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Dr. José Vicente Abellán Nebot
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Abstract

The Fourth Industrial Revolution is underway thanks to the latest technological advances,

such as cyber-physical systems, cloud computing, big data or data mining. Industries have

to adapt to the new production paradigms, which require the minimization of errors and the

maximization of quality in complex production systems. One of the most promising quality

management strategies is Zero Defect Manufacturing (ZDM), which seeks to guarantee that no

defective products reach the customer, leading to increased product quality and sustainability

and minimizing costs and waste. ZDM is based on four interrelated strategies: defect detection,

prediction, reparation and prevention.

This thesis addresses several problems that may arise during the development of these strate-

gies. We have developed variation propagation models and proposed methodologies to adjust

these models using process data. We have also developed fault diagnosis algorithms to minimize

the measurement cost using process planning-based models, and prognosis adaptive algorithms

to indirectly estimate the remaining useful life of a cutting tool.

First, in this thesis we have proposed variation propagation models for vices and self-

centering three-jaw chucks, which are fixtures that are traditionally used in industry, using

the Stream-of-Variation methodology. These models detail the effect of the deviations of the

locating components of each fixture and the deviations of the locating datums of the work-

piece on the newly generated features. In this thesis, we also propose a methodology to adjust

linear input-output models, given that physical-based models may contain unknown or inac-

curate terms. This methodology uses process data and engineering knowledge to perform the

adjustment. The methodology consists in the minimization of the prediction errors using the

covariance matrices of the key dimensional characteristics of the product.

We have proposed a procedure to detect and isolate faults online in a process with the

objective of reducing the necessary amount of required measurements and thus, the total mea-

surement cost. This procedure uses a model obtained using the planning process, and the fault

isolation criteria applied in the procedure algorithm are based on the information gain index of

each measurable variable.

This thesis also addresses the problem of indirectly monitoring and predicting the condi-

tion and the remaining useful life of cutting tools during the machining process. First, we have

proposed a method to estimate the surface roughness of the processed parts during the periods

where those measurements may be unavailable, using empirical models, power consumption
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measurements and an observer with a steady-state Kalman filter. Additionally, we have pro-

posed a prognosis methodology to predict the future values of the power consumption (whose

measurements have a large amount of measurement noise) and the surface roughness of the

processed parts (which are scarce measurements) using an adaptive recursive least squares al-

gorithm. This algorithm can learn the behavior of the predicted variables with a low amount of

measurements, and can adapt to sudden changes in the cutting conditions without being affected

by minor disturbances. This algorithm can estimate the remaining useful life of the cutting tool

and can be used to avoid early tool replacements or processing parts out of specifications.



Resumen

La Cuarta Revolución Industrial está en progreso gracias a los últimos avances tecnológicos,

como los sistemas ciberf́ısicos, la computación en la nube, el big data o la mineŕıa de datos.

Las industrias tienen que adaptarse a los nuevos paradigmas de producción, que requieren la

minimización de los errores y la maximización de la calidad en sistemas de producción complejos.

Una de las estrategias de gestión de la calidad más prometedoras es la Fabricación Cero Defectos

(Zero Defect Manufacturing (ZDM), en inglés), que busca garantizar que ningún producto con

defectos llegue al cliente, lo que conlleva un aumento de la calidad de los productos producidos

y de la sostenibilidad y una minimización del coste y de los desperdicios. ZDM está basado

en cuatro estrategias interrelacionadas: detección, predicción, reparación y prevención de los

defectos.

Esta tesis aborda varios de los problemas que pueden aparecer durante el desarrollo de

estas estrategias. Hemos desarrollado modelos de propagación de la variación y propuesto

metodoloǵıas para ajustar dichos modelos usando datos del proceso. También hemos desar-

rollado algoritmos de diagnóstico de fallos para minimizar el coste de tomar medidas utilizando

modelos basados en la planificación de procesos, y algoritmos adaptativos de prognosis para

estimar indirectamente el tiempo restante de vida útil de una herramienta de corte.

Primero, en esta tesis hemos propuesto modelos de propagación de la variación para mor-

dazas y platos de tres garras autocentrantes, que son utillajes utilizados tradicionalmente en la

industria, utilizando la metodoloǵıa del Stream-of-Variation. Estos modelos detallan el efecto

de las desviaciones de los componentes localizadores de cada utillaje y de las desviaciones de

los datums localizadores de la pieza en los nuevos features generados. También proponemos en

esta tesis una metodoloǵıa para ajustar modelos lineales de entrada-salida, dado que los mode-

los f́ısicos pueden contener términos desconocidos o imprecisos. Esta metodoloǵıa usa datos del

proceso y conocimiento ingenieril para realizar el ajuste. La metodoloǵıa consiste en la mini-

mización de los errores de predicción usando las matrices de covarianza de las caracteŕısticas

dimensionales clave del producto.

Hemos propuesto un procedimiento para detectar y aislar fallos online en un proceso con

el objetivo de reducir la cantidad necesaria de toma de medidas y, por tanto, el coste total de

tomar las medidas. Este procedimiento utiliza un modelo basado en la planificación de procesos,

y los criterios de aislamiento de fallos utilizados en el algoritmo están basados en el ı́ndice de

ganancia de información de cada variable que puede medirse.

VII



VIII

Esta tesis también aborda el problema de la monitorización indirecta y la predicción del

estado y de la vida útil restante de las herramientas de corte durante los procesos de mecan-

izado. Primero, hemos propuesto un método para estimar la rugosidad superficial de las partes

procesadas durante los periodos en los que esas medidas pueden no estar disponibles, usando

modelos emṕıricos, medidas de la potencia consumida y un observador con un filtro de Kalman

en estado estacionario. Además, hemos propuesto una metodoloǵıa de prognosis para predecir

los valores futuros de la potencia consumida (cuyas medidas tienen mucho ruido) y de la ru-

gosidad superficial de las partes producidas (cuyas medidas son escasas) usando un algoritmo

RLS (Recursive-Least-Squares, en inglés) adaptativo. Este algoritmo puede aprender el compor-

tamiento de las variables que se predicen usando una cantidad de medidas reducida, y puede

adaptarse a cambios súbitos en las condiciones de corte sin verse afectado por perturbaciones

menores. Este algoritmo puede estimar la vida útil restante de la herramienta de corte y puede

usarse para evitar el reemplazo prematuro de las herramientas o producir partes que estén ya

fuera de especificaciones.



Resum

La Quarta Revolució Industrial es troba en progrés gràcies als últims avanços tecnològics, com

els sistemes ciberf́ısics, la computació en el núvol, el big data o la mineria de dades. Les indústries

han d’adaptar-se als nous paradigmes de producció, que requereixen la minimització d’errors i

la maximització de la qualitat en sistemes de producció complexos. Una de les estratègies de

gestió de la qualitat més prometedores és la Fabricació Zero Defectes (Zero Defect Manufacturing

(ZDM), en anglès), que busca garantir que cap producte amb defectes arribe al client, fet que

comporta un augment de la qualitat i la sostenibilitat i una minimització del cost i dels materials

rebutjats. ZDM està basat en quatre estratègies interrelacionades: detecció, predicció, reparació

i prevenció de defectes.

Aquesta tesi tracta diversos problemes que poden sorgir durant el desenvolupament d’aquestes

estratègies. Hem desenvolupat models de propagació de la variació i proposat metodologies per

ajustar aquests models utilitzant dades del procés. També hem desenvolupat algorismes de di-

agnòstic de fallades per minimitzar el cost de prendre mesures utilitzant models basats en la

planificació de processos, i algorismes adaptatius de prognosi per estimar indirectament el temps

restant de vida útil d’una eina de tall.

Primer, en aquesta tesi hem proposat models de propagació de la variació per a mordasses

i plats de tres urpes amb autocentrament, que són utillatges utilitzats tradicionalment en la

indústria, utilitzant la metodologia del Stream of Variation. Aquests models detallen l’efecte

de les desviacions dels components localitzadors de cada utillatge i de les desviacions dels

datums localitzadors de la peça en els nous features generats. També proposem en aquesta

tesi una metodologia per ajustar models lineals d’entrada-eixida, donat que els models f́ısics

poden contenir termes desconeguts o imprecisos. Aquesta metodologia utilitza dades del procés

i coneixements d’enginyeria per realitzar l’ajust. La metodologia consisteix en la minimització

dels errors de predicció utilitzant les matrius de covariància de les caracteŕıstiques dimensionals

clau del producte.

Hem proposat un procediment per a detectar i äıllar fallades online en un procés amb

l’objectiu de reduir la quantitat necessària de mesuraments i, per tant, el cost total de realitzar

els mesuraments. Aquest procediment utilitza un model basat en la planificació de processos,

i els criteris d’äıllament de fallades utilitzats en l’algorisme estan basats en l’́ındex de guany

d’informació de cada variable que es pot mesurar.

Aquesta tesi també tracta el problema de la monitorització indirecta i la predicció de l’estat i

la vida útil restant de les eines de tall durant els processos de mecanització. Primer, hem proposat
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un mètode per estimar la rugositat superficial de les parts processades durant els peŕıodes en

que aquestes mesures poden no estar disponibles, utilitzant models emṕırics, mesures de la

potència consumida i un observador amb un filtre de Kalman en estat estacionari. A més, hem

proposat una metodologia de prognosi per predir els valors futurs de la potència consumida (amb

mesures amb molt de soroll) i de la rugositat superficial (amb mesures escasses) utilitzant un

algorisme RLS (Recursive-Least-Squares, en anglès) adaptatiu. Aquest algorisme pot aprendre

el comportament de les variables que es prediuen utilitzant una quantitat redüıda de mesures, i

pot adaptar-se a canvis sobtats en les condicions de tall sense veure’s afectat per pertorbacions

menors. Aquest algorisme pot estimar la vida útil restant de la eina de tall i pot utilitzar-se per

evitar el reemplaçament prematur de les eines o produir parts fora d’especificacions.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Industry 4.0 and Zero Defect Manufacturing

The Fourth Industrial Revolution, also known as Industry 4.0, is under way as the result of a pro-

duction paradigm shift towards Mass Personalization Production (MPP). In this new paradigm,

customers are highly involved in the manufacturing process, as production is personalized for

each individual customer, to the extent that even basic design and product structure can be

adapted to meet each individual’s requirements. The development of Industry 4.0 and this new

paradigm has been possible thanks to the latest technological advances, such as cyber-physical

systems, cloud computing, Internet of things, big data and data mining [1].

However, Mass Personalization Production presents several new challenges to the manufac-

turing industry, as products are expected to be more customizable over time, produced at faster

rates in smaller batches, which leads to shorter life cycles of high complex modern manufac-

turing processes, and thus leading to an increased probability of the occurrence of production

errors. Thus, new quality management strategies are required in order to deal with these new

challenges [2].

One of the most promising strategies is Zero Defect Manufacturing (ZDM). Psarommatis et

al [3] have proposed the following definition:

‘ZDM is a holistic approach for ensuring both process and product quality by reducing defects

through corrective, preventive, and predictive techniques, using mainly data-driven technologies

and guaranteeing that no defective products leave the production site and reach the customer,

aiming at higher manufacturing sustainability.’

In fact, ZDM assumes that defects are an intrinsic part of any manufacturing process, and

aims at its early detection in order to adjust the process, in such a way that its impact on

the final quality of the product is minimized. ZDM also aims to minimize the amount of waste

1
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generated during the manufacturing process (‘zero waste’ ) and the reduction of the use of

resources, thus leading to a more sustainable production [4].

The concept of Zero Defects in manufacturing had already appeared in the 60s [4], as part

of the US Army Pershing Missile Program, and in Toyota Motor Company, Japan, as a vision

to stimulate quality control activities across the organization. This zero defect vision motivated

subsequent methods such as Taguchi methods, Six Sigma or Lean Production [2]. However, the

concept of ZDM as it is known present-day began to gain traction in the latest decade [2, 4].

Using the aforementioned latest technologies and Industry 4.0, ZDM aims to fill the gaps from

existing quality control methods by learning from defects [5].

Zero Defect Manufacturing has also been encouraged via state-funded projects. In the case of

the European Commission, it has funded projects since 2011, such as InterQ, ZDMP, QU4LITY,

among many others, for a grand total budge of over 156 million euros since then [3].

1.1.2 Implementing Zero Defect Manufacturing

Zero Defect Manufacturing can be implemented with a product-oriented approach or with a

process-oriented approach. The product-oriented approach focuses on analyzing and reducing

the defects of the processed parts, while the process-oriented approach focuses on studying and

eliminating the defects of the manufacturing process. Both approaches are intertwined and part

of the same concept [6], as product defects can be inferred from process defects, and vice versa.

Figure 1.1 illustrates this concept.

Product level Shop-floor level

correlation with
Machine health

product quality
correlation with
Product quality

machine health

Product quality
inspection

Machine health
inspection

Machine tuning Product repair

Data-analysis

level

Machine health
data analysis

Product quality
data analysis

Process-oriented
approach

Product-oriented
approach

Manufacturing
Zero Defect

Figure 1.1. Relationship between the product-oriented and the process-oriented approaches to ZDM. Adapted

from [6].
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Zero Defect Manufacturing is comprised by four strategies, known as Detect, Predict, Repair

and Prevent, which are interconnected as the following trigger-action pairs: Detect - Repair,

Detect - Prevent and Predict - Prevent [7]. These relations are shown in Figure 1.2. These

strategies and relations parallel the intelligent fault diagnosis and prognosis systems (IFDAPS)

framework for ZDM, which consists of a control loop that collects and processes data, and

applies fault diagnosis and prognosis to propose defect corrections and compensations on the

process [8].

Industry 4.0

Results

Zero Defect Products

Zero Waste

Actions

Repair Prevention

Triggering Factors

Detection Prediction

Zero Defect Manufacturing

Figure 1.2. Implementation of the strategies within Zero Defect Manufacturing. Adapted from [6].

This thesis aims to propose solutions to problems within the Detection - Repair and Pre-

diction - Prevention pairs, thus, we will focus on these from now on.

Detect - Repair

In order to detect any defects on the manufacturing system, it is important to monitor the state

of the processed product during the manufacturing process, via direct or indirect means and

using online or offline techniques, depending on the features of each type of measurement or

process. Alternatively, the state of the process can also be monitored indirectly using additional

outputs from the manufacturing process (such as power consumption or vibrations).

Together with the monitoring process, it is essential to develop fault diagnosis methods, in

order to detect, isolate and identify in real-time any faults and failures that may appear during

the manufacturing process.
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These methods require reliable models of the individual components of the product and

the process, as well as models of the general behavior of the process. These models can be

obtained through physical, empirical or data mining methods. The models are used to analyze

and trace the transmission of the defects from the process to the final product (e.g. [9,10]) and

determine the process component deterioration (e.g. [11,12]). The precision and accuracy of the

used models will directly affect the performance of the fault diagnosis methods.

Once a defect in the product has been detected, it is necessary to make certain decisions

in order to repair the product before it leaves the manufacturing process. These decisions may

include modifying the following operations downstream or, in multistage processes, applying

rework loops [13] by recirculating the product to additional and/or previous stages.

Reparation methods require accurate knowledge of the process behavior, as it is essential

to analyze its diagnosability [14] and compensability [15], in order to decide if a defect can be

repaired and where it can be repaired.

The pair Detect - Repair is further related as monitorization requires using sensors to mea-

sure the state of the process and the product, which require to be located in order to ensure

that defects can be repaired; however, due to the specifications of each manufacturing process,

some problems may arise; for example, some measurements may require the destruction of the

product, or the measurement entails an unacceptable economical cost. Thus, it is clear that a

holistic approach to the pair is required in order to achieve ZDM.

Predict - Prevent

The evolution of the state of the components in manufacturing process, its effect in the final

quality of the product and the apparition of defects in the processed parts can be predicted. This

prediction requires reliable knowledge of the process, with accurate models that can be analyzed

accordingly. It also requires adequately-treated data from the process, obtained through the

aforementioned monitoring system, in order to update the models and predict the moment of

failure.

Prevention actions are then triggered by the prediction of an upcoming defect in the process.

These prediction actions may consist of direct physical actions or modifications of the internal

algorithm that controls the manufacturing process, in order to ensure that any products leave

the process within the quality standards.

A frequent example of the pair Predict - Prevent can be found in remaining useful life

(RUL) methods [16], which aim to predict the remaining life of a part of a process (such as

machining tools or fixtures) and develop algorithms to replace them preventively, before the

product quality is affected, but also reducing cost and waste.

1.2 Challenging problems

This thesis deals with several challenges comprised within the Zero Defect Manufacturing strate-

gies, focusing on developing and adjusting product and process models, fault detection and

prognosis with low measurement availability.
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In the following section, we will briefly describe some of the major challenging problems

that we have covered along the thesis.

1.2.1 Modeling and adjustment

The core motivation of ZDM is to guarantee that no defective products leave the factory. In

order to achieve these specifications, it is necessary to monitor the state of the process and

the product, detect any defects and faults that may appear and predict the future state of the

system, so actions can be taken active or preventively. Therefore, in order to perform these

actions successfully, it is essential to obtain beforehand reliable models of the process, the

manufactured product and the relationship between process and product that explains defect

propagation in a manufacturing process.

Depending on the characteristics of each process and product, these models can be obtained

through theoretical methods (such as physical, geometrical or engineering-based means), em-

pirical methods (by performing experiments focused on relating certain variables), data-based

methods (such as pattern detection and neural networks) or by combinations of these methods.

However, we have found that, given the sheer variety of processes and product with their

respective characteristics that can be found in the manufacturing industry, there are still many

methods and combinations that have not been developed or tested yet. Thus, we define the first

problem as follows.

P1. To design, develop and test methods and combinations of methods in order to obtain reliable

models of processes, products and the propagation of defects and faults along the manufac-

turing process.

Many of the defect propagation models that have already been developed and obtained are

those from advanced factories, which can modify their manufacturing stages using customized

fixtures that behave similarly to 3-2-1 (physical-based) models. In order to bring closer Zero

Defect Manufacturing to more traditional industries, and continuing with problem P1, it is

interesting to obtain models of classical fixtures, which do not necessarily behave like 3-2-1

models. The second problem is defined as:

P2. To develop, obtain and validate physical-based defect propagation models of fixtures that

are used in traditional industries.

Some physical-based models, such as those developed within the Stream-of-Variation (SoV)

approach, assume that defect propagation is a linear function of the previous states of the

product and the sources of variation from the process. Thus, these relationships are linearized.

Given that the dimensions of the defects are notably smaller than the dimensions of the

products, linearizations and simplifications do not cause noticeable errors when these models are

used to estimate the defect propagation in single stages. However, these errors might accumulate
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in multistage manufacturing process with a high amount of stages. Additionally, there are cases

where some propagation processes are not well known or cannot be generically modeled.

In all the previous cases, the resulting defect propagation model may present inaccuracies

that can render them unfit for their use in detection and prediction algorithms. Thus, it would be

useful to combine these models with output data from the processed products, thus adjusting

the model to fit the real behavior of the manufacturing process. The third problem is then

defined below.

P3. To develop a methodology to adjust a linear model by combining physical and data-driven

methods, and using additional engineering knowledge.

1.2.2 Monitoring, fault detection and prognosis

ZDM aims to minimize the waste produced by manufacturing processes (zero-waste), which

also encompasses energy consumption minimization. These guidelines clearly lead to final cost

reduction.

To minimize waste, it is then essential to reduce the required amount of processed products

that have to measured in order to initialize any ZDM-oriented algorithm, as initial parts may

be defective and may require to be disposed of. The fourth problem rephrases this concept.

P4. To propose methodologies that minimize the amount of processed parts required to initialize

the quality-ensuring algorithms.

Continuing with the zero-waste premise, we focus now on tool quality in machining pro-

cesses. When cutting tool wear surpasses a certain threshold, the processed products present

unacceptable surface quality properties. However, replacing cutting tools prematurely leads to

misusing resources. In both extremes, unnecessary waste is generated.

Usually, cutting tool wear cannot be directly measured without halting the machining pro-

cess; therefore, indirect measurements must be taken. Then, the fifth problem is defined as:

P5. To develop autonomous algorithms that adapt models with the objective of indirectly mon-

itoring tool wear and other machining conditions and apply prognosis methods to determine

the optimal moment to replace cutting tools.

Due to the complexity of manufacturing processes, process and product measurements are

not always available. Sometimes they can only be obtained occasionally, or they may present

disturbances that reduce its reliability. These issues create difficulties for monitoring the process,

so the sixth challenging problem we have to overcome is:

P6. To develop process monitoring techniques when measurements are scarce or unreliable.

Closely related to the previous issues, in some cases, measurements are available, but taking

these measurements can be costly. When detecting and isolating faults in the process, there are

different combinations of product measurements that can be used, which leads us to the seventh

problem.

P7. To develop fault and isolation methods that minimize the total measurement cost.



1.3. Thesis outline and contributions 7

1.3 Thesis outline and contributions

The main goal of this thesis is to propose methodologies to adjust models and develop fault

diagnosis and prognosis algorithms in manufacturing processes, within the principles of defect,

cost, time and waste minimization, encompassed under the ZDM strategies.

This thesis is structured as follows. First, in Chapter 2 we briefly introduce the basics of

the Stream-of-Variation models, fault diagnosis and tool wear theory, which are required for

the following chapters. In Chapter 3 we present geometrical models of two fixtures that are

traditionally used in the manufacturing industry. In Chapter 4 we present an algorithm to

adjust the geometrical model of an MMP using process data and engineering information. In

Chapter 5 we propose a sequential algorithm for fault detection minimizing the amount of

necessary measurements. Next, in Chapters 6 and 7 we focus on indirectly monitoring tool

wear in CNC machines, and propose several algorithms for predicting the remaining useful life

of machining tools, which adapt models in the presence of disturbances, noise and different

measurement frequencies. Lastly, in Chapter 8 we present the conclusions of the thesis and we

propose future research lines.

Please note that each chapter is self-consistent and can be mostly read independently of the

other chapters. Most of the content in this thesis is derived from published or under peer review

material; thus, repetitions of background explanations might appear, and notation between

chapters might present differences. In order to end the introduction, let us present a summary

of each chapter and reference the papers that are based on.

Chapter 2: Background

In this Chapter, we present a general review of the theory basics to understand the following

chapters of this thesis.

First, we define the concepts of multistage processes and its variants. Then, we clarify

the difference between defects, deviations, faults and failures, and define the parts of fault

diagnosis. We proceed with an explanation of the Stream-of-Variation methodology and several

manufacturing process-related terms. After that, we review the basics of tool wear. Finally, we

describe several methodologies and algorithms from the systems engineering field.

Chapter 3: Extension of the Stream-of-Variation Model for General-Purpose

Workholding Devices: Vices and Three-Jaw Chucks

This Chapter develops physical variation propagation models (P1) of a vice and a self-centering

three-jaw chuck, which are fixtures that are frequently used in traditional manufacturing process

industries (P2).

These models define the defect propagation from the variation sources from the process

towards the processed products in a single stage. It also defines the propagation of defects
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from previous stages in a multistage manufacturing process, as defects are transmitted through

datums.

The models have been obtained through geometrical means within the Stream-of-Variation

(SoV) approach using Differential Motion Vectors (DMVs). Part of the models have been ob-

tained using the 3-2-1 model, as detailed in [10]. An alternative method has been proposed

to solve the coordinate system problems in the self-centering three-jaw chuck, and no-linearity

behavior in vices has been calculated using direct geometrical calculations.

The resulting models have been validated through mathematical simulations, CAD and

experiments.

The results of this chapter were mainly addressed in [17]:

� Moliner-Heredia, R., Abellán-Nebot, J. V., & Peñarrocha-Alós, I. (2021). Extension

of the Stream-of-Variation Model for General-Purpose Workholding Devices: Vices and

Three-Jaw Chucks. IEEE Transactions on Automation Science and Engineering.

Chapter 4: A methodology for data-driven adjustment of variation propaga-

tion models in multistage manufacturing processes.

In Chapter 3, we found the existence of unavoidable non-linearities in traditional fixtures. These

non-linearities may not affect the reliability of variation propagation models in single stages,

but they can accumulate in MMPs with large amount of stages.

Thus, motivated by these conclusions, this Chapter proposes a methodology to adjust a linear

input/output variation propagation model of a process using output data from the process and

engineering knowledge, using a previously obtained physical model as a basis (P3).

This methodology consists in the recursive optimization of the difference between the co-

variance matrix of the measurements from the key dimensional characteristics of the product

and the respective estimation obtained from the model that is being adjusted.

The adjusted hybrid model will fit the model better than the original model (P1), thus

increasing its reliability in order to be used in monitoring and fault diagnosis methods.

The proposed methodology has been designed to require a reduced amount of measurements

in order to be ready for its implementation (P4). This methodology has been validated using

a simulated case study, and we have evaluated the evolution of the reliability of the adjusted

model with respect to the amount of processed parts required to initialize the implementation.

The results of this chapter were mainly addressed in:

� Moliner-Heredia, R., Peñarrocha-Alós, I. & Abellán-Nebot, J. V.. A methodology for

data-driven adjustment of variation propagation models in multistage manufacturing

processes. Currently under peer review.
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Chapter 5: A Sequential Inspection Procedure for Fault Detection in Multi-

stage Manufacturing Processes

In Chapter 5, we present a procedure to detect and isolate faults online in a process with the

objective of reducing the necessary amount of required measurements. This procedure is based

on sequential inspections, which is a fault isolation method used in other knowledge areas, such

as software testing.

First, we have developed a propagation model of the process-product relationship using

knowledge from the planning process (P1). This linear input-output model of the process con-

sists of a binary propagation matrix, where the propagated information is the presence of faults

in the process.

The sequential inspection procedure consists of a detection stage and a fault isolation stage.

In the first stage we select the minimum amount of required sensors that are necessary to take

measurements and potentially detect the presence of a fault. In the second stage, depending

on which sensors have detected this fault, we calculate an Information Gain with the objective

of minimizing the amount of sensors required to isolate the detected fault, thus selecting the

sensors that isolate the fault, at minimum total cost (P7).

We have validated the proposed procedure using different simulated case studies, analyzing

the relationship between both the amount of required sensors and the total cost and the structure

of the binary propagation matrix.

The results of this chapter were mainly addressed in [18]:

� Moliner-Heredia, R., Bruscas-Bellido, G. M., Abellán-Nebot, J. V., & Peñarrocha-

Alós, I. (2021). A Sequential Inspection Procedure for Fault Detection in Multistage

Manufacturing Processes. Sensors, 21(22), 7524.

Chapter 6: Model-based observer proposal for surface roughness monitoring

In this Chapter, we propose an observer to indirectly monitor the surface roughness of the pro-

cessed parts in a CNC machine (P5), as we assume that surface roughness cannot be measured

constantly (P6).

The proposed observer is based on a steady-state Kalman filter. Using additional measure-

ments of the power consumed by the CNC machine and a model that is based on experimental

curves that relate this power consumption and the surface roughness of the processed parts

(which is affected by tool flank wear), during the monitoring process the observer is updated

depending on the received measurements from the machining process.

This observer has been validated and compared with simpler proposals using a simulated

case study.
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The results of this chapter were mainly addressed in [19]:

� Moliner-Heredia, R., Abellán-Nebot, J. V., & Peñarrocha-Alós, I. (2019). Model-

based observer proposal for surface roughness monitoring. Procedia Manufacturing, 41,

618-625.

Chapter 7: Model-based tool condition prognosis using power consumption

and scarce surface roughness measurements

Continuing with the general concepts of Chapter 6, in this Chapter we propose a methodology

to indirectly monitor the effects of tool flank wear in a CNC machining process and predict the

optimal moment to replace the machining tool (i.e. predicting the remaining useful life of the

tool) (P5).

This methodology assumes that measurements of the surface roughness of the processed

parts are scarce (P6), and power consumption measurements are constantly available but con-

tain notable measurement noise.

The models that this methodology uses to perform the prognosis are based on polyno-

mial models of the relationship between power consumption and surface roughness during the

machining tool life, which in turn have been adjusted from empirical models of these behav-

iors. These polynomial models are subsequently adjusted online by an adaptive recursive least

squares algorithm, using measurements from the machining process (P1). The last part of the

methodology determines the tool replacement moment using the adjusted models. We propose

two alternatives to determinate the replacement moment.

We have validated the proposed methodology using a simulated case study where several

tools are consumed and replaced. We have checked that the algorithm requires a small amount of

data (P4) to successfully update the model parameters when cutting conditions change. Finally,

we have compared the performance of our methodology with other alternatives of remaining

useful life prognosis.

The results of this chapter were mainly addressed in [20]:

� Moliner-Heredia, R., Peñarrocha-Alós, I., & Abellán-Nebot, J. V. (2021). Model-

based tool condition prognosis using power consumption and scarce surface roughness

measurements. Journal of Manufacturing Systems, 61, 311-325.

Chapter 8: Conclusions and future research

In the last chapter, we present the conclusions of this thesis and propose several research topics

for its potential development in the future.



1.3. Thesis outline and contributions 11

1.3.1 List of contributions

During the period of development of this thesis, the author has contributed to the following

papers, which are currently published or under peer review:

Journal papers

� Moliner-Heredia, R., Abellán-Nebot, J. V., & Peñarrocha-Alós, I. (2021). Extension
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Chapter 2

Background

This thesis applies systems engineering knowledge to manufacturing process engineering. In

order to clarify any doubts that readers from each field of knowledge may have, in this Chapter

we explain some basic concepts that will be useful to understand this thesis.

First, we present the definition of multistage processes and its variations. Then, we present

the differences between defects, faults and other related terms, as well as the different parts

of fault diagnosis. After that, we define several concepts related with the Stream of Variation

approach to model multistage processes. We continue with some definitions of key concepts in

the field of tool wear. Finally, we define additional concepts related to systems engineering.

2.1 Multistage processes

Multistage manufacturing process (MMP). A multistage manufacturing process is a com-

plex manufacturing system involving multiple stations (or stages) to produce a product. The

quality of the product can be qualitatively characterized by several features or attributes, and

the product quality variations are contributed by the errors generated at the current station

and the accumulated errors from previous stations [9].

Multistage assembly process (MAP). A multistage assembly process is a subtype of MMP

where assembly operations are performed. Typical examples include automotive assemblies and

aircraft fuselage assemblies [9].

The ideal multistage process consists of a direct single line of stations where only a single

type of product is processed. In this thesis, we have taken this assumption. However, MMPs

are usually more complicated, and may include branched lines, different product types sharing

some stations or rework loops.

13
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2.2 Defects, faults and fault diagnosis

2.2.1 Defects and deviations

Defect. A defect is the non-fulfillment of a requirement, related to an intended or specified use.

This requirement refers to a need or expectation that is stated, generally implied or obligatory

[24]. Then, in the context of this thesis, the non-fulfillment of a requirement refers to failing to

manufacture a product that offers a certain functionality.

Deviation. A deviation of a feature consists of the deviation of the actual coordinate system

of that feature from their nominal coordinate system [10]. Then, this deviation consists of a

distance and orientation displacement of the feature. A deviation does not imply a fault in the

product.

Variation. In many cases, used as a generic equivalent to deviation, without specifying feature

displacements. The variation sources, or sources of variation, are the parts of the process (e.g.

fixtures, cutting tools, etc) that may cause variation in the processed workpieces. The variation

sources that are important due to its effect on the final product are often called key control

characteristics (KCC) in the literature [9].

Key product characteristic (KPC). Key product characteristics are critical features of a

product [9]. Proper manufacturing of these features is essential for the correct functionality

of the product. KPCs include the dimensional and geometrical characteristics of the product,

together with their admissible deviations. Thus, in this thesis, we sometimes use the term KPC

to refer to these deviations.

2.2.2 Faults and failures

Fault. A fault is a non permitted deviation of a characteristic of the system, which leads

to the inability to fulfill its intended purpose. This malfunction may be tolerable in a given

stage, but it is important to diagnose any faults as early as possible in order to prevent any

consequences [25,26].

Failure. A failure is a complete breakdown of the component or function of the system [26].

In this thesis, we have proposed methods for diagnosing faults and predicting future faults

before they result in failures.

2.2.3 Fault diagnosis

Fault diagnosis. Fault diagnosis is a procedure to detect, locate and estimate the significance

of faults in a system, using the information of a monitoring system as a basis [26,27]. It consists

of three tasks:
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� Fault detection. The objective of fault detection is to determine the occurrence of faults

in the system, i.e., whether a fault has occurred or not.

� Fault isolation. The objective of fault isolation is to locate the fault, i.e., which part of

the system is faulty.

� Fault identification. The objective of fault identification is to identify the type, magni-

tude and behavior of the fault.

In this thesis, we have focused on the parts of fault detection and isolation in manufacturing

systems.

2.3 Stream of Variation - Basics

State space model. Also written as state-space model, it is a mathematical model of a dy-

namical system. In this thesis, we have focused on discrete space state models.

