compare the intervention to no intervention (control), usual care or other interventions.

Note: A comparison/control group might not be present, as single-arm intervention studies might also be retrieved from search (e.g., a pre-post intervention design).

Context

Primary care setting, community setting, residential/home setting, academic setting.

One-to-one interventions, group interventions.

Face-to-face, internet-based, telephone-based, mail-based interventions.

Main outcome(s)

Physical activity or diet.

Additional outcome(s)

None

Data extraction (selection and coding)

All abstracts identified from the literature searches were screened for potential inclusion eligibility by three authors (BQF, BR IN). A data extraction was developed by

the authors, based on the information relevant to the present review. Data extraction was conducted by the first author and included information about the article (e.g., authors, year), participants (e.g., demographics, type of cancer), study design, intervention characteristics (e.g., aim, length, follow-up) and outcomes of interest and how the theory constructs were operationalized and assessed.

Risk of bias (quality) assessment

Study quality was assessed with an adapted version of the Quality Assessment Tool for Quantitative Studies, developed by the Effective Public Health Practice Project.

This tool includes 19 items, organized in eight key methodological domains: study design, blinding, representativeness (selection bias), representativeness (withdrawals/dropouts), confounders, data collection, data analysis, and reporting. Each domain is classified in Strong, Moderate and Weak methodological quality based on specific criteria. A global rating is determined based on the scores of each component. Two researchers independently rated each of the eight domains and overall quality. Discrepancies were resolved by consensus.

Strategy for data synthesis

Initially, the characteristics of the included studies was described. Next, data was qualitatively synthetized by behaviour change outcome and presented in tabular form. Further quantitative analyses (meta-analyses) will be conducted if feasible, separately by behaviour change outcome. Sensitivity analyses will be carried out to explore if results are affected by studies with weak quality or outlier values.

Analysis of subgroups or subsets

None planned.

Contact details for further information

Inês Santos

santosi@medicina.ulisboa.pt

Organisational affiliation of the review

Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa

Review team members and their organisational affiliations

Beatriz Benquerença Francisco - Faculdade de Medicina, Universidade de Lisboa;

Bruno Rodrigues - Faculty of Sport, University of Porto (Research Centre in Physical Activity, Health and Leisure), Porto, Portugal

Assistant Professor Eliana V. Carraça - CIDEFES, Universidade Lusófona

Helena Cortez-Pinto - Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa;

Inês Nobre - CIPER, FMH-UL

Assistant Professor Inês Santos - Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa; CIDEFES, Universidade Lusófona

Type and method of review

Systematic review

Anticipated or actual start date

1st of October of 2021

Anticipated completion date

30th June 2022

Funding sources/sponsors

Conflicts of interest

None known

Language

English

Country

Portugal

Stage of review

Has started

Subject index terms status

Subject indexing assigned by CRD

Subject index terms

Date of registration in PROSPERO

Date of first submission

Details of any existing review of the same topic by the same authors

Stage of review at time of this submission	
The review has not started	
Stage	Started
Preliminary searches	Yes
Piloting of the study selection process	Yes
Formal screening of search results against eligibility criteria	Yes
Data extraction	Yes
Risk of bias (quality) assessment	Yes
Data analysis	Yes

The record owner confirms that the information they have supplied for this submission is accurate and complete and they understand that deliberate provision of inaccurate information or omission of data may be construed as scientific misconduct.

The record owner confirms that they will update the status of the review when it is completed and will add publication details in due course.

Versions

Appendix 2 - Search Strategy

1) Diet* OR eating OR nutrition OR "nutrition therapy" OR "lifestyle intervention" OR "dietary intake" OR food

2) "Weight management" OR "Weight control" OR "Weight loss" OR "Weight maintenance"

3) training OR "Physical activity" OR exercise OR walking OR aerobic

4) ("behaviour intervention" OR "behavior intervention" OR "behavioral intervention" OR "behavioural intervention" OR "behaviour therapy" OR "behavior therapy" OR "behavioral therapy" OR "behavioral therapy" OR "behaviour program" OR "behavior program" OR "behavioral program" OR "behavioural program" OR "behaviour change" OR "behavior change" OR "behavioral change" OR "behavioural change"

- 5) Cancer OR "cancer survivor*" OR "cancer patient"
- 6) RCT OR "randomised controlled trials" OR "randomised controlled trial")
- 7) 1) OR 2) OR 3)
- 8) 5) AND 4) AND 6) AND 7)

Authors	Cancer Type/Phase	Sample	Intervention	Theory	Outcomes	Results
Parsons	Prostate	Overall:	IG: 4 phases telephone counselling	- Social	Diet composition	At 12-month follow-up,
et al.,	(stage < cT2)	443;	intervention: The first phase (6	Cognitive	(Interviews using the	intervention participants
2020	with no prior	IG: 226,	counselling telephone calls over	Theory	Nutrition Data System for	reported significant increases
	prostate	0%	1month) focused on building self-		Research software and	compared with controls in daily
	cancer	women,	efficacy; the second (4 calls over 2		nutrient database)	total vegetable servings (mean
	treatment	63,7 ±	months) on consolidating the new			change 2,43 vs. 0,45; p < 0.001)
	with surgery,	6,5	dietary pattern; the third (4 calls over		Baseline, 12-month follow-	and cruciferous servings (mean
	radiation,	years;	4 months) on relapse prevention; and		up, and 24-month follow-	change, 43.10 g/d vs 6.44 g/d; p
	local ablation,	CG: 217,	the fourth (8 calls over 16 months) on		up.	< 0.001).
	or androgen	0%	providing positive feedback and			At 24-month follow-up,
	deprivation	women,	monitoring for declining interest.			significant between-group
	therapy or	63,5 ±	CG: Printed materials from the			differences persisted for total
	metastatic	6,6	Prostate Cancer Foundation			vegetable servings (mean
	disease;	years;	encouraging consumption of a			change, 2.01 vs 0.37; p < 0.001)
			vegetable-rich diet.			and cruciferous servings (mean
						change, 0.50 vs 0.01; p <
			24 months			0.001).

