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ABSTRACT 

Personal food security means that they have physical and economic access to sufficient, safe, 

and quality food. On the other hand, there are three main causes of food insecurity: 1. the high 

vulnerability of agriculture to climate change; 2. local, national, or international conflicts; and 3. 

economic inequality. The United Nations (UN) Sustainable Development Goals (SDGs), which are 

objectives that should be attained by 2030, are targeted at both developing and developed 

nations. The second SDG, "Zero Hunger," aims to double small-scale food producers' 

productivity and earnings while promoting resilient agricultural methods and ensuring 

sustainable food production. Agriculture is heavily reliant on factors related to climate change 

conditions such as abiotic stress, which includes soil nutrient deficiencies, accelerating 

temperature rises, drought, and rising CO2 concentrations; and biotic stress, which includes 

invasive pests, disease outbreaks, and decreased crop output. Remote sensing (RS) technologies 

can provide several non-destructive methods for identifying and quantifying various types of 

stress. For the application of RS, it is relevant to consider the different types of resolution: 

spectral, spatial, temporal, and radiometric. Also, the different observation scales are ground-

based, aerial, space-based, or using orbital satellites. In this thesis, we evaluated the practical 

implementation of non-destructive methods using RS technologies across the four chapters. 

Moreover, we compared the maturity levels between different types of technologies using 

Technological Readiness Level (TRL) assessments. In the first chapter, our objective was to 

estimate the grain yield of the maize under low nitrogen using Vegetation Indices (VIs) from RGB 

(Red, Green, Blue composite color images) sensors at the ground and aerial levels in Sub-Saharan 

Africa (SSA). We developed an RS system in the second chapter to monitor an early warning fall 

armyworm (FAW) across SSA. In the third one, using leaf spectral reflectance and advanced 

regression models, we estimated the Vc,max, and Jmax of soybean and peanut. And in the last 

chapter, we developed a user-friendly mobile app for the Middle East and North Africa (MENA) 

countries for plant disorders detection on tomatoes, cucumbers, peppers, and quinoa, covering 

everything from data collection to deep learning model creation, to web and mobile app launch. 

Different RS technologies were used in different countries at different scales and with different 

types of sensors. Nevertheless, it was very relevant to consider the objectives of each study 

because they determined the type of spectral, spatial, and temporal resolution and the scale of 

observation. Regarding the TRLs across the four chapters, they suggest that the level of 

technology readiness depends on the goals, the time to develop the project, the amount of data 

collection required, and the robustness of the validation. 
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INTRODUCTION 
 

Food Security and the Second Sustainable Development Goal (SDG 2) “Zero Hunger” 

Food security exists when all individuals have physical and economic availability to sufficient, 

safe, and quality food; and so that they are able to meet their own dietary needs for food and 

nutritional preferences to sustain an active and healthy life (Zolfaghari and Farzaneh 2021). New 

evidence shows that the number of hungry people in the world is growing, reaching more than 

820 million in 2018 (von Grebmer et al.,2018). There are three main causes of food insecurity: 

(i) High exposure and vulnerability to climate extremes: the climate variability and extremes are 

a rising trend not only in terms of frequency but also particularly impacting less developed 

countries where agriculture is key but at the same time is more affected by the climate 

extremes. (ii) Conflicts are a key driver of severe food crises and recently re-emerged as famines, 

while hunger and undernutrition are significantly worse where conflicts are prolonged and 

institutional capacities weak. (iii) Economic slowdown: Income inequality increases the 

likelihood of severe food insecurity, and this effect is 20% higher for low-income countries 

compared with middle-income countries. (Boliko 2019) 

The definition, principles, and dimensions of the United Nations’ sustainable development goals 

(SDG) were focused on how integrated social, economic, and environmental issues can be 

approached together in order to answer the challenges of sustainable development at the global 

level and create a better life and lifestyle for the people in this world regardless of their origin, 

race, or religion (Tanumihardjo et al. 2020). Regarding the SDGs, there are 17 that were 

established in 2015 by the United Nations (UN), which were set to be achieved by 2030, and 

were focused on developing and developed countries, since concerted action among all 

countries is the only way to achieve prosperity without threatening planetary boundaries 

(Steffen et al. 2015; Christian Kroll 2017) 

With respect to SDG number 2, also called "Zero Hunger", it centers on bringing an end to 

hunger, food security, attaining better nutrition, and encouraging agricultural sustainability. This 

SDG is composed of eight targets, e.g., specific, measurable, and time-bound outcomes that 

directly contribute to the achievements of a goal. The 5 principal targets outlined by 2030 are: 

2.1 End hunger and ensure access to safe nutritious and sufficient food; 2.2 End all the forms of 

malnutrition; 2.3 Double the productivity and incomes of small-scale food producers; 2.4 Ensure 

sustainable food production systems and implement resilient agricultural practices; and 2.5 

Maintain the genetic diversity of seeds, plants, and animals. On the other hand, the last 3 targets 

are focused implementing mechanisms to 2.a) increase investment through enhanced 
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international cooperation; 2.b) correct and prevent trade restrictions and distortions in world 

agricultural markets; 2.c) ensure the proper functioning of food commodity markets and their 

derivatives, and also facilitate timely access to market information (Otekunrin et al. 2019; 

Tanumihardjo et al. 2020). 

Agriculture is highly dependent on climatic conditions. There are studies that have indicated that 

most crop yields negatively respond to an increase in temperature (Ureta et al. 2020). Also, long-

term changes in climatic conditions are also likely to increase the occurrence of extreme weather 

events (Cobián Álvarez and Resosudarmo 2019), and can initiate and alter the timing of pest and 

disease outbreaks (Nelson et al. 2009), reduce water nutrient use efficiency, and increase yield 

variability (Asplund et al. 2014). All these factors affect the lower limits of agricultural 

productivity and can undermine global efforts to reduce the SDG 2 goal of eradicating hunger. 

Negative effects of global change are becoming more frequent and lead, without swift and 

effective management responses, to decreases in crop productivity (Atzberger 2013). Due to 

climate change impacts, adaptation plans have been initiated against it.  

With respect to the agricultural sector, farmers have been employing diverse adaptation plans 

and strategies. The major agricultural adaptation exercised by small farmers includes 

adjustments in farm operation timing, on-farm diversification, and soil-water management by 

improving irrigation, managing disease, and treating different nutrition deficiencies (Below et 

al. 2012; Jawid and Khadjavi 2019).   

For the detection and quantification of biotic and abiotic stresses in agricultural crops, 

destructive and non-destructive methods can be used. Some quantitative methods provide 

sensitive analyses of molecules in biological systems, also known as high-throughput “-omics” 

techniques, i.e., metabolomics, genomics, proteomics, etc. (Fiehn 2001). However, these 

methods are not only destructive but also time-consuming and costly, limiting their use in 

continuous monitoring and scalable research (Galieni et al. 2021). As for non-destructive 

quantitative methods, remote sensing (RS) technologies can be considered either established or 

under development, such as imaging spectroscopy, fluorescence spectroscopy, and thermal and 

microwave RS, which all provide insights into the symptoms of stress in plants.  In contrast to 

“omics” techniques, RS can be applied at larger spatial scales, with high revisit frequency, hence 

enabling the cost-effective detection of crop stress status and spatiotemporal dynamics across 

cultivated landscapes. Furthermore, RS is suitable for global coverage, affordable approaches 

exists and can thus potentially contribute to enhanced food security in developing countries 
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(Rembold et al. 2000). RS also provides effective means to help mitigate farmers' risks against 

production loss, for example using index-based insurance solutions (de Leeuw et al. 2014). 

 

Remote Sensing for Agriculture 

Plants interact with sunlight differently depending on the wavelength observed, in this sense, 

incident solar radiation can follow three pathways; it can be transmitted, reflected, or absorbed 

(Fig. 1). The electromagnetic radiation that is reflected by plants contains information about 

their biophysical composition and physiological status and can be measured using different 

sensors at different scales. Regarding the visible (VIS) domain, the leaf pigments present in green 

leaves are strongly absorbed in this region of the spectrum (400-700nm), especially in the blue 

and red wavelengths, where energy is captured for photosynthesis. Meanwhile, in the near 

infrared (NIR), from approximately 700 to 1300 nm, leaves exhibit high reflectance values and 

transmission, related to cell structure and biomass, and absorb less radiation in this spectral 

region. Also, plant canopy structure and leaf area are also fundamental traits and key 

parameters for monitoring growth. With respect to the part of the shortwave infrared (SWIR), 

from approximately 1300 to 2500 nm, the absorption of radiation is largely dominated by water 

contents and leaf biochemicals (Gerhards et al. 2019; Buchaillot et al. 2022).   

 

Fig. 1 The interaction between sunlight and plant; incident solar radiation can follow three 

pathways: it can be transmitted, absorbed, and reflected. The crop reflectance spectral features, 

the visible (VIS) leaf pigments, the near infrared (NIR) cell structure, and the shortwave infrared 

(SWIR) water content and leaf biochemicals. 
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Concerning agriculture, in situations where crops interact with any given aspect of their 

environment (seasonal climatic variations, meteorological extreme events, pests, soil 

properties, etc.) or as crops grow and pass through different phenological stages, the 

interactions between plants and light reflectance translate into changes in plant signal patterns 

that can be interpreted using different sensors. The use of RS instruments to monitor 

electromagnetic radiation reflectance changes in crops is well demonstrated in the scientific 

literature; for example,  estimating contents of chlorophyll, xanthophyll, nitrogen, phosphorous, 

fiber,  sucrose, and photosynthetic capacity (Gamon et al. 1997; Peñuelas and Filella 1998; 

Petisco et al. 2006; Koester et al. 2014; Serbin et al. 2014; Dechant et al. 2017; Yendrek et al. 

2017a; Buchaillot et al. 2018, 2022). In addition, the majority of proposed methods rely on 

parametric regressions, i.e. use of the spectral bands, vegetation indices (VIs) or spectral ratios 

and their relationships with functional traits linked to plant stress (Govender et al. 2009; 

Gerhards et al. 2016; Herrmann et al. 2020). However more advanced statistical methods, 

including machine learning may allow to fully explore the potential capabilities of the different 

RS approaches. Regarding VIs, the Normalized Difference Vegetation Index (NDVI), one of the 

most common remote sensing indexes, provides a simplified yet reliable estimate of green 

biomass (Tucker 1979). NDVI is derived from visible and near-infrared reflectance, which is 

closely related to vegetation presence or vigor and can also be measured at the ground level 

with portable sensors (Thenkabail et al. 2002). Similarly, for two of these well-known indexes, 

there are the low-cost alternatives in the Red-Green-Blue (RGB) indexes, taken from commercial 

RGB cameras. For example, the Green Area (GA) index represents the percentage of pixels in the 

image that ranges from yellow to bluish-green color as calculated by the open-source software 

BreedPix and FIJI (Casadesús and Villegas 2014; Kefauver et al. 2020). 

With respect of RS, it is central to understand the different types of resolution and the different 

observation scales. Because they determine the monitoring capacities of the RS in the 

agricultural systems. Regarding resolution, four parameters are central to approaching a better 

understanding of the aims and scope of these instruments: the spectral, spatial, temporal, and 

radiometric. 

Spectral resolution 

The spectral resolution being the wavelength width and the number of the different frequency 

bands recorded by the detector which determine the spectral signatures used to assess the 

objects by remote sensing. The spectral data range could be from 400 to up to 2500 nm.  Many 

23



sensors only cover a limited part of this range, namely the VIS and NIR from about 400 to 1000 

nm, on the other hand measuring information from 1100 to 2500 nm in reflectance is possible 

but requires different more expensive radiation detection sensors. There are different types of 

commercial sensors, RGB cameras with VIS spectral coverage (Buchaillot et al. 2019; Gracia-

Romero et al. 2019) and multispectral cameras for agriculture where they use VIS and some 

bands from the NIR (Gracia-Romero et al. 2017). There are also sensors that cover the whole 

spectro-radiometer range of 350-2500nm such as ADS Field Spec Hi-Res 4, e.g., Yendrek et al. 

2017; Buchaillot et al. 2018; Silva-Perez et al. 2018. In addition, there are hyperspectral cameras 

that have all continuous overlapping bands that provide full coverage bands from 400 to 900 

part of VIS and NIR (Meacham-Hensold et al. 2019; Fu et al. 2020). In all these sensors with 

different bands, each band presents a specific width standardized measurement is at the point 

of the full-width half maximum (FWHM) of its full light sensitivity determines its spectral 

resolution.  In addition, we may mention the thermal infrared (TIR) sensors which work in the 

wavelength range between 7000 and 14000 nm. Even when these sensors are traditionally very 

expensive their cost have decreased dramatically in recent years.  

Spatial resolution 

The spatial resolution, which is the measure of the smallest object that can be resolved by the 

sensor, depend on pixel size.  In the Fig. 2 we can see different resolutions, from satellite images 

with 10 m of resolution per pixel to mobile phone pictures with 0.001 m of resolution per pixel.  

Besides, some satellites have 1 km or greater spatial resolution, and therefore those are not 

always useful for small farmers. The type of resolution depends on the sensor and the type of 

platform that you use to monitor your study. The spatial resolution can change on adjustable 

platforms, like unmanned aerial vehicles (UAVs) because they depend on the flying height and 

the type of the commercial sensor but are usually fixed on satellites. 

 

Fig. 2 Examples of different spatial resolutions. a) Calculated NDVI with Sentinel bands with a 

resolution of 10 m/pixel. b) Calculated NDVI with Planet Scope bands with a resolution of 3 
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m/pixel. c) Photo taken with a DJI Phantom 4 UAV at 50 m of altitude, and with a resolution of 

0.01 m/pixel. d) Photo taken with a multispectral camera at 5 m of altitude, and with a resolution 

of 0.06 m/pixel. e) Photo taken an RGB camera at 5 m of altitude, and with a resolution of 0.009 

m/pixel. f) Photo taken with a mobile phone with a fisheye-adapter from below, and with a 

resolution of 0.001 m/pixel. 