Discrete time linear state space models (Discrete time linear SSM). In discrete time

linear SSMs [28], the output of the system depends on the current input and the internal states of

the system. The values of the internal states of the system depend on the input and the previous

state of those internal state variables. The discrete time linear SSM presents the following form:{
x(k + 1) = Ax(k) +Bu(k) + w(k),

y(k) = Cx(k) +Du(k) + v(k),
(2.1)

where k indicates the current discrete instant of time; x(k) contains the internal state variables,

u(k) the system input, y(k) the system output, w(k) are disturbances in the form of model

errors, and v(k) the measurement noise, all of the above expressed in instant k. Matrices A, B,

C and D represent the dynamics of the system. Here, we assume that they do not change with

time.

Stream of Variation (SoV). The Stream of Variation (also written as Stream-of-Variation)

methodology focuses on developing a linear mathematical model that links the KPCs with the

KCCs using a state space model [9], i.e., a model that represents how variation “flows” through

the production stream until the end of the process. The SoV model presents the following

form [10]: {
xk = Ak−1xk−1 +Bkuk + wk,

yk = Ckxk + vk.
(2.2)

Here, k represents the current stage where the part is being processed, the internal states

xk are the deviations of certain features of the workpiece when it is processed in station k,

A is used to transmit datum errors from previous stations, uk are the errors produced by

the variation sources in stage k, B quantifies and locates the effects on the variation sources

on the corresponding feature deviations, wk is considered unmodeled system noise, yk is the

final product measurements of the KPCs, Ck is a measurement selection matrix and vk is the

measurement noise.
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The Stream of Variation methodology, including the development of matrices A and B, is

thoroughly developed in Chapter 3.2.

Linear input-output model. The SoV model from (2.2) can be transformed into a linear

input-output model [9]:

y = Γ u+ v, (2.3)

where y is a vector that contains all the measurements of the KPC deviations after leaving the

MMP, u is a vector that contains the representation of all the variation sources of the process, v

includes the measurement noise and unmodeled system noise, and Γ is a matrix that represents

the model of the relation between KPCs and variation sources of the process.

Matrix Γ is a function of matrices A, B and C from the equations in (2.2) of each station of the

MMP. Thus, any approximations and errors committed during the development of these matrices

are propagated to Γ. Therefore, in this thesis we wonder if we could develop a methodology to

adjust or update Γ with process data in order to increase its reliability.

Workpiece. Physical element whose shape is modified during the manufacturing process. In

the case of machining processes, the material of the workpiece is usually metallic. We denominate

raw workpieces to those that enter the manufacturing process.

In this thesis, we use the term part interchangeably, and processed part or product if it has left

the manufacturing process.

Locators. Locators are devices used in manufacturing processes whose function is locating the

workpiece with respect to a machine reference system.

Fixture. A fixture is a device used in manufacturing processes that fixes the workpiece during

the machining process. Its main functions are countering the cutting forces that act on the part

during the process, and locating and orienting the workpiece with respect to a machine reference

system.

Fixture and locator errors. These errors are caused by an incorrect positioning of the lo-

cators or parts of the fixture, which end locating the workpiece in a different position and

orientation than its nominal.

Cutting tools. Cutting tools are devices used in machining process to tear small fragments

of the workpiece (named chips) in order to give it the desired shape. Some cutting tools are

made entirely with the same material, while others are composed by an insert (which cuts the

workpiece) wielded or clamped to a toolholder.

Cutting tools deteriorate during its use, leading to lower cutting quality performance. After a

given time, they must be replaced.

Machining errors. These errors can be caused by several different factors, such as thermal

deformation of the machine, cutting tool deflection caused by excessive applied forces or tool

wear, for example.
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Geometrical feature. A geometrical feature is a point, line, surface, volume or set of these

items [29]. A geometrical feature can be an ideal (parametrical-based) or a non-ideal (real-based)

feature.

Datum. A datum is a feature associated to a real (non-ideal feature) selected to define a

location or orientation of other ideal features. The non-ideal feature used to establish a datum

is called datum feature.

If a datum is not influenced by constraints from other datums, it is called primary datum. If a

datum is influenced by orientation constraints of a primary datum, it is a secondary datum. If

a datum is then influenced by a primary and a secondary datum, it is a tertiary datum [30].

Datum errors. These errors are caused when a non-ideal feature with location or orientation

errors is used as a locating datum for generating a new feature in the workpiece. Thus, these

errors are propagated within the workpiece.

Clamping errors. These errors consist of the deviation of the location of the workpiece due

to deformation caused by applied clamping forces. In this thesis, we have assumed that the

complete system is rigid, so these errors are not considered.

Process planning. Process planning consists in determining the methods to manufacture a

product under economic and competitive premises [31]. It selects and specifies the processes,

machine tools, fixtures, and the order of the operations to shape raw workpieces into finished

and assembled products.

2.4 Tool wear

Cutting tools deteriorate during the cutting process. This deterioration can be classified in two

different classes [32]:

Chipping. Chipping is the occurrence of cracks in the cutting part of the tool, which leads to

loss of small fragments due to brittle fracture.

Tool wear. Tool wear is the change in shape of the cutting part of the tool, due to progressive

loss of material during the cutting process.

Tool wear may be produced on the flanks of the tool (which are in contact with the newly

created real feature in the workpiece) or on the tool face (which is in contact with the generated

chips). In this thesis, we focus on the former, called tool flank wear, as it directly affects the

quality of the finished products and thus, it is a variation source.

Remaining useful life (RUL). The remaining useful life of a part of a process is the total

time that can be used before it ceases functioning properly, i.e. providing results out of expected

specifications.
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Focusing on the case of cutting tools, in practical workshop situations, the end of the useful life

of a tool is usually determined by the moment in which produces workpieces with size or surface

quality out of specifications. Strictly speaking, tool life is determined by tool deterioration in

the form of tool wear [32].

The objective of RUL methods is estimating the remaining useful life of a cutting tool using

physical-, data- or model-based methods [16].

Tool condition monitoring (TCM). Tool condition monitoring methods focus on estimate

the current state of the cutting tool wear, specially tool flank wear, as it affects the quality

of the output products and the useful tool life. There are two different types of tool condition

methods:

� Direct methods. Direct methods consist in stopping the machining process, extracting

the cutting tool and observing it through a microscope.

� Indirect methods. Indirect methods consist in estimating the state of the tool wear using

other outputs of the process, such as cutting forces, power consumption of the machine,

vibrations, surface quality of the processed parts or changes in temperature.

Due to the fact that indirect methods can be applied during the machining process, the latest

research has been oriented towards developing these methods [33]. In this thesis, we wonder

if we could relate some of the output signals of the process, in order to obtain an enhanced

prognosis algorithm to model the state of the cutting tool wear, specially in cases where some

of the output signals are scarcely obtained.

2.4.1 Tool life equations

Taylor’s equation for tool life [34] was developed after performing several experimental tests to

obtain the relation between the useful life of a tool and the cutting speed and other cutting

parameters. The equation presents this form:

Vc · Tn = C, (2.4)

where Vc is the cutting speed, T is the useful life of the tool, n depends on the cutting tool

material, and C is a constant term. The useful life of the tool here is related to the moment

where tool flank wear surpasses a certain threshold.

This equation was updated afterwards to include the effects of the feed rate and the depth

of the cut:

T =
C

V x
c · sy · tz

, (2.5)

where s is the feed rate, t the depth of cut, and x, y and z are constants that can be obtained

experimentally.

These equations are useful as initial approximations, but cannot be used to readjust and

recalculate the remaining useful life of the tool during the machining process. Therefore, other
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correlations between the remaining useful tool life, tool wear and output signals that can be

obtained during the machining process have been researched.

For example, [35] states that tool flank wear increases non-linearly with respect to the total

cutting time of the tool, and obtains an experimental equation of this relation. Other examples

include [36], where the proportional relationship between tool flank wear and cutting forces is

defined, and thus, it relates them to the power consumed during the cutting process; or in [37],

where an empirical equation relating tool wear and the surface roughness of the processed parts

is presented.

The best relationship between these variables to develop models to calculate the RUL should

be chosen depending on the available signals and its reliability.

2.5 Systems engineering terminology

Prognosis. Prognosis consists in forecasting the most probable result of a situation. It consists

of two steps; first, obtaining an analytical model of the situation; then, update the model with

any new information and predict the future development of the situation [16].

Observer. Given the equation system{
xk+1 = Axk +Buk,

yk = Cxk,
(2.6)

consider that we know A, B and C, and do not have access to x, We want to estimate the state

of x in the next step. The equation is:

x̂k+1 = Ax̂k +Buk + L(yk − Cx̂k), (2.7)

where Ax̂k +Buk is the open loop estimation, and L(yk−Cx̂k) the correction term, which uses

the output of the system to correct the initial estimation, as well as the gain matrix L [38]. This

matrix can be obtained using different methods that focus on obtaining an equilibrium between

minimizing the estimation error as soon as possible and being robust upon disturbances. Some

examples include pole assignment or the Kalman filter. Depending on the characteristics of the

system, there are different variants of the Kalman filter that can be developed.

Steady-state Kalman filter (SSKF). A Kalman filter that is used when the variances of

the model disturbance and measurement noise are static in time. Given the system:{
xk+1 = Axk +Buk +Gwk,

yk = Cxk + vk,
(2.8)

where for disturbance wk, E{wk} = 0 and E{wkw
ᵀ

k} = W ; and for measurement noise vk,

E{vk} = 0 and E{vkv
ᵀ

k} = V .

The goal of the SSKF is reducing the average estimation error of x to 0 and minimize its

quadratic error. Depending on whether we consider that our model (A, B and C) is more

reliable than our sensor measurements, we decrease or increase W and V and calculate the gain

matrix L.
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Recursive Least Squares. A recursive algorithm that is used online to filter and obtain

the coefficients of a polynomial that minimizes an error function. If the algorithm contains a

parameter that is decision-based, it is considered an Adaptive Recursive Least Squares (ARLS).

In this thesis, we have implemented an ARLS algorithm in Chapter 7.6.

Optimization problem. An optimization problem presents the following form [39]:

min
x

f0(x) (2.9a)

s.t. fi(x) ≤ bi, i = 1, ...,m (2.9b)

where vector x = (x1, ..., xn) is the optimization variable, f0 : Rn → R is the objective function,

and fi : Rn → R, i = 1, ...,m are constraint functions. Solving the optimization problem consists

in obtaining the optimal vector x∗, which yields the minimum objective value of the function

while satisfying the constraint functions.

Convex optimization problem. An optimization problem is convex if the objective and

constraint functions are convex, i.e., they satisfy the following conditions [39]:

fi(αx+ βy) ≤ αfi(x) + βfi(y), i = 0, 1, ...,m (2.10)

for all x, y ∈ Rn and all α, β ∈ R with α+ β = 1, α ≥ 0, β ≥ 0.

Convex optimization problems can be solved efficiently, but in can be difficult to recognize a

convex function or rewrite nonlinear optimization problems into convex optimization problems.

There are many methods in the literature to rewrite those problems.

2.5.1 Schur complement

The Schur complement is a technique to reduce the size of linear systems [40]. Given a linear

system

Mz = 0, (2.11)

where matrix M is partitioned as

M =

[
A B

C D

]
, (2.12)

and where A is nonsingular, and z is partitioned as

z =

[
x

y

]
, (2.13)

linear system (2.11) is equivalent to

Ax+By = 0, (2.14)

Cx+Dy = 0. (2.15)
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Multiplying (2.14) by −CA−1 and adding it to (2.15), we eliminate x and obtain a linear system

of smaller size: (
D − CA−1B

)
y = 0. (2.16)

Thus, we define

M/A = D − CA−1B (2.17)

as the Schur complement of A in M .

Operating likewise, we define the Schur complement of D in M as

M/D = A−BD−1C. (2.18)

The properties of the Schur complement can be used to convert nonlinear inequality con-

straints in convex Linear Matrix Inequalities (LMI) [41]. A LMI with the form[
Q(x) S(x)

S(x)
ᵀ

R(x)

]
� 0, (2.19)

where Q(x) and R(x) are symmetrical, and both of them and S(x) depend affinely on x, is then

equivalent to

R(x) � 0, Q(x)− S(x)R(x)−1S(x)
ᵀ � 0. (2.20)

These equivalences can also be generalized to nonstrict inequalities. In this case,[
Q(x) S(x)

S(x)
ᵀ

R(x)

]
� 0 (2.21)

is equivalent to

R(x) � 0, Q(x)− S(x)R(x)†S(x)
ᵀ � 0, S

(
I −RR†

)
= 0, (2.22)

where R† is the Moore-Penrose inverse of R.





Chapter 3

Extension of the Stream of Variation

Model for General Purpose

Workholding Devices: Vices and 3-jaw

Chucks

Abstract

Nowadays, advanced manufacturing models such as the Stream-of-Variation (SoV) model have

been successfully applied to derive the complex relationships between fixturing, manufacturing

and datum errors throughout a multi-stage machining process. However, the current develop-

ment of the SoV model is still based on 3-2-1 fixturing schemes and, although some improvements

have been done, e.g. N-2-1 fixtures, the effect of general workholding systems such as bench vices

or 3-jaw chucks has not yet been included into the model.

This chapter presents the extension of the SoV model to include fixture and datum errors

considering both bench vices and 3-jaw chucks as a fixturing devices in multi-stage machining

processes. The model includes different workholding configurations and it is shown how to

include the workholding accuracy to estimate part quality. The extended SoV model is validated

in a 3-stage machining process by both machining experimentation and CAD simulations.

Note to Practitioners: Part quality estimation in multi-stage machining systems is a chal-

lenging issue. The Stream of Variation (SoV) model is a straightforward model that can be used

for this purpose. However, current model is limited to fixture based on punctual locators and

common shop-floor devices are not considered yet. To overcome this limitation, this chapter

extends the current SoV model to include vices and 3-jaw chucks as workholding devices. The

proposed methodology let practitioners to estimate the manufacturing capability of a process

considering the technical specifications of these devices (e.g., parallelism and perpendicularity

of vice surfaces, total indicator runout of chucks) or it can be used for diagnosing workholding

issues. The model assumes that the workpiece acts as a rigid part and errors due to deformation

during clamping are assumed to be negligible in comparison with fixture- and datum-induced

errors.

23
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Nomenclature

0FCS, FCS Nominal and actual fixture coordinate system
0HR

F , HR
F Nominal and actual Homogeneous Transformation Matrix (HTM)

between RCS and FCS

∆R
F , δHR

F Differential and deviation transformation matrix between RCS and FCS

xRF DMV representing the deviation of FCS in RCS.

dRF , θRF Position and orientation deviation of FCS with respect to (w.r.t.) RCS

tRF , ωRF Position and orientation vector of FCS w.r.t. RCS

θ̂
R

F Skew symmetric matrix from θRF
xk Vector with the DMV of all features stacked up at stage k

ufk Fixture errors at stage k

A3
k Fixture-induced variation matrix in SoV model

A2
k Datum-induced variation matrix in SoV model

3.1 Introduction

Manufacturing processes have to be environmental friendly and safe and deliver high quality

products rapidly adapted to customer requirements at a minimum cost. One of the most impor-

tant challenges in modern industry is the implementation of manufacturing systems capable of

generating products with zero defects. A recent roadmap promoted by the European Comission

in the research area of zero-defect manufacturing processes has presented the state of the art,

the gap to be overcome and the research priorities and future trends in this field [42]. According

to the roadmap, a research priority for the development of zero-defect manufacturing processes

is related to the “integration of machine, fixture, tool and workpiece models for quality and

resource deterioration prediction” in multi-stage manufacturing processes (MMPs).

MMPs are manufacturing processes that consist of a sequence of stages where manufacturing

operations such as assembly or machining operations are sequentially conducted to manufacture

a part or product. Typical examples of MMPs are automobile body assembly processes and

multi-job machining processes where a part moves from one stage to another until a semi-

finished or finished product is obtained. Due to the sequential nature of these manufacturing

operations, the error generated at the first stages may be propagated downstream to other

stages which produces additional manufacturing errors. These complex error interactions make

difficult to control product quality and tasks such as predictive maintenance, process control,

quality assurance and fault diagnosis are challenging.

In order to illustrate the error propagation in a MMP, consider a MMP composed of 3 stages

in a machining line as shown in Figure 3.1. As it can be observed, stage 1 presents a deviation

of the cutting-tool trajectory, producing a machining-induced error. The resulting part moves

to stage 2, where there are no additional errors. However, since the previous machined surface

is used as a datum surface, the square shoulder machining operation is deviated with respect

to the top surface, producing a datum-induced error. Finally, the part is moved to stage 3,
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Machining Errors Datum Errors Fixture Errors

Stage 0 Stage 3Stage 2Stage 1

RealNominal

Figure 3.1. Error transmission in Multi-stage Manufacturing Processes (MMP).

where a locator has been deviated from its nominal position, which produces a deviation of

part location and thus, the drill is misplaced producing a fixture-induced error. As it can be

seen, in MMPs where machining operations are conducted, three main sources of errors arise:

Machining-induced errors, Datum-induced errors and Fixture-induced errors. Note that a similar

reasoning can be conducted in assembly lines where welding operations are performed instead

of machining operations.

Despite being very common manufacturing systems in industry, the MMPs are usually too

complex to be mathematically modeled and the development of tools and strategies for effective

quality assurance and fault diagnosis is currently a challenging task that hinders the deployment

of zero-defect manufacturing processes. In the literature, some approaches have been proposed

to model the error propagation within these types of manufacturing systems. One of these ap-

proaches is the so-called Stream-of-Variation (SoV) approach, which was successfully developed

in the late 90s for multi-stage assembly processes by Jin and Shi [43]. The SoV model is based

on the State-Space Model from control theory to define mathematically the relationships be-

tween fixture and machining errors on machined surfaces, and the datum errors are introduced

to link the errors between the stages. The SoV model was expanded to include multi-stage ma-

chining processes in [44] and later, the model was highly improved by Zhou et al. [10] with the

introduction of Differential Motion Vectors (DMVs) to model the small displacements of each

geometrical feature as it is used in the field of robotics [45]. This model can be considered as the

SoV reference model within multi-stage machining processes, where the methodology to derive

the model is explained in detail under the limitation of fixture devices based on 3-2-1 punctual

locators. The model was expanded by Abellán-Nebot et al. [46] to include specific machining

errors such as tool wear errors, deflection errors, kinematic errors from tool axis, and so on.

In regards to assembly processes, the SoV model was firstly developed for rigid sheet metal

parts in [43] but it was later extended to deal with compliant sheet metal parts by Camelio et

al. [47]. In [48], the SoV model was expanded to deal with compliant parts using N-2-1 locating

schemes based on punctual locators and later, the mathematical derivation to consider 3D rigid

assemblies instead of sheet metal parts was presented in [49]. More recently the model was also
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extended to deal with composites in multi-stage assembly processes for the aeronautic industry

considering compliant parts with anisotropic properties [50].

The application of the SoV model has been widely studied in the last two decades and

promising results have been presented in different fields such as fault diagnosis and quality

control [51–56], process planning [57, 58], manufacturing tolerance allocation and predictive

maintenance [59,60] and so on. However, despite the efforts made by many researchers, the SoV

model still presents some drawbacks for its application in MMPs. One of the major criticisms

refers to fixture error modeling, which is focused on punctual locators based on 3-2-1 schemes

or N-2-1 schemes when compliant parts are considered, but positioning cases with plane/plane

contact or cylinder/cylinder floating contact are not considered [61]. Under 3-2-1 schemes, the

touching points between the locating surface and the fixture device are known, and the mathe-

matical model that relates the error of each locator and the deviation of workpiece location can

be determined. However, other common fixture devices such as vices or chucks do not follow this

behavior, and the touching points of the locating surface and the fixture device may depend on

previous errors. In this situation, the mathematical model between fixture errors and workpiece

location errors cannot be determined in advance, and it will depend on the workpiece errors at

the moment of clamping. This problem was tackled by Abellán-Nebot et al. [62], where a generic

procedure for modeling fixtures based on surfaces instead of punctual locators was presented.

Although the methodology deals with different configurations which depend on previous errors,

the research does not deal with specific fixtures such as vices and omits other types of fixtures

such as chucks. More recently, the inclusion of the bench vice errors into the SoV model has

been introduced in [63]. However, the proposed methodology only showed the result for a specific

vice without deriving a generic approach based on differential and homogeneous transforma-

tion matrices among fixture/workpiece features. Therefore, more general vices or alternative

ones (i.e., rotatory or universal vices) cannot be modeled. Furthermore, the applicability of the

methodology is limited since there is no clear use of common workholding specifications into

the modeling approach, which prevents their use in industry.

This chapter shows a methodology to model the effect of fixturing errors from two com-

mon fixtures in MMPs: 3-jaw chucks and bench vices. The mathematical development of these

models follow the structure of the SoV model proposed in aforementioned studies, providing

compatibility with the general SoV approach. The model includes different workholding config-

urations and it is also shown how to include the workholding accuracy to estimate part quality.

The mathematical derivation of the models is validated through both CAD simulations and

machining experimentation proving the high accuracy of the model despite linearization errors.

Please, note that despite the low accuracy of these workholding devices in comparison with

dedicated fixtures, their level of clamping and locating accuracy can be enough for low volume

production systems where manufacturing tolerances of tenths of a millimeter are allowed [64]

and, thus, the inclusion of these devices into the SoV model may be of interest.

The chapter is organized as follows. Section 3.2 provides the general methodology of the SoV

model in order to identify the parts of the model that have to be extended. Section 3.3 shows

the mathematical derivation of the fixture- and datum-induced errors for bench vices, whereas

Section 3.4 presents the mathematical derivation for 3-jaw chucks. Section 3.5 shows a case
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study where a MMP with both types of fixtures is applied and the model is validated through

CAD simulations and machining experiments. Finally, Section 3.6 shows the conclusions of the

chapter.

3.2 Methodology Overview - The Stream of Variation model

The Stream-of-Variation (SoV) model uses the DMVs to define dimensional deviations of part

features from nominal positions. As each feature is determined by a Local Coordinate System

(LCS), DMVs define the displacement of each LCS from its nominal position (0LCS). This

displacement is composed of a position deviation vector d
0L
L = [d

0L
Lx, d

0L
Ly, d

0L
Lz]

T and an orienta-

tion deviation vector θ
0L
L = [θ

0L
Lx, θ

0L
Ly, θ

0L
Lz ]

T , so a DMV is defined as x
0L
L = [(d

0L
L )T , (θ

0L
L )T ]T .

In regards of nominal values, each 0LCS is referred to the reference coordinate system (RCS)

using a locating vector that defines its position tR0L = [tR0Lx, t
R
0Ly

, tR0Lz]
T and its orientation

ωR0L = [ωR0Lx, ω
R
0Ly

, ωR0Lz]
T . In this chapter, terms ωR0Lx, ω

R
0Ly

and ωR0Lz are expressed as proper

Euler angles between RCS and 0LCS in a Z-Y’-Z” order (this means a rotation of RCS around

its Z axis, followed by a rotation around the new Y axis, and lastly, a rotation around the new Z

axis). Fig. 3.2 shows an example of a locating vector of a machined feature and its corresponding

DMV to model the deviation of the feature from nominal values.

Figure 3.2. Example of a DMV in a machining process.

In the SoV model, the deviations of all features are stacked up in a vector, denoted as

xk = [(x1
k)
T , (x2

k)
T , ..., (xMk )T ]T , where k = 1, ..., N refers to the number of the stage and

x1
k, ...,x

M
k are the DMV of features 1, ...,M . As it was pointed out above, the error propagation

throughout the MMP is conducted by the adoption of the State-Space Model from control

theory. Under this framework, the SoV model in a MMP of N-stages can be defined as [10]

xk = Ak−1 · xk−1 + Bf
k · u

f
k + Bm

k · umk + wk, (3.1)
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Figure 3.3. Steps for modeling the Stream of Variation (SoV) of a MMP.

where Ak−1·xk−1 represents the variations transmitted by datum features generated at upstream

stages, Bf
k · u

f
k represents the fixture-induced variations within stage k, where ufk denotes the

fixture errors; Bm
k · umk represents the machining-induced variations within stage k, where the

cutting-tool path deviation is denoted as umk ; and wk is the un-modeled system noise and

linearization errors. The derivation of this model is detailed in [10], where it is presented the

procedure to obtain matrices Ak−1, Bf
k and Bm

k at each stage, according to given product and

process information (part geometry and fixture layouts). Fig. 3.3 shows the auxiliary matrices

to build the SoV main matrices according to the methodology detailed in Zhou’s et al. research

work [10]. Following their methodology, the matrices Ak−1, Bf
k and Bm

k are defined as

Ak−1 = [A1
k + A5

k ·A4
k ·A2

k ·A1
k], (3.2)

Bf
k = [A5

k ·A4
k ·A3

k], (3.3)

Bm
k = [A5

k], (3.4)

where A1
k is the relocating matrix, A2

k is the datum-induced variation matrix, A3
k is the fixture-

induced variation matrix, A4
k is the feature generation matrix, and A5

k is the selector matrix.

Matrices A2
k and A3

k are currently derived for 3-2-1 punctual schemes [10], the N-2-1 extension

[47], general punctual fixture configurations [48] and surface based fixtures [62].

The next sections presents the mathematical derivation of the corresponding matrices A2
k

and A3
k when the workholding device is a bench vice or a 3-jaw chuck. Please note that in this

chapter it is assumed that the workpiece acts as a rigid part and errors due to deformation

during clamping are assumed to be negligible in comparison with fixture- and datum-induced

errors. For the sake of simplicity form errors are assumed to be negligible, but their inclusion

can be straightforward when using small jaws or locators by treating form tolerances as an

independent fixture error on each locator/jaw, as it is explained in [65]. If surfaces are used

for locating, e.g. vice jaws, it can be considered that form errors have little or no effect on the

result, as a feature’s form tolerance is always smaller that its location/orientation tolerance.

Form errors will be only significant if the surfaces in contact present an specific shape and the

high points of both surfaces are aligned and touch each other, which is very remote [66, Chapter

20].
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3.3 Bench vices

Bench vices are common devices for holding workpieces on a milling machine table. Among

bench vices, plain vices are probably the most widely used fixture device in shop-floor. A plain

vice has two jaws, one fixed and one movable, and the workpiece is held by the force exerted

from the movable jaw to the fixed one with a pull-down action. Although the jaws are usually

plain, special jaws with irregular shape are sometimes used to hold non-prismatic parts. Figure

3.4a shows a typical bench vice for milling where the components of the vice (jaws, supports and

pins) and the fixture coordinate system (FCS) are identified; Figure 3.4b shows the workpiece

held in the vice and the datums CS: A-CS, B-CS and C-CS.

z

x y
FCS

z

x
y

z

x

y
1-CS

z

x

y2-CS

3-CS

tF3x

tF3z
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jaw
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(a) Typical bench vice and definition of the FCS.
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(b) Workpiece held in the vice and datum coordi-

nate systems.

Figure 3.4. Fixture and datum coordinate systems in a bench vice.

Following the methodology proposed in [10], the relationship between the errors of vice

surfaces (fixture-induced errors) and the deviation of the FCS is defined by the matrix A3
k,

and the relationship between the errors of datum surfaces and the position of the FCS (datum-

induced errors) is defined by matrix A2
k. However, it should be noted that the final assembly

fixture-workpiece depends on the position and orientation deviation of the fixed jaw, the support

surface and primary and secondary datums and thus, the superposition of fixture and datum

errors as presented in previous researches cannot be straightforward applied. In other words,

the values of both matrices A2
k and A3

k should be expressed as a function of the interaction

between current position and orientation of datum and locating surfaces.

3.3.1 Fixture-induced errors

To understand the FCS deviation due to fixture errors, let us explain the clamping process in a

plain vice. First, the workpiece is placed over the support which makes the support surface and

primary datum to be coplanar. Then, the workpiece is moved over the support to touch first

the primary datum with the fixed jaw and then, to touch the tertiary datum with the pin of the

vice. Finally, the movable jaw moves until it clamps the part, exerting a force towards the fixed

jaw and the support due to its pull-down action. Due to this clamping force, the primary datum
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will move to be coplanar with the fixed jaw which may cause that the secondary datum lifts

from the support. Therefore, the fixed jaw blocks three degrees of freedom (DOF), two rotations

and one translation; the support blocks other two DOF, one rotation and one translation, and

the pin blocks the remaining DOF.

The fixturing errors in vice fixtures can be defined as

uFk = [∆z1,∆α1,∆β1,∆z2,∆α2,∆β2,∆z3]T , (3.5)

where ∆z1,∆α1,∆β1 refer to the Z-axis deviation and orientation deviations around X and Y

axis of the fixed jaw (1-CS), respectively; ∆z2,∆α2,∆β2 refer to similar deviations but from the

support (2-CS); and ∆z3 refers to the deviation of the locating pin of the vice fixture (3-CS).

Therefore, the resulting deviation of the FCS due to fixture errors is defined as

x F
0F = A3

k · uFk , (3.6)

where matrix A3
k can be estimated as follows.

As stated above, in a vice workholding system there is a plane to plane contact between the

fixed jaw and the primary datum. Thus, 3 DOF are blocked by the fixed jaw and the errors

∆z1, ∆α1, and ∆β1 are directly propagated to the FCS in these DOF. Therefore

δH
0F
F =0 HF

1 ·H
01
1 ·H1

F , (3.7)
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where

δH
0F
F =


1 −θFFz θFFy dFFx
θFFz 1 θFFx dFFy
−θFFy θFFx 1 dFFz

0 0 0 1

 = I4×4 + ∆
0F
F , (3.8)

and

∆
0F
F =

[
θ̂

0F
F d

0F
F

0 0

]
. (3.9)

In Eq. (3.7), the HTM H1
F is equal to 0H1

F since there is a plane to plane contact and

the movements along X axis and rotations around Y and Z axis of FCS are blocked. Then,

considering δHF
0F = (δH

0F
F )−1 = I4×4−∆

0F
F and x F

0F = [dFFx, d
F
Fy, d

F
Fz, θ

F
Fx, θ

F
Fy, θ

F
Fz]

T , Eq. (3.7)

is solved to obtain the values of x F
0F (1), x F

0F (5) and x F
0F (6) as a function of ∆z1, ∆α1, and ∆β1.

The secondary datum blocks other two DOF, the movement of the part along the Z axis of

FCS and the rotation of the part around the X axis of FCS. Furthermore, since the plane to

plane contact is given at the primary datum, the secondary datum and the support touch each

other at least in two points. Denoting the two contact points as pD and pE , where p̃ = [pT , 1]T ,

we have

p̃FD = HF
01 ·H

01
2 · p̃2

D

= δHF
0F ·H

0F
01 ·H

01
02 ·H

02
2 · p̃2

D,
(3.10)

and the same expression for p̃FE holds. From Eq. (3.10) we know that p̃FD(3) = p̃FE(3) = 0 since

the contact points define the location of the part in Z direction of the FCS, and the orientation

deviation along X axis is the same as the orientation deviation of the support which blocks

this DOF. Thus, Eq. (3.10) can be solved to relate x F
0F (3) and x F

0F (4) with the fixed jaw errors

together with the support errors.

Finally, the locating pin blocks the movement of the part along the Y axis, thus, following

the same procedure we have

p̃FG = HF
01 ·H

01
3 · p̃3

G

= δHF
0F ·H

0F
01 ·H

01
03 ·H

03
3 · p̃3

G,
(3.11)

where p̃G is the contact point defined by the locating pin of the fixture and p̃FG(2) = 0. Eq.

(3.11) can be solved to relate xF0F (2) with the locating pin errors together with support and

fixed jaw errors.

Following the steps shown above, the DMV x F
0F can be expressed as a function of fixture

errors through matrix A3
k. For the workpiece and vice shown in Figure 3.4 the numerical solution

of this matrix is:
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A3
k =



−1 tF1z −tF1y 0 0 0 0

0 0 tF3x 0 −tF3z 0 −1

0 −a 0 −1 tF2y a− tF2x 0

0 0 0 0 −1 0 0

0 −1 0 0 0 0 0

0 0 −1 0 0 0 0


, (3.12)

where tF1y and tF1z refer to the location of the fixed jaw CS w.r.t. the FCS, tF2x and tF2y refers to

the location of the support CS w.r.t. the FCS, and tF3x, tF3z refer to the location of the locating

pin CS w.r.t. the FCS. Parameter a depends on the fixture and datum assembly and resulting

contact points pD and pE . As it is shown in Fig. 3.5, the contact points between part and

fixture depend on orientation deviations of support and fixed jaw and orientation deviation of

primary and secondary datums. For the example given in Fig 3.4, a has the following values:

a =

{
0, if ΓF ≥ ΓP ,

Ls, otherwise,
(3.13)

where Ls is the length of the contact between support and workpiece, ΓF = 90◦ + ∆β1 −∆α2

and ΓP = 90◦ − θ0AAy − θ
0B
Bx.