Miller	Multiple	Overall:	IG: Eight, in-person, 90-min group	- Social	Dietary Intake (Dietary	There were no statistically
et al.,	cancers at any	53, 92%	meetings convened weekly at	Cognitive	Screener Questionnaire	significant differences in fruits
2020	stage, who	women,	community-based organizational	Theory;	(DSQ) in the NHANES 2009-	and vegetables and whole grain
	completed	61,2 ±	facilities with: (1) Nutrition Education	- Trans	10):	consumption between groups.
	active cancer	10,5	(2) Structured Group Learning and	theoretical	- Total Fruit and Vegetable,	The intervention group had
	treatment	years;	Support (3) Cooking Demonstration +	Model	cup equivalents per day	significantly lower daily
	(Breast 47%,	IG: 26,	Sharing and Caring Potluck + recipe		- Whole Grains Total, ounce	servings of processed meat in
	Metastatic	92%	cards + workbook + S.M.A.R.T Goal-		equivalents per day	comparison to the control
	breast 11%,	women,	Setting Worksheets		- Processed Meat, times	group at 9 weeks (mean
	Blood 9%,	59,5 ±	CG: CCK printed educational materials		per day	0,04±0,05 vs 0,10±0,18) and 15
	Female	9,7	(7 written summaries of weekly			weeks (mean 0,04±0,05 vs
	reproductive	years;	nutrition content and 14 recipes that		(1/2 cup equivalent fruit	0,11±0,17; p < 0.05).
	8%, Multiple	CG: 27,	emphasized the weekly nutrition		and vegetable: 1 daily	
	cancers	93%	themes)		serving. A total of 0.56 oz	
	specified 11%,	women,			equivalent whole grains: 1	
	Other 13%)	62,8 ±	8 weeks intervention + 15 weeks		daily serving.)	
		11,1	follow up			
		years			Baseline, post-intervention	
					(9 week), and at follow-up	
					(15 week)	
1	1	1		1		

Appendix 4 - Diet and PA Trials

Authors	Cancer	Sample	Intervention	Theory	Outcomes	Results
	Type/Phase			-		
Hawkes et	Colorectal at	Overall:	IG: Telephone-delivered	Acceptance	- Dietary intake (Cancer	- No significant group differences were
al., 2013	any	410;	health coaching intervention	and	Council Victoria Food	found at 6 or 12 months for fruit, fibre, or
	stage/phase	IG: 205,	(11 sessions) + participant	commitment	Frequency	alcohol intake (p>0.05).
	of treatment	48,3%	handbook + regular	therapy	Questionnaire)	
		women,	motivational postcard			- Compared with the control group, the
		64,9 ± 10,8	prompts + a pedometer +		- PA (modified Leisure	intervention group was also more likely to
		years;	newsletter		Score Index (LSI) from	meet Australian PA recommendations (p =
		CG: 205,	CG: usual care - educational		Godin Leisure-Time	0.047).
		43,9%	brochures produced by		Exercise Questionnaire	
		women,	Cancer Council Australia on		(GLTEQ))	
		67,8 ± 9,2	understanding CRC and			
		years;	cutting cancer risk, diet, and		Baseline, 6 and 12	
			PA.		months	
			6 months			
Sturgeon	Breast cancer	Overall: 35,	IG: web-based program with	- Social	- Caloric intake (self-	- There was no significant difference for
et al.,	survivors	100%	3 daily activities: workout—	Cognitive	reported logging on 3-	caloric intake between groups.
2016	(BRCA1/2+)	women,	completing relative and	Theory	day dietary records);	

	who	46,1 ± 4	progressive strength-training			- There was a significant difference
	underwent	years;	and aerobic exercises;		- Caloric expenditure	between group difference for daily caloric
	prophylactic	IG: 16,	habit—completing a		(interviewer	expenditure with the intervention group
	oophorectom	100%	nutritional/lifestyle habit		administered Modifiable	increasing PA more by the end of the
	y and are	women,	(new habits followed every 2		Activity Questionnaire)	intervention period (740,6±330,2 vs
	now cancer	47,2 ± 3,8	weeks; and lesson — reading			425,2±325,6; p = 0.04).
	free	years;	lessons on health, nutrition,		Baseline and after the	
		CG: 19,	fitness, or behaviour change.		12-month intervention	
		100%	CG: Waitlist		(follow-up).	
		women,				
		45,1 ± 4	12 months			
		years:				
Gruenigen	Endometrial	Overall: 45;	IG: 6-month individual	- Social	- Quantitative dietary	- There were no significant differences for
et al.,	(stage I-II),	IG: 23,	counselling + newsletter +	Cognitive	intake: three-day food	kilocalories intake (p>0.05).
2008	who had a	100%	pedometer	Theory	records	
	total	women, 54	CG: usual care - informational			- There was a significant difference in PA
	abdominal	± 2,0 years;	brochure		- PA (LSI from the	between the intervention group and usual
	hysterectomy	CG: 205,			GLTEQ)	care at 3 months (mean group difference =
	, and bilateral	100%	6 months			19.6, 95% CI = 2.5 to 36.7; p=0.025), 6
	salpingo-	women,			Baseline, 3, 6 and 12	months (mean difference = 13.6; 95% CI =
	oophorectom	55,5 ± 1,6			months	1.8 to 25.3; p=0.038) and 12 months (mean
	У	years;				