Temporal resolution 

Temporal resolution which is a measure of the frequency with which a sensor revisits the same 

area of the study. Temporal resolution is a relevant parameter to consider; an open-source 

satellite, such as Sentinel 2 a+b captures image data each 5 days and Landsat captures data each 

16 days. A satellite’s temporal resolution use to be fixed, regarding aerial or ground level 

platforms. These last platforms are more flexible since the temporal resolution can be adjusted 

as needed depending on the aim of the study. 

Finally, the radiometric resolution is defined as the number of different intensities of radiation 

the sensor can distinguish. the ranges from 8 to 14 bits corresponding to 256 levels of greyscales 

and up to 16.384 intensities in each band (Thenkabail et al. 2002). Also, it is a combination of 

two components related to the design and operation of sensor systems (Verde et al. 2018). The 

first component is sensor system noise and the second is the number of quantizing levels present 

in the analog to digital converter of the sensor system (Rao et al. 2006). 

Observation scales 

Moreover, the RS technologies, with respective controllers and data loggers that complement 

the sensor systems, may be assembled into what is termed high throughput phenotyping 

platforms, HTPPs (Araus and Kefauver 2018; Araus et al. 2018; Jin et al. 2020). Regarding the 

matching of ecological, agricultural, and remote sensing scales, we currently find that, based on 

individual plants, plant communities, and agroecosystems, different RS technologies may 

provide coverage across canopy and landscape scales (Homolová et al. 2013). The concept of 

the phenotyping platform is widely used now and embraces a varied range of options in terms 

of placement: ground, aerial, and space level (Fig. 3, (Jin et al. 2020)). Within the category of 

ground levels, the range of options is very wide: from a simple hand-held sensor, including for 

example monopods, and tripods carrying any sensors from a simple yet effective RGB color 

camera, to a complex ground vehicle of diverse natures, which are generally named as 

“phenomobiles”, and include tractor-mounted sensors and mobiles cranes. Moreover, there are 

the stationary platforms that are simultaneous and fully automated, fixed-site phenotyping 

equipment. They can carry sensors for the noninvasive estimation of crop growth, physiology, 
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morphology, and health (Jin et al. 2020). Also, the hand-held category platforms, smartphones 

are becoming an attractive alternative given that they may capture different images (e.g., RGB 

and thermal), data management activities, and geo-referencing functions (Araus and Kefauver 

2018). In addition, in this category one may also include highly complex stationary facilities. 

Cable-based robotics system are also becoming an alternative for outdoor, i.e., field 

phenotyping (Virlet et al. 2017). Regarding aerial platforms, aerial vehicles of different nature 

are being widely used, particularly UAV, popularly known as drones, the sensors that they most 

frequently carry out include RGB cameras, multispectral, hyperspectral, and thermal sensors, or 

imagers (Aasen et al. 2018; Buchaillot et al. 2019). Multi-rotor UAVs are often used in crop 

breeding programs because they offer convenient vertical take-off and landing capacities and 

adapt easily to carrying different payloads. Nevertheless, other unmanned options, e.g., fixed-

winged UAVs, are often used where the crop area to monitor is larger than a few hectares and 

for more standardized and operative precision agriculture activities that don’t require changing 

payloads. Other alternatives such as manned aircraft are less used by crop breeders given the 

lower costs of these unmanned alternative (Maes and Steppe 2019). 

 

Fig. 3 Different Categories of Ground and Aerial Phenotyping Platforms. Ground level: these 

include from Handheld sensors (in this case just a person holding a mobile), to Phenopoles, 

Phenomobiles, and Stationary Platforms. From 10 to 100 m: Unmanned Aerial Vehicles, as 

drones of different sizes and compactness, fixed-wind drone. From 100 to 4000 m Manned 
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Aerial Vehicles as airplanes or helicopters. Different categories of satellites (Nanosatellite, 

Microsatellite and Satellites) from 50 to 700 km. 

Space-based or orbital satellite sensors are not much used for crop phenotyping due to practical 

limitations related to the lack of free sub-meter resolution data (pixels are larger than the more 

standard phenotyping microplot sizes), and cloud cover; but they are of increasing interest in 

precision agriculture, crop classifications, and time-series phenology, etc. (Cheng et al. 2020; 

Segarra et al. 2020; Tsakmakis et al. 2021). 

Furthermore, RS technologies provide coverage across a range of plant physiological processes 

from evapotranspiration and photosynthesis to phenology dynamics, productivity, and even 

quality traits such as those of a crop’s harvestable component nutritional value. In conclusion, 

the spatial, temporal, and spectral resolutions of any sensor system are central to determining 

the scale(s) and precision(s) at which an instrument can monitor crops, and therefore the most 

adequate approach towards guiding agricultural monitoring. 

Technological Readiness Levels 

Technological Readiness Levels (TRL) are a set of management metrics that enable the 

assessment of the maturity of a particular technology (Fig.4). They provide a means for the 

consistent comparison of maturity levels between different types of technology all in the context 

of a specific system, application, and operational environment (Osinga et al. 2022). It is based 

on a scale from 1 to 9, with 9 being the most mature technology (EARTO 2014). The main 

objective of using TRLs is to help make decisions related to technology development. This 

concept was first developed at the National Aeronautics and Space Administration (NASA) 

during the 1970s for the space program and was subsequently formally adopted worldwide 

(Mankins 1995). In 2008, the scale was also used by the European Space Agency (ESA) (Kluk et 

al. 2008). And in 2013 the TRL scale was formalized through the ISO 16290 (EARTO 2014).  

On the other hand, new opportunities for agriculture are emerging, as a result of the rapid 

development of communication networks and the availability of a wide range of remote and 

proximal sensors as mentioned above. (Wang et al. 2006; Aqeel-Ur-Rehman et al. 2014; Toth 

and Jóźków 2016). These new technologies can gather, process, and analyze data from the agro-

environment (e.g., soil, crop, and climate), and, when combined with agro-climatic and 

economics models, technical interventions can be applied at the field level by either 

conventional means or automated solutions.  
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All these aspects are called "smart farming technologies" (SFTs) which represents the application 

of modern information and communication technologies (ITC) into agriculture (Walter et al. 

2017; Bacco et al. 2019). Smart farming is based on precise and resource-efficient approaches 

and attempts to achieve higher efficiency in agricultural goods production with increased quality 

on a sustainable basis. Nevertheless, from the point of view of the farmers, it should also provide 

added value in the form of more accurate and timely decision-making and/or more efficient 

exploitation operations and management (Kernecker et al. 2020). The SFTs can be divided into 

three main categories: farm management information systems (FMIS), precision agriculture (PA) 

systems, and agricultural automation and robotics.  

Regarding PA, the general aim is at optimizing input use based on recording technologies to 

observe and measure inter- and intra-field spatial and temporal variability in crops, aiming to 

improve economic returns and reduce environmental impact (Balafoutis et al. 2020). PA is able 

to increase input efficiency for maintaining or even increasing production rates (Zhang et al. 

2002; Schellberg et al. 2008; Balafoutis et al. 2017), using remote sensing technologies for data 

gathering with either satellite platforms for space imagery (Ge et al. 2011; Andrade-Sanchez et 

al. 2014) or aircrafts/UAVs for aerial applications (Zhang and Kovacs 2012; Mogili and Deepak 

2018), combined use of sensors for ground data acquisition (Reyns et al. 2002), wireless 

networks for interconnecting them (Jawad et al. 2017), geospatial data analytics coming from 

different sources (Nash et al. 2009), decision support systems (DSSs) for optimized farming 

decision-making (Kuhlmann and Brodersen 2001; Lindblom et al. 2017), and others. 
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Fig. 4 The scale of Technological Readiness Levels (TRL) from 1 to 9 with the definitions.  

At TRL 1, basic principles are observed and reported, and scientific research begins to be 

translated into applied research and development (R&D). In TRL 2, technology concepts and/or 

applications are formulated, practical applications can be invented, and research started. These 

applications are speculative and may be unproven. The TRL 3 tests analytical and experimental 

critical functions and/or characteristics as a proof-of-concept, with active R&D, initiated 

including analytical/laboratory studies to validate predictions regarding the applied 

technologies. These are the lowest categories of TRLs and relate to research, which applications 

that are experimental and have little more intention than to test a conceptual model or theory 

(1-3).  

TRL 4 provides functional verification in the laboratory environment, where basic technological 

components are integrated to establish that they will work together, named the experimental 

pilot. TRL 5 is a demonstration pilot project, in which the components and validation are in the 

relevant environment. Where the basic technological components are integrated with 

reasonably realistic supporting elements so that they can be tested in a simulated environment. 

TRL 6 indicates a system/subsystem model or prototype demonstration in a relevant 

environment (ground or space). Where a representative model or a prototype system is tested 

in a relevant environment, industrial pilot. These categories consist of big data solutions that 

aim for development in the real world, but on a small scale, perhaps still in a controlled 

environment (levels 4-6).   

TRL 7 is the first implementation with industrialization detailed scope. The prototype system is 

near/or at the planned operational system. Level 8 is when few records of implementation and 

the technology have been proven to work in its final form under expected conditions, release 

version. In the last TRL 9, extensive deployment, the system incorporating the new technology 

in its final form has been used under actual conditions. The highest TRL category is reserved only 

for applications that are operating in real-world environments and have all potential to be 

adopted on a large scale (levels 7-9) (Kluk et al. 2008; Maciejczak and Faltmann 2018; Pylianidis 

et al. 2021; Osinga et al. 2022). 

As was mentioned before, the TRL indicates its maturity level and ranges from TRL1 (basic 

principles observed) to TRL 9 (actual system proven in operational environment). Based on this 

classification, the TRL was specified for the four chapters presented in the dissertation: 
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For the first chapter, can we choose the best performing cultivars and estimate maize grain yield 

under low nitrogen conditions utilizing VIs from an RGB camera at ground and UAV level in the 

first chapter? What TRL is it? 

For the second chapter, can we develop an RS supplemental system to the FAO FAW monitoring 

and early warning systems (FAMEWS) mobile app for the second chapter? What TRL is it?  

For the third chapter, using leaf spectral reflectance and advanced regression models, can we 

estimate the Vc,max and Jmax of soybeans and peanuts in the third chapter? What TRL is it?  

For the fourth chapter, can we develop a system from data collection to recognition of diseases 

and nutrient deficiencies using RGB images and deep learning?  Which TRL is it? 
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OBJETIVES 

General aim 

The evaluation of the remote sensing technology applied in the four distinct chapters and the 

comparison of technical maturity levels using the technological readiness levels (TRL) to advance 

the state of the art of remote sensing applications in international agricultural development.  

Specific aims 

Chapter 1. In this study we examined the potential of vegetation indices calculated from a RGB 

camera as an affordable HTPP tool to accurately phenotype commercial and pre-commercial 

maize genotypes under low- and optimal nitrogen fertilizer (N) conditions. Firstly, we evaluated 

the performance of a set of remote sensing RGB VIs from natural color images acquired at the 

ground level and from a UAV platform compared with the performance of the field based NDVI 

and SPAD sensors. Additionally, we evaluated how these different sets of plant phenotyping 

data contribute to improving multivariate model estimations of crop yield in combination with 

traditional agronomic field data, such as anthesis silking interval (ASI), anthesis data (AD), plant 

height (PH), and canopy senescence (SEN) in order to determine the level of improvements over 

traditional practices that they may provide. Field trials were carried out at the Southern Africa 

regional station of CIMMYT (International Maize and Wheat Improvement Center) located in 

Harare, Zimbabwe. 

Chapter 2. The general aim of this study was to implement a cost-effective assessment for FAW 

Monitoring and Early Warning System (FAMEWS) on maize fields using different remote sensing 

technologies.  We have divided this work into two parts: i) Development of satellite image-based 

monitoring algorithm through Google Earth Engine for Sentinel 2 a+b and FAO FAMEWS mobile 

application data. ii) Time series anomaly change detection and first derivative growth pattern 

analyses of NDVI using Sentinel 2 and Planet Scope image data during the maize vegetative 

growth stage, where FAW presence will result in a reduction of the LAI or total green biomass 

(NDVI) of the crop. Field trails were carried out on small farmers from three sub-Saharan African 

countries Zimbabwe, Kenya and Tanzania. 

Chapter 3. The aims of this study were (i) to estimate photosynthetic capacity parameters, such 

as mid-day photosynthesis, leaf chlorophyll content (LCC), Vc,max, and Jmax of two legume crops 

(soybean and peanut) using full-range leaf level reflectance spectra (VIS–NIR–SWIR, 400–2500 

nm) with advance regression models and (ii) to simulate photosynthetic parameter model 

performance using four common types of sensors with more limited wavelength ranges: VIS–

NIR (350–1000 nm), NIR–SWIR (1000–2500 nm), SWIR (1400–2500 nm), and an advanced 
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multispectral sensor imitating the ESA Copernicus Sentinel 2 satellite with 12 spectral bands. 

Trails were carried in the University of Auburn and the USDA from Alabama, United States. 

 

Chapter 4. The aim is to develop together four countries, Spain, the United Arab Emirates (UAE), 

Egypt, and Tunisia a user-friendly app for the automatic detection of plant diseases and 

disorders identification on tomato, cucumber, and pepper using project consortium local or 

cloud-based supercomputing. The study was divided into four parts: (I) dataset collection; (II) 

dataset curation; (III) development of the algorithm, and (IV) accessibility of the use of the CNN 

model. 
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Tel. 934 021 46 

Dr. Shawn C. Kefauver and Dr. José Luis Araus, as directors of the thesis entitled “Multiscale and 

multi-sensor remote sensing in international agricultural development” which was developed 

by the doctoral student Maria Luisa Buchaillot, report about the impact factor and the 

participation of the doctoral student in the different chapters included in this doctoral thesis. 