For practical purposes, it is of interest to relate the fixture errors with the technical specifi-

cations of the vice. From common technical specifications, we may remark accuracy in clamping

repeatability and parallelism and perpendicularity specification of vice surfaces. These geomet-

rical specifications can be translated to DMV limits in the uFk parameters as shown in [65],

and thus, the estimation of part quality variability for a given bench vice can be conducted.

Therefore, considering Lv and Hv as the length and height of the fixed jaw, respectively; Ws

as the contact width between support and part; and εc, εpa and εpe as clamping accuracy and

parallelism and perpendicularity of vice surfaces, we have: |∆α2| ≤ εpa/Ws; |∆β2| ≤ εpa/Ls;

|∆z1| ≤ εc/2; |∆α1| ≤ εpe/Hv; |∆β1| ≤ εpe/Lv; and their relationships are defined as:

Lv · |∆β1|+Hv · |∆α1| ≤ εpe. (3.14)

Ls · |∆β2|+Ws · |∆α2| ≤ εpa, (3.15)

Additionally, we may add the alignment error of the vice in the machine-tool as εalig and the

position error of the vice on the machine-tool table during the setup process (e.g., touch probe

inaccuracy) as εstp. Therefore, we have |∆z2| ≤ εstp, |∆z1| ≤ εc/2 + εstp and ∆β1 previously

defined will add the alignment error εalig.

Another common vice configuration is presented when the location of the workpiece in the

parallel direction of the jaws is undefined so the pin locator is removed from the workholding

device. Under this configuration, the possible deviation of machined features along this direction

is undetermined, and tF3x and tF3z from matrices A2
k and A3

k are replaced by U which refers to

an undetermined component. To operate with U , the following properties apply:

∀b ∈ R, b+ U = U ; ∀b ∈ R, b · U = U. (3.16)
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3.3.2 Datum-induced errors

Considering the primary datum as the reference coordinate system (RCS) of the workpiece, the

deviation of the FCS w.r.t. RCS is modeled by the DMV xRF and it can be defined as [10]

xRF = T1 · xR2 + T2 · xR3 = A2
k ·
[
xR2 xR3

]T
, (3.17)

where xR2 and xR3 are the DMV that define the deviations of the secondary and tertiary datums

of the workpiece which correspond with the workpiece surfaces that touches the support and

the locating pin, and A2
k = [T1 T2]. Following the procedure presented in [10,63], the matrices

T1 and T2 for the vice and workpiece shown in Figure 3.4 are defined as

T1 =


0 0 0 0 0 0

0 0 0 −tF3z 0 0

0 0 −1 −tBFy (a− tBFx) 0

0 0 0 1 0 0

02×6

 , (3.18)

T2 =

0 0 0 0 0 0

0 0 −1 (tF3z − tCFy) (tCFx − tF3x) 0

04×6

 , (3.19)

where tBFx and tBFy are the X and Y coordinate of FCS w.r.t. B-CS, respectively, tCFx and tCFy
are the same but w.r.t. the C-CS, tF3x and tF3z refers to the position of the locating pin of the

vice and the parameter a depends on fixture and workpiece assembly (Fig. 3.5) and presents

the values shown in Eq. (3.13). Please, refer to Appendix A.1 for the derivation details of T1

and T2.

3.4 3-jaw self-centering chucks

A 3-jaw self-centering chuck is a workholding device used in turning and milling processes to

hold regular-shaped parts such as cylinders. This type of chuck consists of a cylindrical base

with three slots carved from the center to the exterior, separated 120◦ from each other. There

is a jaw in each slot, and all three jaws slide simultaneously by the same amount if one of the

three pinions is rotated. A 3-jaw chuck can present different configurations depending on the

main locating surfaces used. Figure 3.6 shows three configurations analyzed in this chapter. In

the first configuration, the main locating surface is the outer diameter of the workpiece and

thus, the jaws block 4 DOF whereas a pin locator blocks the Z movement of the part. The

second configuration is similar to the previous one but no locating pin is used, so the position of

the workpiece in Z direction is undetermined. The third configuration uses the end flat surface

of the workpiece as the main locating surface which blocks 3 DOF (the Z movement and two

rotations) due to the contact with the jaws. In this configuration, the clamping process locates

the part in X and Y direction. In all cases, rotation around the Z-axis is limited by the friction

of the workpiece and the jaws.
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Figure 3.6. Typical configurations of a 3-jaw self-centering chuck and definition of the FCS.

3.4.1 Fixture-induced errors

Some researches have studied the errors of 3-jaw chucks and the methods to improve chuck

accuracy [64, 67, 68]. The main identified errors in 3-jaw chucks are: radial displacement error

of individual jaws due to internal wear or backlash; taper in jaw alignment; non-symmetric

deformation of jaw-workpiece and kinematic redundancy. In this chapter, we consider that the

results of those fixture errors are reflected in the deviation of the jaws from their nominal

position and orientation. Therefore, we consider as fixture errors the position deviation of each

jaw in the radial direction, the position error of the locating pin or the jaw to place the end

face of the workpiece, and the orientation error due to jaw alignment.

For any of the chuck configurations defined above, the position of the workpiece in X and

Y axis is defined by the position deviation of each jaw in the radial direction. Considering that

the jaws are placed perpendicular to the slots and the chuck base, the top-down view of a

chuck holding a perfect cylinder (XY view) can be defined as in Figure 3.7. Points P, Q and

R (the contact point of the jaws) are separated a distance G from the center plus a jaw error

δ, expressed outwards the center. Thus, the deviation of the jaws from nominal positions are

denoted as δP , δQ and δR. The deviation of the center of the workpiece clamped with respect

to the center of the chuck is estimated to be 2/3 of the jaw deviation along the direction of jaw

deviation, as it is shown in the Appendix A.2.

Furthermore, the workpiece may be deviated from the Z axis if the chuck constrains this di-

rection as in configuration 1 and 3. In configuration 1, the main locating surface is the cylindrical

surface of the workpiece and an orientation deviation of the jaws will produce a Z deviation of

the part when the end face and the locating pin of the chuck touch each other. In configuration

3, the main locating surface is the end face of the workpiece, and the Z deviation will depend

on the position and orientation deviation of the plane defined by the 3 jaws that contact with

the end face. In any case, we represent the Z deviation as δz, and the orientation deviation of

the chuck as δα and δβ, which reproduces the same inclination of the FCS from its nominal

position.

Therefore, the fixture errors in a 3-jaw chuck can be defined as

uFk = [δP δQ δR δz δα δβ]T , (3.20)
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Figure 3.7. Deviation of the FCS due to self-centering errors. Errors are exaggerated for illustrative purposes.

and the corresponding matrix A3
k can be defined as [A3

k(1) A3
k(2)]

T , where

A3
k(1) =


2
3 sin Ω −2

3 cos Ω

−
√

3
3 cos Ω− 1

3 sin Ω −
√

3
3 sin Ω + 1

3 cos Ω√
3

3 cos Ω− 1
3 sin Ω

√
3

3 sin Ω + 1
3 cos Ω

03×2

 , (3.21)

A3
k(2) =

[
03×3 03×1

−I3×3 03×1

]
. (3.22)

Please, note that if the configuration 2 applies, there is no control about the Z position of

the workpiece and thus, ∆zL is replaced by U , an undetermined component. From previous

equations, the angle Ω has been included to take into account that the position of the jaws may

be rotated from the FCS on the machine-tool table so jaw P may be not in the +Y direction.

Furthermore, note that if δP = δQ = δR then the center of the part is the same as the center of

the chuck and thus, x
0F
F (1) = x

0F
F (2) = 0.

As it was presented in the vice, it is of interest to obtain the relation between the technical

specifications about accuracy of the 3-jaw chuck and the identified fixture errors. Common

technical specifications in chucks refer to maximum TIR (total indicator runout) values in

radial and axial direction, as it is shown in Figure 3.8. As it has been shown, the deviation of

the jaws will define the centering error which in turn produces a constant radial run-out defect

when rotating a cylindrical part. For the configuration 3 (Fig. 3.8a), the radial TIR alongside

the jaws, denoted as TIRr, can be defined as two times the centering offset and thus, this

accuracy term of the chuck can be represented as the deviation of the jaws, δP , δQ and δR, in a
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range of [0, 3
4 · TIRr]. On the other hand, the axial TIR is related to the orientation deviation

of the chuck defined by δα and δβ and the diameter of the tested part. Denoting TIRa as the

axial TIR and Dt the diameter of the part tested for the axial TIR, we have |δα| ≤ TIRa/Dt

and |δβ| ≤ TIRa/Dt, and the following relationship holds:

Dt ·
√
δ2
α + δ2

β ≤ TIRa. (3.23)

For the configuration 1 (Fig. 3.8b), the radial TIR is measured at the length Lt of the tested

part. Similar to the configuration 3, the deviation of jaws are limited to a range of [0, 3
4 · TIRr]

but now, due to the effect of orientation deviations δα and δβ at the Lt position of the dial

indicator, we have |δα| ≤ TIRr/(2Lt) and |δβ| ≤ TIRr/(2Lt), and additionally, the following

relationship holds:

4/3 ·
√

(δP − 0.5(δQ + δR))2 + (c∗ · (δQ − δR))2 + Lt ·
√
δ2
α + δ2

β ≤ TIRr, (3.24)

where c∗ = cos(30◦).

TIRa

TIRr

Dt

(a)

TIRr

Lt

(b)

Figure 3.8. Common radial and end face (axial) runout used for test certifications in 3-jaw chucks with a)

configuration 3, b) configuration 1 and 2.

3.4.2 Datum-induced errors

Datum-induced errors in 3-jaw chuck mainly depend on the chuck configuration. A chuck with

configuration 2 presents only a primary datum, the cylindrical feature, and there is no sec-

ondary datum since there is no constraint over the Z position of the workpiece. Therefore, no

datum-induced errors apply. Similarly, a chuck with configuration 3 presents the end face of the

workpiece as the primary datum and the cylindrical feature is defined as the secondary datum.

Since the chuck is a self-centering chuck and form errors are not considered, the center of the

workpiece would be only defined by the jaw errors even though the cylindrical feature would

present a orientation deviation, so no datum-induced errors apply. However, when the chuck

presents the configuration 1, where a locating pin block the Z movement of the part and the

primary datum is the cylindrical feature, a datum-induced error may arise as shown in Fig. 3.9.



3.4. 3-jaw self-centering chucks 37

0B-CS

RCS ≡ A-CS

0FCS

bb

rloc

φloc

bb

rloc

φloc

B-CS

pL

x

x
z

y

z

z

Figure 3.9. Effect of datum errors on part location.

As it can be seen, only the position along nominal Z-axis is modified due to datum errors since

the cylindrical surface is oriented according to the 3-jaw orientation which is considered per-

fect when only datum-induced errors are analyzed. Then, following the methodology presented

in [10], the deviation of the nominal FCS w.r.t. RCS, xRF , can be obtained as

xRF = T1 · xR2 = A2 · xR2 , (3.25)

where xR2 is the deviation of the secondary datum w.r.t. the part reference CS. The solving

steps are detailed in Appendix A.3. Once solved, the deviation of the FCS w.r.t. RCS in Z axis

direction is defined as

xRF (3) = −dRBz − pFLy · θRBx − pFLx · θRBy, (3.26)

In matrix form, the final matrix A2
k from Zhou’s methodology can be expressed as

A2
k =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 −1 −pFLy −pFLx 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


. (3.27)

Note that pFL is the position of the locating point w.r.t. FCS and it depends on the distance

from the center of the chuck, rloc, and the angle w.r.t. the X axis of FCS, φloc, as it is shown in

Fig. 3.9. Then, the X and Y coordinate w.r.t. FCS are

pFLx = rloc · cos(φloc), (3.28)

pFLy = rloc · sin(φloc). (3.29)
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RAW MATERIAL STAGE 1 STAGE 2 STAGE 3

b

Face milling
Contour milling
End milling

Fixture: Bench vice
Operations:

Face milling
Contour milling
End milling

Fixture: 3-jaw chuck
Operations: Operations:

Circular pocketing

Fixture: 3-jaw chuck

Figure 3.10. 3-stage machining process evaluated.
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Figure 3.11. Part specifications to be inspected. Other dimensions are omitted for simplicity.

3.5 Case Study

In order to validate the extension of the SoV model, a 3-stage machining process is analyzed

where both bench vices and 3-jaw chucks are used. As it is shown in Fig. 3.10, the manufacturing

process consists of a face milling and end-milling operation at the first stage holding the part

on a bench vice, a second stage where similar machining operations are conducted but using

as fixturing device a 3-jaw chuck with a centered locator, and a third stage where the part is

held on the same 3-jaw chuck in order to conduct a circular pocketing operation. As shown in

Fig. 3.11, the inspected part specifications are: distance between both square-shoulder features,

position of cylinder with respect to datums A, B, C, and the coaxiality of the circular pocketing

with respect to its datum D. The position and orientation vectors for the main features are

shown in Table 3.1. The raw material is an aluminum block with dimensions 100 x 100 x 100

mm whose surfaces have been premachined so flatness and square errors between surfaces can

be assumed negligible.

The validation is conducted in two ways: 1) by using the SoV model to predict the deviations
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Table 3.1. Position and orientation vectors of main feature CS.

Feature tR ωR

S1 [92.5, 50, 55]T [0, 0, 0]T

S2 [7.5, 50, 45]T [0, π, 0]T

S3 [50, 50, 80]T [0, 0, 0]T

S4 [50, 50, 90]T [0, 0, 0]T

S5 [50, 50, 20]T [π, π, 0]T

of the 3 geometrical specifications of the part and comparing these results with the resulting

deviations obtained using a CAD software and; 2) by machining the part and comparing the

results with those expected by the SoV and CAD model. The CAD software used is SolidWorks,

and we basically model the fixture-workpiece assembly with the surface errors introduced in the

tested cases to check the final part deviation. This is a tedious and time-consuming procedure

that can be used for checking the effect of few errors at the same time assuming the rest

negligible, and it cannot be used for checking the manufacturing process capability. For the

machining experimentation, the machining center used for the experimentation is a Deckel

Maho DMC 70V machining center, and the features are inspected in a Brown & Sharpe Mistral

775 coordinate measuring machine. The vice used is a Fresmak Arnold Twin with 0.02 mm

of parallelism and perpendicularity and 0.01 mm clamping accuracy, and the 3-jaw chuck is a

Optimum K11-125 chuck model mounted according to configuration 1 with an inspected TIRr

of 0.11 mm for a length of Lt = 50 mm. The setup process of the vice and 3-jaw chuck in the

machine-tool table is conducted with a Renishaw touch probe and the alignment and positioning

error is assumed to be εalig = 0.020 mm/100 mm and εstp = ±0.015 mm. A first part is machined

to calibrate the process (e.g., tool dimensions, offsets due to clamping deformation, etc.). Figure

3.12 illustrates the experimental setup.

Three different situations are tested:

� i) no errors

� ii) relative small fixture errors

� iii) severe fixture errors

The fixture errors that were intentionally added, cases ii) and iii), are shown in Table 3.2. These

errors were physically introduced by adding a feeler gauge between the workholding device and

the workpiece or modifying the zero part coordinate system in the CNC maching-tool to get

the same effect. Furthermore, the SoV model is applied in two ways. The first one considers the

errors added into the process and assumes negligible any other errors. Conversely, the second one,

named as “SoV + Monte Carlo”, considers the technical specifications related to the accuracy

of the workholding systems and simulates additional errors according to these specifications in

order to calculate a range of values for each inspected specification. For this purpose, 5,000
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Figure 3.12. Machining center, workholding devices and machined part from case study.

Table 3.2. Errors added in the multi-stage machining process. Ω is 0 in stages 2 and 3.

Stage 1 Stage 2 Stage 3

Case (Vice errors) (Chuck errors) (Chuck errors)

i no errors added no errors added no errors added

ii ∆z1,∆z2 = 0.1 mm δP = 0.2 mm δP = 0.2 mm

∆z3 = 0.1 mm δz = 0.1 mm δz = 0.1 mm

iii ∆α1 = −0.01 rad δP = 0.5 mm δP = 0.5 mm

∆z2,∆z3 = 0.3 mm δz = 0.3 mm δz = 0.3 mm

∆z1 = 0.35 mm

Monte Carlo simulations were run and the range that comprises the 99.7% of the values was

recorded.

The results are shown in Table 3.3. Firstly, the case i) shows the estimation of the range of

values for the analyzed part specifications considering the accuracy technical specifications of

the vice and the 3-jaw chuck used. These ranges are in fact the manufacturing process capability

according to the workholding specifications and assuming no machining-induced errors exist. For

this case study, the high TIR of the 3-jaw chuck used is reflected on the high expected coaxility

error which is indeed confirmed in the experimentation. However, the specification related to the

position error of the cylinder can be kept tight despite the bench vice inaccuracies, ensuring a

position error less than 0.029 mm under Monte Carlo simulations and experimentally validated

with a measured error of 0.035 mm. Secondly, for both small and severe errors added into the

process, the proposed model shows a maximum error of 1% in comparison with the CAD results.

The first specification (dimensional deviation between square-shoulder features), gives the same
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Table 3.3. Validation results. Comparison between SoV model, CAD simulations and machined parts. Units in

mm.

CAD SoV

# Dim. Pos. Coaxial. Dim. Pos. Coaxial.

i 10.000 0.000 0.000 10.000 0.000 0.000

ii 9.900 0.141 0.188 9.900 0.141 0.188

iii 9.700 0.392 0.471 9.700 0.390 0.471

SoV + Monte Carlo Experimental (Machined parts)

# Dim. Pos. Coaxial. Dim. Pos. Coaxial.

i [9.974, 10.026] [0, 0.029] [0, 0.225] 9.986 0.035 0.109

ii [9.875, 9.927] [0.121, 0.164] [0.040, 0.404] 9.868 0.154 0.358

iii [9.675, 9.726] [0.370, 0.410] [0.312, 0.687] 9.644 0.451 0.362

results between CAD and SoV model because, given the errors in Table 3.2, only the deviation

in Z direction of the 3-jaw chuck at stage 2 has an impact and then, there is no error due to

linearizations. However, the position specification shows the effect of linearization errors in the

vice due to orientation deviations when comparing with respect to CAD results. According to

the results, this error is around 1%.

Finally, the results from the SoV model considering the errors added and the accuracy

specifications of the workholding systems are compared with the results obtained after ma-

chining and inspecting the parts. As it is shown in Table 3.3, the inspected specifications are

in good agreement with the estimated range of values. The position specifications present a

slightly higher values than the ones estimated through Monte Carlo which may be explained by

machining-induced errors or deformation variations in the bench vice during clamping.

3.6 Conclusions

This chapter has shown how to extend the current SoV model in order to include general purpose

workholding devices such as bench vices and 3-jaw chucks, not considered yet in the literature.

In bench vices, the errors included in the model are position and orientation errors of plain

jaws, supports and pins. In 3-jaw chucks, the errors included are the position error of jaws in

the chuck, the position error of the locating pin to block the Z direction of the workpiece and the

orientation errors of the jaws. In all cases, the model assumes that the workpiece acts as a rigid

part and errors due to deformation during clamping are assumed to be negligible in comparison

with fixture- and datum-induced errors. The model has been validated on a 3-stage machining

process through both CAD simulations and machining experimentation. The model performance

with respect to CAD simulations showed an error of less than 1% due to linearization and the

machining results validated the capability of the model to estimate 99.7% confidence intervals

for different product specifications considering the accuracy of the workholding systems. Unlike

previous extensions of the model, the proposed extension let practitioners apply zero-defect

strategies in multi-stage machining processes where bench vices or chucks are used and it can

also be used for estimating manufacturing process capability under specific workholding devices.





Chapter 4

A methodology for data-driven

adjustment of variation propagation

models in multistage manufacturing

processes

Abstract

In the current paradigm of zero-defect manufacturing, it is essential to obtain mathematical

models that express the propagation of manufacturing deviations along the stages of Multistage

Manufacturing Processes (MMPs). Linear physical-based models are commonly used, but its

accuracy is reduced when applied to MMPs with a large amount of stages, due to the fact that

small approximations made when modeling each individual stage are subsequently accumulated,

and when applied to MMPs with complex components that cannot be reliably modeled.

In this chapter we propose a methodology to adjust a propagation model using measurements

from the deviations of the Key Product Characteristics (KPCs) of the processed parts at the

end of the MMP, as well as prior engineering-based knowledge, under the premise that the state

of the variation sources of the process are unknown and must be estimated as part of the model

adjustment. The proposed methodology consists of a recursive algorithm that minimizes the

difference between the sample covariance of the measured KPC deviations and its estimation,

which is a function of a variation propagation matrix and the covariance of the deviation of

the variation sources. To solve the problem with standard convex optimization tools, Schur

complements and Taylor series linearizations are applied. The output of the algorithm is an

adjusted model, which consists of a variation propagation matrix and an estimation of the

aforementioned variation source covariance.

In order to validate the performance of the algorithm, a simulated case study is analyzed. The

results, based on Monte Carlo simulations, show that the estimation errors of the KPC deviation

covariances are proportional to the measurement noise variance and inversely proportional to

the number of processed parts that have been used to train the algorithm, similarly to other

process estimators in the literature.

43
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4.1 Introduction

Multistage Manufacturing Processes (MMPs) are processes that require several stages to manu-

facture a product. Examples of MMPs include automotive body assemblies, machining lines for

conducting multiple operations under different part orientation and fixtures, dielectric layer for-

mulation processes in semiconductor industries and tile manufacturing processes [9, 10, 69, 70].

For instance, in the case of automobile assemblies, a typical body-in-white is composed of

100–150 sheet metal parts, which are assembled at between 80 and 120 stations where more

than 1500 fixture locator are used to place the parts and more than 4000 welding points are

executed [9]. In MMPs, workpiece dimensional errors are caused by sources of variation of the

process, such as faults in fixtures or tool deterioration. These dimensional errors (also expressed

as variations or deviations) are propagated along the following stages, affecting the output

quality of the manufactured product.

In the current paradigm of zero-defect manufacturing, variation propagation reduction is

crucial to improve the output quality of the manufactured products. However, the complexity

of MMPs, due to the amount of stages, variation sources and the complexity of the interactions

at each stage, makes quality assurance a challenging task. Current trends on zero-defect man-

ufacturing promoted by the European Factories of the Future Research Association (EFFRA)

and other institutions are encouraging engineers to develop strategies for modeling, monitoring

and controlling the output quality of this type of processes [71].

MMP control is used to reduce variation in the output quality by active deviation com-

pensation, which consists of modifying the behavior of downstream stages to correct deviations

(or faults, depending on the magnitude and duration) that have been detected in upstream

stages [72], or using quality rework loops (whose impact on the system is evaluated in [13]).

These techniques require flexible manufacturing, optimal measurement sensor location [73] and

appropriate models of the manufacturing system, which must be analyzed to verify its diag-

nosability [14] and compensability [15]. Thus, in order to be able to compensate deviations

downstream, it is important to monitor and estimate the process variance [56], and detect,

isolate and identify any faults caused by the process variation sources, as well as evaluate and

monitor the deterioration of the process components [11,12]. In the literature [74], fault diagno-

sis methods are classified in estimation-based methods, pattern matching methods and artificial

intelligence methods. Additionally, knowledge-based methods are being developed in the latest

years [75].

Estimation-based methods use a defined linear model and collected measured variables to

estimate the variance of the state of the variation sources and, using statistical methods, isolate

and identify the faulted variation source. These methods have been applied to identify faults

in single-stage assembly processes using geometrical models [76], using least squares on ill-

conditioned multistation assemblies with compliant parts [77], and in general manufacturing

processes using linear mixed models [78].

Pattern matching methods do not require precise linear models, although they may rely on

general linear models or engineering knowledge. These methods focus on comparing expected
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fault patterns, obtained from those models or knowledge, with the measurement data to identify

the faulty variation source. These methods have been applied in assemblies, using CAD and

Principal Component Analysis (PCA) [79], and in multistage assembly processes using PCA and

the variation propagation model as a basis, in order to detect single faults [80]. These methods

can be extended for multiple fault identification through fault space diagnosis [81].

Artificial intelligence methods focus on developing networks to identify fault patterns. These

methods do not require models, although they may use engineering knowledge; however, they

always need large amounts of process and inspection data. Several examples of these methods

include bayesian networks in assembly processes [82] and neural networks in die-casting [83].

Estimation-based methods and some of the pattern matching methods use linear models for

detecting faults in both single and multistage processes. Moreover, in the case of the estimation-

based methods, their efficiency depends on the accuracy of the used model. During the last

decades, many studies have developed several models to define the effect of the process variation

sources on the output quality of the processed products. Depending on the methodology, the

proposed models can be classified into data-driven models and physical (or analytical) models

[84,85].

Data-driven models do not require detailed a priori knowledge of the process, as these

methods focus on identifying patterns using collected data to determine the internal interactions

of the process. Some examples include obtaining models using blind source separation methods

[86], which do not use any knowledge from the process; or using general knowledge of the

process, such as integrating graphical models and statistical techniques [87]. A mixed approach is

proposed in [88], where engineering knowledge (derived from analytical models) is converted into

a qualitative representation matrix in order to identify spatial patterns. Data-driven methods

are used as a basis for fault diagnosis, but they do not grant a detailed explanation of the

internal process behavior.

Physical models are developed on the basis of the physical and geometrical principles that

define the process. During the last two decades, the Stream-of-Variation (SoV) methodology has

been developed and expanded to model and reduce variation in MMPs. The SoV methodology

defines the variation propagation model as a linear state-space model, where workpiece devia-

tions in a given stage depend on the deviations caused by the variation sources in that stage

(named fixture and machining errors) and on the deviations of certain features manufactured

in previous stages (named datum errors). These relationships are expressed in matrix form, and

can be obtained using different methods, such as differential motion vectors (DMVs), equivalent

fixture error (EFE) and kinematic analysis (KA) [89]. Besides, the state space equation can be

rearranged into a linear input-output model that directly relates the output quality with the

variation sources, which can be easily used in fault diagnosis techniques.

This methodology was first developed to model the behavior of rigid sheet metal assembly

processes, defining the main types of errors [90], which was later extended to compliant parts [91],

and extended afterwards to 3D using DMVs [49]. The behavior of compliant composite parts for

single and multistage assembly processes has also been modeled [92, 93]. Multistage machining

processes have also been modeled. Originally defined using DMVs in [10], subsequent research
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has modeled the effects of machining-induced variations [94] and general-purpose workholding

devices [17]. The effects of general fixture layouts using kynematic analysis have also been re-

searched [95]. The SoV methodology has also been applied in MMP design to reduce dimensional

variability [57] and thus, potential defects.

Physical models offer a detailed explanation of the behavior of the process components, with

the immediate drawback that rigorous research of the mechanics, dynamics and geometries of the

process is required to develop these models. There is an additional drawback of physical models.

Usually, developing these models requires linearizations and approximations that can frequently

be ignored due to their low relative magnitude. However, in MMPs with a large amount of stages,

these linearization-induced errors accumulate when calculating the input-output model, thus

lowering its accuracy. In other cases, linearizations are only valid in certain dimensional ranges,

thus leading to model approximations in certain configurations. Additionally, these methods can

only take into account the general configuration of the manufacturing process, considering ideal

geometries for each component of the process; in reality, each component may present slight

differences depending on the manufacturer and brand. Thus, some elements of the complete

model of the MMP may present divergences w.r.t. the real behavior of the process. To overcome

this limitation, the physical model can be adjusted using data from the process and thus, a

more accurate model can be obtained [96], which, in turn, improves product quality [97].

In this chapter, we present a methodology to reduce the aforementioned divergences by

slightly adjusting a physical variation propagation model of an MMP (in the linear input-

output form) using collected measurements from the process and engineering knowledge. The

complexity and dimensionality of this adjustment requires a numerical solution using optimiza-

tion solvers. The adjustment is performed by minimizing the difference between the sample

covariance of the output quality measurements and the expected covariance calculated with

the model and the covariance of the variation sources, taking into account that only a given

variation source covariance range is known. Prior knowledge, such as inspection measurement

uncertainty and ranges of variation sources, is assumed to be known from backup data and/or

equipment specifications. This knowledge is used to determine the optimization bounds. The

non-linear behavior of the objective function and the bounding conditions require convexifica-

tion transformations and iterated optimizations in order to obtain a convergent solution using

a convex optimization solver.

The main contribution of this chapter is the definition of a methodology that combines physi-

cal models, data-driven methods and engineering knowledge to obtain an improved input-output

variation propagation model of an MMP. For this purpose, different linearization methods have

been applied to the objective function in order to ensure that the convex optimization solver

can provide a solution within a finite time.

This chapter is structured as follows. Section 4.2 presents the propagation model and the

process data collection. Section 4.3 defines the error function, the objective function and the

constraints. Section 4.4 presents the proposed adjustment algorithm. Section 4.5, proposes sev-

eral indexes to validate the performance of the algorithm. Section 4.6 proposes a case study,

and Section 4.7 presents the conclusions of this chapter.



4.2. Problem statement 47

Notation

Let us define A ∈ Rn×n as a matrix, and a ∈ Rn as a vector. When we refer to the structure

of the model matrices, A(i) and a(i) refer to the values of A and a of the ith processed part,

respectively. ak,n refers to the state of A for the nth locator or KPC deviation at stage k. Letter

Σ represents a covariance matrix, and σ2 an element of that matrix. Also, letter S represents

a sample covariance matrix. Letters Σ, σ2 and S can be accompanied by a subscript (e.g. Σz),

which refers to a given assigned term z. Thus, σ2
a[q] refers to the variance of the qth element

of a. Additionally, A[p, q] refers to the element located on the p row and q column of A. A

subscript after a dimensional counter (nz) also refers to an assigned name z.

The diagonal of a square matrix is extracted using operator diag(·). Operator diag−1(·) ap-

plied to a vector generates a diagonal square matrix whose diagonal contains the aforementioned

vector. Operator vec (A) ∈ Rn2
returns the vectorization of A as a column. Given a symmetric

A, operator svec (A) ∈ Rn2
returns the vectorization of the elements within and below the

diagonal of A, expressed as a column. The Hadamard product of A and A is expressed as A◦2.

When we explain numerical algorithms, A(l) and a(l) refer to the values of A and a during

the l iteration. Expected values are denoted as E{·}. Let us define function b = f (a), where

b ∈ R1. The partial derivative of b with respect to vector a is expressed as ∂b
∂a .

4.2 Problem statement

The objective of this chapter is to present a methodology to adjust a physical linear input-

output model of an MMP with a large amount of stages and/or with components that, due

to their configuration, cannot be reliably modeled, using collected measurement data from

shopfloor and engineering knowledge. Given that physical models of these MMPs may present

divergences with respect to the real behavior of the process due to modeling approximations and

differences between idealized and real components, the adjustment is performed by adapting

the physical model to minimize these divergences.

We assume that data from the variation sources are not available, although approximated

ranges of their covariance are available. We also assume that the aforementioned model diver-

gences are modeled as disturbances expressed as linear functions of the variation sources. Lastly,

we assume that the data is collected from a faultless process; thus, no other disturbances are

considered in this methodology.

The output of the proposed adjustment methodology will be an adjusted variation propa-

gation matrix and the estimation of the covariance of the effect of the deviation of the variation

sources. The variation propagation model and the proposed assumptions are explained in this

section.
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4.2.1 The variation propagation model

The Stream-of-Variation methodology defines the variation propagation model of an M-stage

MMP as a state-space model [9]. This model describes the effect of the variation sources on the

dimensional deviations of the workpiece features, and consequently, how these feature deviations

affect Key Product Characteristics (KPC), which are the most important dimensional and

geometrical properties of a processed part, as they directly impact the output quality of the

product. The model presents the form

xk(i) = Ak−1 · xk−1(i) +Bk · uk(i) + wk(i), (4.1a)

yk(i) = Ck · xk(i) + vk(i), (4.1b)

where k = {1, 2, ..., M} refers to the stage index. The feature deviations of part i = {1, ..., ∞}
after stage k are expressed by xk(i). The states of the variation sources are represented by uk(i),

and wk(i) represents unmodeled errors of the process. Key Product Characteristic deviation

(KPCd) measurements in stage k are represented by yk(i). Measurement noise is represented

by vk(i). Matrices Ak, Bk and Ck are defined by the process layout and characteristics.

This model can be rearranged into a linear input-output model of the MMP:

yM (i) = Γ · u(i) + vM (i) + ω(i), (4.2)

where yM (i) is yk(i) at stage M , containing the ny KPCd measurements in that stage (yM (i) ∈
Rny), vM (i) is vk(i) at stage M (vM (i) ∈ Rny), u(i) contains all the nu states of the variation

sources of the MMP (u(i) ∈ Rnu), ω(i) includes the unmodeled disturbances, and Γ (Γ ∈ Rny×nu)

is the variation propagation matrix, which relates the impact of all variation sources on the KPC

deviations using a linear relationship. Matrix Γ is the result of the organized products of matrices

A, B and C of each stage. This matrix defines the general behavior of the MMP.