						difference = 15.8; 95% CI = 4.5 to 27.0; p=
						0.007).
Mosher et	Early stage	Overall:	IG: tailored materials	- Social	- Diet: Number of	- F&V intake and PA did not significantly
al., 2012	(in situ,	489, 62,58%	designed to increase fruit	Cognitive	servings of F&V per day,	differ between groups at 2-year follow-up.
	localized, or	women,	and vegetable (F&V) intake,	Theory	percentage of kcal from	- Diet Quality Index-Revised score (IG:
	regional)	57,2 ± 10,7	decrease fat intake, and/or		fat (The Diet History	71,5±10,5 vs CG: 68,9± 10,6; p<0.001),
	Breast or	years;	increase PA.		Questionnaire (DHQ)),	- and total percent of calories from fat (IG:
	Prostate				and diet quality, (100-	36,5±6,6 vs CG: 37,8±5,6; p=0.001) were
	cancer		CG: mailed print materials on		point Diet Quality Index-	significantly different between groups.
			diet and PA available in the		Revised score)	
			public domain			- PA did not significantly differ as a function
					- PA: Total minutes per	of group assignment
			10 months		week of MVPA (7-day	
					Physical Activity Recall	
					(7-day PAR));	
					Baseline, 2-year follow-	
					up	
Gruenigen	Endometrial	IG: 41,	IG (SUCCEED intervention):	- Social	- Dietary intake:	- Fruit intake only had positive significant
et al.,	(stage I-II),	100%	Physician face-to-face	Cognitive	fruit/vegetable	differences at 12 months (IG: 2,1 ± 2,5 vs
2012	after a total	women,	counselling + feedback and	Theory	servings/day, kilocalories	CG: 1,8±1,8; p=0.032).
	abdominal	57,0 ± 8,6	support via newsletters,		(Nutrition Data System	

hysterectomy	years; CG:	telephone and email +	for Research Software	- Vegetables intake had positive significant
, bilateral	34, 100%	pedometer	(NDSR) versions 2008	differences at 3 (IG: 4,2±2,9 vs CG: 3,0±2,1;
salpingo-	women,		and 2009)	p<0.001), 6 (IG: 4,0±2,5 vs CG: 3,2±2,4;
oophorectom	58,9 ± 10,9	CG: usual care - informational		p=0.001) and 12 months (IG: 3,7±2,5 vs CG:
у	years;	brochure: "Healthy Eating &	- PA minutes (LSI from	3,4±2,0; p=0.004).
		Physical Activity Across Your	the GLTEQ); calculated	- F&V had positive significant differences at
		Lifespan, Better Health and	as the number of	3 (IG: 6.2±3.5 vs CG: 5.0±2,5; p<0.001), 6
		You"	moderate minutes plus	(IG: 5,9±3,2 vs CG: 4.9±3.0; p<0.001) and 12
			two times vigorous	months (IG: 5,6±3,6 vs CG: 5,0±2,4;
		6 months	minutes.	p<0.001).
				- Kilocalories intake had positive significant
			Diet and PA minutes:	differences at 3 (IG: 1553,2±448.4 vs CG:
			Baseline, 3, 6, 12 months	1723,8±533,3; p<0.001), 6 (IG:
				1635,2±579,2 vs CG 1844,6±624,5; p<0.001)
			- Pedometer step count	and 12 months (IG: 1606,6±495,5 vs CG:
			was assessed at baseline	1806,9±631,6; p<0.001)
			and 6 months for a one-	
			week period and an	- There were positive significant differences
			average daily count was	in steps per day (p=0.015) between groups
			calculated.	at 6 months. Mean change from baseline to
				6 months was 2353 in the IG group versus

						-9.4 steps/day in CC [difference (95% CI) of
						2362 (494, 4230); p=0.015].
						- No significant differences in PA minutes at
						3 months, but positive significant
						differences between groups at 6 (IG:
						249±227 vs CG: 144±180; p=0.038) and 12
						months (IG: 216±190 vs CG: 142±128;
						p=0.020).
						- Positive significant differences in leisure
						score index at 3 (IG: 39,5±31,5 vs CG:
						28,4±20,4; p<0.001), 6 (IG: 33,0±23,5 vs CG:
						20,9±18,6; p<0.001), and 12 months (IG:
						30,7±21,1 vs CG: 23,4±18,9; p<0.001).
Rogers et	Breast (stage	Overall: 41,	IG: 6 discussion group	- Social	- Daily caloric Intake (3-d	- Daily caloric intake showed a significant
al., 2009	I-IIIA),	100%	sessions with a clinical	Cognitive	diet record (i.e., 1	time effect (i.e., mean for baseline, 1,880.4;
	receiving	women, 53	psychologist + 12 individual	Theory;	weekend and 2	postintervention, 1,624.7; and 3 months
	hormonal	±9 years;	exercise sessions with an	- Trans-	weekdays) + Diet	postintervention, 1,624.6; F = 8.34; P <
	therapy	IG: 21,	exercise specialist + 3	theoretical	Analysis Plus software,	0.001) with no significant effects of group (F
		100%	individual counselling	Model	version 7.0.1)	= 0.03; P = 0.87) or group by time
		women, 52	sessions with an exercise			interaction (F = 0.35; P = 0.70).
		± 15 years;	specialist		- PA: total daily activity	
					counts, weekly minutes	