Chapter 1. This chapter is represented by the published scientific article. Buchaillot, M.L., Gracia-

Romero, A., Vergara-Diaz, O., Zaman-Allah, M.A., Tarekegne, A., Cairns, J.E., Prasanna, B.M., 
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https://doi.org/10.3390/s19081815. Sensors MPDI in 2019 with an impact factor of 3.677, is a 
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Plant Science. To date, this work has accumulated 56 citations (Google Scholar, revised in Nov. 
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J.; Hamadziripi, E.; Wilson, K.; Hughes, D.; Chelal, J.;McCloskey, P.; Kehs, A.; Clinton, N.; Araus, 

J.L.; Kefauver, S.C. “Regional Monitoring ofFall Armyworm (FAW) Using Early Warning 

Systems.” Remote Sens. 2022, 14, 5003. https://doi.org/10.3390/rs14195003. Remote Sensing 

MDPI, in October 2022, at which time the journal had an impact factor of 5.349 and a Cite score 

of 7.4 and is first quartile, Q1, in its fields of research. Maria Luisa Buchaillot took a role 

participating in the field evaluation campaign in Tanzania, Kenya, and Zimbabwe. She wholly and 

39

https://doi.org/10.3390/s19081815
https://doi.org/10.3390/rs14195003


independently led the data curation, data processing, further statistical and graphical processing 

of all the relevant information for the study.  
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curated it for statistical processing using supercomputing facilities through Google Colab. She 
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Abstract: Maize is the most cultivated cereal in Africa in terms of land area and production, but low
soil nitrogen availability often constrains yields. Developing new maize varieties with high and
reliable yields using traditional crop breeding techniques in field conditions can be slow and costly.
Remote sensing has become an important tool in the modernization of field-based high-throughput
plant phenotyping (HTPP), providing faster gains towards the improvement of yield potential and
adaptation to abiotic and biotic limiting conditions. We evaluated the performance of a set of remote
sensing indices derived from red–green–blue (RGB) images along with field-based multispectral
normalized difference vegetation index (NDVI) and leaf chlorophyll content (SPAD values) as
phenotypic traits for assessing maize performance under managed low-nitrogen conditions. HTPP
measurements were conducted from the ground and from an unmanned aerial vehicle (UAV).
For the ground-level RGB indices, the strongest correlations to yield were observed with hue,
greener green area (GGA), and a newly developed RGB HTPP index, NDLab (normalized difference
Commission Internationale de I´Edairage (CIE)Lab index), while GGA and crop senescence index
(CSI) correlated better with grain yield from the UAV. Regarding ground sensors, SPAD exhibited
the closest correlation with grain yield, notably increasing in its correlation when measured in
the vegetative stage. Additionally, we evaluated how different HTPP indices contributed to the
explanation of yield in combination with agronomic data, such as anthesis silking interval (ASI),
anthesis date (AD), and plant height (PH). Multivariate regression models, including RGB indices
(R2 > 0.60), outperformed other models using only agronomic parameters or field sensors (R2 > 0.50),
reinforcing RGB HTPP’s potential to improve yield assessments. Finally, we compared the low-N
results to the same panel of 64 maize genotypes grown under optimal conditions, noting that only 11%
of the total genotypes appeared in the highest yield producing quartile for both trials. Furthermore,
we calculated the grain yield loss index (GYLI) for each genotype, which showed a large range of
variability, suggesting that low-N performance is not necessarily exclusive of high productivity in
optimal conditions.

Keywords: maize; nitrogen; phenotyping; remote sensing; Africa; RGB; UAV; CIELab
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1. Introduction

Maize is the most commonly cultivated cereal in Africa in terms of land area and production [1].
Low yields in this region are largely associated with drought stress, low soil fertility, weeds, pests,
diseases, low input availability, low input use, and inappropriate seeds [2]. After water, nitrogen (N)
is the single most important input for maize production, and the lack of N is considered to be the
principal constraint to cereal yields in areas with more than 400 mm of average annual rainfall in
Sub-Saharan Africa (SSA) [3], but fertilizer application in SSA is negligible, accounting for less than 1%
of the global N fertilizer application [4]. As such, efforts to increase maize production capacities in
low fertilizer conditions may contribute substantially to improving food security and well-being in
the region [5]. One of the strategies considered for increasing maize yield with regards to N inputs in
SSA is breeding to improve yield under nutrient deficiency or towards specific adaptation to increase
performance under low-nitrogen conditions. Furthermore, the adaptation of maize to lower fertilizer
conditions may improve agricultural economics at equal or even better levels of production with
lower required inputs, less runoff, and resource extraction that may additionally result in reducing
environmental degradation and the loss of ecosystem services [6–8].

Plant scientists, especially breeders and agronomists, face the challenge of solving these limitations
while considering the additional implications of climate change on food security [2,9]. In that
sense, affordable technologies capable of monitoring crop performance, improving yield prediction,
or assessing phenotypic variability for breeding purposes are aimed at surpassing the bottlenecks in
the way of full exploitation of this technology [10,11]. One of the first non-destructive and analytical
tools was the chlorophyll meter, based on radiation absorbance by leaves in the red and near-infrared
regions (usually at 650 and 940 nm). These leaf level relative chlorophyll content readings have an
indirect and close relationship with leaf N and total chlorophyll concentrations [12,13]. Portable meters
have been used for some time on crops as a fairly quick and reliable method for N management [14,15],
but this technique is relatively slow compared with newer imaging techniques and does not include
the whole plot, thereby capturing less variability than full canopy remote sensing techniques [16].

Remote sensing has become an important tool in the modernization of field-based high throughput
plant phenotyping (HTPP), including improvements in yield potential, adaptation to abiotic stressors
(drought, extreme temperatures, salinity), biotic limiting conditions (susceptibility to pests and
diseases), and even quality traits [5,10,17]. Traditionally, the primary platforms used to obtain remote
images of the Earth’s surface were satellites and piloted aircrafts, but these instruments generally do
not deliver data at adequate spatial and temporal resolutions necessary for more detailed agricultural
applications, such as plant phenotyping [18]. Currently, these limitations can be overcome using more
flexible unmanned platforms, such as unmanned aerial vehicles (UAVs), also called remotely piloted
aircraft systems (RPASs) or unmanned aircraft systems (UASs) [19,20]. UAVs allow for many quick,
precise, and quantitative observations at improved spatial and temporal resolutions and at lower costs
with respect to airborne platforms or satellites.

The classical approach of remote sensing platforms, including UAVs, has involved the use
of multispectral sensors and the calculation of different vegetation indices associated with plant
physiological parameters, such as plant pigments, vigor, and above-ground biomass. In this sense,
visible and near-infrared (VNIR) imaging spectroscopy has demonstrated a fairly reliable capacity in
biophysical crop assessments in agriculture [21–27]. For example, the normalized difference vegetation
index (NDVI) [28] is a well-known, broadband vegetation index derived from visible and near-infrared
reflectance that is closely related to vegetation presence or vigor [29,30]. It can also be measured at
the ground level with active portable sensors (e.g., GreenSeeker). Other examples use narrow-band
reflectance values for more precise measurements [31] and are often found to be correlated with grain
yield and provided reliable information for yield forecasting [32] or specific biophysical properties,
such as canopy water content [33] or photosynthetically active pigments, [23,34,35] but require more
advanced sensor technologies for adequate quantification. Similarly, thermal infrared (TIR) imaging
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enables rapid remote observations of plant water status via their cooling capacity and stomatal
conductance [36,37].

As a low-cost alternative, and at an order of magnitude less expensive than scientific multispectral
VNIR or TIR sensors, various red–green–blue vegetation indices (RGB VIs), calculated from commercial
RGB cameras, have demonstrated their ability to predict grain yield, quantify nutrient deficiencies,
and measure disease impacts [38,39]. With respect to these commercially available RGB cameras, color
calibration quality should be assessed prior to scientific use for checking and/or correcting variations in
RGB color values, as illumination conditions may influence the accuracy of color reproduction [40,41].
On the other hand, when these types of camera are used for producing multi-image mosaics, within
image vignetting should also be assessed, as brightness attenuates away from the image center and
appears as artifacts in the image mosaics [42]. Still, RGB VIs can accurately quantify different properties
of color and have often demonstrated performance levels similar to or better than NDVI [39]. RGB
images can be processed using comparisons between red, green, and blue light broadband reflectance
values or through the use of alternate color spaces, as with the Breedpix code suite [43]. The treatment
of R, G, and B as separate spectral bands allows for the calculation of the triangular greenness index
(TGI), which estimates chlorophyll concentration in leaves and canopies [1], and the normalized
green–red difference index (NGRDI), which compares the differences between the green and red bands
in a calculation similar to NDVI but with less marked differences and less signal saturation. In the
hue–saturation–intensity (HSI) color space, where the hue (H) component describes color chroma
traversing the visible spectrum in the form of an angle between 0◦ and 360◦. Thus, the index green area
(GA) is the percentage of pixels in the image in the hue range from 60◦ to 180◦, ranging from yellow to
bluish green, while the greener green area (GGA) includes a more restrictive range of hue from 80◦

to 180◦, excluding yellowish-green tones that might be partially stressed or senescent. Hence comes
the crop senescence index (CSI), which combines GA and GAA to provide a strong discrimination
between tolerant and susceptible genotypes in various treatments [44,45].

To the end of better quantifying leaf pigment loss, and therefore color changes, due to nitrogen
deficiency [46,47], further investigation of the capacities and techniques for accurate color quantification
using digital images indicates that there are newer more advanced color models currently in use by
photography professionals. In the Commission Internationale de I´Edairage (CIE), CIELab color space
model, dimension L* represents lightness; the a* component expresses green to red, with a more
positive value representing red, and a more negative value indicating green; and the b* component
expresses blue to yellow, in which positive values are towards yellow, and negative values are closer
to blue. Correspondingly, in the CIELuv color space model, dimensions u* and v* are perceptually
uniform coordinates, where L is again lightness and u* and v* represent axes similar to a* and b* in
separating the color spectrum, respectively. For more specific details on the development of these
alternate color space RGB indices and their respective transformations, please see [48]. Both CIELab
and CIELuv include color calibration corrections through the separation of the color hue from the
illumination components of the input RGB signal; for that reason, we have developed two new
vegetation indices using these color spaces in a way similar to the conceptual basis for NDVI, using the
normalized difference between a* and b* (NDLab) and the normalized difference between u* and v*
(NDLuv). Thus, the CIElab and CIEluv color spaces offer the ability to simultaneously contrast green
vegetation quantity with both the reddish/brown soil background (fractional vegetation cover or plant
growth) and yellowing caused by chlorosis (loss of foliar chlorophyll)—both common symptoms of
nitrogen deficiency. Previously, RGB VIs have been employed at both the canopy and at the leaf levels
for precise crop management or as effective HTPP techniques in breeding programs aimed to improve
crop performance under a wide range of conditions [10].

In the research presented here, the RGB VIs described above, namely hue, a*, b*, GA, GGA,
NGRDI, and the new NDLab and NDLuv, are examined for their potential as affordable HTPP tools to
accurately phenotype commercial and pre-commercial maize genotypes under low- and optimal-N
conditions. Firstly, we provide some maize genotype performance comparisons between the low-N
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and optimal growing conditions in order to provide some initial insights on the potential of selecting
for low-N-adapted maize genotypes. Then, we evaluate the performance of a set of remote sensing
RGB VIs from natural color images acquired at the ground level and from a UAV platform compared
with the performance of the field-based NDVI and SPAD sensors. Additionally, we evaluated how
these different sets of plant phenotyping data contribute to improving multivariate model estimations
of crop yield in combination with traditional agronomic field data, such as anthesis silking interval
(ASI), anthesis data (AD), plant height (PH), and canopy senescence (SEN) in order to determine the
level of improvements over traditional practices that they may provide.

2. Materials and Methods

2.1. Plant Material and Growing Conditions

Field trials for managed low-nitrogen and optimal fertilizer conditions were conducted at the
International Center for Maize and Wheat Improvement (CIMMYT) regional station located in Harare,
Zimbabwe (−17,800 S, 31,050 E, 1498 m.a.s.l.) (Figure 1). The soil of the station is characterized by a pH
slightly below 6, with low managed nitrogen (LOW) treatment for all plots at 25–35% less N compared
with the optimal standard fertilization application of 200 kg/ha, here defined as the optimum nitrogen
(OP) according to established standard CIMMYT protocols [17]. A set of 49 new maize genotypes that
were developed at CIMMYT and 15 commercial maize genotypes in Zimbabwe were selected for the
study (Table A1). Seeds were sown during the wet season, on 16 December 2015, in two rows per plot;
the rows were 4 m long and 75 cm apart (5.25 m2/plot), with 14 planting points per row and 25 cm
between the plants within a row. The experiment was carried out in 192 plots with 3 replicates per
variety. Both trials were rainfed only, being grown in the Zimbabwe rainy season, with local weather
station data recording growing season mean temperature, humidity, and total rainfall of 26◦C, 68%,
and 700 mm, respectively, effectively eliminating any chances of water stress even without irrigation.
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Figure 1. (a) Position of the regional station of International Center for Maize and Wheat Improvement
(CIMMYT) in Harare, Zimbabwe. (b) Red–green–blue (RGB) aerial orthomosaic of the 192 plots, with
64 genotypes and 3 replicas (three blue box) per each one, under low managed nitrogen (LOW). (c) A
plot with specific details of length and width.

The trials were harvested in mid-May of 2016, discarding 2 plants at each row end and harvesting
the central 3.5 m of each row in order to reduce edge effects. Thus, the total harvested weight
corresponded to an area of 5.25 m2 (0.75 m apart × 2 rows × 3.5 m long), consisting of the same
number of plants per plot (excepting locations of mortality). The cobs processed, and grains dried to
approximately 12.5% moisture, such that grain yield (GY, t·ha−1) was calculated as follows, where X is
the grain weight per plot:

GY = (X (kg/plot) *10)/(5.25 m2) (1)

The grain yield loss index (GYLI) as the stress index was calculated as:

GYLI = (GY at OP − GY at LOW)/(GY at OP) × 100 (2)
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where GY at OP represents the potential grain yield in optimum-nitrogen conditions and GY at LOW
corresponds to grain yield in low managed nitrogen conditions [38].