Note: We have assumed that no faults nor non-linear disturbances will be present for our

adjusting methodology; thus, ω(i) will be omitted from now on. The divergences due to errors

when developing physical models are considered proportional to the variation sources and thus,

included within matrix Γ.

Vectors yM (i), vM (i) and u(i) are then defined as

yM (i) =

 yM,1(i)
...

yM,ny(i)

 , vM (i) =

 vM,1(i)
...

vM,ny(i)

 , u(i) =

 u1(i)
...

unu(i)

 ,
where 1, ..., nu in u1, ..., unu refer to an arbitrarily assigned numeration of the variation

sources of the whole MMP.

In the bibliography [98], the linear input-output model (4.2) is considered a stationary

process. Matrix Γ is assumed to remain constant during the natural working time of the MMP.

Thus, equation (4.2) is generalized into

y = Γ · u+ v, (4.3)
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and we define u, v and y as vectors containing the values of the states for each deviation source,

measurement noise and measurable KPC deviations, respectively, for any given amount of parts:

u =

 u1

...

unu

 , v =

 vM,1
...

vM,ny

 , y =

 yM,1
...

yM,ny

 .
Note that subscript M is now omitted, as it is implied.

In Figure 4.1 we present a diagram that summarizes the different concepts we have exposed

until now.

u1 um uM

... ...

x1 xm xM vM

+

yM

Variation Sources

Noise

M

Stage
m

Stage

1

Stage

deviations of
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Measured
... ...

Γ
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v

y

Figure 4.1. Diagram of the variation source propagation in a multistage process.

We assume that the expected value of the states of the variation sources u and the measure-

ment noise v is zero. We also assume that u and v are independent variables:

E{u} =

 E{u1}
...

E{unu}

 = 0nu×1, E{v} =

 E{vM,1}
...

E{vM,ny}

 = 0ny×1,

E{u · vᵀ} = 0nu×ny .

Taking into account the previous assumptions a Variance Variation Propagation Model

(VVPM) is established, which models the behavior of the covariance matrices of the variation

propagation model. Defining variables Σy, Σu and Σv as

Σy =E{y yᵀ},
Σu =E{u uᵀ},
Σv =E{v vᵀ},

where Σy ∈ Rny×ny , Σu ∈ Rnu×nu and Σv ∈ Rny×ny , we define the VVPM as

Σy = Γ Σu Γ
ᵀ

+ Σv. (4.5)
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The stationary process assumption we considered before implies that the aforementioned

variances will be constant during the normal operation of the multistage process. Thus, we as-

sume that there are no faults in the process when conducting the proposed adjustment method-

ology.

We have also made the following assumptions:

� The variation sources are assumed to be independent, so covariance matrix Σu is diagonal:

Σu =

σ
2
u[1] . . . 0
...

. . .
...

0 . . . σ2
u[nu]

 , (4.6)

where σ2
u[q] represents the variance of the qth variation source (uq). We call ~Σu to the

variable that contains the same terms of the diagonal of Σu.

~Σu =
[
σ2
u[1], ..., σ2

u[nu]
]ᵀ
≡ diag (Σu) . (4.7)

� Measurement noises are assumed to be independent. Thus, covariance matrix Σv is diag-

onal:

Σv =

σ
2
v [1] . . . 0
...

. . .
...

0 . . . σ2
v [ny]

 , (4.8)

where σ2
v [p] represents the variance of the pth measuring instrument. We call ~Σv to the

variable that contains the same terms of the diagonal of Σv.

~Σv =
[
σ2
v [1], ..., σ2

v [ny]
]ᵀ
≡ diag (Σv) . (4.9)

� Covariance matrix Σy is a full symmetric matrix. We call ~Σy to the variable that contains

the same terms of the diagonal of Σy.

~Σy ≡ diag (Σy) . (4.10)

Attending to Appendix B.1, we can state the following relationship for the diagonal ele-

ments of the covariance of the KPCd measurements.

~Σy = Γ◦2~Σu + ~Σv. (4.11)

4.2.2 Process data collection

Collected data from the MMP consists of KPCd measurements at the last stage (k = M). Given

a batch of N processed parts, the corresponding KPCd measurements of the parts processed in

that batch are expressed as matrix Y ∈ Rny×N :

Y =
[
yM (1) ... yM (N)

]
=

 yM,1(1) ... yM,1(N)
. . .

yM,ny(1) ... yM,ny(N)

 .
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The sample covariance of Y is calculated using the covariance formula:

Sy =
1

N − 1

(
Y · Y ᵀ)

.

We call ~Sy to the variable that contains the same terms of the diagonal of Sy.

~Sy ≡ diag (Sy) .

Thus, Sy ∈ Rny×ny , and ~Sy ∈ Rny .

4.2.3 Engineering-based assumptions

Physical models in the Stream-of-Variation methodology focus on detailing the behavior of the

variation propagation in MMPs by defining matrices Ak, Bk and Ck from (4.1). However, due to

the physical complexity of the components of an MMP, it is common to apply approximations

and linearizations during the development of these models. Additionally, physical models only

take into account the behavior of ideal components of the MMPs; real components may present

slight differences.

These errors are frequently small in magnitude, and are often ignored. However, as matrix Γ

represents a reorganized product of those matrices, in MMPs with a large amount of stages some

of these errors get accumulated. Thus, the accuracy of the linear input-output model obtained

exclusively using physical models is reduced when the number of stages of the MMP increases.

In other cases, due to the complexity of some of the process components, linearizations are only

valid in certain dimensional ranges, so the performed approximations are more noteworthy,

thus also lowering the accuracy of the obtained input-output model. We call Γ0 to this initial

estimation of Γ, which has been obtained through physical models.

The internal elements of Γ0 (Γ0 ∈ Rny×nu) present the following form:

Γ0 =

 Γ0[1, 1] . . . Γ0[1, nu]
...

. . .
...

Γ0[ny, 1] . . . Γ0[ny, nu]

 . (4.12)

In this chapter we assume that, due to approximations and differences between idealized

and real components, Γ0 will notably differ from Γ.

Additionally, we assume that a certain range of the covariance of the variation sources Σu

is available, obtained using backup data or from vendor’s specifications (e.g. accuracy of fixture

locators). We also assume that we know the theoretical covariance of the measurement noise

Σv, which is directly related to the precision of the measuring instrument and thus, obtainable

from the instruments’ specifications. The order of magnitude of Σv is assumed to be notably

lower than the expected values of Σy, as required to perform faithful measurements.

Thus, we can obtain a proposal for the elements of the variance of the variation sources,

expressed as ~Σu (4.7). Using equation

~Sy = Γ◦20
~Σu + ~Σv,
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which is based on equation (4.11), we can then obtain

~Σu =
(

Γ◦20

ᵀ

Γ◦20

)−1
Γ◦20

ᵀ (
~Sy − ~Σv

)
(4.13)

using Least Squares.

4.2.4 Problem formulation

With the definitions above we can reformulate the problem statement as follows. Given the

following assumptions:

� The MMP behaves as a linear input-output model (4.3).

� Independent random variables lead to a VVPM model (4.5).

� An initial estimation for Γ, called Γ0 (4.12), is available and obtained using physical

models.

� The variance of the variation sources (Σu) for model (4.5) are independent (4.6).

� The variances of the measurement noises (Σv) are available and independent (4.8).

� We have some engineering knowledge about the system that allows us to state some

relationships between model parameters (such as backlog data and geometrical premises

from Γ0).

� A set of output data measurements Y is available.

We want to obtain both an estimate for Γ and Σu for model (4.5). This model can be used

latter, for instance, to reconstruct an estimation of the KPCd measurement covariance matrix

Σy for its use in fault diagnosis. We call those estimations Γ̂ and Σ̂u, which we obtain using the

sample covariance Sy from data set Y and Γ0:

[Γ̂, Σ̂u] = f (Sy, Γ0) .

Both Γ̂ and Σ̂u are used to obtain the KPCd measurement covariance matrix estimate Σ̂y.

In Figure 4.2, we present a summary diagram of the problem formulation.

The problem can be stated as an optimization problem that reads as follows. Obtain Γ̂

and Σ̂u that minimizes some metric that measures the error between Σy and its estimation Σ̂y

through the model as

Σ̂y(Γ̂, Σ̂u) = Γ̂Σ̂uΓ̂
ᵀ

+ Σv,

subject to some given relationships between the elements (obtained through engineering knowl-

edge) and using Sy as an approximation for Σy.

In the following sections we address how to express a measure of the error between the

output covariance Σy and its reconstruction through Γ̂ and Σ̂u, how to formulate its search

through a tractable optimization problem, and how to evaluate the goodness of the model with

the available data Y .
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Figure 4.2. Diagram of the proposed problem formulation.

4.3 Formulation of the optimization problem

4.3.1 Evaluation of the estimation error

As stated before, matrix Σu is assumed to be diagonal. In that sense, for the optimization

problem we will consider as decision variables only the diagonal elements within it. We call

~Σu the vector that contains those diagonal elements, and ~̂Σu its estimate (one of our decision

variables). The internal elements of ~̂Σu (~̂Σu ∈ Rnu) are defined as

~̂Σu =
[
~̂Σu[1], ..., ~̂Σu[nu]

]ᵀ
. (4.14)

The estimation of matrix Γ, called Γ̂, is our other decision variable. The internal elements of Γ̂

(Γ̂ ∈ Rny×nu) present the following form:

Γ̂ =

 Γ̂[1, 1] . . . Γ̂[1, nu]
...

. . .
...

Γ̂[ny, 1] . . . Γ̂[ny, nu]

 . (4.15)

With this, the estimate of Σ̂y (Σ̂y ∈ Rny×ny) can be expressed in terms of the decision variables

as

Σ̂y(Γ̂, ~̂Σu) = Γ̂diag−1(~̂Σu)Γ̂
ᵀ

+ Σv, (4.16)

where Σv is assumed to be known.

The following matrix contains the difference between the KPCd measurement covariances

and its estimate, which is expressed as E (E ∈ Rny×ny):

E(Γ̂, ~̂Σu) = Σy − Σ̂y(Γ̂, ~̂Σu) = Σy − Γ̂diag−1(~̂Σu)Γ̂
ᵀ − Σv.

As we do not know Σy the previous matrix error can be numerically approximated through

Ê(Γ̂, ~̂Σu) = Sy − Σ̂y(Γ̂, ~̂Σu) = Sy − Γ̂diag−1(~̂Σu)Γ̂
ᵀ − Σv,
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by using the sample covariance Sy. Here, Ê ∈ Rny×ny and Sy ∈ Rny×ny . As matrix Ê is

symmetric, we first obtain a vector that gathers the difference of all unique matrix elements by

using the svec operator, leading to

ê(Γ̂, ~̂Σu) = svec
(
Ê(Γ̂, ~̂Σu)

)
= svec(Sy − Γ̂diag−1(~̂Σu)Γ̂

ᵀ − Σv). (4.17)

As ê is the result of a symmetrical vectorization, ê ∈ RnSy is a column vector, where nSy =

ny(ny + 1)/2 is the number of elements on and under the diagonal of Ê.

Then, we propose to define a metric of the error by summing all the squared elements of

the previous vector as

‖ê(Γ̂, ~̂Σu)‖22 = ê(Γ̂, ~̂Σu)
ᵀ
ê(Γ̂, ~̂Σu).

Then, we can state initially the estimation problem as the solution to the following opti-

mization problem

(Γ̂, ~̂Σu) = arg min
Γ̂,~̂Σu

‖ê(Γ̂, ~̂Σu)‖22, (4.18)

with ê(Γ̂, ~̂Σu) defined in (4.17). The function to be minimized in the previous optimization

problem is a 6th order polynomial in the decision variables.

4.3.2 Definition of the engineering- and data-driven constraints

The minimization of the metric index in (4.18) must be subjected to appropriate constraints in

order to guarantee a correct adjustment of the model. Here, we propose several constraints to

be included, depending on the available engineering data.

The following constraints bound the calculations to obtain Γ̂. They are detailed for any

elements located on any a, b, c and d position in Γ̂ (4.15):

1. Sign of the elements of Γ. The direction of the effect of each variation source on

each KPC deviation can be defined in most cases. Thus, elements of matrix Γ̂ can be

constrained with the corresponding sign.

C1 : Γ̂[a, b] ≥ 0 || Γ̂[a, b] ≤ 0. (4.19)

2. Bounds of Γ0. The upper and lower limits for Γ̂ can be defined as a variation of the

approximated physical model Γ0 (4.12) within some given deviations.

C2 : Γ0[a, b] + µ1 ≤ Γ̂[a, b] ≤ Γ0[a, b] + µ2. (4.20)

In practice, this means we assume that the physical model Γ0 is, to some extent, close to

Γ.

3. Null values. Elements of Γ̂ can be constrained to zero if it is clear that some variation

sources cannot affect the corresponding KPC deviations.

C3 : Γ̂[a, b] := 0. (4.21)
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4. Related terms. If supported by geometrical assumptions, the elements in Γ̂ can be

constrained to be proportional or related.

C4 : λ1Γ̂[c, d] ≤ Γ̂[a, b] ≤ λ2Γ̂[c, d], (4.22)

where λ1 and λ2 are scalar values close to the expected relation between the aforemen-

tioned elements of Γ̂.

Likewise, the following constraints bound the values of ~̂Σu.

5. Positive variance. The values of ~̂Σu must be forced to be positive, as it represents the

variance of the variation sources.

C5 : ~̂Σu ≥ 0. (4.23)

6. Backup data. The expected limits of ~̂Σu can be bound if backup data from other similar

processes is available.

C6 : ~ΣuBU1 ≤ ~̂Σu ≤ ~ΣuBU2 , (4.24)

where ~ΣuBU1 and ~ΣuBU2 are vectors containing backup data.

Additional engineering-based constraints can be included if deemed necessary.

With this, we can reformulate the optimization problem for model estimation as

(Γ̂, ~̂Σu) = arg min
Γ̂,~̂Σu

‖ê(Γ̂, ~̂Σu)‖22 (4.25a)

s.t. (4.17), (4.19)− (4.24). (4.25b)

Note: From now on, ê must be understood as ê(Γ̂, ~̂Σu).

4.4 Numerical approach

As stated before, the proposed estimation algorithm requires solving a polynomial optimization

of high degree with lots of decision variables. There are several methods and tools to solve

optimization problems through semidefinite programming relaxations that may converge to the

optimal value (see [99–101]). In an attempt of using those methods and available tools for

our problem, we have run into numerical problems derived of the high required computational

burden.

Then, in this work, we propose an alternative approach to solve our optimization problem

using both a reformulation of the problem to decrease the polynomial order, and a sequence of

approximations through linearization. The idea is to formulate the problem in such a way that

nonlinear solvers (that may not find a solution, or that may be too expensive or hard to tune)

are avoided, and only standard convex optimization tools (that lead to a unique solution if the
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problems are properly formulated) are used. However, this will require some iteration procedure

over convex problems to reach a solution.

First, by using the Schur complement, we reduce the order of the polynomial from a 6th

order to a 3rd order by rewriting the optimization into

(Γ̂, ~̂Σu) = arg min
Γ̂,~̂Σu,t

t

s.t.

[
t ê

ᵀ

ê InSy

]
� 0,

Constraints (4.19)− (4.24),

where scalar t is a decision variable (t ∈ R1) and the new constraint is a Matrix Inequality.

However, the problem is still nonlinear as ê (4.17) depends on the decision variables as a 3rd

order polynomial. With this, we have reduced the polynomial order but we still require some

modifications in order to address the problem through standard semidefinite programming tools.

This optimization is guaranteed to be solved within a finite time span if the vectored error

function ê is linear in the decision variables. In order to solve this, we propose an iterative

algorithm through the linearization of ê.

4.4.1 Adjustment algorithm

The proposed iterative adjustment algorithm requires a change of the terminology and the

decision variables.

First, in order to indicate the current iteration, we add a subscript within parenthesis (e.g.

for the jth iteration of Γ̂, we write Γ̂(j)). The next step is the definition of the new decision

variables. Our iterative algorithm uses an initial approximation of Γ̂(j) and ~̂Σu(j) to obtain

the new decision variables, which are used to update Γ̂(j) and ~̂Σu(j), respectively, for the next

iteration.

Now, the new decision variables are:

� Matrix ∆Γ(j), which represents the changes in Γ̂ in each iteration of the algorithm (∆Γ(j) ∈
Rny×nu). Its internal structure presents the following form:

∆Γ(j) =

 ∆Γ(j)[1, 1] . . . ∆Γ(j)[1, nu]
...

. . .
...

∆Γ(j)[ny, 1] . . . ∆Γ(j)[ny, nu]

 .

� Column vector ∆Σ̂u(j) represents the changes in ~̂Σu in each iteration of the algorithm

(∆Σ̂u(j) ∈ Rnu).

The steps of the adjustment algorithm are shown as follows:
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1. Initialization of the algorithm. Set the counter variable (j = 0). Using the result of the

physical models Γ0 (4.12) and a proposed initial approximation based on (4.13), calculate

Γ̂(0) = Γ0, (4.27a)

~̂Σu(0) =
(

Γ◦2(0)

ᵀ

Γ◦2(0)

)−1
Γ◦2(0)

ᵀ (
~Sy − ~Σv

)
. (4.27b)

2. Solve the optimization problem:

(∆Γ(j),∆Σ̂u(j)) = arg min
∆Γ,∆Σ̂u,t

t(j) (4.28a)

s.t.

[
t(j) ε̂

ᵀ

(j)

ε̂(j) InSy

]
� 0, (4.28b)

ε̂(j) = ê

∣∣∣∣
Γ̂(j),~̂Σu(j)

+
∂ê

∂vec(Γ̂)

∣∣∣∣
Γ̂(j),~̂Σu(j)

· vec(∆Γ(j)) +
∂ê

∂~̂Σu

∣∣∣∣
Γ̂(j),~̂Σu(j)

·∆Σ̂u(j), (4.28c)

where ε̂ ∈ RnSy is the linearized form of ê:

ê = svec(Sy − Γ̂(j)diag
−1(~̂Σu(j))Γ̂

ᵀ

(j) − Σv), (4.28d)

evaluated around the last computed matrices.

It is also subjected to the variables from Section 4.3.2, modified to take into account the

change of decision variables:

C ′1 : Γ̂(j)[a, b] + ∆Γ(j)[a, b] ≥ 0 || Γ̂(j)[a, b] + ∆Γ(j)[a, b] ≤ 0, (4.28e)

C ′2 : Γ0[a, b] + µ1 ≤ Γ̂(j)[a, b] + ∆Γ(j)[a, b] ≤ Γ0[a, b] + µ2, (4.28f)

C ′3 : ∆Γ(j)[a, b] := 0, (4.28g)

C ′4 : λ1(Γ̂(j)[c, d] + ∆Γ(j)[c, d]) ≤ Γ̂[a, b] + ∆Γ(j)[a, b] ≤ λ2(Γ̂(j)[c, d] + ∆Γ(j)[c, d]), (4.28h)

C ′5 : ~̂Σu(j) + ∆Σ̂u(j) ≥ 0, (4.28i)

C ′6 : ~ΣuBU1(j) ≤ ~̂Σu(j) + ∆Σ̂u(j) ≤ ~ΣuBU2(j). (4.28j)

3. After the solver obtains ∆Γ(j) and ∆Σ̂u(j), Γ̂(j) and ~̂Σu(j) are updated into Γ̂(j+1) and

~̂Σu(j+1): Γ̂(j+1) = Γ̂(j) + ∆Γ(j),

~̂Σu(j+1) = ~̂Σu(j) + ∆Σ̂u(j).
(4.29)

4. If
∣∣∆Γ(j)

∣∣ ≥ δ (where δ ∈ Rny×nu is a vector with assigned low magnitude values), increase

the counter variable (j = j+1) and go back to step 2; else, define the final adjusted model

elements as Γ̂ ≡ Γ̂(j+1),

~̂Σu ≡ ~̂Σu(j+1),
(4.30)

and end the algorithm.
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4.4.2 Justification

The Schur complement

The order of the polynomial is reduced replacing the product of the objective function by an

equivalent constraint. This conversion is implemented using the Schur complement. We define

a scalar variable t that bounds the maximum value of squared ê. Considering that ê
ᵀ · ê will

always be zero or positive, we rewrite the optimization problem (4.25a) into

(Γ̂, ~̂Σu) = arg min
Γ̂,~̂Σu,t

t (4.31a)

s.t. ê
ᵀ · ê ≤ t. (4.31b)

Constraint (4.31b) is rewritten into

t− êᵀ · InSy · ê ≥ 0. (4.32)

Using the properties of the Schur Complement, we affirm that (4.32) will be positive semi-

definite if and only if the following matrix H is also positive semi-definite.

H =

[
t ê

ᵀ

ê InSy

]
� 0. (4.33)

Thus, both expressions are exchangeable without losing their inequality properties. Linear Ma-

trix Inequality (4.33) is applied in constraint (4.28b).

Linearization

The error function ê (4.17) is a 3rd order polynomial. We reduce its order using a first-order

Taylor series linearization around an initial estimation of Γ̂ and ~̂Σu.

These series require several iterations until the terms stabilize, so for a given iteration l, the

proposed relaxation presents the form

ε̂(l) = ê

∣∣∣∣
Γ̂(l),~̂Σu(l)

+
∂ê

∂vec(Γ̂)

∣∣∣∣
Γ̂(l),~̂Σu(l)

· vec(∆Γ(l)) +
∂ê

∂~̂Σu

∣∣∣∣
Γ̂(l),~̂Σu(l)

·∆Σ̂u(l),

where ε̂ is the linearized form of ê. As explained before, ∆Γ(j) ∈ Rny×nu and ∆Σ̂u(j) ∈ Rnu are

the new decision variables for the iterative procedure.

Given that vec(Γ̂) =
[
Γ̂[1, 1] Γ̂[2, 1] ... Γ̂[ny, nu]

]ᵀ
and knowing from (4.14) that ~̂Σu =[

~̂Σu[1], ..., ~̂Σu[nu]
]ᵀ

, then

∂ê

∂vec(Γ̂)
=
[

∂ê
∂Γ̂[1,1]

∂ê
∂Γ̂[2,1]

... ∂ê
∂Γ̂[ny ,nu]

]
,

∂ê

∂~̂Σu

=
[

∂ê

∂~̂Σu[1]

∂ê

∂~̂Σu[2]
... ∂ê

∂~̂Σu[nu]

]
.

After that, the decision variables are obtained and Γ̂(j) and ~̂Σu(j) are updated into Γ̂(j+1) and

~̂Σu(j+1) using ∆Γ(j) and ∆Σ̂u(j), as previously presented in equation (4.29).

As a final summary, in Figure 4.3 we present a diagram of the adjustment methodology.
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Figure 4.3. Summary diagram of the adjustment methodology.

4.5 Validation of the model

The proposed adjustment algorithm (4.27)-(4.30), through an iterative optimization procedure,

uses an estimation of Σy by means of Sy, and a metric that estimates the sum of the square of

the difference of the elements of Σy and Σ̂y(Γ̂, Σ̂u). The output of the proposed algorithm is an

adjusted model of the process. However, in order to validate the model, we must assess different

data sets.

In that sense, we propose to validate the model using a training-testing procedure. From a

theoretical validation point of view, we will assume that we have available the theoretical real

values of matrices Σy, Σu, Σv and Γ. We will also assume that we have two sets of available

data, one of them used in the estimation algorithm (training set, that leads to sample covariance

SyTr), and another one used to evaluate the goodness of the adjustment (test set, with sample

covariance SyTs). Thus, adjusting the model with the training set will yield the values of Γ̂ and

~̂Σu:

[Γ̂, ~̂Σu] = f (SyTr, Γ0) . (4.34)

The model is validated using performance indexes, which compare the sample covariance

values and the theoretical values from the benchmark with the estimated covariance of the KPCd

measurements (Σ̂y), obtained using equation (4.16). These performance indexes are vectored

using symmetrical vectorization in order to avoid the duplication of the effect of the elements

located outside the diagonal.

First, we present the performance indexes that can only be used in simulations, as they use

the theoretical real values of matrices Σy, Σu, Σv and Γ:

� Index I1 evaluates the performance of the algorithm on estimating the theoretical covari-

ance matrix of the KPCd measurements. Given that the covariance of the measurement
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noise Σv is assumed to be known, index I1 presents this form:

I1 = svec
(

Σy − Σ̂y

)ᵀ

svec
(

Σy − Σ̂y

)
=

= svec
(

ΓΣuΓ
ᵀ − Γ̂ diag−1(~̂Σu)Γ̂

ᵀ
)ᵀ

svec
(

ΓΣuΓ
ᵀ − Γ̂ diag−1(~̂Σu)Γ̂

ᵀ
)
. (4.35)

� Index I2 expresses the proportion of the fourth root of index I1 and the l22-norm of the

symmetrical vectored elements of Σy − Σv, in percentage:

I2 =

(
I1

svec (Σy − Σv)
ᵀ
svec (Σy − Σv)

) 1
4

· 100 =

=

svec
(

ΓΣuΓ
ᵀ − Γ̂ diag−1(~̂Σu)Γ̂

ᵀ
)ᵀ

svec
(

ΓΣuΓ
ᵀ − Γ̂ diag−1(~̂Σu)Γ̂

ᵀ
)

svec (ΓΣuΓᵀ)
ᵀ
svec (ΓΣuΓᵀ)


1
4

· 100.

(4.36)

� Index I3 evaluates the performance of the algorithm on estimating the theoretical standard

deviations of the KPCd measurements (i.e. the terms of the diagonal) by comparing the

maximum error of the estimation.

I3 = max

(∣∣∣∣√~Σy −
√
~̂Σy

∣∣∣∣) . (4.37)

� Index I4 expresses the maximum ratio of the estimation error of the standard deviations

w.r.t. the standard deviation of ~Σy:

I4 = max


∣∣∣∣√~Σy −

√
~̂Σy

∣∣∣∣√
~Σy

 · 100. (4.38)

We also present the practical performance index IP , which can be used by practitioners in

real cases:

� Index IP evaluates the performance of the algorithm on estimating the values of the

covariance matrix of the KPCd measurements obtained from the testing set.

IP = svec
(
SyTs − Σ̂y

)ᵀ

svec
(
SyTs − Σ̂y

)
. (4.39)

As a summary, IP is the only index that can be assessed in practical cases, but the other

indexes are the ones that would provide real information of the goodness of the fit. In the

following section we will show, through numerical examples in a case study, how IP can be

related with other indexes and how it can help to decide if we have reached a proper model of

the process.
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4.6 Simulations

4.6.1 Case Study

Benchmark

In order to validate the performance of the proposed adjustment methodology, we have con-

ducted a case study of a multistage manufacturing process. In this case study, we assume that

matrix Γ0, which has been obtained using physical models, presents notable deviations w.r.t.

the real values of Γ as a result of simplifications and unreliable modelizations of some parts of

the process.

We have generated a simulated benchmark for this case study. In this case, for the sake of

dimensional simplicity but without loss of generality, we have used as Γ an adapted version of

the matrix presented in a case study from [76]:

Γ =



0.093 0.577 −0.120

−0.093 0 0.843

0.093 0.577 −0.120

0.647 0 −0.120

−0.370 0.577 0.482

0.647 0 −0.120


. (4.40)

The simulated values of the KPCd measurements of each part at the last stage (yM (i)) are

generated using Γ and randomly generated values of the effect of the variation sources (u(i)) and

the measurement noises (yM (i)). The theoretical variance of the effect of the variation sources

(Σu) is obtained from [56], which used a variation of (4.40) as a benchmark. Here, we assume

that u presents a Gaussian distribution with zero mean and a variance σ2
u = 1.111 · 103 µm2.

Thus, Σu = σ2
uI, given that we assume that all variation sources behave with the same variance.

Measurement noise is applied as a zero-mean Gaussian signal. In the proposed simulations

we propose several variances (σ2
v) for the measuring instruments, in order to evaluate the effect of

the measurement noise variance on the performance of the proposed algorithm. We consider that

all KPC deviations are measured with the same instrument, so the variances of all measurement

noises are identical (Σv = σ2
vI). Each case is explained in Section 4.6.1.

Values for Γ0 are randomly generated within a 30% range w.r.t. the values of Γ, in order to

represent the aforementioned deviations.

We also consider that the following constraints are known from the process; therefore, they

are used in the optimization procedure to adjust the model:

� The values of Γ that we know that are null have been forced to zero in Γ̂, and several

values that we know that are positive have been forced to be greater or equal to zero.

Additionally, we have constrained the values of Γ̂ to be within a 30% range w.r.t the

initialization matrix Γ0.

� The values of ~̂Σu have been forced to be positive, and within the 500− 1500 µm2 range,

which would be obtained using backup data from other similar process.
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Simulation settings

The performance of the proposed methodology is evaluated for different amounts of processed

parts in the training and the testing set, as well as for different variances of the measurement

noise. Given that for each experiment the values of Γ0 are randomly generated, and the indi-

vidual states of the variation sources and the measurement noise are generated randomly for

each processed part, we have applied the Monte Carlo method, where for each combination

of number of training and testing parts, as well as a given measurement noise variance, the

experiments are repeated 200 times. The simulation parameters are shown in Table 4.1. Note

that the amount of testing parts will only affect index IP .

Table 4.1. Simulation parameters.

Number of Monte Carlo iterations 200

Number of parts in the training set (Ntr) {1, 5, 15, ..., 95, 100, 200, ..., 2100}
Number of parts in the testing set (Nts) {350, 500, ..., 1100, 1250}

In Table 4.2, we propose several experiment cases using different measurement noises, in-

cluding the proportion in percentage between the standard deviations of the measurement noise

and the standard deviations of the KPCd measurements, defined as:

Propv (%) =

(
svec (Σv)

ᵀ
svec (Σv)

svec (Σy)
ᵀ
svec (Σy)

) 1
4

· 100.

Table 4.2. Simulation experiment cases depending on the measurement noise variance.

Experiment A B C D E

σ2
v (µm2) 1 4 16 64 256

Propv (%) 3.72 7.42 14.75 28.77 52.36

For each new iteration of the Monte Carlo method, we generate a new set of data for the

training and the testing sets, as well as a new Γ0. Then, in order to adjust the model by solving

the proposed optimization problem, we use the YALMIP parser [102] and the optimization

software mosek. Then, we calculate and average the performance indexes for each combination

of training and testing amounts of processed parts.

4.6.2 Results and discussion

Evaluation of the performance indexes

The performance indexes calculated during the experiments are shown as follows.

Index I1 is presented in Figure 4.4 for the different experiment cases presented in Table 4.2.

As it can be observed, index I1 (the error in the estimation of Σy; equation (4.35), which uses

Γ̂ and ~̂Σu) is reduced when the number of processed parts used in the training set increases.
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As expected, given that a higher amount of samples of the effects of the variation sources

(considering that they are independent) implies that the sample covariance of the variation

sources will be similar to our assumptions for Σu. It can also be observed in Figure 4.4 that,

when the number of processed parts is zero (i.e. when the estimation is performed using the

initialization equations from (4.27a) and (4.27b)), certain error in the estimation is observed,

which suddenly increases and then decreases as the number of processed parts on the training

set increases. When there are around 20-25 parts in the training set, index I1 already has the

same magnitude as the initial value had, and after that it keeps diminishing with the amount

of parts in the training set. The minimum number of parts in the training set required to

enhance the results obtained through the initialization equations is quite similar to the number

of decision variables that are calculated in this case study, as Γ ∈ R6×3 and ~̂Σu ∈ R3×1, thus

the total amount of decision variables is 21. Therefore, a minimum set of data is needed to

tune the model parameters and reduce the value of I1, mainly because of the large amount of

parameters to be adjusted. In both Figures 4.4 and 4.5 it can be observed that the performance

of the proposed methodology is reduced when the standard deviation of the measurement error

(noise) increases. However, the reduction of the performance is minimal.

Index I2 (equation (4.36)) is presented in Figure 4.6 for the different experiment cases. Its

general behavior is very similar to index I1, as increasing the variance of the measurement noise

also increases the value of this performance index.

Indexes I3 and I4 (equations (4.37) and (4.38)) are presented in Figures 4.7 and 4.8, re-

spectively, for the proposed measurement noises. They show a similar behavior to the other

indexes, but they lack the initial peak, as the initial point is higher because maximum points

are searched here instead. These indexes are less affected by the variance of the measurement

noise.

Index IP (equation (4.39)) is presented in Figure 4.9a for measurement noises of σ2
v = 4 µm2

(Exp. B) and in Figure 4.9b for measurement noises of σ2
v = 256 µm2 (Exp. C), using several

amounts of processed parts in the testing set. As it can be observed in both cases, it is necessary

to use a notably high amount of parts in order to use IP as a reliable substitute of I1 in a practical

case.