		CG: 20,	CG: Usual care: received		of moderate plus	- Daily PA counts: a significant group by
		100%	written materials about PA		vigorous PA (GT1M	time interaction (F = 4.28; P = 0.013) was
		women, 54	available through the		accelerometer	noted.
		± 8 years;	American Cancer Society.		(Actigraph));	-Similarly, weekly minutes of moderate plus
						vigorous activity and stage of motivational
			3 months		baseline, 3, 6 months	readiness showed significant group by time
						interactions (F = 3.51; P = 0.035; and F =
						7.85; P < 0.001, respectively).
Campbell	Colorectal	Overall:	IG:	- Social	- Fruit&Vegetable	- 35-item measure: No significant
et al.,		266;	- Tailored Print	Cognitive	Consumption:	intervention effects were found for
2009		49,4%*	Communication (TPC):	Theory;	servings/day (36-item	colorectal cancer survivors.
		women,	personalized computer-	- Trans-	modified version of the	- 2 item measure: Statistically significant
		66,5±10,0*	tailored newsletters focused	theoretical	Block food F&V: estimate	increases for all three intervention groups
		years;	on F&V consumption, PA,	Model;	one's intake with a 2-	were found, compared to the control group,
		TPC: 70	and follow-up surveillance as		item screener + 35-item	with both the TMI-only and combined
		13,3%*	recommended by the		questionnaire (based on	groups showing an increase of more than
		women,	participant's physician;		Block food frequency	one daily serving. The three intervention
		66,2±10,5*	- Telephone Motivational		questionnaire (FFQ)) +	groups did not differ statistically from each
		years;	Interviewing Intervention		average of both);	other, however.
		TMI: 72	(TMI): four brief (20-min) MI			(CG: 4,3±2,0 vs TPC: 4,9±1,6 (p≤0,05) or
		10,9%*	calls;		- Weekly PA: frequency	TMI: 5,0±2,0 (p<0,01) or TPC+TMI: 5,2±2,4
		women,	- TPC+TMI		(minutes/week) and MET	(p<0,01))

	67,1±9,5*		hours/week of MVPA	- Averaging the 35-item and 2-item
	years;	CG: Generic Printed Health	(modified version of 7-	measures, no significant treatment
	TPC+TMI:	Information: two mailings of	day PAR data)	differences among CRC survivors.
	58 12,5%*	generic (nontailored) health		
	women,	information that was not	Baseline and 12 months	- None of the interventions produced
	66,9±9,8*	related to the primary study		significant effects on increasing PA among
	years;	outcomes.		cancer survivors.
	CG: 66,			
	12,7%*	12 months		
	women,			
	66,6±10,1*			
	years;			
	*sample			
	consisted of			
	cancer and			
	non-cancer			
	participants			

Kanera et	Multiple	Overall:	IG: KNW, a web-based	- Integrated	- Dietary behaviour:	- No significant intervention effects were
al., 2016	cancers at	462;	computer tailored	Model for	vegetable, fruit, whole	found for dietary variables after controlling
	any stage,	IG: 231,	intervention: Based on the	Change (I-	grain bread, and fish	for multiple testing (p>005).
	who have	79,2%	screening questionnaire	Change	consumption (8 items of	
	completed	women,	measuring several concepts	Model)	the Dutch Standard	- There were no significant differences in
	primary	55,6 ± 11,5	such as Diet and PA + Dutch	- Self-	Questionnaire on Food	change over time concerning MPA between
	treatment at	years;	nutritional and PA guidelines,	Regulation	Consumption)	IG and CG after controlling for multiple
	least 4 weeks	CG: 231,	participants receive feedback	Theory		testing (p>0.05). No significant results were
	and up to 56	80,5%	on their dietary habits and		- PA (Short	found for Weekly days >30 min, Light PA
	weeks prior	women,	their own level of PA and to		Questionnaire to Assess	min and Vigorous PA min (p>0.05).
	to initial	56,2 ± 11,3	which extent they reach the		Health Enhancing	
	participation	years;	recommended level and		Physical Activity	
	(Breast		then, they are encouraged to		(SQUASH));	
	16,0%,		set a goal. Subsequently,			
	colorectal		dietary advice is given,		baseline and at the 6-	
	3,8%,		personalized to the		month follow-up	
	lymphoma		participant's individual			
	17,0%,		situation			
	thyroid					
	13,7%, testes		CG: usual care/waiting list			

	12,3%,					
	leukemia		6 months			
	6,6%, cervix					
	6,1%, brain					
	6,1%, others					
	18,4%)					
Lee et al.,	Colorectal,	Overall:	IG: Group A (dietary and PA	- Theory of	Diet: Changes of dietary	Dietary interventions significantly:
2018	any stage,	223;	interventions), Group B	Planned	consumption,	- increased the odds of achieving the
	within one	Group A:	(dietary only), Group C (PA	Behaviour;	servings/day + Achieving	targets of consuming less processed meat
	year of	55, 32,7%	only): individual face-to-face	- Health	behavioural targets	at all time-points and refined grain at
	completion	women,	motivational interviews (two	Action	(FFQ):	months 6 and 24
	of main	63,2 ± 11,4	sessions for Groups A and B	Process	- Red and Processed	- reduced processed meat (all p<0.01) and
	cancer	years;	and one session for Group C),	Approach	Meat target: weekly	refined grains (all p<0.01) consumptions.
	treatment	Group B:	fortnightly motivational	(HAPA)	intake of <5 servings,	
	from the	56, 39,3%	phone calls, mailed monthly		including <2 servings of	- In the subgroup of 49 patients who had
	surgical/onco	women,	stage-of-change matched		processed meat,	<300 minutes of MVPA per week at
	logical	65,9 ± 9,8	educational pamphlets,		- Refined Grains target:	baseline, PA interventions did not
	departments	years;	mailed quarterly newsletters,		daily intake <2 servings,	significantly improve the two PA targets.
		Group C:	and quarterly group			- However, patients who received the PA
		56, 28,6%	meetings		PA: Changes of PA level,	interventions had significantly larger
		women,			accumulated minutes of	increases in PA at months 6
		66,6 ± 9,5			MVPA per week +	(difference = 174.2, [34.7–313.7], p = 0.015)
	years;	CG: Group D (usual care): 5	Achieving behavioural	and 18 (179.0 [36.6–321.3], p = 0.014) than		
--	------------	-------------------------------	--------------------------	---		
	Group D:	pamphlets with general	targets (accelerometer):	those who did not receive the PA		
	56, 46,4%	health advice that	- PA general health	interventions.		
	women,	encouraged healthy lifestyles	target: 30 minutes of			
	64,9 ± 9,4	by eating a wide variety of	MVPA 5 days a week			
	years;	food, more fruit and	- PA cancer outcome			
		vegetables, increasing PA	target: 60minutes of			
		levels, quitting smoking and	MVPA 5 days a week;			
		avoiding alcohol abuse.	Baseline, 6, 12, 18 and			
			24 months			
		12 months				