2.2. Agronomic Parameters

PH was measured on 19 February 2016 as the length from the soil surface to the base of the tassel
(excluding tassel length) using a ruler [49,50] on two representative plants per plot before all plants
were hand harvested and grain yield was assessed. ASI was determined by the number of days from
sowing until 50% of plants extruded anther AD and the number of days from sowing until 50% of
the plants show silks (silking date, SD), such that SD − AD = ASI. SEN was measured visually on a
plot basis as the proportion of green leaves 2–5 weeks after anthesis on a 0–100 scale, where 0 = 0%
canopy senescence and 100 = 100% canopy senescence (Equation (3)). That technique is based on the
different color classes, and given that any part of a leaf with yellow or brown (dry) color was classified
as undergoing or having succumbed to senescence, a senescence index was proposed as the ratio
between senesced canopy and the total canopy cover:

SEN = (YC + DC)/(YC + DC + GC) (3)

where GC is green canopy cover, YC is yellow canopy cover, and DC is dry canopy cover [17,44,51,52].
This was measured 4 times during the experimental trial, but only the last SEN measurements from 5
April 2016 were used in this study.

2.3. Proximal and Aerial Data Collection

RGB remote sensing evaluations were performed on young maize plants (less than 5 leaves) on
28 January 2016, during the last week of January. For ground RGB VIs, vegetation indices were derived
from one picture taken at the ground level for each plot (covering 40–50% of each plot), and UAV
RGB VIs were derived from whole plot coverage from the UAV RGB aerial image mosaic of the whole
study area as shown in Figure 2. At the ground level, one digital photograph was taken per plot with
an Olympus OM-D E-M10 Mark III (Olympus, Tokyo, Japan), holding the camera at about 80 cm
above the plant canopy in a zenithal angle and focused near the center of each plot. The images were
acquired with a resolution of 16 megapixels with a Micro Four Thirds (M4/3) Live MOS sensor with a
focal length of 14 mm, at a speed of 1/125 s with the aperture programmed in automatic mode at a
resolution of 4608 × 3072 for a Ground Sample Distance (GSD) of 0.03 cm/pixel. RGB aerial images
were acquired using an UAV (Mikrokopter OktoXL, Moormerland, Germany) flying under manual
remote control at 50 m a.g.l. (altitude above ground level). The digital camera used for aerial imaging
was a Lumix GX7 (Panasonic, Osaka, Japan), mounted on a two-axis gimbal with vibration reducers
for stable image capture while in flight. Images were taken at a 16-megapixel resolution of 4592 × 2448
pixels using a 4/3” sensor and a 20 mm focal length lens for an estimated GSD 0.9419 cm/pixel. These
images were taken with a 1/160 second shutter speed and auto-programmed mode for maximum
aperture at a rate of every 2 s for the duration of the flight and stored locally on microSD cards for
subsequent processing.

The measurements of the color calibration check and the vignetting calibration were taking
the same day of the data collection. We used the ColorChecker Passport Photo (X-Rite, Inc. https:
//www.xrite.com/es/categories/calibration-profiling/colorchecker-passport-photo/), which has a panel
of 24 industry standard color reference chips with published values in RGB, as well as the CIELab
color space. The photos of this passport were taken with the cameras Olympus OM-D and Lumix GX7
in natural light conditions in a zenithal plane. With the software FIJI (Fiji is Just ImageJ, https://fiji.sc/,
https://imagej.nih.gov/ij/), the calibration photos were imported and divided into the separate color
channels of red, green, and blue and in the CIELab color space as lightness, a* and b* and then
compared with the 24 published reference values of each standard chip with the photos of the passport
taken with the different cameras.
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Figure 2. Examples of the differences in resolution between the images of maize taken at ground level
(Ground Sample Distance 0.03 cm/pixel) and aerial level (Ground Sample Distance 0.9419 cm/pixel) in
LOW. (A) Maize ground image from 80 cm or canopy level image averages. (B) Maize ground image
from 80 cm showing green area (GA). (C) Maize ground image from 80 cm with greener green area
(GGA). (D) Maize aerial image from 50 m or canopy level whole plot averages. (E) Maize aerial image
from 50 m showing GA. (F) Maize aerial image from 50 m showing GGA.

With respect to vignetting calibration, one photo that was taken with the Lumix GX7 at 50 m
was divided into the separate RGB and CIELab color space channels. On the R, G, B, hue, a*, and b*
single band images, a line was drawn through the center for the X and Y axes in order to extract the
cross-image transect. Then, a filter was created using the hue band from the HSI color space in order to
select only sunlight soil pixels and applied for R, G, B, a*, and b* to eliminate vegetation and shadowed
pixels, and the digital numbers (DN) were extracted from each remaining point along the line in order
to observe changes in albedo across the image axes.

NDVI was measured on 28 January 2016 (at the same time as the RGB data) with the GreenSeeker
active field sensor (GreenSeeker handheld crop sensor, Trimble, Ukiah, CA, USA), which uses a
wavelength range of 650–670 nm and 765–795 nm for red and near-infrared, respectively. Additionally,
SPAD chlorophyll meter (Minolta SPAD-502, Spectrum Technologies Inc., Plainfield, IL, USA)
measurements were recorded on two different dates (at 3 and 5 weeks after the RGB and NDVI
data), once on 18 February 2016 (SPAD vegetative stage, SPADV) and then again on 1 March 2016
(SPAD reproductive stage, SPADR). A total of 4 leaves were measured for each row for a total of
8 measurements per plot to provide a representative average value for each plot. Delayed SPAD sensor
timing was due to availability and has been included for sensor technique as well as data capture
timing comparisons. Different measurement timing details for the complete study are presented in
Figure 3 for added clarity.

2.4. Image Processing

For the RGB images captured from the UAV platform, Agisoft PhotoScan Professional software
(Agisoft LLC, St. Petersburg, Russia) was employed using a total of 63 overlapping images to produce
an accurate image mosaic with at least 80% overlap, and this presented a resolution of 11772 × 4932, as
seen in Figure 1. As the aerial images were acquired in clear sky conditions at the same time as the
ground RGB images, no cross-calibration radiometric corrections were deemed necessary. The open
source image analysis platform FIJI [53] (Fiji is Just ImageJ; http://fiji.sc/Fiji) was used to segment
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regions of interest for each row for the plots to be cropped in order to produce a single micro image per
plot. RGB pictures were subsequently analyzed using a version of Breedpix 0.2 software adapted to
JAVA8 and integrated as part of the MaizeScanner, an open-source and open access FIJI plugin that
also provides for the implementation of TGI and NGRDI, as well as some specific analyses for maize
research-related maize lethal necrosis impact quantification (https://github.com/sckefauver/CIMMYT).

Within FIJI, images were processed to convert RGB values into indices based on RGB broadband
reflectance and also for color quantification from the HSI, CIELab and CIELuv color spaces. The TGI is
calculated as the area of a triangle from the matrix determinants after factoring the terms:

A = ± 0.5 [(λ1 − λ3) × (R1 − R2) − (λ1 − λ2) × (R1 − R3)] (4)

where A is the triangular area; λ1, λ2, and λ3 are the center wavelengths for the three image bands;
and R1, R2, and R3 are reflectance values for the three image bands, respectively. The order of bands is
not important, but the order will affect whether the result is positive or negative. Starting with R1 as
R670 (red), R2 as R550 (green), and R3 as R480 (blue) for convenience:

TGI = −0.5 [190 × (R670 − R550) − 120 × (R670 − R480)] (5)

where TGI has units of wavelength × reflectance, so using nm wavelength units or percent reflectance
does not affect the value of TGI after the units are converted. We used digital camera bands of red,
green, and blue broadband reflectance centered approximately at 670, 550, and 480 nm, respectively,
so that λ1, λ2, and λ3 were the centers of the wavebands, and R1–R3 were the waveband reflectance
values [54].

We used the NGRDI to analyze the images from the digital camera:

NGRDI = (R550 − R670)/(R550 + R670) (6)

where R550 and R670 are the reflectance values of the green and red bands of the RGB camera,
respectively. The difference between green and red light reflectance differentiates well between plants
and soil due to the absorption of chlorophyll at R670, and the sum normalizes for variations in light
intensity resulting in a possible range from −1.0 to 1.0, with NGRDI values mostly between −0.2 and
0.5, ranging from soil to healthy vegetation [55].

As described previously, the HSI color space index GA is calculated as the percentage of pixels in
the hue range from 60 to 180◦, including from yellow to bluish green, while the GGA includes a more
restrictive H range from 80 to 180◦, excluding yellowish-green tones that might be partially stressed or
senescent. Subsequently, the CSI was calculated in agreement with [38,44] as follows:

CSI = 100 × (GA − GGA)/GA. (7)

In addition, we developed two new different vegetation indices, modeled after NDVI, such that
values of soil fall closer to 0 and vegetation closer to 1. In order to do so, because the a* and the u*
image values for green are both negative, those values were placed first but using the complement
of a* so that greener vegetation gives a higher value, as would the near-infrared of NDVI. As b* and
v* both have more yellowish values with higher values, no inversion was necessary [38,56–58]. The
normalized difference between a* and b* (NDLab) through the color space CIELab is as follows:

NDLab = (((1 − a*) − b*)/((1 − a*) + b*) + 1). (8)

The normalized difference between u* and v* (NDLuv) through the color space CIELuv is
as follows:

NDLuv = (((1 − u*) − v*)/((1 − u*) + v*) + 1). (9)
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By inverting a* and u*, more green vegetation becomes a positive contribution to the index,
while more red/brown soil background reduces the index value. Then, dividing by b* and v*, an
increase in yellow chlorotic vegetation will reduce the index. The addition of 1 provides for a more
balanced equation for positive values for crops from NDLab and NDLuv using CIELab and CIELuv;
normalization then limits the index to values between −1 and 1, with most crops between 0 and 1.Sensors 2018, 18, x FOR PEER REVIEW  7 of 29 
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Figure 3. Field phenotyping, field imaging, and unmanned aerial vehicle (UAV) aerial image data
capture chronogram for the controlled low-N field trial, showing dates for the measurement of all
parameters at vegetative and reproductive stages, including red–green–blue (RGB), (high throughput
plant phenotyping (HTPP) imaging, plant height (PH), canopy senescence (SEN), anthesis data (AD),
and anthesis silking interval (ASI).

2.5. Statistical Analysis

Statistical analyses were conducted using the R project for statistical computing [59] in combination
with R studio [60]. The maize crop physiological traits were analyzed using ANOVA and Fisher’s
Least Significant Difference (LSD) tests (α = 0.05) in order to test the effects of growing conditions on
the different traits. The results of the canopy level image averages per picture taken at the ground level
were compared with the canopy level whole plot averages of the UAV images (Figure 2) with Pearson
correlation coefficients and ANOVA analyses. Pearson correlation coefficients of the different remote
sensing indices were additionally compared against grain yield. Multiple regressions were calculated
with GY as the dependent variable and the different indices as independent variables using forward
stepwise methods with the stepAIC () function of the MASS R package. The figures were also drawn
using the R studio software.

3. Results

3.1. The Effect of Optimal Condition and Low Managed Nitrogen on grain yield

The range of yield in the LOW treatment was between 1.53 tn/ha and 4.43 tn/ha, while for OP
it ranged between 6.68 tn/ha and 12.30 tn/ha; the GYLI range was from 46.88% to 85.22% (Table 1).
On the other hand, significant differences in GY between genotypes were observed in this study for
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the two different conditions (Table A1), but in order to standardize for comparisons between the two
treatments, we divided the genotypes into quartiles by yield. Therefore, in Figure 4 the results show
the 64 genotypes divided in quartiles as high yield (HY), medium high yield (MHY), medium low
yield (MLY), and low yield (LY). The ANOVA for the OP and LOW treatment demonstrated that there
were significant differences in GY between all of the quartiles of genotypes.

Table 1. Minimum, maximum, and average of grain yield (GY) and percentage of Nitrogen (N) of the
two different treatments: LOW and optimum nitrogen (OP). Minimum, maximum, and average of
grain yield loss index (GYLI).

Minimum Maximum Average N (%)

GY (Mg/ha) at LOW 1.53 4.43 2.93 ± 0.58 25–35
GY (Mg/ha) at OP 6.68 12.30 9.62 ± 1.24 100

GYLI (%) 46.88 85.22 69.01 ± 7.48
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top HY group grown under OP conditions remained in the HY group in the LOW condition. 
Similarly, 19% of the genotypes in the OP condition LY group were also in the LOW condition LY 
group. This suggests that while high yield under both low-N and optimal-N conditions is not 
completely exclusive, previous breeding efforts have perhaps been more focused on yield in optimal 
conditions without considering the robust performance of a genotype in other potential growing 
conditions (i.e., low-N). 
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Figure 4. Box plot of grain yield for the set of 64 genotypes divided into four quartiles: low yield (LY),
medium low yield (MLY), medium high yield (MHY), and high yield (HY) under OP (A) and LOW (B)
conditions. The bottom and top of the box are lower and upper quartiles, respectively. The band near
the middle is the median value across each group, and the bars are the standard deviation. Letters are
significantly different according to Fisher Least Significant Difference (LSD) multiple range test (P < 0.01).

In Table 2, the results additionally demonstrate that 44% of the genotypes that belonged in the top
HY group grown under OP conditions remained in the HY group in the LOW condition. Similarly,
19% of the genotypes in the OP condition LY group were also in the LOW condition LY group. This
suggests that while high yield under both low-N and optimal-N conditions is not completely exclusive,
previous breeding efforts have perhaps been more focused on yield in optimal conditions without
considering the robust performance of a genotype in other potential growing conditions (i.e., low-N).