Behavior of performance index I1 as a process estimator

Figure 4.10 shows the performance index I1 in several experiments. Each experiment presents a

different measurement noise standard deviation, in order to evaluate the effect of the measure-

ment noise on the proposed methodology. The obtained surface can be fitted into the following

form:

I1 ∼ a+
bσ2
v + cσv + d

Ntr
,

where Ntr is the number of parts of the training set. The initial peak before the 25 parts

is omitted, as it is a high-error zone where there is not enough data to obtain acceptable

estimations. Thus, performance index I1 is inversely proportional to the number of parts used

in the training set, similarly to other process estimators [98]. I1 is also affected by the precision
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Figure 4.4. Index I1 w.r.t. number of parts used in the training set.
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Figure 4.5. Detail of the evolution of the index I1 cases presented in Figure 4.4.
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Figure 4.6. Index I2 w.r.t. number of parts used in the training set.
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Figure 4.7. Index I3 w.r.t. number of parts used in the training set.
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Figure 4.8. Index I4 w.r.t. number of parts used in the training set.
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(a) Comparison of IP for several Nts and I1 for σ2
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Figure 4.9. Comparison of IP for different Nts and I1 for different measurement noises.
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Figure 4.10. Evolution of performance index I1 for different number of processed parts in the training set and

different standard deviations of the measurement noise.

of the measuring instrument, as it is proportional to a polynomial function of the standard

deviation of the measurement noise.

4.7 Conclusions

This chapter presents a methodology to reduce the linearization, approximation and model-

ing errors that arise during the development of the linear input-output variation propagation

model of an MMP with a large amount of stages and/or with components that, due to their

configuration, cannot be reliably modeled using physical models.

The proposed methodology consists of recursively solving an optimization problem that

minimizes the difference between the KPCd measurements from a batch of processed parts and

its estimation, which is a function of the estimated variation propagation matrix Γ and the

estimated covariance of the variation sources. This optimization problem is initialized using

physical models and it is bounded using prior engineering knowledge and backup data.

After applying the proposed methodology to a simulated case study, we validated the model

using several performance indexes. We conclude that the algorithm can be trained using a

low amount of processed parts (at least the amount of decision variables of the optimization

problem), and with any higher amount the estimation error of the covariance of the KPCd

measurements is reduced proportionally to the amount of processed parts used during the

training process. However, if only a sample covariance matrix of the KPCd measurements is

available from a batch of processed parts (as it is common in practical cases), the amount of

parts in the batch that are required to test the performance of the algorithm does increase

notably.
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The proposed methodology presents some limitations. First, it assumes that the theoretical

covariance of the measurement noise remains identical to its respective sample covariance, al-

though as it is always assumed that their values will be notably lower than those of the KPCd

measurements covariance, so this assumption may not notably affect the accuracy of the model

adjustment. Additionally, we consider that the magnitude of the errors in the model caused by

approximations, linearizations and other unmodeled linear errors that have arisen when obtain-

ing the linear input-output variation propagation model of an MMP using physical models will

be considerably higher than the linearizations performed in order to ensure that the optimization

problem is solved within a finite time. Future research may include a greater refinement of the

linearization methods in the algorithm and analyzing the impact of the adjusting methodology

in processes with higher dimensionality.



Chapter 5

A sequential inspection procedure for

fault detection in multi-stage

manufacturing processes

Abstract

Fault diagnosis in multistage manufacturing processes (MMPs) is a challenging task where

most of the research presented in the literature considers a predefined inspection scheme to

identify the sources of variation and make the process diagnosable. In this chapter, a sequential

inspection procedure to detect the process fault based on a sequential testing algorithm and a

minimum monitoring system is proposed. After the monitoring system detects that the process

is out of statistical control, the features to be inspected (end of line or in process measurements)

are defined sequentially according to the expected information gain of each potential inspection

measurement. A case study is analyzed to prove the benefits of this approach with respect to a

predefined inspection scheme and a randomized sequential inspection considering both the use

and non-use of fault probabilities from historical maintenance data.

5.1 Introduction

In the last years, international institutions such as the European Factories of the Future Research

Association (EFFRA) have promoted the development of strategies for modeling, monitoring

and controlling complex manufacturing systems to achieve zero-defects [103].

Multistage Manufacturing Processes (MMPs) are sequential manufacturing processes where

workpieces move throughout different stages in order to perform specific manufacturing opera-

tions (e.g., welding, machining, etc.). Typical MMP in industry are automotive body assemblies,

machining lines, rolling processes, tile manufacturing processes, etc. One of the main charac-

teristics of MMPs is the complex interactions among stages that define the final quality of the

69



70 5. A sequential inspection procedure for fault detection in multi-stage manufacturing processes

product. This is mainly due to the fact that the output quality at one stage is affected by the

output quality of preceding stages. This complexity makes their control and quality assurance

challenging.

If attention is focused on quality assurance in MMP, inspection allocation, monitoring and

fault diagnosis/identification are key issues that should be studied in detail. Many research works

have been published on these topics in the last decade, and interesting surveys and reviews can

be found in recent works [74,104–106].

In the field of fault diagnosis, a model that relates key product characteristics (KPCs) to

sources of variation is needed for an effective root cause analysis. This model can be defined

by engineering or data-driven approaches. A model based on engineering approaches can be

obtained by deriving the physical laws that explain the process, e.g., kinematic relationships in

assembly processes. A well-known engineering-based model in MMPs is the Stream of Variation

(SoV) model [9] which has been successfully applied for fault diagnosis in different researches.

Zhou et al. [107] showed in detail the characteristics of the MMP for a fully diagnosable system

considering the SoV model as a linear mixed-effects model. Conditions for the diagnosability

property and the concept of minimal diagnosable class to analyze partial diagnosable systems

were also illustrated. Ding et al [98] compared different on-line variation estimators given con-

tinuous dimensional measurements for fault diagnosis purposes. In [78], the root-cause identi-

fication is formulated as a problem of estimation and hypothesis testing. In this work, on-line

batch algorithms for the mean and variance estimation together with the hypothesis-testing

methods for root-cause identification are illustrated. Sales-Setién et al [56] proposed a recursive

algorithm to estimate the process variance instead of on-line batch estimators, which reduces

the computational cost and the data storage needs. Ding et al. [80] used the engineering model

and the measurements at the inspection stage to identify fixture faults by a pattern recognition

strategy based on principal component analysis. Although some fixtures presented the same pat-

tern error on KPCs and, therefore, cannot be diagnosable, the fault patterns between stations

were diagnosable. Xiang and Tsung [108] described how to define a control chart for statistical

process control in a MMP based on the SoV model. The complex multi-stage monitoring prob-

lem is converted to a simple multi-stream monitoring problem by applying group exponential

weighted moving average (EWMA) charts to the one-step ahead forecast errors of the model.

The faulty stage is identified according to the results of the one-step ahead forecast errors. In

a similar work, Li and Tsung [109] used the SoV model and EWMA charts for detecting and

identifying the faults that affect the process covariance matrix in MMPs.

On the other hand, data-driven models are based on shop-floor data to extract the spatial

pattern vectors (SPVs) that define the relationships between KPCs and sources of variation.

Jin and Zhou [81] extracted the SPVs from the inspection data (sample covariance matrix)

and they are compared with SPVs that have been previously extracted and whose sources of

variation have been identified. Shan and Apley [86] proposed various blind source separation

criteria to estimate the SPVs. Liu et al [88] proposed the use of a qualitative model to relate

KPCs with sources of variation instead of the SoV model and used this information to adjust

in a proper way the SPVs extracted from data-driven approaches. The use of both engineering
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approaches (i.e, the qualitative model) and the data-driven approaches let explain in a better

way the extracted SPVs from the data.

Other advance modeling techniques such as Hierarchical Bayesian Networks (HBNs) have

been also applied for monitoring and fault diagnosis in MMPs. In [110], a HBN is built using

only data (process model is unknown) and once the network has been trained, the HBN is used

to infer the unobserved inputs of the process (sources of variation). The identification of the

fault and its type (mean shift or variance change) is accomplished by a control chart using the

measured data and the inferred value from the HBN. Another HBN is proposed in [111] to deal

with fault diagnosis in MMPs when the process is under-determined. Under the assumption

that less process faults are more likely to occur in MMPs, the problem of fault diagnosis is

transformed into searching the sparse solution of abnormal variance changes for process faults.

A similar problem is covered in [112], where the authors proposed a spatially correlated Bayesian

learning algorithm for fault diagnosis. The algorithm is based on the relevance vector machine

(RVM) exploiting the spatial correlation of dimensional variation from various process errors and

a real automotive assembly is used to validate the effectiveness of the algorithm. Other artificial

intelligence techniques have been explored for defect detection in similar contexts of MMPs and

interesting reviews can be found in [113, 114]. In [115], supervised and unsupervised learning

approaches were explored to estimate healthy and unhealthy parts along the manufacturing

process using different sensors data such as dynamometers, accelerometers, thermocouples, etc.

Although this research does not deal with fault diagnosis, the estimation is used to reduce the

number of inspections to be conducted since only those where the estimation cannot be ensured

within a certain level of confidence are conducted. Beruvides et al. [116] presented a fault pattern

identification methodology for multistage assembly processes with non-ideal sheet metal parts.

Three different supervised and unsupervised neural network topologies (multi-layer perceptron

network -MLP-, self-organized map -SOM-, and a MLP with genetic algorithms) with a Q-

learning algorithm were implemented to compose a fault pattern identification library. All three

methods were validated in a case study and the SOM network presented the best accuracy for

fault pattern identification.

However, despite the large contributions in the field of fault diagnosis in MMPs, most of the

research works are based on the existence of diagnosability conditions [107], which means that

enough measurements are available to detect and identify the source of variation. Furthermore,

these measurements are available at any time and almost at any station, since the diagnosability

condition requires a large amount of data with enough information to isolate and identify the

sources of variation. However, this approach may be not easy to be implemented in industry.

Despite current trends of Industry 4.0, the cost of implementing and using at any time all

measurements in a MMP may produce an important cost. Note that not only on machine

measurements which could be non-invasive and without operator’s action are considered, but

also in process measurements that may require use of CMM, gaging systems, etc. Therefore, a

more conservative approach where the measurements are conducted only when the search of a

root cause is necessary may be of great interest.

This chapter proposes a sequential inspection procedure for fault diagnosis in MMP where,

instead of measuring at any time most of the stages needed for full diagnosticability, the fault
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diagnosis is conducted in a sequential way. The proposed system is based on two parts. In the

first part, a monitoring system is implemented to identify if the process is out of control. In

the second part, a sequential inspection based on the evaluation of the information gain of each

potential inspection measurement is conducted to detect the existing fault in the process. Note

that the purpose of the system is to detect and isolate the fault, but there is no need for a

complete identification of the fault, i.e, we want to know which fault exists without estimating

its value. The methodology presented in this chapter is based on a qualitative model of process

faults and KPCs, which is derived using a type of tree diagram commonly applied in tolerance

charting. This model is used instead of engineering models (e.g., SoV model) which can be

difficult to derive for practitioners.

This chapter is organized as follows. Section 5.2 shows the problem description and the

proposed methodology for the sequential inspection procedure. Section 5.3 illustrates how to

derive the qualitative model between sources of variation and KPCs using a graphical tree

commonly applied in tolerance charting. Section 5.4 shows the minimum monitoring system

that is needed to ensure all sources of variation can be detected. Section 5.5 presents the

proposed sequential inspection methodology for a rapid inspection sequence and fault detection

and isolation. Several case studies are analyzed under the proposed inspection approach and

the results are compared with other possible inspection schemes in Sections 5.6 and 5.7. Finally,

Section 5.8 points out the main conclusions of the chapter.

5.2 Problem description

Let us consider a MMP as shown in Figure 5.1, where the raw material starts at stage 1 and

undergoes a series of manufacturing operations until the last stage, N . At each stage, critical

process characteristics may affect the result on part quality, for instance, a fixture locator which

plays a critical role in determining the dimensional quality of an assembled or machined part.

These critical characteristics are called key control characteristics (KCC), and their deviations

from their nominal values at stage k are denoted as uk. The quality of the part is evaluated

through an inspection stage or by on machine measurements and the deviations of KPCs from

nominal values at stage k are denoted by yk. If a linear model links the deviations of KCCs (i.e.,

sources of variation) with the deviations of KPCs derived from measurements, the following

Equation is defined:

y = Γ u+ ε, (5.1)

where y = [y
ᵀ

1 y
ᵀ

2 ...y
ᵀ

N ]
ᵀ

is an m× 1 vector that represents the measured dimensional deviation

of KPCs from station 1 to station N ; u = [u
ᵀ

1 u
ᵀ

2 ...u
ᵀ

N ]
ᵀ

is an n × 1 vector that represents

the deviations of KCCs up to station N ; Γ is the fault pattern matrix (m × n) that can be

derived from engineering or data-driven approaches; and ε denotes a term that includes both

the modeling uncertainty and the measurement noise (vk).

As shown in Equation (5.1), to fully identify all sources of variation, measurements along

the MMP should be conducted. The diagnosability of these sources of variation and the final
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Figure 5.1. Multistage Manufacturing Process (MMP) with N stages. Notation: variation sources (u), measure-

ment noise (v), inspection measurements (y).

inspection cost are the main issues in the design of the inspection scheme in MMPs for fault

diagnosis and quality assurance.

Given this MMP, the following questions may arise: which KPCs should be inspected for

monitoring the process at the end of line? Which stages/KPCs should be inspected for fault

diagnosis purposes? Which inspection sequence should be followed to identify the sources of

variation with a minimum number of measurements? Note that previous research have dealt

with similar problems but, after the definition of the inspections stations, the measurements

were assumed to be obtained at any time. In the presented problem, a sequential approach is

proposed and thus, the decision of which stage or KPC should be inspected depends on the

results of previous inspections.

To solve this problem, the following 3-steps methodology is proposed:

1. Derivation of a qualitative model between sources of variation and KPCs.

2. Definition of a minimum monitoring system to trigger the sequential inspection procedure.

3. Sequential inspection procedure based on the Information Gain (IG).

For the research in this chapter the following is assumed:

� The analyzed MMP is composed of stations that conduct machining operations, and there-

fore, the potential process faults are related to fixtures and cutting tools.

� Only one fault exists at the same time in the MMP.

� Type I errors (true conforming parts are considered nonconforming after inspection) and

Type II errors (true nonconforming parts are considered conforming after inspection) are

assumed to be negligible.

The following sections show in detail the 3-step methodology proposed, which is illustrated

in Figure 5.2.
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Figure 5.2. Methodology overview for fault detection based on sequential inspection.

5.3 Qualitative model of KPCs - process faults

The qualitative model of KPCs-process faults refers to the qualitative estimation of matrix

Γ from Equation (5.1). As explained above, this matrix can be obtained from engineering or

data-driven approaches. However, in this chapter the use of a simpler model considering the

qualitative relationships of the MMP to indicate which source of variation influences on which

KPCs is explored. If a relationship exists, the corresponding Γ coefficient has a value of 1.

Otherwise, the value is 0.

The qualitative model is extracted from the process planning information, more specifically

from tolerance charting. Tolerance charting is a common activity that is performed in process

planning to ensure that design tolerances can be achieved. To analyze the variation propagation

and estimate if the part is within specifications, a root tree and a tolerance chart is built. The

root tree is a graphical representation of the process where the sequence of machined surfaces

and datums (surfaces used for locating the workpiece in the fixture) can be extracted. A brief

explanation of the rooted tree is given in [117].

In this chapter, the following modification of the rooted tree for deriving a qualitative model

of KPCs-process faults is proposed:

� Machining operations that are conducted with the same tool are represented with the

same type of arrow at each subjob/stage.

� If a feature previously machined is used as datum downstream, the feature is drawn two

times connected by a thick line.
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� Whether on-machine measurement inspections are conducted and the potential process

faults are indicated on the right hand side of the rooted tree. Two types of process faults

are distinguished:

– i) cutting tool faults (excessive wear or breakage), denoted as uf ;

– ii) fixture faults (deviations of locators or workholding devices), denoted as um.

Similarly, two types of on-machine inspections are distinguished:

– i) tool inspection or KPC inspection, denoted as yum;

– ii) fixture inspection, denoted as yuf .

Furthermore, it is assumed that for the purpose of fault detection and isolation, the machining

error due to machine-tool precision is negligible, and thus, the machining error only refers to

cutting tool errors due to excessive tool wear or tool breakage.

To illustrate the rooted tree for a MMP with the above modifications, let us consider the

MMP shown in Figure 5.3. The process plan is as follows. At stage 1, the workpiece is clamped

using as datum the raw surfaces B2 and B3, and it is machined with the same cutting tool to

obtain surfaces S1 and S2. At stage 2, the workpiece is located using the datum surfaces S2

and B2. At this stage, surfaces S6 and S7 are machined with the same end mill tool; surface

S4 is generated using a drilling tool. The KPCs that are of interest according to the drawing

specifications are: KPC1, distance between S7 and S1; KPC2, distance between S3 and S2;

KPC3, distance between S6 and S4. Under this process plan, the resulting rooted tree is shown

in Figure 5.4.

Figure 5.3. Example of an MMP to illustrate the qualitative model.

Given the information from the rooted tree and the KPCs, the derivation of matrix Γ that

connects the sources of variation with the KPCs can be easily obtained. The matrix is drawn

following the procedure shown below:

� Look for the features that define the KPCs. For instance, KPC1 is the distance between

S7 and S1.
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Figure 5.4. Resulting rooted tree of previous MMP example. The path related to KPC1 (distance between S1

and S7) is shown in dotted lines to clarify the methodology to obtain the matrix Γ in the text. text. B2–B3, raw

surfaces; S1–S7, machined surfaces.

� Find the path that connects both features.

� Each path defines the row of matrix Γ. This row is defined by 1’s or 0’s as follows:

– An arrow means a cutting tool error, thus 1 is set to the corresponding column of

this cutting tool error.

– When the path moves from one stage to the next one, a fixture error is added from

the first stage, thus, 1 is set to that fixture error.

– If a path includes a thick line, this line does not add any value in the model.

– If the path includes two machined features in the same stage, no fixture error is added

(the fixture errors are compensated), thus, a 0 is set to that fixture error. Similarly, if

the cutting tool is used to machine both surfaces, a 0 is also set in the corresponding

cutting tool error. If different cutting tools are used, a 1 is set to each corresponding

cutting tool error.

– Any error that is not identified in the path is set to 0.

– For on-machine measurements of fixtures, set 1 to that fixture errors.

– For on-machine measurements of cutting tools (surface inspections with a touch

probe on machine or direct inspection of tools), a 1 is set to cutting tool errors at

that stage.

To illustrate the procedure, let us consider the KPC1 which is defined by the distance

between surface S7 and surface S1. The path that connects both surfaces is illustrated in Figure

5.4 using dotted lines. As it can be seen, from S7 to S2 there is an arrow that represents the

machining process with the end cutting tool, so this source of error is set to 1 (um21). Then,
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surface 2 is used as datum and thus, the fixture error of stage 2 is added (uf2). Finally, the path

moves from surface 2 to surface 1 using the datum B3. Both surfaces are machined with the

same tool and same datum, so no additional errors are added. Therefore, the row of Γ matrix

for the KPC1 is [0, 0, 1, 1, 0]. Note that the source of errors is u = [uf1, um1, uf2, um21, um22]
ᵀ
.

As a result of applying this procedure, the qualitative model KPCs-sources of variation is

defined as:

y =

[
yon−machine
yend−line

]
= Γ · u =

[
Γon−machine

Γend−line

]
·


uf1

um1

uf2

um21

um22

 , (5.2)

yon−machine =

[
yuf1

yum2

]
= Γon−machine ·


uf1

um1

uf2

um21

um22

 =

[
1 0 0 0 0

0 0 0 1 1

]
·


uf1

um1

uf2

um21

um22

 , (5.3)

yend−line =

KPC1

KPC2

KPC3

Γend−line ·


uf1

um1

uf2

um21

um22

 =

0 0 1 1 0

0 0 1 1 0

0 0 0 1 1

 ·

uf1

um1

uf2

um21

um22

 . (5.4)

Therefore, the Γ matrix is:

Γ =


1 0 0 0 0

0 0 0 1 1

0 0 1 1 0

0 0 1 1 0

0 0 0 1 1

 . (5.5)

5.4 Definition of the monitoring system

The purpose of the sequential inspection approach is to conduct the search for the root causes

only when the process is detected to be statistically out of control. Up to this moment, only a

minimum number of KPCs should be inspected, reducing the inspection costs. Therefore, it is

important to define the minimum KPCs to be inspected in order to be sensitive to all sources of

variation. In some MMPs, due to variation propagation, only the inspection of some KPCs at

the end of line may be enough to have a good indicator about the general state of the process.

If these KPCs are within statistical control, it can be assumed that all sources of variation are

under admissible levels and no further inspections are required.
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Given the qualitative model previously defined, the minimum monitoring system that in-

cludes the effects of all sources of variation can be derived through a basic search algorithm.

Algorithm 1 shows the proposed search sequence to identify the minimum KPCs that are re-

quired to be monitored.

Algorithm 1 Algorithm to define the minimum KPCs to be inspected for indirectly monitoring

all sources of variation.

while udetected > 0 do

for i = 1, ...,m do

Evaluate the index Ii =
∑n

j=1 Γij for each KPCi
end for

Select KPCi to be inspected with Ii max

for j = 1, ..., n and i|Ii = max(I) do

if Γij = 1, then

udetected − 1

end if

end for

Remove the jth columns of Γ where Γij = 1, i|Ii = max(I),

Remove the ith row of Γ where Ii is max

end while

Given the set of KPCs to be inspected at the end of the line, a quality control system based

on control charts can be built to monitor the state of the process. After setting the control limits

of the control chart for each KPC, the monitoring system can be used to detect if the process

is out of statistical control. See [118] for more details of setting control chart limits. At that

moment, the sequential inspection procedure, derived in the following section, can be executed

to detect the existing fault process.

5.5 Sequential inspection methodology

The sequential inspection methodology is based on the evaluation of the information gain every

time an inspection is conducted, and the source of variation has not been identified yet. The

proposed methodology is based on a sequential approach that has been successfully applied in

the field of software testing [119,120].

5.5.1 Bayesian approach for diagnostic explanation

The sequential inspection approach defines which sequential measurements along the process

should be conducted based on the fault probabilities estimated by the Bayesian reasoning, which

is updated after an inspection measurement is carried out.

The starting point is a set of diagnostic explanations that indicate which fault process may

exist in the system, denoted as D = {d1, ..., dn}. Since it is assumed that only one fault is active
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at the same time, dk refers to a specific process fault uk that is present in the system, thus,

D = {u1, ..., un}. The finite set of inspection measurements is defined as Y = {y1, ..., ym},
and the result of the inspection can be 0 (inspected feature is within statistical control) or 1

(the feature inspected is out of control). The result of the yi inspection is defined as oi, and

oi = 0 or 1. The prior probability of the process fault is obtained according to maintenance

data or, if it does not exist, an equal probability of all faults is given.

According to previous nomenclature, the prior probability of a diagnostic explanation where

uk is faulty is

Pr(dk) = Pr(uk) =
1

n
, (5.6)

if no maintenance data is applied.

In order to apply the sequential inspection procedure, the probability of this diagnostic

explanation needs to be estimated if the inspection result from yi (i.e., oi) is that the feature is

out of control. Therefore, according to Bayes’ rule:

Pr(dk|oi = 1) =
Pr(oi = 1|dk)

Pr(oi)
· Pr(dk), (5.7)

In this equation, Pr(oi = 1|dk) represents the probability of the observed outcome, if that

diagnostic explanation dk is the correct one, given by

Pr(oi = 1|dk) = 1− Pr(oi = 0|dk) = Γik, (5.8)

Note that according to the qualitative model, if uk is faulty the ith inspection measurement

will be out of control if Γik = 1. The term Pr(oi) represents the probability of the observed

outcome, independently of which diagnostic explanation is the correct one. The value of Pr(oi)

is a normalizing factor that is given by

Pr(oi) =
∑
dk∈D

Pr(oi|dk) · Pr(dk). (5.9)

5.5.2 Prioritization based information gain

The prioritization of the inspection measurement is based on maximizing the Information Gain

(IG) index defined by Johnson [121]. The IG is defined as

IG(D, yi) = H(D)− Pr(oi = 0) ·H(D0)− Pr(oi = 1) ·H(D1), (5.10)

where D0 and D1 represent the updated diagnosis explanation if inspection yi results in a feature

within control or out of control, respectively. The entropy of a set of diagnostic candidates D,

denoted as H(D), is defined as

H(D) = −
∑
dk∈D

Pr(dk) · log2(Pr(dk)), (5.11)

which can be understood as the average information we are missing until we can be certain about

the diagnosis [119,120]. Therefore, IG diagnostic prioritization integrates Bayesian diagnosis in
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the inspection sequence selection and uses the information gain as the main indicator to express

the diagnostic utility of executing a specific inspection measurement. From a isolation point of

view, the best inspection to be conducted is the one that yields the highest IG.

The algorithm to be implemented for the sequential inspection procedure is shown in Algo-

rithm 2.

Algorithm 2 Algorithm for the sequential inspection procedure.

Step 1: Set the probabilities of process faults and the list of candidates.

Define Pr(dk).

Define the list of fault candidates D = {d1, ..., dk}.
(The following steps apply when the monitoring system reaches an out-of-control state)

Step 2: Update Γ matrix.

Remove ith rows from the monitored KPCs.

Remove the jth columns of the uj whose KPCs are in-control.

Define the list of fault candidates D according to the faults related to the KPCs that are

out of control.

Update the probabilities of the remaining process faults candidates Pr(dk) according to

the inspection results from the monitoring system.

Step 3: Calculate the IG for each potential inspection measurement yi(IGi).

IGi = IG(D, yi) = H(D)− Pr(oi = 0) ·H(D0)− Pr(oi = 1) ·H(D1)

H(D) = −∑dk∈D Pr(dk) · log2(Pr(dk))

D0 is the updated D value if yi is within control; D1 if yi is out of control.

Step 4: Conduct the ith inspection measurement with the highest IGi.

Step 5: According to the result of the inspection i|IGi = max(IG):

if the inspection result is within normal values then

Remove the jth columns of the Γ matrix where Γij = 1.

Update the list of fault candidates D, removing those that are not related to the ith

inspection.

end if

if the inspection result is out of normal values then

Remove the jth columns of the Γ matrix where Γij = 0.

Update the list of fault candidates D, removing those that are related to the ith inspection.

end if

Remove the row of Γ related to the ith inspection that has been conducted.

Update the probabilities of the remaining process faults candidates Pr(dk) given the result

of the inspection yi.

Step 6: Repeat steps 3-5 until a fault is isolated.

5.5.3 Effectiveness of the IG approach

In order to analyze the effectiveness of the sequential inspection approach based on the IG versus

an inspection approach based on random selection, let us consider a process with n sources of



5.6. Case study 81

variation, and denote ρ as the coverage density that indicates the coverage of each inspection

with respect to the sources of variation, i.e., the inspection is related to ρ ·n sources of variation.

This coverage factor is applied throughout all the sequential process, thus each inspection will

be able to detect ρ · nr sources of variation, where nr is the remaining sources of variation that

have not been discarded yet. According to [120], the IG index for a Γ matrix with a coverage

density ρ is defined as

IG(ρ) = −ρ · log2(ρ)− (1− ρ) · log2((1− ρ)). (5.12)

At this point, two extreme cases can be studied to analyze the effectiveness of the IG

approach. First, the best-case scenario corresponds to a sequential inspection scheme where the

sources of variation are split in two equal sets of fault candidates, i.e., when ρ = 0.5. Under this

scenario, the IG index is maximum (IG = 1) and the average number of inspections required

to detect the final fault is defined as log2(n).

Secondly, the worst-case scenario is when the inspections only detect the effect of one single

fault. This case is given when the coverage density is ρ = 1/n and thus, the IG is minimum.

Under this scenario, the average number of inspections required is (n − 1)/2 − (1/n). It can

be noted that in this worst case scenario, there is no benefit of using the IG index since all

potential inspections present a minimum value of IG, and the resulting sequential inspection is

equal to a random sequential inspection approach.

Figure 5.5 shows the expected evolution of the required number of inspections for a given

coverage density ρ under the sequential inspection approach based on the IG and based on a

random selection. As it can be seen, the effectiveness of the IG approach increases when the

coverage density increases. It is worth mentioning that MMP with a higher error propagation

between stages present higher coverage densities and therefore, the IG index may have an

important impact on sequential inspection approaches. Please, note that in Figure 5.5 the

random selection curve refers to the worst case within the random selection approach considering

that, besides the inspections according to the given ρ, additional inspections to check single

faults are available. Therefore, the real average number of inspections required under the random

selection for a given MMP is expected to be between this worst case curve and the IG curve

and it will depend on the specific structure of Γ matrix.

5.6 Case study

To illustrate the performance of this sequential inspection methodology for fault detection and

isolation, let us consider the part shown in Figure 5.6 that is manufactured according to the

process plan presented in Table 5.1. Tables 5.2 and 5.3 show the KPCs to be inspected and the

on-machine measurements that can be conducted in the process. To evaluate the resulting cost

of the inspection scheme, the inspection from KPC1 to KPC7 is set to 100 e and the inspection

from KPC8 to KPC13 is set to 115 e. The costs for on-machine inspections are set to 85 e.

From the above process plan, the rooted tree shown in Figure 5.7 can be derived. As it

can be seen, there are 11 potential process faults, 13 potential inspection measurements and 4
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Figure 5.5. Expected evolution of the required average number of inspections for fault diagnosis under a se-

quential inspection based on IG and a random selection.

Figure 5.6. Part to be machined with numbered surfaces. B1, ..., means raw surfaces. 1, 2..., means machined

surfaces and are referred in the text as S1, S2, etc.

on-machine measurements. From the rooted tree, the qualitative model that links process faults

and inspection measurements is:

yon−machine =


yuf1

yum21

yuf3

yuf4

 = Γon−machine · u, (5.13)

yend−line =


yuf1

yum21

yuf3

yuf4

 = Γend−line · u, (5.14)
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Table 5.1. Manufacturing process plan for the case study.

Stage 1 Stage 2 Stage 3 Stage 4

Machine-tool Lathe Lathe Mach. center Mach. center

Datum surfaces B1, B2 S4, S11 S1, S2 S1, S9

Workholding 3-jaw chuck 3-jaw chuck 3-jaw chuck 3 locators & concentric

system & positioners & positioners & positioners & radial locators

Mach. features S5, S7, S4, S11 S6, S2, S3, S1 S9, S10 S8

Table 5.2. KPCs for the part analyzed in the case study.

KPCs Characteristic KPCs Characteristic KPCs Characteristic

KPC1 Distance S1-S4 KPC5 Distance S8-S1 KPC9 Position S9-S2

KPC2 Distance B1-S8 KPC6 Concentricity S2-S5 KPC10 Concentricity S11-S5

KPC3 Distance S7-S1 KPC7 Distance S4-S8 KPC11 Diameter S8

KPC4 Distance S10-S1 KPC8 Distance B1-S1 KPC12 Diameter S6

KPC13 Diameter S9

yinspection =

[
yon−machine
yend−line

]
=

[
Γon−machine

Γend−line

]
· u = Γ · u, (5.15)

where

Γon−machine =


1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0

 , (5.16)

Γend−line =



0 0 0 0 1 1 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 0 0 0 0 0

0 1 1 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 1 1

0 1 0 1 1 0 1 0 0 0 0

1 0 0 0 1 1 1 1 1 1 1

1 0 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0

0 1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0



. (5.17)

According to Section 5.4, the KPCs that should be monitored to include all sources of variation

are KPC2 and KPC3.
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Table 5.3. Possible on-machine measurements.

On-machine inspection Characteristic

yuf1 Fixture inspection stage 1

yum21 Tool inspection stage 2

yuf3 Fixture inspection stage 3

yuf4 Fixture inspection stage 4

Figure 5.7. Rooted tree of the case study.

5.6.1 Fault detection and isolation results and discussion

In order to compare the performance of the proposed sequential inspection procedure, the num-

ber of inspections required to successfully detect the process faults under 3 different inspection

schemes are compared:

1. A full inspection system in order to make the process faults fully diagnosable. In this case,

there is no sequential inspection since the minimum number of KPCs to be inspected

is always measured for fault detection. For this case study, to fully detect any process

fault, the following inspections are required: KPC4, KPC6, KPC7, KPC8, and on-machine

inspections in stage 3 and 4. Therefore, a total of 6 inspections are needed. Note that any
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of the eleven potential faults can be fully detected and isolated by the combination of these

6 inspection measurements since the pattern fault defined by any of these 11 potential

faults are different from each other.