Appendix 5 - PA-only Trials

Authors	Cancer	Samula	Intonuantion	Theory	Outcomer	Posulto
Authors	Type/Phase	Sample	Intervention	Theory	Outcomes	Results
Ungar et	Multiple	Overall: 67;	IG - exercise intervention: 1-	- HAPA-	PA: exercise min/week (self-	- At 4 weeks after intervention, the
al., 2015	cancers at	IG: 35, 54,3%	h individual counselling	based	reported Short	intervention group had more PA than
	any stage,	women,	session + booklet with	counselling	QUestionnaire to	the control group: 45.7% of patients in
	receiving	56,69 ± 13,43	behaviour change	(enhancing	ASsessHealth-enhancing PA	the IG vs 18.8% in the CG increased
	out-patient	years;	techniques; 3 weekly	self-	(SQUASH) at T1, T2 and T3	their activity levels to meet PA
	therapy		telephone calls (M = 14	regulation) +	and an accelerometer at T1	guidelines (>150 min/week; χ 2 (1) =
	(acute or	CG: 32, 50%	min/call); 4-week practicing	role model	and T2.)	5.51, p = 0.019).
	maintenance	women,	at home; and meeting with	support.		
	therapy) or	54,09 ± 11,72	an exercise role model		baseline (T1), 4 weeks (T2)	- At 14 weeks after intervention, there
	finished this	years	(physically active cancer		and 14 weeks (T3).	were no significant differences (p =
	therapy not		patient) for walking/cycling			0.225).
	longer than		together was encouraged			
	six months					
	ago (Breast		CG - stress management			
	32,8%,		intervention: 1-h individual			
	Colorectal		counselling session + booklet			
	11,9%,		with stress-management			
	Prostate		techniques; 3 weekly			

	7,46%, others		telephone calls (M = 14			
	47,8%)		min/call); 4-week practicing			
			at home; without PA			
			information			
			4 weeks			
Hirschey	Breast (stage	Overall: 58;	IG: Exercise theory-guided	- Self-Efficacy	PA:	There were positive significant
et al.,	la to IIb)	IG: 29, 100%	booklet containing narrative	Theory	- objective: Fitbit ®	differences in objectively measured
2018	being 2	women, 59 ±	messages, writing, and		- subjective: GLTEQ	steps between groups (IG: more 970
	months to	10 years;	thinking activities intended			steps, p=0.0283), but not in subjective
	10-year		to increase outcome		baseline, 4-, 8-, and 12-	PA (p=0.268).
	status post-	CG: 29, 100%	expectations dimensions of		weeks post intervention	
	surgery,	women, 57 ±	importance, certainty and			
	radiation,	12 years	accessibility.			
	and					
	chemotherap		CG: Similar booklet focused			
	у		on diet instead of exercise.			
			1 week intervention + 12			
			weeks follow up			

May et	Multiple	Overall : 147,	IG: Physical training +	Self-	PA: Physical Activity Scale	Changes in PA from baseline to post-
al., 2009	cancers at	83,7%	cognitive-behavioural	Management	for the Elderly (PASE)	intervention were not significantly
	any stage,	women, 48,8	training			different between groups (p>0.05)
	medical	± 10,9 years;			baseline, 12 weeks	
	treatment ≥3	IG: 76 , 86,8%	CG: Physical Training:			
	months ago	women, 47,8	supervised exercise			
	(Breast 55,8;	± 10,5 years;	programme: aerobic and			
	Haematologi	CG: 71,	resistance exercise, and			
	cal 16,6%;	80,3%	group sports			
	Gynaecologic	women, 49,9				
	al 11,6&;	± 11,3 years	12 weeks			
	Urogenital					
	5,5%; lung					
	2,7; other					
	6,2%					
Rogers	Breast (DCIS,	Overall: 222,	IG: Six discussion group	- Social	weekly minutes of	Between group mean differences in PA
et al.,	stage I-IIIA)	100%	sessions + 12 supervised	Cognitive	≥moderate intensity PA	was statistically significant at M3
2014	not currently	women, 54,4	exercise sessions + multiple	Theory	(MTI/ActiGraph	(accelerometer, +41 weekly minutes, p
	receiving or	± 8,5 years;	home-based exercise		accelerometer + GLTEQ)	= 0.010; self-report, +93 weekly
	planning to	IG: 110,	sessions beginning in the			minutes, p=0.001) and remained
	receive	100%	third week + three face-to-		baseline, immediately post-	statistically significant at M6 for self-
	chemotherap				intervention (month 3; M3),	

	y or radiation	women, 54,9	face update counselling		and 3 months post-	reported PA (+74 weekly minutes,
	therapy.	± 9,3 years;	sessions		intervention (month 6; M6)	p=0.001), but not for accelerometery.
		CG: 112,				
		100%	CG: Usual care: printed			
		women, 53,9	American Cancer Society			
		± 7,7 years	materials describing PA			
			recommendations for cancer			
			survivors			
			3 months			
McGinnis	Multiple	Overall: 33,	IG:	- Social	PA (Adapted version of the	Intervention Group reported an 81.3%
et al.,	cancers at	63,6%	Exercise Program + PA	Cognitive	GLTEQ)	increase in minutes per week of MVPA
2021	any stage,	women, 54,3	Behaviour Change	Theory		(M = 108.33 ± 166.5 min), compared
	currently	± 12,4 years;	Counselling		Baseline and post-program	to a 16.6% increase (M = 38.57 ±
	receiving or				(3M)	114.6) in the control group.
	within six-		CG:			Intervention group 67% (n = 4)
	months of		Exercise Program			reported an increase of ≥ 60 min per
	receiving					week of MVPA, compared to 25% (n =
	active cancer		3 months			2) participants in the control group.
	treatment					
	(Breast 39,3;					p-value NA
	prostate,					