Table 2. Maize genotypes that were in both, the HY and LY groups with different applications of
nitrogen: LOW and OP, with their GY.

LOW OP

Genotype GY(Mg/ha) Yield Group GY(Mg/ha) Yield Group

CZH128 3.35 HY 10.93 HY
CZH15024 3.50 HY 11.13 HY
CZH15028 3.88 HY 10.60 HY
CZH15045 3.38 HY 10.13 HY
CZH15057 3.82 HY 11.40 HY
11C4393 3.37 HY 10.97 HY

LOCAL CHECK2 2.44 HY 10.59 HY
CZH15027 2.32 LY 8.44 LY
PHB30G19 2.28 LY 8.46 LY

MRI 634 2.29 LY 7.97 LY
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3.2. The Performance of Remote Sensing Indices and Field Sensors

3.2.1. Color and Vignetting Calibration

The results shown in Figure 5 demonstrate that all the color calibration correlation R2 were higher
than 0.80, with most falling close to 0.90. With respect to the Lumix GX7, we can see the highest
determination coefficient was the green channel, followed by the b*.; for the Olympus Camera the
highest was b*, followed by the blue channel. While the L values from the CIELab color space were
among the furthest from the 1:1 comparison line with high y-axis intercepts, the associated a* and b*
linear correlations were among the closest to a 1:1 ratio with intercepts close to 0.
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Figure 5. Color calibration through ColorChecker Passport. (A) The determination coefficients between
the photo taken with Lumix GX7 camera for each channel red, green, and blue (a–c) and Commission
Internationale de I´Edairage (CIE)Lab color space (d–f) (n = 24). (B) The determination coefficients
between the photo taken with the Olympus OM-D camera for each channel red, green, and blue (g–i)
and CIELab color space (j–l) (n = 24).

Figure 6 shows that the vignetting effects observed for the both color spaces with respect to the y-
and x-axes were minimally present for the RGB color spaces and reduced for a* and b* in CIELab.
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Figure 6. Vignetting effects observed in the RGB and CIELab color spaces from one example photo
taken with Lumix GX7 from the UAV at 50 m, comparing x-axis and y-axis transect pixel digital number
(DN) values. Hue-based color filters were used to identify only bare soil pixels along each transect.
RGB channels (a,b). CIELab color space without lightness (c,d).

While the calibration check for the RGB images taken from both cameras demonstrated high
correlations (Figure 5), the result of applying the calibration coefficients to the data resulted in both cases
in lower correlations between the vegetation indices at different scales, as well as lower correlations
between the RGB indices with GY (data not shown). Moreover, the results demonstrated low presence
of vignetting effects, with reduced vignetting in the luminescence-controlled CIELab and CIELuv color
spaces of particular interest for this study (Figure 6).

3.2.2. The Performance of Remote Sensing Indices and Field Sensors Assessing Grain Yield

No significant differences were found between quartile groups for any of the RGB indices from the
aerial or ground level, as seen for GGA at ground level. The correlations were calculated for GY with
both levels of RGB indices at LOW (Table 3). In the case of UAV RGB VIs, GGA was best correlated
with GY followed by CSI, followed by saturation and GA. For ground RGB VIs the closest correlations
were observed with hue, GGA (values between 0.248 and 0.685), and NDLab (values between 0.3953
and 0.8290). The rest of the RGB VIs were somewhat weaker with respect to the GY, but many were
still significant. Additionally, the field sensors presented some close correlations with GY (Table 3), as
well as significant differences between genotypes when grouped by quartile (data not shown), the
strongest was SPADV (taken in the vegetative stage closer to the RGB VIs), which only indicated
differences between HY and LY, followed by SPADV and finally NDVI, both of which were recorded in
the vegetative stage (see Figure 3). SPAD measurements exhibited the highest correlations (Table 3)
with respect to all indices with SPADV being the highest followed by SPADR (taken in the reproductive
stage much later than the other measurements for temporal comparisons only).
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Table 3. Grain yield correlations in LOW with all proximal remote sensing variables from the RGB
images taken from the UAV aerial platform, RGB images from the ground, and leaf chlorophyll content
(SPAD) and normalized difference vegetation index (NDVI) field sensors. These indices are defined
in Sections 1 and 2. Levels of significance: *, P < 0.05; ***, P < 0.001. GGA; GA; NDLab, normalized
difference between a* and b*; NDLuv, the normalized difference between u* and v*; CSI, crop senescence
index; TGI, triangular greenness index; and NGRDI, normalized green–red difference index.

GY

UAV
RGB VIs r P Ground

RGB VIs r P Additional
Field Sensors r P

GGA 0.445 *** GGA 0.483 *** SPADV

(18/02/16)
0.542 ***

GY 0.407 *** GA 0.466 *** SPADR

(01/03/16)
0.506 ***

Hue 0.381 *** Hue 0.485 *** NDVI 0.375 ***
Intensity −0.305 *** Intensity 0.095
Saturation −0.427 *** Saturation −0.227 *
Lightness −0.291 *** Lightness 0.144 *

a* −0.36 *** a* −0.383 ***
b* −0.397 *** b* −0.089
u* −0.383 *** u* −0.449 ***
v* −0.297 *** v* 0.014

NDLab 0.359 *** NDLab 0.468 ***
NDLuv −0.378 *** NDLuv 0.442 ***

CSI −0.428 *** CSI −0.321 ***
TGI 0.229 * TGI −0.043

NGRDI 0.406 *** NGRDI −0.027

The correlation coefficients between the hue, u*, GA, and GGA remote sensing indices evaluated at
ground level versus the same indices measured from the UAV were quite strong (Table 4). In addition,
most of these indices showed slopes close to 1:1 and correlations reaching r = 0.766. In contrast, the
relationships reported for the remaining RGB indices, such as intensity, lightness, TGI, and NGRDI
were lower. With regards to ANOVA, the results showed that there were statistically significant
differences between all the RGB indices at ground level with the aerial observation level, except for
saturation from the HSI color space.

Table 4. Correlation coefficients between the remote sensing UAV RGB VIs and ground RGB VIs. These
indices are defined in Section 1 and further detailed in Section 2. Levels of significance: *, P < 0.05;
**, P < 0.01, ***; P < 0.001; ns, not significant. GGA, GA, NDLab, NDLuv, CSI, TGI, and NGRDI.

R P ANOVA

GGA 0.758 *** ***
GA 0.766 *** ***
Hue 0.731 *** ***

Intensity −0.062 ns ***
Saturation 0.509 *** ns
Lightness −0.039 ns ***

a* 0.617 *** ***
b* 0.424 *** ***
u* 0.723 *** ***
v* 0.33 *** ***

NDLab 0.781 *** ***
NDLuv −0.676 *** ***

CSI 0.457 *** ***
TGI −0.163 * *

NGRDI −0.223 * **
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3.3. Agronomic Parameters and Their Effect on Yield

Finally, for agronomic data parameters, the correlations with GY (Table 5), the results showed that
all the agronomic data indicators performed differently between OP and LOW conditions. For LOW
conditions, the indices that were better correlated with GY were ASI and AD. The other two indices
(PH and SEN) showed very low correlations with GY. In OP conditions, the agronomic parameters
showed very low correlations with GY.

Table 5. Grain yield correlations with different indices of agronomic data, such as PH, SEN, AD, and
ASI. Correlations were studied across plots in LOW and OP conditions. Levels of significance: *, P <

0.05: **, P < 0.01; ***, P < 0.001; ns, not significant.

GY

Agronomic Data
LOW OP

r r

PH 0.191 ** 0.131 ns
SEN −0.213 ** NA ns
AD −0.46 *** 0.272 **
ASI −0.53 *** 0.161 *

3.4. Multivariate Models

Figure 7 shows the correlations of the most relevant agronomic parameters and indices with GY; it
was considered that these could be complimentary in multivariate models because ASI and AD show
negative correlations with respect to GY, whereas the other indices present positive correlations with GY.
As such, in Table 6 we present the stepwise multivariate linear models for explaining grain yield using
different selections of non-destructive UAV RGB VIs and ground RGB VIs at additional field sensor
and agronomic data as indicated using both forward and backward stepwise selection techniques with
a standard Akaike information criterion (AIC) selection criterion. We also present the determination
coefficients (R2) and the residual standard error (RSE). All three models presented were found to be
significant at the P < 0.001 level. Where noted, (*) indicates simplified formulas, meaning that in using
stepwise selection these formulas were considered to have an excess of nonsignificant parameters and
were reduced accordingly (only significant parameters with the strongest individual correlation to
yield were selected in the case of auto-correlation detected between two multivariate parameters).

Table 6. Multilinear regressions (stepwise) of GY in LOW as the dependent variable comparing the
different categories of remote sensing traits: UAV and ground RGB VIs (these indices are defined in
Section 1), agronomic data such as ASI, AD, SEN, and PH, and NDVI and SPAD. R2, determination
coefficient; RSE, Residual Standard Error. Level of significance: ***, P < 0.001. (*) simplified formulas.

Parameters Stepwise Equations R2 RSE P

Agronomic Data +
Field sensors

GY = − AD*0.28 + SPADV*0.03 +
SPADR*0.02 − ASI*0.78 + 5.97

0.61 0.539 ***

Agronomic Data +
Ground RGB VIs (*)

GY = − ASI*0.189 − AD*0.128 −
SEN*0.237 + PH*0.01 + b*0.11 −

v*0.064 + NDLab*15.20 −
NDLuv*6.99 + 3.36

0.588 0.556 ***

Agronomic Data +
UAV RGB VIs (*)

GY = − ASI*0.20 − SEN*0.26 −
AD*0.13 + PH*0.01 −

Saturation*84.97 − u*1.37 + v*1.61
+ TGI*0.02 + NDLuv*3.95 + 31.8

0.604 0.546 ***

In the combination of agronomic data with additional field sensors, such as SPADv, NDVI, and
ASI, 61% of the yield could be explained. The multivariate stepwise models for explaining yield
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variations regarding agronomic data plus ground RGB VIs level was 63%, but in Table 5, we show
the simplified formula explaining 58% of variance. With respect to combining agronomic data with
UAV RGB VIs, the result was similar at 62%, but we show the simplified formula with 60% of the
yield that may be explained by mostly agronomic data and combined with other indices, such as
NDLab, NDLuv, and Saturation. Combining the agronomic data, field sensors and RGB VIs provided
little improvement in the multivariate model explaining the yield, whereas, in comparison, more
parsimonious models combining only AD, ASI, and only either the NDLab or NDLuv RGB indices still
explained over 50% of the variation in yield (data not shown).

Sensors 2018, 18, x FOR PEER REVIEW  15 of 29 

 

 
Figure 7. Correlation between GY in LOW and (a,b) traditional field plant physiology measurements 
ASI and AD; ground RGB VIs (c) NDLab; (d) NDLuv; (e) GA.g (green area ground); (f) GGA.g 
(greener green area ground); (g) plant vigor using GreenSeeker NDVI; and (h) relative leaf 
chlorophyll content in the vegetative stage (SPADV). Level of significance: ***, P < 0.001. (n = 192). 

Table 6. Multilinear regressions (stepwise) of GY in LOW as the dependent variable comparing the 
different categories of remote sensing traits: UAV and ground RGB VIs (these indices are defined in 
Section 1), agronomic data such as ASI, AD, SEN, and PH, and NDVI and SPAD. R2, determination 
coefficient; RSE, Residual Standard Error. Level of significance: ***, P < 0.001. (*) simplified formulas. 

Parameters Stepwise Equations R2 RSE P 
Agronomic Data + Field 

sensors 
GY = − AD*0.28 + SPADV*0.03 + SPADR*0.02 − ASI*0.78 + 

5.97 0.61 0.539 *** 

Agronomic Data + 
Ground RGB VIs (*) 

GY = − ASI*0.189 − AD*0.128 − SEN*0.237 + PH*0.01 + 
b*0.11 − v*0.064 + NDLab*15.20 − NDLuv*6.99 + 3.36 

0.588 0.556 *** 

Agronomic Data + UAV 
RGB VIs (*) 

GY = − ASI*0.20 − SEN*0.26 − AD*0.13 + PH*0.01 − 
Saturation*84.97 −  

u*1.37 + v*1.61 + TGI*0.02 + NDLuv*3.95 + 31.8 
0.604 0.546 *** 

In the combination of agronomic data with additional field sensors, such as SPADv, NDVI, and 
ASI, 61% of the yield could be explained. The multivariate stepwise models for explaining yield 

Figure 7. Correlation between GY in LOW and (a,b) traditional field plant physiology measurements
ASI and AD; ground RGB VIs (c) NDLab; (d) NDLuv; (e) GA.g (green area ground); (f) GGA.g (greener
green area ground); (g) plant vigor using GreenSeeker NDVI; and (h) relative leaf chlorophyll content
in the vegetative stage (SPADV). Level of significance: ***, P < 0.001. (n = 192).