2. A random sequential inspection procedure. In this case, the proposed sequential inspection

process is applied but, instead of using the IG index, the KPCs to be inspected are

randomly selected and the inspection result is used to reduce the potential process faults

candidates of the system.

3. The proposed sequential inspection procedure, where the required inspection measure-

ments are selected according to the IG index.

The comparison is conducted in terms of both costs and number of KPCs to be inspected

before a fault detection and isolation is reached. For the first scheme (fully diagnosable system),

the number of the KPCs needed is 6 as stated above. For the other two schemes, Monte Carlo

simulations are evaluated where, at each simulation, a fault is added into the system and the

sequential procedure is launched in order to finally detect it. The average number of inspections

needed after 11,000 simulations is considered as the performance value for comparison purposes.

Additionally, two situations are analyzed: a first situation where there is no information about

the prior fault probability, thus, equal fault probabilities are assumed; a second situation where

the information from maintenance data is used and then, the ratios of fault probabilities are

known.

The results of the 3 schemes and the two situations are shown in Table 5.4. As it can

be seen, the use of a sequential inspection procedure can reduce the number of inspection

measurements needed with respect to a predefined inspection scheme. The fixed scheme requires

a continuous inspection of 6 KPCs whereas the sequential inspection reduces the average number

of measurements needed to less than 5, which means more than 15% of reduction. Furthermore,

the use of a random search in the sequential approach can sometimes give a smaller number of

inspections required, but taking into account the average from 11,000 simulations, the random

approach requires more measurements than the sequential approach, 4.9 versus 4.2. Additionally,

if the probabilities of process faults are known in advance, the IG algorithm can reach an

average number of measurements of 4.0, slightly better than 4.2 that was obtained using equal

probabilities of all process faults. Note that, for this case study, the number of process faults

is not too large (only 11 faults), and the use of the prior probabilities from maintenance for a

faster fault detection may not have a high impact. Comparing the predefined scheme with the

sequential IG algorithm, the reduction of the number of inspections is from 6 to 4, which means

a reduction of 33%. In terms of cost, the sequential approach based on the IG index can reduce

the cost of inspection from 585 e to 389 e, which means a similar percentage of cost reduction.

1All process faults have random probabilities and these probabilities are not known, therefore all faults prob-

abilities are set to equal probable (1/11) in the algorithm.
2All process faults have random probabilities and these probabilities are used in the IG algorithm.
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Table 5.4. Number of inspection measurements required for fault identification and cost. Three schemes: fully

diagnosable, proposed sequential inspection with random selection of inspections and proposed sequential in-

spection with IG index. Two situations: all fault probabilities are equal; fault probabilities are defined according

to maintenance data. Note that prior fault probabilities information is only used in the proposed sequential

algorithm.

Prior fault Fully Sequential inspection Sequential inspection

probabilities diagnosable but random selection with IG index

Equally probable1 6 (585 e) 5.0 (508 e) 4.2 (404 e)

Based on

maintenance data2 6 (585 e) 5.0 (508 e) 4.0 (389 e)

5.7 Additional case studies for validation

The previous case study has shown the benefit of applying the proposed sequential approach

based on IG for fault diagnosis in a 4-stage machining process. However, as it was pointed out

in Section 5.5.3, the effectiveness of the methodology depends on the structure of the Γ matrix,

i.e, depends on the coverage density ρ. To have a more complete validation of the proposed

methodology, two different scenarios are evaluated with a random generation of Γ matrices.

For both scenarios, the number of sources of variation is set to n = 18, and the number of

potential inspections is set to m = 30. For the first scenario, the Γ matrix is randomly generated

forcing that 4/5 of the inspections present a ρ of 0.5 and a 1/5 of the inspections present a ρ

of 0.1. This Γ matrix is considered a high density matrix which would be the result of a MMP

with a high error propagation via datums. The second scenario presents a Γ matrix randomly

generated where the 4/5 of the inspections present a ρ of 0.1 and a 1/5 of the inspections present

a ρ of 0.5. This is an opposite scenario where a low error propagation exists along the MMP.

Both scenarios are compared in terms of number of inspections required and total cost of the

inspection scheme for fault diagnosis. The cost of each inspection is randomly set to 100 ± 20

e using a uniform distribution. All sources of variation have the same a priori probability of

failure.

As it is shown in Table 5.5, the results validate the proposed methodology since the reduction

of number of inspections and cost is relevant. However, as it was pointed out in Section 5.5.3,

the benefit of the methodology increases when Γ matrix presents a higher coverage density. In

this case study, the reduction of number of inspections for the first scenario (a process with

high error propagation and therefore higher ρ values) is 55% (from 1158 e to 521 e), whereas

the reduction in the second scenario (a process with less error propagation and therefore lower

ρ values) is only 13% (from 512 e to 445 e).

5.8 Conclusions

Sequential inspection in MMPs can be of interest to reduce the inspection cost and provide

fast fault detection and isolation. This chapter has proposed a methodology to implement a



5.8. Conclusions 87

Table 5.5. Average number of inspections required and cost for two different scenarios applying a sequential

inspection based on IG index and random selection.

Sequential inspection Sequential inspection

with random selection with IG index

First scenario (MMP with

high error propagation) 11.5 (1158 e) 5.2 (521 e)

Second scenario (MMP with

low error propagation) 5.4 (512 e) 4.7 (445 e)

sequential inspection procedure based on the information gain index of the inspection measure-

ment. To evaluate this index, a qualitative model that links the sources of variation with the

KPCs is derived. The methodology is composed of three parts. A qualitative model extracted

from process planning; a monitoring system to detect if the process is out of statistical control;

and a sequential inspection procedure applied for a fault detection and isolation search which

is based on maximizing the information that can be obtained from a specific set of inspection

measurements.

The proposed methodology has been theoretically analyzed showing that the IG algorithm

can highly reduce the number of inspections required when the MMP presents a high error

propagation behavior, which means that the coverage density of the inspections tend to be

high. Otherwise, when the MMP presents low error propagation and the coverage density of the

inspection is low, the benefit of maximizing the IG instead of a random selection is lower. A

more specific MMP based on four machining stages was also analyzed to prove the generation

of the quality model through the graphical representation of the MMP and the reduction of the

inspections required when a sequential inspection approach based on IG is applied. In this case

study, a reduction of 33% in the inspection effort and cost was obtained with respect to common

practices where a predefined inspection scheme for fault detection and isolation is given.





Chapter 6

Model-based observer proposal for

surface roughness monitoring

Abstract

In the literature, many different machining monitoring systems for surface roughness and tool

condition have been proposed and validated experimentally. However, these approaches com-

monly require costly equipment and experimentation. In this chapter, we propose an alternative

monitoring system for surface roughness based on a model-based observer considering simple

relationships between tool wear, power consumption and surface roughness. The system esti-

mates the surface roughness according to simple models and updates the estimation fusing the

information from quality inspection and power consumption. This monitoring strategy is aligned

with the industry 4.0 practices and promotes the fusion of data at different shop-floor levels.

6.1 Introduction

Machining monitoring systems have been an important topic of research for decades with im-

portant contributions in the field. In the literature, a large number of monitoring systems have

been proposed and validated experimentally, especially for surface roughness prediction and

cutting tool wear estimation. In surface roughness prediction, monitoring systems seek to esti-

mate surface roughness according to cutting conditions and real-time measurements on forces,

vibrations, temperatures, or current/power consumptions. These performance indicators may

partially explain the quality of the machined surface and using a proper Design of Experiments

(DoE), a mathematical model may be obtained. For instance, Pimenov et al. [122] proposed

the use of artificial intelligent methods for real-time prediction of surface roughness considering

the main drive power and current machining time. Different models based on regression trees

and artificial neural networks (ANN) models (Multilayer Perceptron –MLP– and Radial Basis

Function–RBF–) were tested proving the use of drive power for surface roughness prediction.

The authors observed a linear relationship between drive power and roughness in small ranges

89
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of processing time and, when exceeding a specific processing time, the drive power had to be

carefully monitored due to its strong influence on surface roughness. In [123], the authors pro-

posed an Adaptive Control Optimization (ACO) system based on a dynamometer and ANN

models to estimate both cutting tool wear and surface roughness in micro-milling operations.

Under the ACO proposed, the cutting conditions were changed in real-time according to the

current tool state in order to ensure part quality with minimum cost. Since the system requires

an efficient optimization procedure to be conducted in real-time, the authors compared the

performance of different optimization approaches such as particle swarm optimization (PSO),

genetic algorithms (GA) and simulated annealing (SA) in terms of accuracy, precision, and

robustness. In [124], the authors analyzed the correlation of surface quality with cutting force,

vibration signals and acoustic emission signals, applying fusion data methods and ANN models.

The research on un-manned machining systems has also led to the development of a large

number of tool condition monitoring systems based on different sensor systems. A detailed

explanation of the components of monitoring system such as sensor systems, signal processing,

feature extraction methods, and modeling tools (e.g. regression models, artificial intelligent

models) can be found in recent review works [125–127]. However, monitoring systems require

models previously obtained through Design of Experiments (DoE) methods that are usually

costly and time consuming, and in some cases the modeling tools are too advanced for being

applied in industrial environments. Furthermore, most of the proposed systems are based on

costly/invasive systems or unfeasible experimental practices which prevent their implementation

in real environments.

For improving monitoring systems, straightforward relationships that are well-known in the

literature could be used. For instance, different researches have tested the close relationship

between power consumption and tool wear [36] (see Figure 6.1a) and the relationship between

tool wear and surface roughness is also commonly identified as a key factor for roughness

estimation [128,129] (see Figure 6.1b).
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Figure 6.1. Relationship between different machining parameters, adapted from [36] and [129].

In this chapter, we have proposed an alternative monitoring system for surface roughness
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based on a model-based observer considering simple relationships between tool wear, power

consumption and surface roughness. The system estimates the surface roughness according to

simple models and updates the estimation fusing the information from quality inspection and

power consumption every inspection sampling. Model-based observers such as Kalman filters

have been successfully applied for tool wear monitoring [130–132], but their use for improving

surface roughness monitoring systems fusing inspection data and sensor data has not been

yet investigated. This monitoring strategy is aligned with the industry 4.0 practices, where the

increase of the interconnectivity of different equipment in the shop-floor may promote the fusion

of data from different nature.

This chapter is organized as follows. Section 6.2 presents the proposed monitoring systems

based on simple models and sampling information from power sensors and inspection measure-

ments. Section 6.3 mathematically explains the derivation of the model-based observer using

steady-state Kalman filters for surface roughness estimation based on data fusion. Section 6.4

shows the application of the methodology in terms of a series of simulations and Section 6.5

concludes the chapter.

6.2 Methodology

The proposed monitoring system is based on two sensors which provide information about

the state of the cutting process and the quality of the machined parts. The first sensor is a

non-invasive and low-cost power sensor, which provides information about the average power

used during each machining process. This measurement is available during the cutting process,

but the reliability of this measurement is low because of its uncertainty due to measuring

noise. The second sensor, a profilometer, measures the surface roughness. This measurement is

executed during the inspection procedure of the machined parts, which are conducted according

to the sampling scheme adopted in the company, i.e. one part inspected every N manufactured

parts (from now on, the information obtained with each inspected part will be known as a

sample). This measurement provides information about the part quality and, at the same time,

it indirectly gives information about the cutting tool wear state.

The information provided by both sensors is subsequently fused using a model-based observer

in order to improve the surface roughness prediction. The benefit of using a model-based observer

in the monitoring system makes possible to use this low-cost monitoring system even if the

previous models built for the system have low accuracy since the fusion of the information will

correct any deviation from the models up to certain point.

Figure 6.2 describes the proposed system for improving surface roughness prediction using

a model-based observer. As shown there, the system uses both the information of the surface

roughness and the power consumption as well as a theoretical model of the behavior of these

variables when the tool wear increases. The proposed methodology is based on the following

assumptions:
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� The information from quality inspection and the machining process is straightforward

thanks to the interconnectivity of the different areas at the shop-floor (industry 4.0 prac-

tices are moving towards this paradigm). Thus, the inspection values, which are available

at a certain frequency, can be added into a monitoring system to fuse this information

with power sensor measurements.

� The data provided by the power sensor and the inspection station has the same frequency,

which means that both data are fused for better surface roughness estimation, but there

is no information between samples. The use of different frequencies, for instance, a real

time measurement from the power sensor and sampling measurements from inspection,

which is a more common approach in industry, is out of the scope of this study and will

be considered in future work.

Figure 6.2. Diagram of the proposed monitoring system.

6.3 Obtaining a model-based observer

As seen in Section 6.1, the evolution of the surface roughness Rk and the power consumption

Pk usually follows a certain behavior, consisting of a gradual increase (let us call it ∆Rk, ∆Pk)

from a base or nominal value (fR, fP ). Furthermore, the available measured information (that

we call Rm,k, Pm,k) is affected by some measuring noise (vR,k, vP,k). With this, we model the

measurement of the surface roughness and power consumption as{
Rm,k = ∆Rk + fR + vR,k,

Pm,k = ∆Pk + fP + vP,k.
(6.1)

The increases ∆Rk and ∆Pk from the base value are modeled as monotonic increasing functions,

that we propose to model as constant slopes (being the respective slopes δR and δP ) as follows:{
∆Rk = ∆Rk−1 + δR + ωR,k,

∆Pk = ∆Pk−1 + δP + ωP,k.
(6.2)



6.3. Obtaining a model-based observer 93

Elements ωR,k and ωP,k are zero mean random signals that represent deviations of the behavior

from that slope, i.e., the uncertainty of the proposed model. As we will detail later, this allows

us to model other behaviors different from the proposed one thanks to a right tuning of the

available parameters.

The previous proposed model can be interpreted as a state-space model, a standard modeling

found in control theory. Considering the increases ∆Rk and ∆Pk as inner states and Rm,k and

Pm,k as the measurable outputs of the system, the space-state representation of the system

takes this form:

{
xk = Axk−1 +Bδ +Gωk,

yk = Cxk + f(uk) + vk,
(6.3)

being

xk =

[
∆Rk
∆Pk

]
, δ =

[
δR
δP

]
, ωk =

[
ωR,k
ωP,k

]
, yk =

[
Rm,k
Pm,k

]
, f(uk) =

[
fR,k
fP,k

]
, vk =

[
vR,k
vP,k

]
,

where f(uk) is the base or nominal value, which depends on several cutting conditions denoted

by uk, and where A = B = G = C = I, i.e., the Identity Matrix.

Based on these assumptions, we have developed and implemented a model-based observer

that will allow the prediction and estimation of the outputs and inner states even when there

are not available measurements.

The application of this observer has two steps, the prediction and the correction step. At

the prediction step, the surface roughness and power consumption values are predicted. There,

the predicted states x̂−k are considered to be the same as the previous corrected state x̂k−1,

plus an increment δ, as seen in the previous model. At this point, the prediction of the values

that will be measured are also estimated (they are called ŷ−k ), and they are obtained as the

sum of the predicted states x̂−k and an estimation of the nominal values (f0(uk)), following the

previous models, and assumed zero-mean measurement noise. Therefore, the predictions of he

inner states x̂−k and the outputs ŷ−k are defined as:{
x̂−k = x̂k−1 + δ,

ŷ−k = x̂−k + f0(uk).
(6.4)

At the correction step, the observer corrects the predicted states x̂−k . The corrected states x̂k
consist of the sum of the predicted state and a correction term. The correction term consists

of the difference between the measured values yk and the predicted ones ŷ−k multiplied by a

correction gain, named L. The corrected value of the measurements, ŷk, is defined as the sum

of the function f0(uk) and the corrected states x̂k. Therefore:{
x̂k = x̂−k + L

(
yk − ŷ−k

)
,

ŷk = x̂k + f0(uk).
(6.5)
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Under this observer, the surface roughness predicted by the system is based on the data

fusion from the simple model based on increments due to tool wear and the sensor measurements

(yk). This simple model carries an important modeling error as the real behavior of the system

is far more complex. The sensor measurements provide data based on the sampling scheme. It

must be taken into account that the provided data is not perfect due to measurement noise.

Using all this information, the model-based observer is able to provide better surface roughness

estimations, especially in the periods when no data is available.

The key parameter of the model-based observer for an adequate fusion scheme is the L

correction gain matrix. It can be obtained via several methods, such as pole placement or

optimal estimation. In this case, we have chosen to implement a Kalman Filter.

As we assume that neither the variance of the measurement noise nor the variance of the

tool wear change over time, we used a specific variant of the Kalman Filter: the Steady-State

Kalman Filter (SSKF), which only requires an initial single calculation of the L correction

matrix (opposed to the complete Kalman Filter option, which would require one in each cycle).

This calculation can be performed using the Matlab function dlqe, which designs a Kalman

estimator for discrete-time systems. This function calculates L using the space-state matrices

A, C and G, as well as the covariance matrices V = E{vᵀ

kvk} and W = E{ωᵀ

kωk}, which include

the variances of the measurement noises vk and the variances of the zero-mean signal ωk (which

represents the base model deviation due to wear and model error), respectively.

The dimensions of the obtained L matrix are N◦states × N◦measurements. In this case,

the resulting matrix is square, and its values depend on the relative values assigned to the

measurement noise variance and the model deviation variance. As the true behavior of the

model deviation is unknown, the values of W are used as tuning parameters. Matrix W is

symmetric and presents the form

W =

[
ω11 ω12

ω12 ω22

]
, (6.6)

where the diagonal terms refer to the uncertainty of the model for each submodel (roughness

and power consumption), and where the non-diagonal terms refer to the correlation within these

two uncertainties. The relative values between the different elements in W and also w.r.t the

values in V, determine the behavior of the observer during the initialization, and how it weights

differently the measurements and the predictions in the correction step.

6.4 Case study

6.4.1 Real model simulations

In order to validate the capability of the model-based observer for improving surface roughness

estimations, a case study is analyzed by a set of simulations. For this case study, we assume

that the real behavior of the surface roughness follows the equation shown below from Kovac

et al. [37]

R = 10.916 V −0.894
c f−0.046

z a−0.015
a V 0.456

B , (6.7)
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where Vc, fz, aa and VB refer to cutting speed, feed per tooth, axial depth of cut and flank wear

value, respectively. Furthermore, we assume a proportional increase of power consumption with

respect to tool wear as

P = P0 + αVBP0, (6.8)

where α is the proportional coefficient, assumed to be α = 0.15
0.4 = 0.375, which means an increase

of 15% when there are 0.4 mm of tool flank wear. P0 is the power consumption when new inserts

are used, and it is a function of several cutting parameters. For this case study, we assume that

P0 follows the behavior shown in [133]:

P0 = 6127− 0.42Vc − 3616fz + 83.1Vcfz. (6.9)

Finally, the tool wear behavior is assumed to follow a third order equation with respect to

the time variable, as suggested in most of the machining handbooks [134]. Since the time

variable is related to the number of the parts that have been processed, we assume the following

relationship:

VB(k) = 1.5

(
k

klim

)3

− 1.915

(
k

klim

)2

+ 0.815

(
k

klim

)
, (6.10)

where k is the number of parts processed up to this moment, and klim is the total number of

parts processed when the tool flank wear reaches 0.4 mm. Note that the relationships shown

above are used for simulating the machining process and they are unknown for the model-based

observer.

6.4.2 Proposed estimations

In order to study the performance of the model-based observer for improving surface roughness

estimations, we have analyzed three different cases. First, we have considered an “off-line sys-

tem”, which consists of estimating the surface roughness as an open-loop system, only assuming

that the system behaves as a simple first order slope model. The second case consists of using

a SSKF that only monitors the power consumption, and the surface roughness is estimated

depending on the variations of the power consumption (i.e. considering that all variations of the

power consumption affect proportionally to the surface roughness). The measurement of power

consumption is conducted each 10 processed parts. The third case also consists of using a SSKF,

but in this case, both the power consumption and the surface roughness measurements (also

conducted each 10 processed parts) are known. In this case, the roughness data should help to

reduce any initialization errors.

For comparison purposes, all strategies are analyzed when the machining process is con-

ducted at the following cutting conditions: Vc = 150 m/min, fz = 0.05 mm/tooth, aa = 1 mm.

For these cutting conditions and given the real behavior of the machining process defined by

equations (6.7) - (6.10), the increment of power consumption and surface roughness when the

tool flank wear reaches 0.4 mm is 7470 W and 3.49 µm, respectively. Thus, δP and δR are

obtained as: {
δP = Pworn−Pnew

klim
= 7470−6510

260 = 3.7 W/piece,

δR = Rworn−Rnew
klim

= 3.49−1.00
260 = 0.0096 µm/piece,

(6.11)
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where Rnew = 1.00 µm is approximately the surface roughness for the given cutting conditions

and Pnew = 6510 W the power consumption when the cutting tool is new. Note that in Equation

(6.7), when VB tends to zero, the real surface roughness value is fixed to 1.00 µm. Note that

both Rnew and Pnew are used to define the term f0(uk) in Equations (6.4) and (6.5).

For this case study, the measurement noise from power sensor and profilometer is as-

sumed to be Gaussian with ±3σ bounds given by nP = ±300 W and nR = ±0.63 µm, re-

spectively, thus V =
[
104, 0; 0, 0.044

]
. The model divergence variance W is tuned as W2 =[

0.104, 19.13; 19.13, 1.141 · 104
]

and W3 =
[
0.104, 38.26; 38.26, 1.41 · 104

]
for cases 2 and 3, re-

spectively, as they provided proper results.

In the “off-line” case, the estimation of surface roughness follows the simple model and no

information used from sensors. In the second case, as the surface roughness is not measured,

the L gain matrix is obtained with a SSKF, but forcing to 0 the terms that use the surface

roughness. Therefore, the L gain matrix used is:

L =

[
0 7.98 · 10−4

0 0.294

]
. (6.12)

For the third situation, as it uses the power sensor and the profilometer information, the L gain

matrix is:

L =

[
0.733 1.832 · 10−4

41.22 0.644

]
. (6.13)

6.4.3 Results

In this section, we will explain the results of the simulations. First, we have designed an experi-

ment, which consists of the simulation of the “real” behavior of the tool parameters (Equations

(6.7) - (6.10)) and the application of the three considered cases. In each experiment, 260 pieces

are processed, which is the limit for a proper tool flank wear. For comparison purposes, we

have calculated the maximum prediction error and the root-mean-square error (RMSE) after

applying all the proposed prediction models of the surface roughness. Applying a Monte Carlo

method (as the noise is randomly added each time), each experiment has been repeated 106

times, and the results can be observed in Table 6.1. As shown in Table 6.1, the model-based

observer which uses both measurements has a far lower RMSE and maximum prediction error.

It is also worth noting that the maximum prediction error is almost equal for the slope model

and the model that only uses the information from the power sensor.

Table 6.1. Comparison of prediction errors for the three analyzed situations. MBO stands for Model-based

observer, P for power and R for roughness.

Off-line system MBO (SSKF) MBO (SSKF)

(Slope model) (P sampling) (P & R sampling)

Max. pred. error (µm) 0.5829 0.5857 0.4297

RMSE (µm) 5.8583 4.5569 2.7588
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After executing the simulations, we have obtained Figure 6.3a and Figure 6.3b. As shown in

both figures, the off-line slope fails to predict the whole behavior of both signals, so this model

cannot be reliably used to predict the behavior of the surface roughness along the whole cutting

tool life.

(a) Surface roughness predictions. (b) Power consumption predictions.

Figure 6.3. Predictions obtained using the proposed model-based observer.

The second case uses a SSKF and only the power consumption measurements (SSKF/PC).

While it seems to follow properly the real behavior of the power consumption –as it only gets

information each 10 parts, and it contains noise– (Figure 6.3b), it is not accurate enough in

the case of the surface roughness (Figure 6.3a). The observer is able to predict the surface

roughness behavior but there are zones where the prediction is far away from the real values. Its

precision also depends on how similar are the behavior of both the surface roughness and the

power consumption. Lastly, the third situation uses a steady-state Kalman filter with both the

power consumption and the surface roughness measurements (SSKF/PC/SR). This prediction

model uses the information that gets from those two sensors every 10 processed parts. In this

case, it is shown in both figures that it follows the real model quite accurately as the observer

fuses the information of both measurements to get a better estimation.

6.5 Conclusions

Surface roughness monitoring is a critical issue to optimize cutting parameters and ensure

product specifications. Current monitoring systems do not consider the potential use of both

sensor data from machine-tools and sampling measurements from part quality inspection to

improve current surface roughness estimations. In this chapter we have proposed a monitoring

system where data from power sensors and inspection measurements are fused using a model-

based observer. This first work has validated the applicability of model-based observers for

improving surface roughness monitoring system under a series of simulations.

As future work, the effect of tuning the gain matrix L on surface roughness monitoring will

be discussed and the influence of the sampling frequency on the fusing scheme will be analyzed.

Furthermore, the use of sensor data with different frequencies of sampling will be studied.





Chapter 7

Model-based tool condition prognosis

using power consumption and scarce

surface roughness measurements

Abstract

In machining processes, underusing and overusing cutting tools directly affect part quality, en-

tailing economic and environmental impacts. In this chapter, we propose and compare different

strategies for tool replacement before processed parts exceed surface roughness specifications

without underusing the tool. The proposed strategies are based on an online part quality moni-

toring system and apply a model-based algorithm that updates their parameters using Adaptive

Recursive Least Squares (ARLS) over polynomial models whose generalization capabilities have

been validated after generating a dataset using theoretical models from the bibliography. These

strategies assume that there is a continuous measurement of power consumption and a periodic

measurement of surface roughness from the quality department (scarce measurements). The pro-

posed strategies are compared with other straightforward tool replacement strategies in terms

of required previous experimentation, algorithm simplicity and self-adaptability to disturbances

(such as changes in machining conditions). Furthermore, the cost of each strategy is analyzed

for a given benchmark and with a given batch size in terms of needed tools, consumed energy

and parts out of specifications (i.e., rejected). Among the analyzed strategies, the proposed

model-based algorithm that detects in real-time the optimal instant for tool change presents

the best results.

7.1 Introduction

Machining processes are manufacturing processes frequently used in industry where excess ma-

terial from the surface of a workpiece is removed using different cutting tools. This removal

99



100 7. Model-based tool condition prognosis using power consumption and scarce surface roughness measurements

process causes an increase of tool wear and when it reaches a certain severity, it deteriorates

both the macrogeometry (dimensions out of the required tolerances) and the microgeometry

(surface roughness values) of the processed parts. In practice, the process may no longer pro-

duce acceptable parts when surpassing an admissible tool wear, and parts out of specifications

may also need to be reprocessed or discarded, leading to the corresponding increase in costs.

Besides, a heavily worn tool may lead to its complete breakage, which can cause higher machin-

ing downtime, potential damage to the machining center and, without the appropriate safety

systems, may cause personal damage.

According to the bibliography [135], cutting tool failures may represent about twenty percent

of the downtime of a machining system and it is estimated that the expense of cutting tools

and their maintenance grosses about three to twelve percent of overall manufacturing cost

[136,137]. In order to avoid these issues, early tool replacement strategies are commonly applied

in industrial shopfloor with the subsequent increase in costs due to higher machining downtime

for tool replacement, lower productivity and higher cutting tool costs.

Under these challenges, a robust and reliable online tool condition monitoring (TCM) system

with an adequate online remaining useful life (RUL) estimation for proper tool replacements is

crucial in industrial applications. TCM techniques estimate the current state of the cutting tool

where the type of wear that is usually monitored is the tool flank wear since it is the type of

wear that mainly affects surface roughness and dimensional quality in machining systems [138].

Tool condition can be monitored directly, by observing the tool, or indirectly, using available

measurements from the machining process. Since direct methods require stopping the machining

process to measure or inspect the tool, the research has been mostly oriented towards developing

indirect monitoring [33]. For example, recent research has estimated the deterioration level of

a tool using the applied forces during the machining process, and has used neural networks to

differentiate the effect of the tool wear and other tool deterioration forms [139]. Additionally,

in [140], physics guided neural networks have been developed to predict the state of the tool

wear using deep learning techniques supported by physical equations.

Within TCM, RUL methods are focused on the prognostics of the remaining life of the tool,

which lead to conduct efficient cutting tool replacement strategies considering the uncertainty

of the process and confidence intervals.

RUL methods are classified as physics-based, data-based and model-based [16]. Physics-

based approaches directly use formulae from theory, such as Taylor’s tool life equation [34] or

other more sophisticated ones [141], to estimate the remaining useful life of the cutting tool.

Data-based approaches can mainly be classified into statistical methods and artificial intelligence

methods [142]. In statistical methods, researchers use failure data from plenty of tests and apply

statistical criteria to choose the best fit statistical distribution to get distribution of lifetime.

A thorough review of statistical data-based approaches can be found in [143]. Autoregressive

moving average models (ARMA) and logistic regressions are common techniques applied in

this field [144]. In artificial intelligence methods, techniques such as artificial neural networks

(ANN) [145], Support Vector Regression (SVR) [146], Adaptive Neuro-Fuzzy Inference Systems

(ANFIS) [147] or Fuzzy systems [148] have been investigated. The tendency during the latest

years is the research of deep learning techniques [149–151].
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According to [142], methods based on physics, mechanics and dynamics may become more

intractable because of the high complexity of the life prediction theory and the error of model

prediction may increase with the enhancement of model nonlinearity and complexity. Data-

driven approaches for tool wear prediction have demonstrated satisfactory accuracy for tool

replacement in different machining applications such as milling, turning, and grinding. However,

these approaches require sufficient historical data for training, the accuracy is highly affected by

the sensor noise and measurement uncertainties [152] and the networks are suitable only under

specific cutting conditions; if any of those conditions change, they should be retrained and thus,

they cannot adapt to sudden changes nor natural degradation of the process [153].

Unlike the physics- and data-based approaches, the model-based approach is a more ap-

propriate approach for tool wear estimation since it can be considered as a hybrid approach

between physics-based and data-based methods [152]. Model-based approaches are based on

stochastic methods where the tool wear state cannot be directly measured and it is estimated

or predicted from online measurements, in which Bayesian inference provides a rigorous math-

ematic framework. The physical knowledge that defines the tool wear growth is included into

the model in the form of a state-space model to represent the evolution of tool wear with time

and the estimation of tool wear is updated using new online measurements. The main benefit of

model-based approaches is that it needs less data because it is modeled with certain knowledge

and assumptions of the tool wear degradation process [154]. Depending on system type and

noise assumption, different approaches have been investigated such as Hidden Markov Mod-

els (HMM) [155, 156], State-Space Models (SSM) with Kalman filters [157], SSM with particle

filters [158] and SVR applied to a physics-based tool condition degradation model [159]. Ad-

ditionally, other types of hybrid approaches have been investigated, such as fusing ANN with

Wiener processes [160] or Gauss importance resampling particle filters [161], or using multiple-

scenario calibration methods [162].

Some of these model-based research works overcome previous RUL limitations and present a

feasible industrial solution where minimum invasive sensor systems and minimum experimenta-

tion are applied. For instance, the authors in [157] proposed a model-based system to estimate

flank wear through a Kalman filter. Tool wear is estimated using a state-space model under a

linear function respect to the removed material volume. Kalman filter corrections are based on

the grey level average from processing an image of the machined surface. In [163], the authors

modeled tool wear evolution through a linear empirical function w.r.t material removal rate.

This function was updated with an Extended Kalman Filter that used spindle power consump-

tion and compared its performance with deterministic methods. In [152], the authors proposed

the use of a third order empirical wear-time model as a state-space model for tool wear, and

spindle motor current was used to infer the tool wear state. The measurement model was built

using ANFIS techniques, and Particle Filtering was applied to update the algorithms instead.

One of the main problems of these works is the inability to adapt in front of behavioral

changes, such as modification of cutting conditions and variations in the workpiece materials.

This happens due to the fact that once trained, the models cannot be changed, as their parame-

ters are fixed. Further research has dealt with this issue proposing model-based approaches with

updating algorithms. For instance, the authors in [158] used Paris’ law [164] as the model, and
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used Kullback–Leibler divergence from several sensor signals to carry out the update during the

first cuts in order to get more reliable predictions towards the end of the tool life. In [154], the

authors used a first order linear function to model tool wear, and the model was updated using

a linear regression from the measured RMS vibration signal. It also underlined the presence of

tool-to-tool stochastic variations, as under identical workpiece and cutting conditions, model

parameters changed slightly between tools. A more advanced work is presented in [153], which

uses a similar model approach as [158]. Their authors proposed the use of autoregressive models

trained with historical data in order to make estimations when sensor measurements are not

available. These approaches, however, require a learning period during the first stages of each

cutting tool life where no prediction can be carried out.