	7,1%;					
	ovarian,					
	7,1%;					
	haematologic					
	al, 17,9%;					
	other, 28,6%)					
Courney	Colon (stage	Overall: 211;	IG: Behaviour support	- Theory of	Sel reported recreational PA	The intervention group reported a
a et al.,	II and III) who	IG: 106, 57%	sessions + Supervised	Planned	(Total Physical Activity	significant increase in PA of 15.6 MET-
2016	received	women, <65	exercise sessions + exercise	Behaviour	Questionnaire - TPAQ	hours/week from baseline to 1 year
	adjuvant	yrs (67%);	guidebook developed		(converted to MET-	compared to the control group with an
	chemotherap	≥65 yrs	specifically for colon cancer		hours/week))	increase of 5.1 MET-hours/week
	y within the	(33%);				(p=0.002).
	past 2–6	CG: 10, 56%	CG: general health education		Baseline, 6, 12, 18, 24, 30	
	months,	women, <65	materials promoting PA and		and 36 months	
		yrs (68%);	healthy nutrition and			
		≥65 yrs	standard surveillance follow-			
		(32%);	up.			
			3 years			
Bélanger	Multiple	Overall: 212,	IG: Thrive to Survive	- Theory of	PA (Modified LSI from	No differences at 1 and 3 months for
et al.,	cancers at	60,8%	Guidebook: with information	Planned	GLTEQ)	all sample (p>0.05). But participants
2014	any	women, 18-	about the protective effect of	Behaviour		who reported ≤300 PA minutes/week

stage/phase	29 yrs	PA against chronic disease,	Baseline, 1, and 3 months	and participate in the intervention
of treatment	(25,9%); 30-	tips on how to make PA		group had significant differences in
(Breast	39 yrs	enjoyable, how much PA is		total PA at 3 months: mean change of
(16.0%),	(74,1%);	recommended, how to		+135 minutes/week vs +69
colorectal,		determine PA intensity, and		minutes/week on the CG (p=0.028);
lymphoma	IG : 106,	practical tips such as how to		but not at 1 month
(17.0%),	60,4%	dress for the weather. The		
thyroid	women, 18-	Guidebook included		
(13.7%),	29 yrs	participant-centred activities		
testes	(24,5%); 30-	designed to facilitate		
(12.3%),	39 yrs	participant engagement in		
leukaemia	(75,5%);	the information as well as		
(6.6%) <i>,</i> cervix	CG : 106,	control over PA behaviour,		
(6.1%) <i>,</i> brain	61,3%	including instructing the		
(6,1%),	women, 18-	reader to scan their current		
colorectal	29 yrs	physical environment for		
(3,8%) others	(27,4%); 30-	opportunities to be physically		
(18,4%)	39 yrs	active, a time management		
	(72,6%);	worksheet, information		
		about goal setting, and a PA		
		tracking sheet. Throughout		
		the Guidebook there were		
	1			

			motivational quotes from			
			YACS with an accompanying			
			picture of the person			
			performing an activity, as			
			well as motivational quotes			
			from oncologists and exercise			
			specialists.			
			CG: Received Canadian PA			
			Guidelines (CPAG).			
			Does not specify			
			intervention's duration			
Vallance	Breast	Overall : 95,	IG: PROACTIVE PA resource	- Theory of	- Objective walking	Intervention was not statistically
et al.,	(stages I-IIIA),	100%	kit: PA print materials, a step	Planned	behaviour: Pedometer	superior to a standard
2015	scheduled to	women, 52,8	pedometer, and a step	Behaviour	steps (3-day step test using	recommendation for daily average
	receive	± 9,8 years;	logbook		the StepsCount SC-01	pedometer steps (P = 0.22), light
	neoadjuvant				pedometer);	intensity PA minutes (P = 0.70),
	or adjuvant	IG: 49, 100%	CG: Generic two-page public		- Self-reported PA (LSI from	moderate intensity PA minutes (P=
	chemotherap	women, 52,8	health PA resource: Canada's		the GLTEQ);	0.90), vigorous intensity PA minutes (P
	у	± 9,6 years;	Physical Activity Guide to			= 0.93) and total MVPA minutes (P =
			Healthy Active Living for			0.90).

		CG: 46, 100%	Healthy Adults or Canada's		Baseline (prior to second	
		women, 52,9	Physical Activity Guide for		chemotherapy	
		± 10,1 years	Older Adults.		administration) and at post	
					intervention (between 3	
			4-6 months (during chemo)		and 4 weeks after the last	
					chemotherapy	
					administration).	
Kong et	Breast (stage	Overall: 152;	IG: Wearable Activity Tracker	- Trans-	- Self-reported Leisure	- The IG had increased relative change
al., 2021	l to III) who	IG : 76, 100%	(WAT) + counselling* (weekly	theoretical	Time Physical Activities	in self-reported LTPA (102.8)
	were	women, 47,3	face-to-face by a exercise	Model	levels (Global Physical	compared with the CG (57.8)
	planning to	± 8,5 years;	physiologist) + educational		Activity Questionnaire	immediately after RT compared to
	undergo	CG : 76, 100%	booklets		(GPAQ));	baseline. Although the relative
	radiation	women, 46,8				changes of self-reported LTPA of the
	therapy (RT)	± 7,6 years;	CG:		before RT, immediately	IG were higher at three and six months
	after surgery		counselling* (weekly		after RT, and 3 and 6	after the end of RT compared to in the
			telephone by an exercise		months after completion of	CG, the results were not significant.
			physiologist) + educational		RT.	
			booklets			- The mean average daily step count
						of the IG was 9351.7, which increased
			during the 5-week			to 11,592.2 during RT and 12,240.1
			radiotherapy treatment (RT)			after RT
			period			