4. Discussion

4.1. The Effect of Managed Low Nitrogen on Grain Yield

Nitrogen (N), after water, is the single most important input for maize production. It plays a major
role in establishing optimal photosynthetic capacity during key growth stages for crops to achieve high
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yields [18,61]. N deficiency reduces leaf chlorophyll content, soluble protein content, photosynthetic
rate, and related enzyme activities of the maize plant during grain filling [62–64]. For that reason, the
GY of all the 64 genotypes was assumed to have been strongly affected by the lack of nitrogen in LOW
conditions. There were significant differences noted in GY by genotype, but in Table A1 we can see that
OP treatment presented many more different groups, and because of that, the genotypes were divided
into quartiles for the sake of comparisons across growing conditions. (Figure 4). These four groups
showed differences between each other with respect to grain yield. Nitrogen is especially plentiful
in leaves, mainly in photosynthetic enzymes, where it may account for up to 4% of the dry weight.
Because N uptake, biomass production, and grain yield are strongly correlated, the N requirement
of a maize crop has even been directly related to grain yield; it has been estimated that 187 kg/ha N
is required to produce 9.5 t/ha yield, 98 kg/ha is required for 5.0 t/ha, and 40 kg/ha is required for
2.0 t/ha [17]. Following these guidelines, the concentration for the optimal condition was around 200
kg/ha and that for the low managed nitrogen condition was around 40 kg/ha, thus indicating that
many of the genotypes tested here have already been somewhat adapted to the managed low nitrogen
conditions; however, those that showed the best and most consistent adaptation were the genotypes of
the HY quartile, some of which appeared in HY in both LOW and OP (Table 2). In some cases, it has
been reported that the genotypes selected under LOW fertilization input are not truly adapted to N-rich
soils [65]; however, it has been suggested that when the plant material performs relatively well under
low-N input conditions, it should be selected under N deficiency conditions for which yield reduction
does not exceed 35–40% [66]. Here, in comparison with the same panel of maize genotypes grown
under optimal conditions, 44% of the genotypes that were in the highest yield producing quartile
under OP conditions remained in the highest quartile when grown under LOW conditions, further
suggesting that low N productivity is not necessarily exclusive of high productivity in OP conditions.
The GYLI results also show that there was a large amount of genotypic variability present (Table A1),
again suggesting that the genotypes selected for this study behaved quite differently physiologically
under the two nitrogen conditions.

4.2. Effect of Managed Low Nitrogen on Agronomic Parameters

A higher reduction in maize yield under stress environments can often be partly explained by the
wider date range of ASI under stress, as ASI typically has a high negative correlation with GY under
stress conditions [67,68]. In Figure 7, we demonstrated that AD and ASI exhibit negative significant
relation in low-N conditions correlations when the plants were under stress, as these parameters
decreased with increasing yield. Genotypes with a short ASI have been suggested to possess greater
efficiency in biomass partitioning to ear and tassels at flowering than those with a long ASI [69]. On
the other hand, the correlation results in OP conditions do not indicate any relationship between GY
and ASI or AD (Table 5). Similar studies showed that high GY under a range of stress intensities is
associated with a short ASI and earlier flowering dates, increased plant and ear height, increased
number of ears per plant, and delayed leaf senescence [69,70].

Besides ASI, traits related to high photosynthetic capacity (e.g., chlorophyll content) and plant
water content (e.g., stomatal conductance) have often been reported to contribute to higher GY under
drought stress [71]. When maize flowers under drought, there is a delay in silking, and the period
between male and female flowering increases giving rise to ASI. In this study, however, drought
stress was minimal due to the adequate rainfall recorded during the study field season (700 mm), and
also further supported by the lack of correlation between ASI and AD with GY in the OP conditions
(Table 5). In generally optimal agronomic conditions, these phenological characteristics are not always
good estimators of yield. In contrast, the rest of the agronomic parameters here showed similar relation
with GY variability. These results suggest that this technology could be applied in an adapted way to
water stress studies, even though it was not the specific aim of this research.
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4.3. Remote Sensing Indices and Field Sensors

4.3.1. Color and Vignetting Calibration

Figure 5a–c,g–i show the correlations between the R, G, and B values from of each digital camera
with respect to the standard values for R, G, and B from the X-Rite ColorChecker Passport. Some
lamination effects can be observed as values from the camera appearing higher than the standard,
though still with good correlation. However, in Figure 5e,f,k,l of the a* and b* images, the light effects
are less pronounced, with a ratio closer to 1:1 due to the CIELab color space separation of lightness
from color hue values [72]. Regarding the color calibration, the results show that the determination
coefficients between the values of the ColorChecker passport and the values for each camera were high
(most near R2

≈ 0.90), suggesting that the photos were not in need of a separate color calibration [73].
Indeed, application of the color calibration coefficients did not result in any improvements in RGB
vegetation index performance with regards to grain yield or yield loss estimation (data not shown).

With respect to vignetting effects, in Figure 6a,b, the graphics of three RGB channels present a small
sad smile along the axis, showing some brightness attenuation away from the image center [74,75].
Nevertheless, this did not represent any significant differences between the DN values of extremes
of each side respect to the DN of center (data not shown). On the other hand, Figure 6c,d present
minimal variation along the axis. This was expected as a* and b* color spaces are independent of the
image lightness and thus absent of vignetting effects. Thus, while the RGB VIs are passive sensors and
dependent on ambient light conditions, the use of the alternate color spaces, such as CIELab, provides
for inherent lightness correction and enables their use in variable conditions similar to active sensors,
such as the NDVI GreenSeeker.

4.3.2. Performance of RGB VIs and Additional Field Sensors

The ground RGB VIs hue, GGA, and NDLab demonstrated the best correlations with GY,
outperforming other ground RGB VIs (Table 3). GA and GGA quantify the portion of green pixels to
the total pixels of the image and is a reliable estimation of vegetation cover [76]. The values of GA
from both observation levels (field and aerial) were consistently below 60%. The ground and aerial
measurements were taken at the same time on the same day, variation in environmental variables, such
as light intensity and brightness can be assumed to be negligible. Thus, the main differences must be
due to the resolution of the images (Figure 2); nevertheless, advances in digital photography allow for
sufficiently high resolution for low-altitude aerial imaging to be a viable and economical monitoring
tool for agriculture [77]. In this sense, correlations with GY by indices derived from aerial images were
generally only slightly weaker than indices measured at ground level, most likely demonstrating a
trade-off between them. Some of the RGB indices, such as NDLab, GGA, and GA produced coefficients
of correlation higher than r = 0.75 when comparing the same indices measured from the ground level
and from the aerial platform (Table 4). This is despite different acquisition/imaging techniques (full
plot for UAV RGB VIs vs. one image per plot at higher resolution covering only a portion of the plot
for the ground RGB VIs). On the other hand, none of the UAV RGB VIs and ground RGB VIs showed
significant differences between adjacent quartiles. This may be best explained considering that the
data for our study were collected at an early phenological (vegetative) stage, when the plants were
not yet at full canopy cover, and they did not yet show the full range of symptoms of N deficiency,
as may be observed in the reproductive stage (Figure 3). N deficiency can reduce plant growth
rates, but also other later factors that affect GY, including leaf chlorophyll content, soluble protein
content, photosynthetic rate, and related enzyme activities of the maize plant during grain filling in
the reproductive stage [78–80], which may be a more optimal timing of remote sensing observations
when phenotyping low N.

NDVI has been used with satisfactory results in many predictive models of yield in multiple
crops, including wheat, barley, and maize at the field level [54,81], even at regional or state levels using
field, airborne, and satellite imagery [82–84]. Regarding NDVI, the values clearly highlight (Figure 7)
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that the variability was low, with more than 90% of values being in the range of 0.55–0.80. These
results support the previously reported saturation of the index, such that increasing leaf area does
not involve a parallel increase in NDVI values [83,85,86]. Furthermore, other authors have noted that
the optimal stages for measuring NDVI vary depending on the germplasm and environment [87,88].
Better performance of NDVI usually occurs at earlier or later growth stages, depending on the crop and
symptoms, because at maximum vegetation cover, NDVI values often saturate, and thus, correlation
with GY decreases [38]. Furthermore, other studies comparing the performance of RGB VIs with
frequent data acquisitions throughout the crop growing cycle and NDVI indicate that RGB VIs respond
with higher correlations with GY earlier than NDVI [57].

SPAD is used to measure relative chlorophyll content in plant leaves, and it has been effectively
used to diagnose N status and predict GY potential in maize [89]. Leaf level chlorophyll meters provide
a convenient and reliable way to estimate leaf N content during vegetative growth [90] and over a large
time range even after anthesis [91]. With specific mention regarding the two different measurement
dates, SPADV and SPADR (Table A2), there are some notable differences related, in this case, to the
date of measurement, having been one of the few sensors available to the field crews on-site to do
multiple measurements. In the first measurement, SPADV, the results showed significant differences
between the HY, MHY, and MLY groups in comparison with the LY group. These are interpreted as
symptoms of lack of nitrogen. With regards to the second measurement, SPADR, it was possible to
identify the differentiation of HY groups in comparison with MHY and MLY and, additionally, these
three from the LY group. This is interpreted as a decline in relative chlorophyll content of the leaves
measured between the two SPAD measurements. This is because when crops were younger at SPADV,
when still developing roots and leaves, they may behave as sink organs for the assimilation of N and
the synthesis of amino acids originating from N uptake before flowering [92]. After flowering, at
SPADR, the N accumulates in the vegetative parts of the plant and is remobilized and translocated to
the grain [93]. In most crop species, a substantial amount of N is absorbed after flowering to contribute
to grain protein deposition [89] in V8–R1. Similarly, Teal et al. [94] also reported a strong association
between grain yield and NDVI between the V6 and V8–R1 growth stages of maize, again between the
timing of SPADV and SPADR, but after the remote sensing observations were recorded. Finally, the
increased performance of SPADV compared with SPADR, closer to the RGB and NDVI data acquisition
date, was promising in that earlier stage of image data capture for field phenotyping, which may
reduce crop breeding costs with earlier variety selection and increased crop cycles per year.

4.4. Multivariate Model Assessment

The vegetation indices derived from conventional digital RGB images have been proposed as
means of estimating green biomass and GY in maize and other cereals under stress conditions [95],
and in other studies in wheat grown under different stress conditions [38,43,96]. The multivariate
regression models revealed the most appropriate parameters for field phenotyping towards improving
GY in managed low-nitrogen conditions. Using all the UAV RGB VIs and ground UAV VIS, the
multivariate models explained GY at around R2 = 0.30 (data not shown). That could be a result of the
fact that the data capture of RGB VIs were taken earlier than the SPADV and SPADR, and at later growth
stages, the plants may have presented more symptoms related to a lack of nitrogen. However, all of
the regression models with a R2 higher than 0.50 included some of the agronomic data as independent
variables. Additionally, GY estimation was similar in the cases of agronomic data combined with field
sensors with respect to agronomic data combined with UAV RGB VIs and ground RGB VIs (all having
approximate R2 values of 0.60). With respect to the RSE in these three different multivariable models,
they adapt to a 50% coefficient of determination. As such, our study suggests that these phenological
traits still provide useful information related to grain yield in abiotic stress conditions, but that they
may be potentially supplemented by UAV RGB VIs and ground RGB VIs phenotyping platforms. Still,
RGB image analyses were able to improve over agronomic data alone, increasing the R2 values to
explain more than half of the variance in the yield, suggesting that they are complimentary in the
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information that they are able to provide. Furthermore, the UAV RGB VIs in this study were acquired
quite early in the growing season, which may help to provide for faster selection of varieties, thus
reducing costs and increasing the number of crop cycles per year.

Additionally, RGB VIs may provide considerable saving with regards to field equipment and
human time, considering that RGB data capture and processing of 200 plots took approximately 10 min
in the field (counting flight and preparations), 20 min to mosaic (unattended on the computer), and half
an hour to extract and process the data (semi-automatic), totaling 60 min, excluding drone preparation
prior to flying. In the case of RGB image data capture and processing, the field portion would be
approximately double, while the computer processing would be about half, totaling about the same
amount of time in the case of 200 plots. With respect to time costs while implementing the use of
SPAD or field-based GreenSeeker NDVI, the estimated time for measurement would be over five times
greater (e.g., 2 min per plot × 200 plots = 400 minutes). Moreover, NDVI evaluation from the ground
may not be easy to implement when plants are reaching the reproductive stage. Furthermore, with
larger phenotyping trials, the time savings of the UAV RGB VIs would represent even greater time
savings while retaining the same data quality; up to 1000 plots may approximately double the amount
of time needed to process the data, while the field sensors would increase linearly and take five times
as long, representing over a 10-fold time difference at larger study scales. Thus, the implementation of
higher throughput UAV RGB VIs may make the most sense in combination with some of the quicker
traditional agronomic measurements and can also result in substantial time cost savings when applied
in large platform breeding programs.

In a recent study by Gracia-Romero et al. in 2017 [97], the effectiveness of UAVs for canopy level
remote sensing for plant phenotyping of maize was similarly demonstrated under different phosphorus
nutrient conditions and the results presented therein suggested that the RGB indices were the best
option at early growth stages. In the case of low P, however, an equation using GA and u* were the
best indicators of GY (R2 = 0.82). Even though applied to a different crop in that case, reflectance in the
near-infrared (NIR) and blue regions was found to predict early season P stress between growth stages
V6 and V8, much earlier than suggested for N deficiencies. With respect to plant N concentrations,
the best correlations have been found using reflectance in the red and green regions of the spectrum,
while grain yield was best estimated using reflectance in the NIR region, with the wavelengths of
importance changing with growth stage (V14-R1) [98,99]. Furthermore, Ma et al. [100] showed that
canopy light reflectance is strongly correlated with field “greenness” (similar to the GA and GGA used
in this study) at almost all growth stages, with field greenness in that case being a product of plant leaf
area and leaf greenness measured with a chlorophyll meter.