To the best of authors’ knowledge, no model-based prognosis system has been presented

with the following key characteristics for RUL under Industry 4.0 manufacturing paradigm: 1)

A non-intrusive low-cost monitoring system, easy to install; 2) with minimal experimental data

or even without the need of previous experimentation; 3) with the ability to learn, adapt and

self-adjust depending on shopfloor data from the machining center or other equipment; 4) and

being able to take advantage of Industry 4.0 capabilities, where connectivity between equipment

allows instant availability of measurements throughout shopfloor. A recent research [165] con-

siders the connectivity of the equipment at the shop-floor event to conduct the monitoring and

RUL prediction online. Multi-source events are used to consider the right time to trigger the

monitoring system, avoid the use of large volume of unwanted data. However, the use of data

from inspection for triggering the system and improve the model is overlooked, as it mainly

focuses on the connectivity frame.

The objective of this chapter is to propose two main approaches that fulfill previous key

characteristics for RUL systems and lead to an optimal tool change under any cutting conditions,

and compare them with simpler straightforward techniques. Unlike previous works, tool wear is

not directly estimated since, in many finishing operations, tool change is conducted when the

surface roughness of a processed part reaches an unacceptable value instead of a specific tool

wear value.

In this system, the conducted measurements are a continuous measurement of power con-

sumption at the machine-tool level, and a surface roughness value after a processed part is

inspected according to the sampling scheme from the quality department. Furthermore, a part

counter is also included to quantify the total number of processed parts. All these measurements

are assumed to be of an acceptable low cost and are acquired through non-invasive procedures

during the manufacturing process (online). The proposed model-based system develops a generic

model to express the evolution of power consumption during the whole tool life, and a generic

model that relates power consumption with surface roughness. The latter model allows estima-

tions of the surface roughness in the periods where no roughness measurements are received.

The generic models are based on polynomial approximations which are versatile enough to

be used in any machining process, such as milling or turning, and they require a low number of

parameters which can be updated to adapt the system to any cutting condition change and tool-

to-tool stochastic variations. The properties of these generic models were selected from several

variants after being validated using datasets that were developed considering different machining
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models available in the literature in relation with surface roughness, power consumption and

tool wear; thus, the generalization capability of the chosen general models is ensured. The

updating process is performed using an Adaptive Recursive Least Squares (ARLS) algorithm,

which updates the coefficients of the polynomial function using the measurements received by

the monitoring system. In order to validate the proposed approach, the performance of the

approaches are compared with common tool change strategies in terms of number of consumed

tools, number of processed parts out of specifications and total consumed energy.

As a summary, this chapter uses the aforementioned measurements, obtained online using

non-invasive procedures, to develop a tool replacement algorithm. To obtain a general model that

relates the surface roughness with the power consumption and a model that relates the power

consumption with the number of processed parts, we first develop a dataset using theoretical

models, which is used to test several proposed base models. The most fitting models, which are

based on polynomial approximations, are used in the ARLS algorithm, where the parameters

of the polynomials are updated depending on the received measurements. Finally, we use this

algorithm to define the tool replacement procedure, and we test it against other tool replacement

procedures in a simulated case study.

This chapter is organized as follows: Section 7.2 states the problem and the direct strategies,

Section 7.3 presents the proposed model-based approaches, and Section 7.4 develops the data

that will be used to validate the proposed approaches. In Section 7.5, a simulation using the data

is used to select the most fitting models. Section 7.6 explains the ARLS updating algorithm,

Section 7.7 develops a benchmark using the previous data, and validates the performance of

the updating algorithm. After that, the performance of all approaches is evaluated using a

simulated experiment, whose results are subsequently discussed. Finally, Section 7.8 concludes

the chapter.

7.2 Problem statement

Useful tool life is defined as the total cutting time that a tool takes to attain certain conditions;

in practical workshop situations, useful tool life ends when the tool processes parts out of

specifications. However, the principal procedure to determine the end of the useful tool life is

measuring the tool flank wear of the tool [32]. Nevertheless, tool flank wear cannot be directly

measured without interrupting the machining process. Despite this, there are several available

measurements during the machining process that can be taken without halting it, and depend

on the tool flank wear evolution. These measurements can be used to monitor indirectly the

state of the tool. However, the functions that relate this dependency are also affected by other

machining conditions.

In this section, we shortly review the different phenomena that are affected by tool flank

wear in order to deduce indirect measurements that can be useful for our propose. After that,

we will analyze the availability and properties of the measurements, and we will present some

simple straigthforward strategies that will be use later to validate our proposed strategies.
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7.2.1 Cutting tool wear phenomena

The evolution of tool flank wear with cutting time can be separated in three stages: the initial

wear stage, where the tool flank wear grows exponentially with time; the steady wear stage,

where tool wear increases mostly linearly; and the severe wear stage, where tool flank wear

grows exponentially again.

In this work, we assume that the time required to process a part consumes a given fraction

of the total useful tool life, therefore, we will indistinctly use the usage time and the number of

processed parts.

As tool flank wear implies the deformation of the cutting tool, the required forces to carry

the machining process increase accordingly [36], leading to an increment of the average power

consumption in each part. Therefore, average power consumption can be used to monitor tool

life, as a certain correlation between tool flank wear and power consumption can be observed.

We can express this idea as

Pc(k) ∝ Fc(k) ∝ Vb(k) ∝ k, (7.1)

where k is the number of parts currently machined since the last tool change, Pc is the charac-

teristic power consumption for the present part (i.e. the average power consumption during the

cutting process), Fc the cutting forces and Vb the characteristic tool flank wear for that part.

That cutting tool deterioration also affects the surface roughness of the processed parts.

According to [37], the values of the surface roughness (Ra) also increase when the tool flank

wear increases, and we can express this idea as

Ra(k) ∝ Vb(k) ∝ k. (7.2)

As the tool flank wear has a given evolution along time, and under the assumption of low

rate of machining time in each part w.r.t total tool life, we can state that each processed part

has a characteristic surface roughness related to the characteristic tool flank wear during the

machining of that part, i.e., the surface roughness also evolves with each processed part.

The evolution of Pc and Ra throughout the whole cutting tool life depends on the cutting

conditions given by the cutting speed, the feed and the cutting depth. These cutting conditions

are usually constant for a given manufacturing purpose, but may be adapted along time if the

product requirements or materials change.

7.2.2 Available measurements

In this chapter, we try to obtain techniques with the aim of industrial applicability, so we

assume that the measurements that can be obtained present an acceptable low cost, and can

be acquired through a non-invasive procedure during the manufacturing process (i.e. they are

acquired online).

The types of measurements in this chapter are indicated by the expression MX, where X

is the assigned number of a given type of measurement. The proposed setup has the following

available measurements (Figure 7.1):
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M1. Power consumption. The power consumption measured within each processed part.

This value is the average of the consumed power during each machining iteration, i.e.,

during all the loaded period. This measurement is taken using an a current clam (given a

constant input voltage) or a power meter, which applies high uncertainty to the measured

value. These measurements are available at all times during the process. As the machining

movements and power consumption may present a pulsating nature, this value is not

monotonic, and we assume that we can obtain some characteristic value for the power

consumption for each processed part. One way to obtain this value is to compute an

average value during a given time window of the processing in each part.

M2. Surface roughness. An indicator of the processed part quality, the surface roughness of

the processed parts is analyzed with a profilometer at a given localization in each selected

part, which applies low uncertainty to the measured value. Due to the slow sampling

process, we assume that we can only select one from a given number of processed parts, as

this measurement can affect the production rate. Thus, these measurements are scarcely

available w.r.t. the number of processed parts.

M3. Number of processed parts. We assume that we have available a counter of the num-

ber of parts being processed until the present time. Each time a tool is replaced, that

counter is reset, so we measure directly the usage of the tool. This measurement is pro-

portional to the usage time of the tool.

Replacement
Tool

Roughness
Surface

Power
Consumption

Prediction
AlgorithmCurrent Clam

Profilometer

+

Noise

+

Noise

measurements
Scarce

processed part
Measured each

Number of processed parts

Decision

Figure 7.1. Problem case description.

We consider that these measurements can be easily acquired and that, in most real appli-

cations, they are monitored.

7.2.3 Straightforward strategies

Our aim is to develop algorithms that optimize the tool utilization in the proposed sensor-

constrained setup. As both power consumption and surface roughness are indirect indicators
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of the tool wear, which is itself an indicator of the remaining useful time of a tool, monitoring

these variables using mostly-raw data with a simple algorithm should lead to an acceptable tool

usage.

We first present straightforward strategies, expressed as different approaches, that are based

on the direct comparison of the available measurements with some given thresholds. The first

one is a quasi-optimal approach, but not directly viable in industry. The second and third one

are quite direct, while the last one is a more complex strategy to take profit from the scarcely

measured roughness.

A1. Persistent measurement of the roughness. In this approach, the surface roughness

of the processed parts is always measured. When the measured roughness value surpasses

a certain limit, the tool is replaced and the corresponding processed part is rejected.

This approach is not effective in production as the procedure to acquire the roughness

measurement needs a no negligible time w.r.t. to machining time, and the production

would be delayed. We present this approach for comparison purposes as, in this case, the

usage of the tool would be quasi-optimal in the sense of underusage and overusage (except

for the last rejected processed part).

A2. Fixed number of processed parts approach. This simple approach consists of chang-

ing the tool once it has processed a predetermined number of parts. This fixed threshold

for the part counter should be set manually. Nevertheless, the initial value must be esti-

mated using previous experimentation. This approach is quite straightforward as it lacks

of an updating mechanism. It is only valid if the machining and material conditions are

quite stable, yet it can be useful if the quality requirements are not strict.

A3. Power-limited change approach. This approach consists of changing the tool when

the power consumption reaches a certain threshold. As the available signal of the power

consumption may carry measurement noise, we must use a low-pass filter. This approach

requires previous experimentation in order to calculate the power consumption threshold.

These experiments consist of completely using several tools, constantly measuring the

surface roughness of all the processed parts, in order to determine the power consumption

range in which the parts’ surface properties begin to fail the demanded specifications. This

approach is useful if the machining and material conditions are stable. Its initialization

leads to a tool change policy that results more precise than the A2 approach, due to the

needed previous experimentation, but it is more expensive. This approach also lacks from

an adaptation procedure.

A4. Roughness interpolation approach. This approach uses the scarce measurements of

the surface roughness to estimate the remaining useful life of the tool when it is working

near to roughness specifications. The algorithm is first initialized by using a single tool,

measuring scarcely the roughness, and storing the first measured value which has exceeded

the desired surface roughness threshold, as well as the immediate measured previous one,

including the current number of processed parts. An interpolation between those values

gives us an approximated value of the useful life of the tool. When we use a new tool
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and the number of processed parts is close (but below) to the estimated tool life, we

extrapolate linearly the last two roughness measurements to estimate the processed part

number in which the roughness limit will be surpassed and, then, we replace the tool at

that time. If the roughness measurement at any part exceeds the threshold, the tool is

immediately replaced and the approximated useful life is updated. This technique trusts

on a linear degradation of the roughness through processed parts for the last period of

the useful life. Due to this approximation, this technique is not optimal, but has a simple

implementation.

This approach has some update thanks to roughness measurements (when a measurement

detects that we are out of bounds, i.e., when the tool life is reduced from what was

expected), but it does not check the validity of the predictions. If the change on the

machining conditions or material properties (tool or part) is such that the useful tool life

is extended, we will not notice it and we may be changing the tool earlier than in an

optimal procedure.
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Figure 7.2. Interpolation-based approach. Its precision depends on the measurement frequency.

The three last approaches can be effective in very repetitive conditions and their implemen-

tations are simple. However, as reality is far from repetitive, these approaches will not work

optimally as they lack in flexibility upon changes on the machining conditions or tool and part

materials.
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7.3 Proposed model-based approaches

Taking into account the premises of the previous approaches, we search now for an algorithm that

is flexible enough to detect any changes in the whole cutting process behavior, while avoiding the

need of performing several experiments any time the machining or the material conditions do

change. Improving the previous approaches requires using the different measurements indicated

in Section 7.2.2, which are assumed to be of an acceptable low cost and acquired online through

non-invasive procedures, and the links between the behavior of the power consumption and the

surface roughness of the processed parts (as both are affected by the tool flank wear shown in

Section 7.2). We wonder if the fusion of the available data can lead us to predict the remaining

useful life of the tool or to detect when the roughness thresholds are surpassed, and, thus,

can lead us to optimize the usage of the machining tools. We also wonder if we can use any

measurements (power and surface roughness) to update and improve those predictions when

materials or machining conditions do change.

The strategies from this section are expressed as two different approaches depending on the

final tool replacement decision. These approaches are based on the use of two models: one that

relates the power consumption as a function of the number of processed parts, i.e., Pc(k) = f(k),

and a second one that relates the roughness with that power consumption, i.e., Ra = f(Pc). In

the following sections we will detail how to obtain, identify and update those models in real-

time. Once we have a model and an updating method, we propose the following two approaches

for optimal tool change:

A5. Tool lifetime prediction. When a tool has finished its useful life, the algorithm uses the

gathered data from that tool to predict the behavior of both the power consumption and

the surface roughness signals when using a new tool. With that, the approach estimates

the maximum number of parts a new tool will be able to produce before surpassing the

surface roughness’ limits. When that number of parts is processed, the tool is changed

again and the procedure is repeated.

A6. Next-step prediction. In this approach, the algorithm is constantly predicting the sur-

face roughness value of the next part. If the prediction indicates that the surface roughness

limit will be surpassed, the tool is changed. The models used for predictions are constantly

updated with each new power or roughness measurement.

These approaches may lead to better tool replacement than the previous strategies. However,

in order to achieve a general algorithm, we must first obtain general models that can be used

for any application. Our aim is that those models do not depend on cutting conditions or prior

knowledge of materials and flank wear phenomena.

In the following sections we develop these model-based approaches:

� In Section 7.4 we first obtain a set of data to explore possible models able to represent

several conditions.
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� In Section 7.5 we obtain general models that can fit the previous dataset.

� In Section 7.6 we present the updating procedure that allows us to perform any initial

experimentation and update the models to adapt the to changing cutting and material

conditions.

7.4 Dataset generation for model search

Several authors have studied the evolution of tool flank wear for several cutting conditions or

materials in both tools and machined parts. Also, one can find studies about the influence

of the cutting conditions and tool flank wear in the forces during machining, as well as the

corresponding power consumption. Furthermore, there are different studies that explore the

influence of cutting conditions and tool flank wear on surface roughness. In this section we

explore the results of different authors to generate a set of data including tool flank wear, power

consumption and surface roughness that allows us to search for general models in the aim of

predicting the remaining useful tool life.

7.4.1 Tool flank wear dataset generation

Previous research on the evolution of tool flank wear has been compiled in [166, 167]. Studies

like [35] state that the tool flank wear Vb has an evolution on time t given by

Vb(t) = A log(B t+ 1) + C t3, (7.3)

with A, B and C some given model parameters that depend on the cutting and material

conditions. This evolution includes the incipient initial wear, steady wear and final severe wear.

Other research works as [166,168,169] and references therein state that the evolution may follow

a differential equation that depends on the temperature T :

d Vb(t)

dt
= A+B e

−C
T (t) , (7.4)

with A, B and C some given constants that depend on the cutting and material conditions.

This equation focuses on the initial wear and the steady wear, but includes the effects of the

variations of the temperature w.r.t time.

Simulated data for several tool flank wear evolutions have been generated using previous

equations, employing parameters from Table 7.1. The evolutions are shown in Figure 7.3a.

7.4.2 Power consumption dataset generation

In order to monitor the tool condition, the authors in [170] related the cutting power with the

tool flank wear with a linear relationship function

Pc = α+ β Vb, (7.5)
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Table 7.1. Tool flank wear (Vb) dataset generation parameters.

# Eq. A B C −C/T
Dataset V1 (7.3) 13.06 149.5 0.00506 -

Dataset V2 (7.3) 14.891 34.7 0.008526 -

Dataset V3 (7.4) 0 0.0375 - 10.39

Dataset V4 (7.4) 0 0.0750 - 10.39
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(b) Power consumption (Pc) dataset.

Figure 7.3. Tool flank wear and Power consumption vs. Cutting time.

where parameters α and β are empirical constants. These empirical constants were developed as

empirical functions depending on cutting conditions in [171]. Further research [163] related the

power consumption with the resulting cutting forces in the machining process and the current

state of the tool flank wear using physics-based functions that depended on machining settings.

This research concluded that, under constant settings, power consumption was related with the

tool flank wear with a linear function, thus relating parameters α and β with real machining

settings.

To generate the power consumption dataset, we applied several variants of the linear equation

(7.5) to the previously shown tool flank wear datasets, using parameters from Table 7.2. These

equation systems are shown as follows:

{
Pc = α+ β Vb,

Vb(t) = A log(B t+ 1) + C t3.

Pc = α+ β Vb,

Vb(t) =
∫ τ=t
τ=t0

A+B e
−C
T (τ)dτ.

Their evolution is shown in Figure 7.3b. In order to model uncertainty related to the mea-

surement of characteristic power consumption, zero-mean Gaussian noise has been added.

7.4.3 Surface roughness dataset generation

Surface roughness of the processed parts has frequently been related w.r.t. cutting time in

the literature [172, 173], along with several cutting conditions, using empirical equations. The
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Table 7.2. Power consumption (Pc) dataset generation parameters.

# Eq. α β

Dataset P1 (7.5) 6000 0.5

Dataset P2 (7.5) 4000 2

Table 7.3. Surface roughness (Ra) dataset generation parameters.

# Eq. δ ε γ

Dataset R1 (7.6) 0.1 5.5 0.455

Dataset R2 (7.6) 0.1 5 0.7

Dataset R3 (7.6) 0.1 6.5 0.8

Dataset R4 (7.6) 0.1 4.5 0.6

relationship between surface roughness and tool flank wear has been researched, though. In [37],

the authors proposed an empirical equation that expressed the values of the surface roughness

as a function of tool flank wear and several other cutting conditions. Considering constant

conditions, the function presents the form

Ra = δ + ε V γ
b . (7.6)

The surface roughness dataset has been generated using the previously shown tool flank

wear dataset and equation (7.6), employing parameters from Table 7.3. These equation systems

are shown as follows:{
Ra = δ + ε V γ

b ,

Vb(t) = A log(B t+ 1) + C t3.

Ra = δ + ε V γ
b ,

Vb(t) =
∫ τ=t
τ=t0

A+B e
−C
T (τ)dτ.

Their evolution is shown in Figure 7.4a. Additionally, in Figure 7.4b it is shown the relationship

between the surface roughness dataset w.r.t the power consumption dataset.

7.5 General models for power consumption and surface rough-

ness

The next step is finding a starting point (base) model that can express the behavior of the

proposed online non-invasive measurements, the power consumption and surface roughness,

during the complete tool use. This model comprises a trade-off between generalization (as it

must be able to encompass all the possible variations from the dataset), adaptability to changes

(so it can be updated with the available data) and the need of simple calculations and data

storage on the startup. We have chosen a polynomial model, that is linear on its parameters

(thus can be easily updated) and with the minimum number of parameters to optimize data

storage and initialization speed.
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tion (Pc) dataset.

Figure 7.4. Surface roughness vs. Cutting time and vs. Power consumption.

In order to express the different evaluated base models, we need first to express some gen-

erator functions. Polynomial models can be expressed as linear regression models in the form

z(y) = φ(x) θ + v, (7.7)

where z(y) is a function of the observed value y, φ is the regression vector with independent

variables x, and θ is the parameter vector. v is a random term with the non-explained behavior

of measurements z(y) due to, for instance, uncertainty on the model or measurement noise.

We will express polynomials through

pn(x) = c0 + c1 x+ c2 x
2 + · · ·+ cn x

n =
[
1 x x2 · · · xn

]
︸ ︷︷ ︸

φn(x)


c0

c1

c2

...

cn


︸ ︷︷ ︸
θ

, (7.8)

and we will use notation φn(x) =
[
1 x x2 · · · xn

]
to express the generation of the regres-

sion vector for that polynomial. We are also interested on the search for both additive and

multiplicative functions, so the observed value may be expressed directly or logarithmically, i.e.

z(y) = y, z(y) = log(y),

as well as the independent variables, that may be expressed directly or in logarithm form. Once

we have a model, the estimation of the observed variable can be performed by ŷ = φ(x) θ or

ŷ = exp(φ(x) θ) depending on the selected observation function. Therefore, for each polynomial

model, there are two parameters that must be selected: the logarithmic mode and the polynomial

degree.
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Using the generated dataset from the previous section, we have obtained the fittest parameter

vectors θ for both desired models using the Least Squares (LS) method. The obtaining of

parameter vector θ has been carried out for each logarithmic mode and up to the fifth degree.

The performance of each mode and degree has been validated using the variance of the

estimation error for the latter half of the tool life, i.e., the variance of the difference between

each dataset and the corresponding predicted values of the model,

σ2 = var (z(y)− φn(x) θ) .

Each model has been developed using the fittest parameter vector θ for the corresponding mode

and degree. Thus, each definitive base model will be selected as a trade-off between a low number

of parameters and a low estimation error variance (σ2).

The model for the growth of the power consumption is a function of the number of pro-

cessed parts. The logarithmic modes that will be compared in both the measurement part and

deterministic part of the model are

Pc(k) = pn(k) + vPc(k); Pc(k) = pn(log(k)) + vPc(k);

log(Pc(k)) = pn(k) + vPc(k); log(Pc(k)) = pn(log(k)) + vPc(k);
(7.9)

where n is the degree of the polynomial, and vPc includes both the measurement noise and the

unmodeled behavior. The comparison of the performance of all the proposed models is shown

in Figure 7.5. Same equations in the dataset appear as part of the same line.

Options 7.5b and 7.5d are discarded due to the general high estimation error variance. 7.5a

and 7.5c present similar results. In both cases, from the third degree and beyond, the estimation

error variance is not substantially reduced; thus, a third degree polynomial is selected. Option

7.5a is chosen before 7.5c because it requires less computational costs, i.e.,

Pc(k) = c0 + c1 k + c2 k
2 + c3 k

3 + vPc(k) = p3(k) + vPc(k) = φ3(k)θPc + vPc(k). (7.10)

The surface roughness model is a function of the power consumption. The logarithmic modes

that will be compared are

Ra(k) = pn(Pc(k)) + vRa(k); Ra(k) = pn(log(Pc(k))) + vRa(k);

log(Ra(k)) = pn(Pc(k)) + vRa(k); log(Ra(k)) = pn(log(Pc(k))) + vRa(k);
(7.11)

where n is the degree of the polynomial, and vRa includes both the measurement noise and the

unmodeled behavior. The comparison of the performance of all the proposed models is shown

in Figure 7.6. Same equations in the dataset appear as part of the same line.

Options 7.6c and 7.6d are discarded due to the general high estimation error variance.

7.6a and 7.6b present similar results. In both cases, from the second degree and beyond, the

estimation error variance is not substantially reduced; thus, a second degree polynomial is

selected. Option 7.6a is chosen before 7.6b because it requires less computational costs, i.e.,

Ra(Pc(k)) = d0 +d1 Pc(k) +d2 Pc(k)2 + vRa(k) = p2 (Pc(k)) + vRa(k) = φ2 (Pc(k)) θRa + vRa(k).

(7.12)

Parameters from θ have been labeled here as d0, d1,... to differentiate them from their equivalents

in the Pc function.
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Figure 7.5. Validation of the Pc(k) models.
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Figure 7.6. Validation of the Ra(k) models.
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7.6 Real-time model update using Adaptive Recursive Least

Squares algorithms

Once the model is chosen for each independent variable, we must use an algorithm that allows

us to obtain the model parameters that best fit the actual behavior. This is necessary to update

the model when there is a change in the materials of the tool and part or in the machining

conditions. In this section we first state the algorithm to obtain the model for power consumption

prediction as a function of the processed parts within the used tool and how to estimate the

power consumption in future processed parts, i.e., P̂c = f(k). Then, with the use of those

power predictions, we state the algorithm to obtain the model for resulting surface roughness

as a function of the consumed power, i.e., R̂a = f(P̂c). As the chosen models are additive, the

starting point is a general model y = φ(x) θ. For each model, we define the measured output y,

the independent variable x and the regression vector function generator φ.

Let us first introduce some definitions for part counting. We denote with k the number of

part being processed within a given tool (a value that is reset with each new tool replacement).

We will use i as global counter of the number of processed parts. We will denote with k(i) the

function that gives the number of processed part k within the actual tool from the knowledge of

the number of total processed parts i (i.e., k = k(i) is a sawtooth-like function that resets when

we change the tool). Furthermore, i indicates the progress of the global time. We also define j as

a counter of the number of parts in which the surface roughness is measured. This measurement

is scarcely acquired for its cost and time consumption. We denote as ij the number of processed

part i in which roughness measurement number j has been performed.

7.6.1 Power consumption predictions

For power predictions we chose a polynomial additive model in which the variables from the

general model y = φ(x) θ become

y = Pc, x = k, φ(x) = φ3(k).

Therefore, we write the generator function for power consumption as

y︸︷︷︸
Pc

=
[
1 k k2 k3

]
︸ ︷︷ ︸

φ3(k)

c0

...

c3


︸ ︷︷ ︸
θPc

+vPc , (7.13)

with θPc the parameter vector to be obtained and updated in real-time. We first apply an

initialization step that consists of applying Least Squares when we have acquired more samples

than number of parameters (n = 4) for the model representing the power consumption on time.

For instance, we can acquire the data for the complete life of the first tool. Let us call N the

number of acquired data for initialization, being N > n. We obtain the initial values for the

parameter vector as

θ̂PcN = (X
ᵀ
X)−1X

ᵀ
Y, (7.14)
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where

X =


φ3(k(1))

φ3(k(2))
...

φ3(k(N))

 , Y =


y1

y2

...

yN

 =


Pc(1)

Pc(2)
...

Pc(N)

 , (7.15)

being φ(k(i)) =
[
1 k(i) k(i)2 k(i)3

]
. The product X

ᵀ
X will be invertible because the re-

gressor matrix X will always have a full column rank. This is due to the polynomial dependency

between the columns of the matrix, the fact that k will continuously increase during the initial-

ization and that the number of required samples must be greater than the number of parameters

(i.e., the degree of the polynomial), as stated above.

Furthermore, we obtain the initial value of the covariance matrix of the parameter errors as

ΣPc
N = PPcN V Pc , (7.16)

with

PPcN =
(
X

ᵀ
X
)−1

, (7.17)

representing the inverse of the information matrix, and being V Pc the variance of power con-

sumption error w.r.t. regression model. This value must contain the effect all the non explained

behaviors including the measurement noise as the main source of uncertainty, as well as the lack

of fit with the used polynomial model. We can also use the following value if we don’t know the

measurements’ variance noise

V Pc =
1

N − n(Y −X θ̂PcN )
ᵀ
(Y −X θ̂PcN ).

Once the values of the model parameters have been initialized, we update in real-time their

values with each new measurement in parts i > N using the following algorithm.

7.6.2 Proposed algorithm for adaptive power consumption predictions

The following equations are used to perform a recursive least squares algorithm with adaptive

forgetting factor (i.e., the ARLS algorithm) with the aim to predict the power consumption

during the machining process.

Before the explanation of the proposed algorithm for power consumption predictions, we

define the a priori estimation of the power consumption. This is expressed as

P̂c(i|i− 1) = φ3(k(i))θ̂Pci−1, (7.18)

where θ̂Pci−1 contains the parameters that were estimated in the previous iteration, and φ3(k(i))

is the regression vector, which uses the values of the present iteration k(i). As a remainder, i is

the total number of processed parts during the experiment, and k = k(i) is the number of parts

processed by the current cutting tool (function k = k(i) would present a sawtooth-like form).

Thus, the regression vector is arranged as follows:

φ3(k(i)) =
[
1 k(i) k(i)2 k(i)3

]
, (7.19)
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whose general structure was defined in equation (7.8), its degree and logarithmic mode were

selected after testing in Section 7.5, equation (7.10), and appeared within the generator function

for Pc in equation (7.13).

The first step of any iteration in the ARLS algorithm is the calculation of the a priori error

ei. This is achieved using the a priori estimation P̂c(i|i− 1) and the direct measurements of the

consumed power during the machining process of the current part, expressed as Pc(i):

ePci = Pc(i)− φ3(k(i))θ̂Pci−1︸ ︷︷ ︸
P̂c(i|i−1)

. (7.20a)

Then, we calculate a confidence interval in which the a priori error should be contained in stable

conditions.

JPci = tαPc

√
V Pc(1 + φ3(k(i))PPci−1φ3(k(i))ᵀ). (7.20b)

Here, JPci represents the confidence interval with the actual model and αPc is the distribution

percentile for a t-distribution variable. To compute the confidence interval threshold JPci we

make use of noise variance V Pc . We select a forgetting factor depending on whether the a priori

error is located within the confidence interval or not. If the a priori error is inside the confidence

interval, we use a high forgetting factor (λPcH close to 1) but, otherwise, we use a lower value

(0 < λPcL < λPcH ≤ 1), trying to adapt the model to the new gathered data:

λPci =

{
λPcH , |ePci | < JPci ,

λPcL , |ePci | ≥ JPci .
(7.20c)

We calculate the gain vector using the forgetting factor and the inverse of the information

matrix.

LPci =
1

λPci + φ3(k(i))PPci−1φ3(k(i))ᵀ
PPci−1φ3(k(i))

ᵀ
. (7.20d)

LPci is the gain vector, which depends on the forgetting factor λPci . We update the parameter

vector θ̂Pci using the calculated gain vector and the a priori estimation error:

θ̂Pci = θ̂Pci−1 + LPci ePci . (7.20e)

Finally, the inverse of the information matrix PPc is updated with the gain vector and the

forgetting factor:

PPci =
1

λPci
(I − LPci φ3(k(i)))PPci−1. (7.20f)

In order to obtain a prediction of a future value for the power consumption, as well as a filtered

version of the actual power consumption, we use the following expression

P̂c(l|i) = φ3(k(l)) θ̂Pci , (7.21)
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where i represents the actual value of the part counter, and l ≥ i represents a future instant of

time.

The tuning parameters in this algorithm are values αPc ∈ (0.9, 1), λPcH ∈ (0.9, 1] and λPcL ∈
(0, λPcH ], which must be chosen as a trade-off between robustness against measurement noise,

adaptation ability for model changes and convergence speed. With values of λPc near to 1, the

algorithm is less affected by the sensor noise at the cost of a low adaptation in front of model

changes, and, contrarily, values of λPc close to 0.9 make the parameter values more sensitive

to sensor noise, but more flexible to adapt to changes. On the other hand, a low value of αPc

reduces the confidence interval width, i.e. tαPc , and assigning λPc to λPcL (the lower value) occurs

more frequently, which causes big changes on θ̂Pc . Contrarily, a high value of αPc (high tαPc )

implies the need of big errors for the algorithm to start adaptation to changes, thus, can cause

delays on detecting new behaviors, but with the benefit of more stable parameter estimations

when the model does not change.

7.6.3 Surface roughness predictions

We use a similar strategy for obtaining the model for the roughness prediction as a function of

the power consumption. In this case, in order to mitigate the effect of the sensor noise on the

power measurement and other uncertainties, we use the predicted power through the available

power propagation model P̂c(i|i) as an input for the identification of the roughness, and we

choose a polynomial additive model in which the variables from the general model y = φ(x)θ

become

y = Ra, x = P̂c(i|i), φ(x) = φ2(P̂c(i|i)).
Therefore, we write the generation function for surface roughness as

y︸︷︷︸
Ra

=
[
1 P̂c(i|i) P̂c(i|i)2

]
︸ ︷︷ ︸

φ2(P̂c(i|i))

d0

d1

d2


︸ ︷︷ ︸
θRa

+vRa . (7.22)

From now on, we use the compact notation P̂c(i) to denote P̂c(i|i). As the roughness is scarcely

measured, we cannot update the model with each part i, and we only update it at instants j

when the roughness measurement is acquired. These instants are denoted as ij .

We first apply an initialization step that consists in applying Least Squares when we have

acquired more samples than number of parameters (n = 3) for the model representing the

surface roughness. Let us call N the number of acquired data for initialization, with N > n.

We obtain the initial values for the parameter vector as

θ̂RaN = (X
ᵀ
X)−1X

ᵀ
Y, (7.23)

where

X =


φ2(P̂c(i1))

φ2(P̂c(i2))
...

φ3(P̂c(iN ))

 , Y =


y1

y2

...

yN

 =


Ra(i1)

Ra(i2)
...

Ra(iN )

 , (7.24)
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being φ2(P̂c(ij)) =
[
1 P̂c(ij) P̂c(ij)

2
]
. Note that Ra(ij) refers to the j-th measurement of

the roughness, not to the j-th processed part. The product X
ᵀ
X will be invertible because

the regressor matrix X will always have a full column rank. This is due to the fact that there

is a polynomial dependency between the columns of the matrix, that we assume that P̂c will

be monotonically increasing and the restriction that the number of required samples must be

greater than the number of parameters (i.e., the degree of the polynomial), as stated above.