Weiner	Breast	Overall: 87;	IG: face-to-face meeting	- Social	PA: MVPA, LPA (ActiGraph	No differences between groups in LPA
et al.,	(diagnosed	IG : 43, 100%	with a trained interventionist	Cognitive	GT3X+ accelerometer)	(p = 0.48) but positive significant
2019	less than 5	women, 58,2	(who used motivational	Theory;		differences in accelerometer-
	years prior to	± 11,4 years;	interviewing techniques to	- Control	baseline and 12 weeks	measured MVPA: mean increase 14.2
	study	CG : 44, 100%	help each participant set a	Theory		min per day (SD = 13.9) in the IG vs. –
	enrolment,	women, 56,2	specific, personalized PA goal			0.7 min per day (SD = 9.7) in the CG (p
	had	± 9,2 years	and an action plan to			< 0.001).
	completed		gradually increase their			
	chemotherap		activity) + received a Fitbit ®			
	y and/or		+ two 20-min phone calls at			
	radiation		the 2- and 6-week time			
	treatment)		points (to review Fitbit data			
			and discussing progress			
			toward the goal) + twice-			
			weekly emails with theory-			
			based content and reminders			
			to wear and sync their Fitbit			
			CG: Waitlist wellness contact			
			control condition received			
			standardized emails every 3			
			days on women's health			

			topics (e.g., healthy eating,			
			stress management, and			
			general brain health).			
			12 week			
Webb et	Multiple	Overall : 207,	IG: printed components and	- Social	PA: GLTEQ	The intervention arm reports a mean
al., 2019	cancers at	73,9%	Internet tools and e-	Cognitive		PA improvement score of 9.58 (23.14)
	any phase	women,	newsletters influenced by the	Theory;	12 and 24 weeks	over 12 weeks, compared with 2.61
	(breast	0-44 yrs	stage of PA behaviour change	- Theory of		(24.10) in the control arm (p = 0.04).
	38.2%,	(14,5%);	model with content tailored	Planned		
	prostate	45-64 yrs	by prediagnosis levels of PA,	Behaviour;		At 12 weeks: IG: 35.57 ±23.71 vs CG:
	6.8%,	(61,8%);	age and gender			31.31± 22.65; p<0,05.
	colorectal	≥65 yrs				
	cancer	(23,7%);	CG: standard letter			
	13.0%, others	IG: 104,	recommendation			
	42.0%)	72,1%				
		women,	24 weeks (Intervention: 12			
		0-44 yrs	weeks + 12 weeks follow up			
		(14,4%);	Control: 12 weeks standard			
		45-64 yrs	letter + 12 weeks			
		(65,4%);	intervention)			
		≥65 yrs				
		(20,2%);				

		CG: 103,				
		75,7%				
		women,				
		0-44 yrs				
		(14,6%);				
		45-64 yrs				
		(58,3%);				
		≥65 yrs				
		(27,2%);				
Short et	Breast (stage	Overall : 330,	IG:	- Social	- Self-reported PA and	Allocation to the tailored intervention
al., 2015	0-4), who	100%	Tailored-print intervention	Cognitive	- Meeting the PA guidelines	significantly reduced the odds of not
	completed	women, 55	group received three Social	Theory;	for aerobic and resistance-	doing any resistance-based PA (p <
	active cancer	years;	Cognitive Theory-based	- Theory of	based activity (adapted	0.01) relative to the control group and
	treatment	Tailored IG:	computer-tailored	Planned	version of the LSI from the	- increased the odds of meeting the
		109, 100%	newsletters over a 12-week	Behaviour	GLTEQ);	resistance training guidelines.
		women <i>,</i> 56	period (6 weeks apart);		- Mean daily steps	- Meeting aerobic guidelines was not
		years;	Targeted-print intervention		(Pedometer);	significantly different between groups
		Targeted IG:	group received a copy of the			(p>0.05).
		110, 100%	Theory of Planned Behaviour-		baseline, 4 months	- There were no other significant
		women, 55	based booklet 'Exercise for			intervention effects.
		years;				

		CG: 111,	health: An exercise guide for			
		100%	breast cancer survivors.			
		women, 55				
		years	CG: Received the brochure			
			'An active way to better			
			health' describing the			
			national PA guidelines for			
			Australian adults			
			12 weeks			
Pinto et	Breast, stage	Overall : 192,	IG: health care provider	- Social	PA (7-day PAR)	Intervention participants had more
al., 2013	0-IV	100%	advice for PA + 12 weeks of	Cognitive		MPA than the control group at both 3
	(completed	women, 60,0	telephone counselling +	Theory	baseline, at 3 months, 6 and	months (59,70 vs 30,82; p =0.048) and
	primary and	± 9,9 years;	Monthly PA calls for 3	- Trans-	12 months.	6 months (56,64 vs 32,16; p = 0.032),
	adjuvant	IG: 86, 92%	months	theoretical		but this beneficial telephone
	treatment for	women, 59,5		Model;		counselling effect dissipated at 12
	breast cancer	± 9,7 years;	CG: health care provider			month (p = 0.574).
	≤ 5 years	CG: 106, 93%	advice for PA + 12 weeks of			
	since	women, 62,8	contact control + Monthly			
	treatment	± 11,1 years	calls for 3 months			
	completion)					
			6 months			