5. Conclusions

Modern phenotyping technologies may help in improving much-needed maize GY in low-N
conditions, and the current range of variability in performance as indicated by the observed GYLI
values suggests that low-N and optimal-N performance need not be considered mutually exclusive.
For HTPP, RGB sensors can be considered to be functional technology with an advanced technology
readiness level (TRL) from the ground or a UAV platform, but, similar to the current standard field
sensors SPAD and NDVI, the data capture for RGB VIs must be planned accordingly in order to
optimize their benefits in support of plant breeding. Several different RGB image-based vegetation
indices, including the NDLab and NDluv indices new to this study, demonstrated similar correlations
with GY and contributions to multivariate model GY estimates when compared with standard NDVI
and SPAD field phenotyping sensors. This study presents possible uses of RGB color image analyses
from the ground or from UAVs, with potential benefits compared with currently used field sensors,
especially regarding time costs when applied to larger breeding platforms, here demonstrated in
application to low-N phenotyping in maize.
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Abbreviations

The following abbreviations are used in this manuscript.
N Nitrogen
SPAD Relative leaf chlorophyll content
HTTP Hight throughput plant phenotyping
UAV Unmanned aerial vehicle
VNIR Visible and near-infrared
NDVI Normalized difference vegetation index
SR Simple ratio
NDWI Normalized difference water index
RGB Red–green–blue
RGB VIs Red–green–blue vegetation indices
UAV RGB VIs Unmanned aerial vehicle red-green-blue vegetation indices
Ground RGB VIs Ground level red-green-blue vegetation indices
HIS Hue–intensity–saturation
H Hue
GA Green area
GGA Greener green area
CSI Crop senescence index
CIMMYT International center for maize and wheat improvement
OP Optimum nitrogen
LOW Low managed nitrogen
L* Lightness
NDLab Normalized difference between a* and b*
NDLuv Normalized difference between u* and v*
TGI Triangular greenness index
NGRDI Normalized green–red difference index
ASI Anthesis silking interval
AD Anthesis data
PH Plant height
SEN Canopy senescence
MOI Moisture
GY Grain yield
GYLI Grain yield loss index
HY High yield
MHY Medium high yield
MLY Medium low yield
LY Low yield
ANOVA Analyses of variance
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Appendix A

Table A1. The LOW and OP treatment with ANOVA analysis, following with a post hoc.

LOW OP

Genotype GY (Mg/ha) Group Genotype GY (Mh/ha) Group

CZH15062 4.43 a PGS65 12.30 a
CZH15047 4.19 ab CZH15026 12.08 ab
CZH15028 3.88 abc CZH15054 12.04 abc
CZH15032 3.87 abc CZH15022 11.98 abc
CZH15057 3.82 abc CZH15057 11.40 abcd
CZH15058 3.65 abc CZH15053 11.36 abcd
10C3271 3.54 abc PAN53 11.27 abcde

CZH15055 3.51 abc CZH15024 11.13 abcdef
CZH15024 3.5 abc 11C4393 10.97 abcdefg
CZH15052 3.44 abc CZH128 10.93 abcdefgh

CZH142087 3.41 abc MRI 614 10.79 abcdefghi
CZH15045 3.38 abc CZH141029 10.75 abcdefghi
11C4393 3.37 abc X40F424W 10.73 abcdefghi
CZH128 3.35 abc LOCAL CHECK2 10.59 abcdefghij

CZH15060 3.3 abc CZH132043 10.53 bcdefghij
CZH15050 3.28 abc CZH132047 10.51 bcdefghijk
CZH15031 3.27 abc CZH15029 10.49 bcdefghijk
CZH15046 3.25 abc CZH15037 10.35 cdefghijkl

CZH132043 3.22 abc 10C3271 10.24 defghijklm
CZH15033 3.19 abc CZH15033 10.23 defghijklm

LOCAL CHECK1 3.18 abc MH1547 10.15 defghijklmn
CZH15051 3.17 abc CZH15045 10.13 defghijklmn
CZH15054 3.16 abc CZH15043 10.08 defghijklmn
CZH15029 3.16 abc CZH15028 10.06 defghijklmno

CZH141022 3.15 abc CZH15030 10.04 defghijklmno
CZH142010 3.15 abc CZH15044 9.90 defghijklmno
CZH15042 3.06 abc CZH15056 9.87 defghijklmno
CZH15039 3.05 abc CZH15035 9.80 defghijklmnop
CZH15030 3.05 abc CZH15036 9.71 defghijklmnop
CZH15035 3.03 abc CZH15058 9.69 defghijklmnopq
CZH15038 3 abc CZH15060 9.68 defghijklmnopq
CZH15059 3 abc CZH15047 9.61 efghijklmnopq
CZH15044 2.97 abc CZH15052 9.61 efghijklmnopq

PAN53 2.95 abc CZH15025 9.56 efghijklmnopq
CZH15041 2.93 abc CZH15048 9.48 fghijklmnopqr
CZH15040 2.87 abc CZH15032 9.47 fghijklmnopqr

P2859W 2.85 abc CZH15034 9.39 ghijklmnopqrs
MH1547 2.82 abc CZH15061 9.39 ghijklmnopqrs

X40F423W 2.81 abc CZH15031 9.37 ghijklmnopqrs
CZH15026 2.79 abc CZH15038 9.24 hijklmnopqrs
CZH15053 2.75 abc CZH15041 9.20 hijklmnopqrst

SC513 2.72 abc CZH15023 9.17 ijklmnopqrst
CZH15061 2.71 abc CZH15050 9.08 ijklmnopqrstu
CZH1227 2.68 abc CZH141022 8.96 jklmnopqrstu
CZH15056 2.68 abc X40F423W 8.93 jklmnopqrstu

PGS65 2.67 abc CZH15046 8.88 jklmnopqrstu
X40F424W 2.67 abc CZH15049 8.87 jklmnopqrstu
CZH15023 2.56 abc MRI 624 8.79 klmnopqrstu
CZH15025 2.56 abc CZH15039 8.72 lmnopqrstu
CZH141029 2.52 abc CZH15042 8.59 mnopqrstu
CZH15048 2.45 abc CZH142010 8.56 mnopqrstu
CZH132047 2.45 abc PHB30G19 8.46 nopqrstu

LOCAL CHECK2 2.44 abc CZH1227 8.45 nopqrstu
CZH15027 2.32 abc CZH15027 8.44 nopqrstu
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Table A1. Cont.

LOW OP

Genotype GY (Mg/ha) Group Genotype GY (Mh/ha) Group

MRI 634 2.29 abc CZH142087 8.42 nopqrstu
PHB30G19 2.27 abc CZH15062 8.34 opqrstuv

MRI 614 2.24 abc CZH15040 8.12 pqrstuv
CZH15049 2.21 abc MRI 634 7.97 qrstuv
CZH15022 2.03 bc P2859W 7.77 rstuv
CZH15043 2.02 bc CZH15055 7.71 stuv
CZH15036 1.98 bc CZH15059 7.68 stuv
CZH15034 1.92 bc CZH15051 7.48 tuv

MRI 624 1.69 c LOCAL CHECK1 7.39 uv
CZH15037 1.53 c SC513 6.68 v

ANOVA: *** ANOVA: ***

Table A2. Descriptive data of GY, LOW, GYLI, ASI, PH, AD, NDVI, SPADV, SPADR, GA, and GGA
according to the quartiles HY, MHY, MLY, and LY.

Entry name GYLI
(%)

GY
(12/5/16) ASI PH

(29/2/16) AD NDVI
(28/1/16)

SPADV

(18/2/16)
SPADR

(1/3/16)
GA.a

(28/1/16)
GA.g

(28/1/16)
GGA.a

(28/1/16)
GGA.g
(28/1/16)

CZH128 69.32 3.35 ±
0.39 1.00 193.00 71.67 0.730 41.09 37.97 0.483 0.522 0.327 0.452

CZH142087 59.54 3.41 ±
0.75 4.00 192.38 67.33 0.705 42.86 37.56 0.457 0.573 0.307 0.479

CZH15024 68.59 3.50 ±
0.65 3.00 183.96 73.00 0.672 40.78 34.07 0.417 0.454 0.269 0.360

CZH15028 61.44 3.88 ±
0.43 0.67 200.63 69.33 0.702 44.41 43.00 0.358 0.496 0.225 0.415

CZH15031 65.11 3.27 ±
0.06 5.33 201.88 69.00 0.698 41.18 39.03 0.445 0.533 0.266 0.413

CZH15045 66.60 3.38 ±
0.21 2.00 208.04 70.00 0.707 41.80 36.65 0.460 0.540 0.324 0.434

CZH15047 56.32 4.20 ±
0.39 2.00 214.21 68.33 0.730 45.36 39.01 0.537 0.622 0.383 0.515

CZH15050 63.89 3.28 ±
0.35 3.00 172.88 68.67 0.725 43.14 39.29 0.410 0.471 0.256 0.391

CZH15052 64.19 3.44 ±
0.36 3.00 198.79 69.33 0.730 43.18 38.93 0.531 0.574 0.377 0.464

CZH15055 54.54 3.51 ±
0.69 2.00 188.75 70.67 0.675 43.25 40.68 0.397 0.497 0.232 0.397

CZH15057 66.49 3.23 ±
0.43 2.67 187.58 72.00 0.707 41.76 37.37 0.461 0.536 0.299 0.468

CZH15058 62.28 3.83 ±
0.44 0.33 185.63 71.67 0.712 46.04 38.54 0.421 0.558 0.278 0.456

CZH15061 71.13 3.48 ±
0.95 4.00 182.00 71.33 0.720 45.71 35.81 0.478 0.566 0.323 0.495

CZH15062 46.88 3.90 ±
0.49 1.67 185.42 68.33 0.697 42.51 37.50 0.484 0.557 0.326 0.477

11C4393 69.25 3.44 ±
0.22 3.00 204.29 67.67 0.720 41.01 33.84 0.529 0.622 0.367 0.534

Local check 2 76.92 3.64 ±
0.94 3.33 207.75 70.00 0.695 43.63 37.16 0.413 0.521 0.273 0.450

CZH132043 69.44 3.22 ±
0.56 3.67 202.33 72.00 0.692 43.48 37.98 0.431 0.548 0.285 0.442

CZH142010 63.25 3.15 ±
0.53 4.33 189.00 67.67 0.697 41.75 36.91 0.444 0.524 0.295 0.436

CZH141022 64.84 3.15 ±
0.15 4.33 169.75 68.67 0.697 42.57 36.05 0.487 0.490 0.331 0.410

CZH15029 69.91 3.16 ±
0.54 4.00 205.25 70.33 0.712 43.49 40.53 0.473 0.511 0.318 0.412

CZH15030 69.63 3.05 ±
0.60 3.33 197.46 70.67 0.685 44.07 37.67 0.387 0.472 0.246 0.378

CZH15032 59.12 3.87 ±
0.56 2.67 181.54 69.00 0.728 41.54 36.33 0.428 0.508 0.270 0.404

CZH15033 68.86 3.19 ±
0.61 4.33 195.00 73.00 0.690 41.56 36.17 0.495 0.534 0.321 0.414

CZH15035 69.07 3.03 ±
0.45 4.67 209.83 73.33 0.710 38.39 37.47 0.472 0.521 0.299 0.417

CZH15039 65.00 3.05 ±
0.46 4.00 196.21 67.67 0.687 42.23 41.02 0.379 0.502 0.243 0.418

CZH15042 64.35 3.06 ±
0.50 1.67 199.67 72.00 0.727 37.11 32.71 0.432 0.568 0.273 0.446
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Table A2. Cont.

Entry name GYLI
(%)

GY
(12/5/16) ASI PH

(29/2/16) AD NDVI
(28/1/16)

SPADV

(18/2/16)
SPADR

(1/3/16)
GA.a

(28/1/16)
GA.g

(28/1/16)
GGA.a

(28/1/16)
GGA.g
(28/1/16)

CZH15046 63.40 3.25 ±
0.39 3.00 173.17 67.33 0.687 46.32 38.29 0.425 0.555 0.285 0.468

CZH15051 57.62 3.17 ±
0.17 1.67 180.33 69.33 0.717 44.84 38.88 0.465 0.554 0.277 0.432

CZH15054 73.79 3.16 ±
0.31 3.00 207.33 71.00 0.710 38.12 32.19 0.478 0.605 0.312 0.451

CZH15059 60.88 3.22 ±
0.79 5.00 186.96 69.67 0.710 43.65 36.60 0.450 0.598 0.289 0.485

X40F424W 75.08 3.07 ±
0.66 5.33 213.71 72.00 0.727 43.71 33.73 0.551 0.627 0.400 0.539

10C3271 65.39 3.14 ±
0.15 1.67 198.83 66.67 0.723 40.27 39.00 0.492 0.612 0.350 0.510

PAN53 73.79 2.95 ±
0.23 3.67 204.25 70.67 0.702 43.55 34.76 0.451 0.576 0.318 0.504

P2859W 63.28 2.85 ±
0.33 2.67 187.67 70.00 0.643 41.21 35.78 0.367 0.453 0.239 0.388

SC513 59.23 2.72 ±
0.25 4.33 197.58 69.67 0.673 38.00 32.98 0.379 0.439 0.209 0.319

CZH1227 68.28 2.68 ±
0.42 2.67 173.21 69.00 0.702 40.32 37.79 0.508 0.585 0.340 0.481

CZH15023 72.05 2.56 ±
0.66 3.33 179.04 70.33 0.703 39.43 31.36 0.449 0.545 0.272 0.461

CZH15025 73.23 2.56 ±
0.71 1.67 196.38 72.67 0.725 35.41 31.33 0.471 0.529 0.306 0.447

CZH15026 76.90 2.79 ±
0.25 5.00 208.17 72.67 0.723 40.93 32.87 0.473 0.530 0.306 0.434

CZH15038 67.50 3.0 ±
0.52 5.33 199.00 69.00 0.717 44.98 37.76 0.431 0.574 0.287 0.492

CZH15040 64.71 2.87 ±
0.22 6.00 180.25 67.33 0.658 43.01 39.73 0.373 0.441 0.221 0.331

CZH15041 68.13 2.93 ±
0.37 4.67 184.21 69.00 0.673 43.31 37.73 0.351 0.499 0.212 0.412

CZH15044 70.02 2.97 ±
0.13 3.67 190.25 70.33 0.683 45.24 40.79 0.424 0.524 0.272 0.435

CZH15053 75.79 2.75 ±
0.37 2.00 202.00 71.67 0.715 38.50 33.27 0.533 0.552 0.367 0.449

CZH15056 72.87 2.68 ±
0.24 1.67 174.29 73.00 0.702 41.79 32.66 0.383 0.515 0.235 0.415

CZH15060 65.96 2.67 ±
0.20 2.00 181.13 69.00 0.685 43.64 40.30 0.458 0.543 0.306 0.461

X40F423W 68.52 2.81 ±
0.34 6.67 204.17 72.00 0.687 41.63 33.69 0.416 0.474 0.278 0.370

Local check 1 56.92 2.75 ±
0.47 3.00 201.96 72.67 0.678 44.61 35.68 0.407 0.467 0.246 0.357