Furthermore, we obtain the initial value of the covariance matrix of the parameter errors as

ΣRa
N = PRaN V Ra , (7.25)

with

PRaN =
(
X

ᵀ
X
)−1

, (7.26)

representing the inverse of the information matrix, and being V Ra the variance of roughness

error w.r.t. regression model.

Once the values of the model parameters have been initialized, we assume that we have

available an estimation of the current power consumption with the previous model (i.e., a

filtered version of the power consumption), and we update the values of the parameters of the

model with each new measurement in parts j > N with the Adaptive Recursive Least Squares

equations.

7.6.4 Proposed algorithm for adaptive surface roughness predictions

The following equations are used to perform a recursive least squares algorithm with adaptive

forgetting factor (i.e., the ARLS algorithm) with the aim to predict the surface roughness during

the machining process.

Before explaining the proposed algorithm for surface roughness predictions, we define the a

priori estimation of the surface roughness. We can express it as

R̂a(ij |ij−1) = φ2(P̂c(ij))θ̂
Ra
j−1. (7.27)

In this case, the ARLS algorithm is activated scarcely, depending on the frequency of the

surface roughness measurements; thus, j is the counter of those measurements, being ij the

processed part i where surface roughness measurement j took place. Therefore, θ̂Raj−1 contains

the parameters that were estimated in the last time this algorithm was activated, and φ2(P̂c(ij))

is the regression vector, which uses the values of P̂c that were calculated using the previous

algorithm in Section 7.6.2. As a reminder, this regression vector takes this form:

φ2(P̂c(ij)) =
[
1 P̂c(ij) P̂c(ij)

2
]
, (7.28)

whose general structure was defined in equation (7.8), its degree and logarithmic mode were

selected after testing with the datasets in Section 7.5, equation (7.12) and appeared within the

generator function for Ra in equation (7.22).
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The first step of any iteration in the ARLS algorithm is the calculation of the a priori error

eRaj . This is achieved using the a priori estimation R̂a(ij |ij−1) and the direct measurements

of the surface roughness during the instant ij (i.e. at the jth surface roughness measurement,

which takes place on the ith processed part), expressed as Ra(ij):

eRaj = Ra(ij)− φ2(P̂c(ij))θ̂
Ra
j−1︸ ︷︷ ︸

R̂a(ij |ij−1)

. (7.29a)

We calculate a confidence interval where the a priori error should remain in stable conditions.

JRaj = tαRa

√
V Ra(1 + φ2(P̂c(ij))PRaj−1φ2(P̂c(ij))

ᵀ). (7.29b)

Here, JRaj represents the confidence interval with the actual model and αRa is the distribution

percentile for a t-distribution variable. To compute the confidence interval threshold JRaj we

make use of noise variance V Ra . Afterwards, we select a forgetting factor λRa depending on

whether the a priori error is located within the confidence interval or not. If the a priori error

is inside the confidence interval, we use a high forgetting factor (λRaH close to 1) but, otherwise,

we use a lower value (0 < λRaL < λRaH ≤ 1), trying to adapt the model to the new gathered data:

λRaj =

{
λRaH , |eRaj | < JRaj ,

λRaL , |eRaj | ≥ JRaj .
(7.29c)

We calculate the gain vector LRa using the selected forgetting factor and the inverse of the

information matrix PRa . The gain vector is affected by λRaj :

LRaj =
1

λRaj + φ2(P̂c(ij))PRaj−1φ2(P̂c(ij))
ᵀ .
PRai−1φ2(P̂c(ij))

ᵀ
(7.29d)

Then, we update the parameter vector θ̂Ra using the calculated gain vector and the a priori

estimation error:

θ̂Raj = θ̂Raj−1 + LRaj eRaj . (7.29e)

Finally, the inverse of the information matrix is updated with the gain vector and the forgetting

factor:

PRaj =
1

λRaj
(I − LRaj φ2(P̂c(ij)))PRaj−1. (7.29f)

We use the following expression at any instant i to estimate a future value of the surface

roughness at instant l

R̂a(l|i) = φ(P̂c(l|i)) θ̂Raj = φ2

(
φ3(k(l))θ̂Pci

)
θ̂Raj , (7.30)

where i represents the instant of time for the most updated model for power predictions (i.e. at

the ith processed part), and θ̂Raj is the value of θ̂Ra that was calculated in the last instant ij .

The values of λRa and αRa are comprised within the same intervals as the ones exposed in the

algorithm used to estimate the power consumption. The effects of JRa , LRa and PRaj on this

algorithm are identical to their equivalents in the power consumption estimation algorithm.

Figure 7.7 summarizes the internal steps of the algorithm.
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Figure 7.7. Operating diagram of the ARLS algorithm.

Table 7.4. Multiplying factors (Benchmark).

Tool ≤ 100 Tool > 100

All Case 1 Case 2 Case 3

Vb 1.00 1.00 1.05 0.95

Pc 1.00 1.00 1.03 0.97

Ra 1.00 1.00 0.90 1.10

7.7 Simulation results

In this section, we will validate the performance of the proposed approaches from 7.3 and

will compare them to the direct approaches from Section 7.2.3. Firstly, we will explain the

benchmark we have used to execute the simulations. After that, we will check the internal

behavior of the ARLS algorithm we have developed in Section 7.6 using the benchmark as

source data. Afterwards, we will compare each approach by executing the simulations using the

benchmark data, and we will evaluate their performance using several indexes. Lastly, we will

discuss the results of the simulation.

7.7.1 Benchmark

This benchmark simulates a machining process where 500 tools are exhausted by processing 350

parts each one. It contains the evolution of the values of tool flank wear, power consumption

and surface roughness resulting of that process. The general evolution of each variable is based

on the dataset from Section 7.4. Tool-to-tool stochastic variations are expressed as third degree

functions that are added to the tool flank wear data, acting as disturbances. The parameters

of these functions are randomly generated, ensuring that the resulting tool flank wear data

evolution remains increasing monotonically. Changes in cutting conditions or material properties

of the raw parts are expressed as multiplier factors, which are applied to the previous functions.

Shown in Table 7.4, factors for Pc and Ra change to opposite values to check the algorithm

against the worst case scenario. Three different cases are proposed. Measurement noise has been

simulated by zero-mean Gaussian noise. Its variance is calculated as var(measnoise) = (m/3)2,

where m is the uncertainty of each instrument, as shown in Table 7.5. Measurement frequency

of surface roughness is also included in the aforementioned table.
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Table 7.5. Benchmark parameters.

Name Value Units Definition

mPc ±300 W Pc uncertainty noise

mRa ±0.2 µm Ra uncertainty noise

freq 20
( parts
meas.

)
Ra measurement frequency

7.7.2 ARLS algorithm performance

The performance of the ARLS updating algorithm will be validated via several simulations.

Using the benchmark (Case 2) as source data, the simulations consist in producing a deter-

minate number parts within desired specifications. Depending on the selected approach (A5

or A6), the tool will be replaced under different considerations. The algorithm parameters for

these simulations are found in Table 7.6.

Firstly, the accuracy of the updating algorithm is checked. In this case, the selected ap-

proach does not affect the updating performance. Figure 7.8a shows the estimated value of

power consumption Pc and it compares it to the benchmark data of Pc (the observed signal),

expressed as points. Figure 7.8b shows the next-step estimated values of surface roughness Ra,

comparing them to the benchmark Ra data. Only the observed values of Ra appear as points,

as measurements are scarce. In both cases, the initialization of the algorithm takes place during

the first tools; its length can be modified at will, but a reduced time will yield imprecise results

in the first stages of the simulation.
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Figure 7.8. Validation of the updating algorithm accuracy.

The following step is the validation of the internal stability of vector parameters θ in order

to ensure appropriate predictions. Figures 7.9a and 7.9b show the evolution of θ for the Pc
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and Ra models, respectively. Parameters do not become completely stable due to tool-to-tool

stochastic variations, but are rapidly adapted when cutting conditions change.
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Figure 7.9. Stability of parameter vectors.

7.7.3 Performance indexes and settings

The performance of the approaches from Sections 7.2.3 and 7.3 is evaluated with a simulated

experiment. In these simulations, which use all three cases from Section 7.7.1, each approach

processes up to 50,000 acceptable parts (i.e. under specification limits). Their performance is

evaluated using the following indexes: I1. Number of consumed cutting tools, I2. Number

of rejected parts (which is the number of processed parts out of specifications), and I3.

Accumulated power consumption. The latter index is proportional to the total consumed

energy during the machining process, and implies a higher cost, as well as a higher ecological

impact.

Simulation settings are shown in Table 7.6. Approaches A1, A4, A5 and A6 require the

surface roughness limit Ra,lim. Approach A2 will be simulated changing the tool at each 215

parts (A2a), 255 parts (A2b) and 295 parts (A2c). Approach A3 changes the tool when a

given Pc limit is reached. This limit has been obtained after previous simulated experimentation.

Model-based approaches A5 and A6 require several forgetting factors λ and tα.

7.7.4 Discussion

The results of the simulations are shown in Table 7.7 for each benchmark case. Approach A6

performs correctly in all cases, and is the one that behaves more similarly to the ideal case

A1, in which surface roughness was constantly measured. Approach A5 produces an excess of

rejected parts, otherwise, indexes I1 and I3 perform similarly to the corresponding indexes of

A6. Approach A4 performs well in most cases, but it is outclassed by Approach A6.
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Table 7.6. Simulation parameters.

Name Value Units Definition

Ra,lim 3.6 µm Ra threshold

Pc,lim 7400 W Pc threshold (A3)

λPcL 0.7 - Lower λPc

λPcH 1 - Higher λPc

λRaL 0.8 - Lower λRa

λRaH 1 - Higher λRa

tαPc 3.0 (αPc≈0.998) - Value of tαPc
tαRa 5.0 (αRa>0.999) - Value of tαRa

Table 7.7. Simulation results.

Case 1 Case 2 Case 3

Approach I1 I2 I3 I1 I2 I3 I1 I2 I3

A1 196 195 345 191 190 351 200 199 339

A2a 233 0 340 233 0 346 233 0 333

A2b 197 102 344 197 41 349 201 1066 345

A2c 196 7613 402 191 6189 399 200 8903 404

A3 197 100 344 207 48 348 201 3091 360

A4 197 567 347 192 693 355 201 584 341

A5 196 788 349 194 380 352 200 1938 351

A6 197 64 343 192 64 350 202 88 338

Approach A3 performs well in Case 1, which is stable, but uses a high amount of tools

in Case 2 and processes an excessive amount of parts out of specifications in Case 3. This is

due to the fact that A3 does not react to those internal changes. Approach A2 behaves in a

similar way. A2b is an a posteriori “optimal” choice; its performance is the most balanced from

A2 variations, but it does not react to internal changes either. A2a replaces the tool too early,

using an excessive amount of cutting tools, while A2c replaces the tool too late, producing a

high amount of parts out of specifications.

Note that A5 and A6 present the drawback that they require the use of several tuning

parameters (λPcH , λPcL , λRaH , λRaL , ...). In order to locate the adequate values for these parame-

ters, it is required to perform a simulation of the manufacturing process. Also note that these

parameters are comprised within the intervals explained in Section 7.6.
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7.8 Conclusions

In this chapter, we have analyzed several tool replacement strategies in machining processes.

In all these strategies we have assumed that the measurements of the power consumed by the

cutting machine and the surface roughness of the processed parts are available, although the

measurements of the latter are received scarcely. We have also assumed that a processed part

counter is available.

The idea behind these tool replacement strategies is to assure that the processed parts fulfill

certain quality criteria based on surface roughness thresholds. The tool replacement strategies

we have presented in this chapter can be classified in two types depending on its complexity:

simple straightforward strategies that directly use the received measurements to decide the tool

replacement moment, and model-based strategies that are able to predict the surface roughness

during the periods in which no roughness measurements are available while solving the problems

implied by the measurement noise.

In order to obtain suitable models for the model-based strategies, we have developed a

dataset with different empirical models from the literature that have developed the evolution

of tool wear and its effects on the power consumption and surface roughness increase during

the cutting tool lifetime. Afterwards, we have validated the generalization capabilities of several

base models with this dataset to select the fittest ones. The model-based strategies consist of an

algorithm that adapts the parameters of the selected models in front to changes of the machining

process. Both the selected models and their algorithms have been designed to be efficient from an

implementation perspective, and require a low amount of data to be initialized. These algorithms

require several setting parameters; we have included indications of how to adjust them. The tool

replacement policies of the model-based strategies consist of two different variants: predicting

the number of processed parts the tool will be able to process before surpassing a certain

roughness threshold, calculated when a tool gets replaced; the second variant is to replace the

tool if the predicted surface roughness of the following part will surpass the given threshold.

In order to compare the presented strategies, we have simulated them with a benchmark

where a certain batch of parts had to be manufactured under changing machining conditions.

Their performance has been evaluated using several indexes: number of processed parts out of

specifications, number of consumed tools and total consumed energy. The model-based strategy

that replaced the tool if the following predicted surface roughness surpassed the threshold

generally presented the best results in all conditions.



Chapter 8

Conclusions and future research

8.1 Conclusions

This thesis addresses several problems that may arise during the development of strategies under

the Zero Defect Manufacturing framework, specifically those that are applied to multistage

processes and CNC machines. We have proposed variation propagation models of two different

traditional fixtures, as well as methodologies and algorithms to adjust models with process data

and engineering knowledge, implement sequential fault detection and isolation, and monitor and

predict the cutting tool remaining useful life.

We have focused on developing algorithms that require a relatively low amount of data, which

leads to an easy implementation of the methodology, and helps to overcome other problems,

such as scarce or expensive measurements. We have validated the proposed models, methodolo-

gies and algorithms using different methods. The variation propagation model, obtained using

the Stream-of-Variation approach, has been numerically validated using MATLAB, and geo-

metrically validated using AutoCAD. Additionally, it has also been validated by means of a

machining experiment. The model adjustment methodology has been validated numerically us-

ing MATLAB and YALMIP, by means of a benchmark. Both the sequential fault detection and

cutting tool monitoring and prognosis methodologies have been validated using MATLAB; the

latter methodologies have been based on a benchmark that has been developed using empirical

equations from the literature.

Modeling and adjustment

In order to apply fault diagnosis in manufacturing processes, it is essential to obtain reliable

models of the process, as well as fault propagation models between process and product. There-

fore, in this thesis we have focused on developing methodologies to obtain these reliable models,

expanding the SoV-based models to traditional fixtures and proposing a model adjustment

methodology for linear process models.
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In Chapter 3, we developed the behavior of the variation propagation in bench vices and 3-

jaw self-centering chucks, which are fixtures that are used in traditional industries, as rigid body

(non-deformable) SoV-based models. In the bench vice model, we included the propagation of

the position and orientation errors of plain jaws, supports and pins, and the datum errors of the

prism raw part. In the model of the 3-jaw chuck, we included the propagation of the position

error of the jaws and the locating pin, the orientation errors of the jaws and the datum errors of

the cylinder base of the raw part. Most of the elements of the model were obtained using DMVs

and the 3-2-1 scheme methodology. Some interactions between the bench vice and the raw part

had to be obtained using geometrical methods, as it presented non-linearities that affected the

general behavior of the variation propagation. In the 3-jaw self-centering model, the effects of

the position error of the jaws caused a self-centering deviation, which also had to be obtained

using geometrical methods.

In Chapter 4, we proposed an adjustment methodology to reduce approximations and model-

ing errors in linear input-output variation propagation models of processes, which are assumed

to have been obtained using physical-based methods, using data from the process and engi-

neering knowledge. The proposed methodology includes an optimization algorithm in order to

minimize the difference between the covariances of the output measurements of the product and

the covariances of an estimated output obtained using the model that is being adjusted. The

optimization problem is bounded by engineering knowledge and backup data, and the objective

function has been convexified in order to ensure a feasible solution within a finite time.

In Chapter 5, we developed a qualitative model extracted from the process planning, which is

later used to develop the sequential fault detection and isolation procedure. This model consists

of a binary matrix that relates potential faulty elements of the process with its impact on certain

dimensional features of the product. Zeros and ones are assigned depending on the sequence of

fixtures and cutting tools used in each stage of path that defines each feature.

Finally, in Chapter 7 we proposed an adaptive recursive least squares algorithm to predict the

future state of the tool flank wear in a CNC machine using indirect measurements: the power

consumption and the surface roughness of the processed parts, where the latter is measured

scarcely. This algorithm required general models that consisted of polynomial approximations

of the behavior of these indirect measurements with respect to the amount of parts machined

by the cutting tool. The degree and logarithmic mode of the polynomial approximations for

each pair of variables were selected after evaluating the performance of several combinations of

degrees and modes with a benchmark. This benchmark consisted of several empirical equations

for the behavior of these variables with respect to tool flank wear, which were obtained from

the literature.

Monitoring, fault detection and prognosis

The search for zero defects also implies a search to minimize waste and thus, total cost. In this

thesis, we have proposed monitoring, fault detection and prognosis methodologies to predict and

prevent the moment when are processed with features out of specifications. To ensure an early

implementation of the proposed methodologies, which would reduce wasted resources, we have
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designed them in such a way that the amount of data required to initialize them is minimized.

Additionally, we have dealt with instances where measurements from the process are scarce or

costly, which increase the total cost of the product processing if not solved.

In Chapter 4, in the case study we presented, the proposed methodology, which adjusted

a linear input-output model using data and engineering knowledge, required a low amount of

parts before notably improving the results that would have been obtained using least squares.

In Chapter 5, we proposed a methodology to reduce the inspection cost and provide fast fault

detection and isolation, which leads to lower waste and costs. This methodology consisted in a

sequential inspection procedure using the information gain index of the inspection measurement.

The information gain index is calculated using the distribution of zeros and ones from the

qualitative model that was obtained from the process planning.

In Chapters 6 and 7, we have focused on the evolution of tool flank wear in CNC machines.

We assume that tool flank wear cannot be directly monitored, so we use indirect variables to

estimate its health and remaining useful life. These indirect variables are the power consumed

by the machine, which is usually very noisy, and the surface roughness of the processed parts,

which we assume that it cannot be continuously measured.

In Chapter 6, we estimated the values of the surface roughness and power consumption

during the instants when no surface roughness measurements were received, assuming a constant

increase; when new measurements were received, the estimated values were updated using an

observer with a Steady-State Kalman Filter, using empirical equations between tool flank wear,

surface roughness and consumed power.

In Chapter 7, we keep the same assumptions of scarce surface roughness and noisy power

consumption measurements, and we presented a methodology to predict the remaining useful

life of the cutting tool, in order to avoid wasting resources (such as underusing cutting tools or

generating out-of-specification parts). Here, we assume that tool life ends when surface roughness

exceeds certain threshold. The proposed methodology consisted in an Adaptive Recursive Least

Squares algorithm, which was designed to deal with different measurement reception frequencies

(power consumption is assumed to be accessible at any time). This algorithm is based on low

degree polynomials, so it can be initialized with few measurements and, together with the

adaptive term of the algorithm, quickly modify the behavior of the polynomial model if cutting

conditions change.

8.2 Future research

There are several research lines that can be developed from the contributions of this thesis:

� On the basis of the Stream-of-Variation (SoV) methodology and the results of Chapter 3,

two research lines arise. The first line consists in the development of SoV-based models

for other traditionally-used fixtures, such as 4-jaw chucks. The second line consists in the

development of SoV-based models of the fixtures that have been developed in this thesis,

now in rotatory frames (as in lathes) and comparing the results with other approaches

from the literature.
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� In Chapter 4, we have proposed a methodology to adjust a physical linear propagation

model using process data and engineering knowledge, which has been validated using

a simple case study. A possible future research line consists in validating the results of

the proposed methodology using a more realistic simulation environment of a multistage

process, which has been developed by recreating physical contact relationships between

components, and does not use the linear approximations that the proposed methodology

assumes. This simulation may also consider that different products are being processed

sharing some of the stages, thus leading to interrelated data that can be used to enhance

the proposed methodology.

� Following the general research line of developing monitoring and fault diagnosis methods

using reliable models, which have been sequentially obtained in Chapters 3 and 4, the next

step is developing model-based observers to estimate and monitor the process variance

using product measurements, in order to identify faults. We propose researching the effect

of the biases caused by digital filters in online observers.

� In Chapter 5, we have developed a qualitative variation propagation model, consisting of

a binary matrix, using the fixture and datum sequences from the process planning. Due to

the fact that, in order to manufacture a given product there are usually several different

valid process plans, the proposed future research line consists in developing a methodology

to narrow down and find those plans that minimize the amount of measurements (and/or

the total cost) that are required to detect faults in the process.

� The last future research line is the experimental validation of the proposed methodologies

of this thesis, particularly the monitoring and prognosis algorithms from Chapters 6 and

7, and its future application in real cases in industry.



Appendix A

Calculus of induced errors in SoV

Models and implementation guide to

practitioners

A.1 Calculus of datum-induced errors in vices

Following the procedure explained in [10], we define the datum points that touch the secondary

datum, denoted as pD and pE, which depends on the relationship between the orientation errors

of fixture surfaces 1 and 2 and datum surfaces A and B, and the datum point that touches the

locating pin of the vice, pG. The nominal coordinates of these three points in FCS are denoted

as pF
D, pF

E, and pF
G. Thus, we have

HB
R ·HR

F · p̃FD = p̃BD, (A.1)

HB
R ·HR

F · p̃FE = p̃BE , (A.2)

HC
R ·HR

F · p̃FG = p̃CG. (A.3)

Since the contact points between datums and fixture surfaces have a coordinate of 0 in Z axis

w.r.t. the each datum coordinate system (note that all datum CS have a Z-axis pointing out

to the surface), the coordinate Z of points pB
D, pB

E and pC
G are equal to 0. Following the steps

in [10], previous equations can be simplified to the following expressions[
[0aF

B ]T [pF
D ×0 aF

B ]T

[0aF
B ]T [pF

E ×0 aF
B ]T

[0aF
C ]T [pF

G ×0 aF
C ]T

]
· xRF =[

[[θR
B ×0 nB

F ](3) [θR
B ×0 oB

F ](3) [θR
B ×0 aB

F ](3) θR
B ×0 tBF + dR

B ](3)] · p̃
F
D

[θR
B ×0 nB

F ](3) [θR
B ×0 oB

F ](3) [θR
B ×0 aB

F ](3) θR
B ×0 tBF + dR

B ](3)] · p̃
F
E

[θR
C ×0 nC

F ](3) [θR
C ×0 oC

F ](3) [θR
C ×0 aC

F ](3) θR
C ×0 tCF + dR

C ](3)] · p̃
F
G

]
,

(A.4)

where ](3) indicates the third component of the vector, dRB and θRB define the DMV xRB, and

vectors 0nij ,
0oij ,

0aij and 0tij are defined for an HTM as

0Hi
j =

(
0nij

0oij
0aij

0tij
0 0 0 1

)
. (A.5)

131



132 A. Calculus of induced errors in SoV Models and implementation guide to practitioners

Since the RCS is the primary datum (A-CS), xRF has only 3 non-zero values in previous Eq.

(A.4). For the fixture and part geometry given in Figure 3.4, the resolution of previous equation

is

xRF (2) = −dRCz + (pFGz − tCFy) · θRCx + (tCFx − pFGx) · θRCy
+pFGz · θRBx, (A.6)

xRF (3) = −dRBz − tBFy · θRBx + (pFEx − tBFx) · θRBy, (A.7)

xRF (4) = θRBx, (A.8)

where pFG = [tF3x, 0, t
F
3z] and the value of pFEx is the parameter a which can be 0 or Ls depending

on the fixture and part assembly.

A.2 Calculus of self-centering error due to single jaw deviations

Let us consider that the guiding slots of a 3-jaw self-centering chuck can be defined in a 2D plane

as three lines which start from the coordinate origin, separated 120◦ to each other. Each jaw can

be defined as a point located in each line, as it can be seen in Figure A.1. In this nominal case,

jaw P is located in the vertical line, with jaws Q and R named in clockwise order. Assuming a

perfectly working chuck, all jaws are separated a distance G from the origin. Therefore, given

a certain G, the position of each jaw in this ideal chuck with respect to the nominal FCS is

(xP , yP ) = (0, G),

(xQ, yQ) = (−sin(30◦) ·G, cos(30◦) ·G),

(xR, yR) = (−sin(30◦) ·G,−cos(30◦) ·G).

A cylinder held by the chuck is represented in the 2D plane as a circumference tangent to

points P, Q and R. If the jaws are perfectly self-centered, the center of the circumference will

be located in the coordinate origin. However, these jaws may present a displacement from its

self-centering position. For the sake of simplicity, the displacement, named δ, is applied to the

single jaw P. By clamping the part under this jaw displacement, the following equations hold

(xP , yP ) = (0, G+ δ), (A.9)

(xQ, yQ) = (cos(30◦) ·G,−sin(30◦) ·G), (A.10)

(xR, yR) = (−cos(30◦) ·G,−sin(30◦) ·G). (A.11)

Given that the radius of the cylinder is r and that the circumference must be tangent to all three

points, the distance from the center of the circumference to the coordinate origin expressed here

as (xC , yC) can be calculated using the following equations

(xP − xC)2 + (yP − yC)2 = r2, (A.12)

(xQ − xC)2 + (yQ − yC)2 = r2, (A.13)
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(xR − xC)2 + (yR − yC)2 = r2. (A.14)

Operating with previous equations we obtain

x2
C + y2

C − 2δyC − 2GyC +G2 + 2Gδ + δ2 = r2, (A.15)

x2
C −
√

3GxC + y2
C +GyC +G2 = r2, (A.16)

x2
C +
√

3GxC + y2
C +GyC +G2 = r2. (A.17)

Solving these equations, we obtain that the deviation of the center xC and yC as

xC = 0, (A.18)

yC =
δ2 + 2δG

2δ + 3G
. (A.19)

Finally, assuming that the displacement δ will be some orders of magnitude smaller than the

value of the distance of the jaws to the center G, the previous equation can be approximated to

yC =
δ2 + 2δG

2δ + 3G
≈ 2δG

3G
=

2

3
δ. (A.20)
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Figure A.1. Self-centering error yC due to single jaw deviation δ. Dimensions of δ have been exaggerated to

improve comprehension.

A.3 Calculus of datum-induced errors in 3-jaw self-centering

chucks

In order to calculate matrix A2, let pL be the locating pin that touches the secondary datum

defined by B-CS in a 3-jaw chuck with configuration 1, as it is shown in Fig. 3.9. The nominal

coordinates are defined as

HB
R ·HR

F · p̃FL = p̃BL . (A.21)
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Additionally, the following expressions hold

HB
R = (HR

B)−1 = (0HR
BδH

R
B)−1 = (δHR

B)−1 · 0HB
R = (I−∆R

B) · 0HB
R, (A.22)

HR
F = 0HR

F · (∆R
F + I). (A.23)

Therefore, substituting Eq. (A.22) and (A.23) in (A.21)

(I−∆R
B) · 0HB

R · 0HR
F · (∆R

F + I) · p̃FL = p̃BL . (A.24)

Neglecting the second order terms

(−∆R
B · 0HB

F + 0HB
F ·∆R

F + 0HB
F ) · p̃FL ≈ p̃BL . (A.25)

Considering that the 3 jaws and the locating points are perfect (no fixture errors), the

locating point touches the secondary datum and thus, the Z coordinate of p̃BL is zero. Therefore,

[(
−∆R

B · 0HB
F + 0HB

F ·∆R
F + 0HB

F

)
· p̃FL

]
(3)

= 0. (A.26)

Since locating pin touches the datum under nominal conditions,
[

0H2
F · p̃FL

]
(3)

= 0, then:

[
∆R
B · 0HB

F · p̃FL
]

(3)
=
[

0HB
F ·∆R

F · p̃FL
]

(3)
. (A.27)

We can rewrite the left hand of Eq. (A.27) as

[∆R
B · 0HB

F · p̃FL ](3) =


[θRB × 0nBF ](3)

[θRB × 0oBF ](3)

[θRB × 0aBF ](3)

[θRB × 0tBF + dRB](3)


T

· p̃FL , (A.28)

whereas the right hand of Eq. (A.27) is rewritten as

[0HB
F ·∆R

F · p̃FL ](3) =
[
[0aFB]T [pFL × 0aFB]T

]
· xRF . (A.29)

Solving Eq. (A.27) and reorganizing the terms, the deviation of the FCS w.r.t. RCS in Z

axis direction is defined as

xRF (3) = −dRBz − pFLx · θRBy − pFLy · θRBx. (A.30)
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A.4 Implementation guide to practitioners

In order to facilitate the industrial application of the SoV model based on workholding sys-

tems such as vices and 3-jaw chucks, we present the following step-by-step implementation

guide. Please, note that the final purpose of this guide is to estimate part quality according to

workholding specifications.

1. Identify the main key characteristics of the workholding systems to be used. For vices,

parameters such as length and height of jaws (Lv, Hv) and contact width between support

and workpiece (Ws). Additionally, position of primary, secondary and tertiary locating

features (1-CS, 2-CS and 3-CS) w.r.t. FCS should be given. For 3-jaw chucks, parameters

such as jaws position w.r.t. machine-tool +Y direction (Ω), and locator position if exists

(rloc and θloc).

2. Build matrices A2
k and A3

k according to Eqs. (3.12), (3.18), (3.19) and Eqs. (3.21), (3.22),

(3.27) for vices and 3-jaw chucks, respectively. In vices, these matrices will depend on the

relationship between datum and fixture errors (i.e., matrices ΓP and ΓF ).

3. Build the SoV model applying the methodology presented in Zhou et al. [10]. The SoV

model requires the matrices previously derived A2
k and A3

k. Include these matrices to

obtain the SoV model in the form of Eq. (3.1).

4. Identify the technical specifications of the workholding systems provided by vendors.

For vices, identify clamping accuracy, parallelism and perpendicularity of jaws; for 3-

jaw chucks, identify maximum TIR (total indicator runout) in radial and axial direction

and the dimensions of the part tested (diameter and length Dt and Lt) in the calibration

sheet.

5. Run M Monte Carlo simulations constrained to previous technical specifications to gen-

erate M possible sets of fixture errors for each stage (uFk ). Eqs. (3.14), (3.15), (3.23)

and (3.24) show some constrains for vices and 3-jaw chucks according to their technical

specifications, so the generated data should be within them.

6. Apply the SoV model using the simulated fixture errors uFk to estimate the deviation

of the inspected features from nominal values for the M simulations. An analysis of the

deviations of the inspected features for the M simulations will show the capability of the

process and the expected quality of the part.
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Appendix B

Calculus of additional matrices for

data-driven adjustment of variation

propagation models

B.1 Obtaining ~Σy

Let us detail the behavior of the diag(·) operator as

diag

([
x1 x2

x3 x4

])
=

[
x1

x4

]
.

Let B and C be two square matrices of the same size, the distributive property of the diag(·)
operator allows

diag (B + C) = diag (B) + diag (C) .

According to [174], let A ∈ Rna×n and X ∈ Rn×n be some matrices, and X is a diagonal

matrix. Then

diag
(
AXA

ᵀ)
= A◦2diag(X). (B.1)

Applying (B.1) into (4.5), and assuming that Σu is a diagonal matrix, then

~Σy = diag(Σy) = diag(ΓΣuΓ
ᵀ

+ Σv) = diag(ΓΣuΓ
ᵀ
) + diag(Σv). (B.2)

Substituting (4.7), (4.9) and (4.10) into (B.2), we obtain (4.11).

137





Bibliography

[1] Yi Wang, Hai-Shu Ma, Jing-Hui Yang, and Ke-Sheng Wang. Industry 4.0: a way from mass

customization to mass personalization production. Advances in manufacturing, 5(4):311–

320, 2017.

[2] Bianca Caiazzo, Mario Di Nardo, Teresa Murino, Alberto Petrillo, Gianluca Piccirillo, and

Stefania Santini. Towards zero defect manufacturing paradigm: A review of the state-of-

the-art methods and open challenges. Computers in Industry, 134:103548, 2022.

[3] Foivos Psarommatis, João Sousa, João Pedro Mendonça, and Dimitris Kiritsis. Zero-defect

manufacturing the approach for higher manufacturing sustainability in the era of industry

4.0: A position paper. International Journal of Production Research, 60(1):73–91, 2022.

[4] Daryl Powell, Maria Chiara Magnanini, Marcello Colledani, and Odd Myklebust. Ad-

vancing zero defect manufacturing: A state-of-the-art perspective and future research

directions. Computers in Industry, 136:103596, 2022.

[5] Foivos Psarommatis. A generic methodology and a digital twin for zero defect manufac-

turing (ZDM) performance mapping towards design for ZDM. Journal of Manufacturing

Systems, 59:507–521, 2021.
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[70] José V Abellán-Nebot. Derivation and application of the stream of variation model to the

manufacture of ceramic floor tiles. Quality Engineering, 30(4):713–729, 2018.
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