Pinto et	Breast (stage	Overall: 76,	IG: PA + Reach to Recovery	- Social	Self-reported MVPA (7-day	For self-reported PA, there were
al., 2015	0-3) who had	100%	program: telephone-based	Cognitive;	PAR);	significant group differences favouring
	completed	women,	PA counselling, a pedometer	- Trans-	Mean minutes of MVPA	the intervention group, compared to
	surgery	55,62 ± 9,55	(Digiwalker) and a heart rate	theoretical	(Accelerometer (Actigraph	the control group in minutes of MVPA
		years;	monitor + Reach to Recovery	Model	GT3X))	at 12 weeks (129,5±73,4 vs 25,0 ±
			program informational			67,4; p<0.001) and at 24 weeks
		IG : 39, 100%	booklets + 12 exercise tip		baseline, 12, 24 weeks	(98,4±83,2 vs 63,9 ± 82,9; p=0.03).
		women,	sheets that focused on PA			For accelerometery significant group
		55,64 ± 8,59	topics			differences favouring the intervention
		years;				group, compared to the control group
			CG: Reach to Recovery			in minutes of MVPA at 12 weeks
		CG : 37, 100%	program: 12 calls during			(70,3±65.9 vs 16.5±31.9; p<0.01) and
		women,	which was administered the			at 24 weeks (54,6±81,6 vs 13,4 ± 35,2;
		55,59 ± 10,59	Weekly Symptom			p<0.01)
		years;	Questionnaire + Reach to			
			Recovery program			
			informational booklets.			
			12 weeks			
Golsteijn	Colorectal,	478;	IG: pedometer + computer-	- Social	Objective MVPA (ActiGraph	At 3 months, participants in the
et al.,	Prostate		tailored PA advice, both	Cognitive	GT3X-BT accelerometer) -	OncoActive group improved their PA
2018	undergoing		Web-based via an interactive	Theory;	baseline, 6 months;	significantly in terms of both MVPA (B

curative	IG : 249,	website and with printed	-Trans-		= 133.55, p = 0.04) and days with at
treatment or	14,9%	materials.	theoretical	Self-reported MVPA	least 30 min of PA (B = 0.86, p <
completed	women,		Model;	(SQUASH) - baseline, 3, 6	0.001). At 6 months, results indicate
primary	66,55 ± 7,07	CG: usual care waiting-list	- HAPA;	months;	significant improvements in self-
treatment up	years;		- I-Change		reported PA (MVPA: B = 267.17, p <
to one year		4 months	Model;		0.001; Days ≥30 min PA: B = 0.98, p <
ago.	CG : 229,		-Health		0.001). ActiGraph assessed MVPA also
	10,9%		Belief model;		increased significantly (MVPA: B =
	women,		- goal setting		44.60, p = 0.006), whereas the
	66,38 ± 8,21		theories;		increase in ActiGraph assessed days
	years;		- theories of		≥30 min PA was borderline significant
			self-		(B = 0.38, p = 0.05).
			regulation		
			- the		
			Precaution		
			Adoption		
			Process		
			Model:		

Appendix 6 - SURE Checklist

- A Identification, selection and appraisal of studies
- A1) Were selection criteria reported?

Yes

A2) Was the search comprehensive?

Partially

A3) Is the review up-to-date?

Yes

A4) Was biased selection of articles avoided?

Yes

A5) Were appropriate criteria used to assess the risk of bias?

Yes

A6) Overall identification, selection and appraisal of studies

Reliable

- B Analysis of the findings
- B1) Were characteristics and results of included studies reliably reported?

Yes

B2) Were methods used to analyse the findings reported?

Yes

B3) Was the extent of heterogeneity described?

Yes

B4) Were the findings combined (or not combined) appropriately?

Yes

B5) Were factors that could explain heterogeneity explored?

Not applicable

B6) Overall analysis of findings

Reliable

- C Overall assessment of the reliability of the review
- C1) Other considerations

No other quality issues identified

C2) Overall reliability of the review

Reliable: This is a good quality systematic review with only minor limitations

Appendix 7 - Abstract ISBNPA

Title: Self-determination theory-based physical activity and/or nutrition behavior change interventions for cancer survivors – A systematic review

<u>Beatriz Francisco¹</u>, Eliana V. Carraça², Inês Nobre³, Helena Cortez-Pinto¹, Inês Santos^{1,2}

 ¹ Universidade de Lisboa, Faculdade de Medicina, Laboratório de Nutrição
² Universidade Lusófona, Centro de Investigação em Desporto, Educação Física, Exercício e Saúde (CIDEFES)

³ Universidade de Lisboa, Faculdade de Motricidade Humana, CIPER

Abstract draft (304 of 350 words)

Purpose: Theory-based interventions, using evidence-based behavior change techniques, aimed at promoting long-term health behavior change in cancer survivors are effective, but remain scarce. Prior research has shown that internal (better quality) motivations play an important role in long-term, sustained, behavior adoption, supporting the use of self-determination theory (SDT) as a valid framework. However, no previous systematic review has examined SDT-based PA and/or dietary behavior change interventions in cancer survivors. Therefore, this study aims to synthetize such information.

Methods: Scientific articles were identified through electronic database searches (PubMed, Web of Science and Psychology and Behavioral Sciences Collection) and reference scanning. Searches included various combinations of three sets of terms: 1) terms concerning the health condition or population of interest (e.g., cancer); 2) terms concerning the intervention (e.g., lifestyle/behavioral interventions); and 3) terms concerning the behavior change outcomes of interest (e.g., diet, physical activity). Clinical or community lifestyle/behavioral intervention studies targeting energy balance-related behaviors and weight loss and/or maintenance in adults (≥18y) diagnosed with any type of cancer (at any stage of disease/treatment) were included. Pharmacological and surgery-based intervention studies were excluded.

Results/findings: The search yielded 36 potentially relevant papers after title/abstract screening. Full-text screening and data extraction are currently being performed by two independent researchers, according to a data extraction form previously developed by the authors. The same two researchers are assessing study methodological quality using the Quality Assessment Tool for Quantitative Studies, developed by the Effective Public Health Practice Project. Results deriving from the narrative synthesis of the characteristics and effectiveness of the interventions will be summarized in tabular form and will be presented at the ISBNPA annual meeting.

Conclusions: Systematically identifying and summarizing relevant information on SDTbased physical activity and/or nutrition behavior change interventions for cancer survivors can contribute to the development of more effective interventions designed to promote adherence to lifestyle behaviors.

Keywords: Cancer, behavior change intervention, self-determination theory