PHB30G19 73.10 2.28 ±
0.60 6.67 203.75 69.33 0.712 41.80 35.77 0.478 0.561 0.335 0.469

CZH132047 76.68 2.45 ±
0.20 4.00 209.83 72.67 0.673 40.87 38.25 0.442 0.527 0.275 0.431

CZH141029 76.53 2.52 ±
0.04 1.33 189.67 74.33 0.672 38.99 35.54 0.361 0.467 0.207 0.341

CZH15022 83.03 2.03 ±
0.21 1.00 166.33 77.00 0.690 36.19 31.04 0.405 0.525 0.240 0.413

CZH15027 72.52 2.32 ±
0.27 3.67 191.38 74.00 0.665 39.63 31.78 0.399 0.465 0.254 0.352

CZH15034 79.59 1.92 ±
0.17 6.33 199.92 72.33 0.697 38.48 35.76 0.397 0.491 0.231 0.363

CZH15036 79.64 1.98 ±
0.23 3.67 205.13 72.67 0.695 38.90 31.69 0.436 0.543 0.276 0.408

CZH15037 85.22 1.53 ±
0.29 7.00 189.75 71.33 0.710 40.76 34.23 0.444 0.553 0.297 0.435

CZH15043 79.99 2.02 ±
0.32 7.33 196.38 72.67 0.710 39.74 33.60 0.493 0.616 0.332 0.517

CZH15048 74.16 2.45 ±
0.52 4.67 169.46 70.33 0.668 43.14 37.98 0.460 0.516 0.319 0.462

CZH15049 75.04 2.21 ±
0.59 5.00 174.67 70.67 0.700 39.81 36.25 0.415 0.462 0.268 0.381

PGS65 78.26 2.52 ±
0.45 4.00 197.46 75.00 0.703 37.86 28.82 0.426 0.484 0.258 0.381

MH1547 72.17 2.54 ±
0.01 3.00 194.58 72.33 0.675 36.77 33.97 0.386 0.468 0.235 0.379

MRI 624 80.82 1.84 ±
0.58 7.00 180.38 74.67 0.660 38.49 32.22 0.390 0.469 0.241 0.353

MRI 634 71.21 2.20 ±
0.33 5.33 196.17 72.33 0.668 43.86 42.19 0.435 0.540 0.299 0.467

MRI 614 79.22 2.37 ±
0.37 6.67 213.38 72.33 0.687 42.72 37.68 0.489 0.563 0.332 0.484
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Abstract: The second United Nations Sustainable Development Goal (SDG2), zero hunger, aims to
improve the productivity, food security, nutrition, and sustainability of small-scale farmers. The
fall armyworm (FAW, Spodoptera frugiperda) has been devasting to smallholder farmer food security
since it spread to sub-Saharan Africa in 2016, who have suffered massive crop losses, particularly
maize, an important staple for basic sustenance. Since the FAW mainly devours green leaf biomass
during the maize vegetative growth stage, the implementation of remote sensing technologies offers
opportunities for monitoring the FAW. Here, we developed and tested a Sentinel 2 a+b satellite-based
monitoring algorithm based on optimized first-derivative NDVI time series analysis using Google
Earth Engine. For validation, we first employed the FAO Fall Armyworm Monitoring and Early
Warning System (FAMEWS) mobile app data from Kenya, and then subsequently conducted field
validation campaigns in Zimbabwe, Kenya, and Tanzania. Additionally, we directly observed loss of
green biomass during maize vegetative growth stages caused by the FAW, confirming the observed
signals of loss of the leaf area index (LAI) and the total green biomass (via the NDVI). Preliminary
analyses suggested that satellite monitoring of small-scale farmer fields at the regional level may
be possible with an NDVI first-derivative time series anomaly analysis using ESA Sentinel 2 a+b
(R2 = 0.81). Commercial nanosatellite constellations, such as PlanetScope, were also explored, which
may offer benefits from greater spatial resolution and return interval frequency. Due to other
confounding factors, such as clouds, intercropping, weeds, abiotic stresses, or even other biotic pests
(e.g., locusts), validation results were mixed. Still, maize biomass anomaly detection for monitoring
the FAW using satellite data could help confirm the presence of the FAW with the help of expanded
field-based monitoring through the FAO FAMEWS app.

Keywords: maize; fall armyworm; Spodoptera fugipedra; remote sensing; Google Earth Engine;
Sentinel 2; planet; sustainable development goals; Africa

1. Introduction

The sustainable development goals (SDGs) developed by the UN are seventeen pri-
oritized challenges regarding poverty, inequality, climate, environmental degradation,
prosperity, peace, justice, and their interactions. SDG2 is “Zero Hunger”, which aims to
end hunger globally, achieve food security, improve nutrition, and promote sustainable
agriculture. SDG2 specifically prioritizes the support of subsistence and sustainable small-
scale farmers with a focus on staple agro-food production [1]. Maize (Zea mays L.), after
wheat and rice, is the third most important staple crop in the world, providing half of
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the daily food energy to Africa and America [2]. In Africa alone, more than 300 million
people depend on maize as their main food crop and feed for livestock [3]. In Sub-Sahara
Africa (SSA), there are 37 million ha of annually cultivated maize, with 95% of farms
being less than 2 ha in size and belong to smallholder farmers [4]. Smallholder farmers
grow their plots of maize using almost exclusively family labor, using mostly harvested
seeds from previous seasons with few purchased inputs and their production is mostly for
household consumption [5].

The fall armyworm (FAW), Spodoptera frugiperda, is native to the tropical and subtropi-
cal Americas, where it has been known for many decades as an economically detrimental
pest of many crop species, especially maize. The FAW is a polyphagous lepidopteran
pest widely considered to be one of the most damaging pests; it feeds on over 350 crops
species to diverse families, including maize, rice, cabbage, soybean, tomato, cotton, etc. [6].
This pest has a strong preference for maize in the early vegetative stages when the plant
presents tender green leaves [7]. Nevertheless, at the reproductive stage, the FAW tends
to move to the cob, where it devastates yield quantity and quality [8]. This pest arrived
in 2016 to Western Africa and spread quickly across Africa and has continued eastward
through the Middle East by 2017, Asia by 2018–2019, and Australia by 2020 (Figure 1),
and is expected to threaten Europe eventually [9,10]. The rapid spread of this species is
related to its sporadic and long-distance migratory behavior, with the adult moths capa-
ble of flying over 100 km on a single night [11]. Some studies have indicated that the
effect of FAW damage can cause USD 2.5-6.2 billon losses annually in yield maize across
Africa [10,12]. In sub-Saharan Africa (SSA), this has been estimated to have increased by
up to USD 13 billion per year after 2018 [13], thus threatening the livelihoods of millions of
small farmers.
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In America, FAW pest management using chemical pesticides and transgenic maize
has succeeded in keeping FAW impacts under control [14,15]. However, for smallholder
farmers in SSA affected by the FAW, efforts made in applying available insecticides have
been deemed largely ineffective or not economically feasible [11,13]. For that reason,
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environmentally friendly and cost-effective strategies, such as integrated pest management
(IPM) for FAW management, have been proposed to maintain productivity efficiently
and sustainably according to the UN SDG2 guidelines [11]. There are different proposals
on how to best manage biotic pests in accordance with different local cultural practices,
such as high-quality seeds; optimizing the time of crop planting; rotating the target crop;
or intercropping the main staples crop, e.g., maize or wheat mixed with another crop,
such as beans, that repels the FAW (called push–pull), which moreover can increase the
population of natural enemies such as predators and parasitoids. Besides these different
IPM approaches, the application of sand/ash in the maize leaf funnels has also been shown
to be a natural deterrent to the FAW when applied at specific larval growth stages [5,10,16].

As mentioned before, the FAW eats the tender leaves of maize during the vegetative
stage. The newly hatched FAW larvae that feed on the young maize leaves do not directly
cause yield losses because the plant is able to compensate for at least some loss of green
biomass and a subsequent reduction in the total leaf area in terms of the leaf area index
(LAI) of the crop [16,17]. However, if the older larvae attack the apical meristem or cob,
the result is a dead heart, which means wilting and death of the unfurled leaves [10]. For
that reason, repeated observations of the LAI and aboveground biomass during the early
stages of maize may offer one possibility for the early warning and monitoring of FAW
infestation. Here, remote sensing assessments of the LAI may serve to capture this effect at
a large scale.

The LAI is a biophysical variable that has long been considered a key crop obser-
vation goal by remote sensing researchers working at different scales of observation [6],
and there are a number of different technologies available for its measurement [18–20].
For instance, the European Space Agency (ESA) Sentinel-2 a+b satellites were launched
relatively recently, coinciding with the invasion of the FAW in Africa, which provides
unprecedented remote sensing global coverage at 10 m spatial resolution and 5 day re-
peat intervals [21]. The Sentinel-2 Toolbox Sentinel Application Platform (SNAP, https:
//step.esa.int/main/toolboxes/snap/, last accessed 25 June 2022) includes radiative trans-
fer model based advanced algorithm calculations of the LAI, with control for calculations
over specific geographic areas and time series ranges. In a similar fashion, the normalized
difference vegetation index (NDVI), one of the most common remote sensing indexes,
provides a simplified yet reliable estimate of green biomass [22–24]. The NDVI is de-
rived from visible and near-infrared reflectance, which is closely related to vegetation
presence or vigor, and can also be measured at the ground level with portable sensors [25].
Sentinel-2 a+b, as well as other satellites, provides spectral bands for the calculation of the
NDVI, including PlanetScope microsatellite data, which offer a better 3 m spatial resolution
and daily coverage of SSA [26]. Similarly, there are low-cost alternatives to the LAI and
the NDVI from red–green–blue (RGB) visible spectrum indexes that can be calculated
from commercial cameras in the field or on UAVs. In this case, the green area (GA) index
represents the percentage of pixels ranging from yellow to bluish-green color, as calculated
by the open-source software BreedPix and FIJI [27].

Several studies have been conducted using NDVI time series anomalies, including an
assessment of the ecological response to global warming [28], phenological change [29],
crop status ([30,31], land cover change [32], and early drought detection [23]. An NDVI
time series may be affected by acquisition conditions, such as cloudy (or cloud shadow) vs.
clear days. An NDVI time series curve for a crop season cycle should have an increasing
slope and maximum NDVI values at peak crop growth and then decrease towards the
end of the crop season, representing senescence. NDVI progression across a crop season
is sensitive to increasing biomass in the first half of the season and then dominated by
decreasing chlorophyll in the second half of the season [28]. For that reason, an NDVI time
series relevant to FAW monitoring information should focus on crop development stages
(both at the start and in the middle) and consider potential anomalies apart from the FAW.
Two NDVI time series anomaly analyses are suggested: one to compare two different years
and observe the differences and another to compare an average over a longer time period
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to one single year. In both of these cases, observed anomalies in growth and senescence or
reductions in grain yield should also be considered against potential variations in climatic
conditions season over season [33–37]. One other potential time series anomaly detection
approach is to focus on rapid unusual changes, meaning to normalize the change rate of the
NDVI curve through plotting the NDVI first derivative, which should help to remove the
effects of climatic conditions, and other potential outside effects such as a lack of fertilizer
or intercropping, which may vary between seasons [38–42].

The general aim of this study was to implement a cost-effective assessment for FAW
monitoring and early warning system (FAMEWS) on sub-Saharan maize fields using differ-
ent remote sensing technologies. We divided this work into two parts: (i) the development
of a preliminary satellite image-based monitoring algorithm combining Google Earth
Engine for Sentinel 2 a+b and validated by FAO FAMEWS mobile application data and
(ii) a multi-scale field validation campaign of different time series anomaly change detection
approaches, focusing on the first-derivative growth pattern analyses of the NDVI using
Sentinel 2 a+b and PlanetScope image data during the maize vegetative growth stage,
where FAW presence will result in a reduction in the LAI or total green biomass (NDVI) of
the crop. During the field campaign and also in manual satellite image analyses, the data
will also be further inspected in order to better decipher between potential confounding
anomalies apart from the expected FAW impacts.

2. Materials and Methods
2.1. Study Sites

The measurements to monitor the FAW on maize fields were taken in three differ-
ent countries: Zimbabwe, Tanzania, and Kenya (Figure 2), with efforts focused locally on
Mashonaland and Masvingo (Zimbabwe), Arusha (Tanzania), and Western provinces (Kenya).
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Figure 2. (a) Map of Zimbabwe, in red provinces of Mashonaland Central and Masvingo; (b) map of
Tanzania, in the red province of Arusha; (c) map of Kenya, in the red Western province. Asterisks
mark the locations where we took the data.

Firstly, we went to Zimbabwe (Figure 2a) from 30 March to 5 April of 2019, where
we sampled a total of eight maize fields of different sizes in the two provinces. The maize
growing season lasted from November to the end of June (Figure 3). All the fields were
rainfed, and the average rainfall was 360 mm across the season.

Secondly, we went to Tanzania (Figure 2b) from 23 to 24 of May of 2019 and sampled
twelve fields in the targeted province. The growing season was from March to October
(Figure 3). All the fields were rainfed, cultivated during the unimodal season, and the
average rainfall was 665 mm over the whole season.
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Finally, we went to Kenya (Figure 2c) from 27 to 30 of May of 2019, where we sampled
nineteen farms of different sizes in one province. The growing season lasted from March to
October (Figure 3). All the fields were rainfed with 690 mm as the average rainfall across
the season.

On the other hand, we classified the fields sampled according to the FAO FAMEWS
protocols so that the data would be comparable. The data that we requested from the
smallholder farmers or extension officers were the date of sowing; the stage of the crop
at the same time samples were taken: vegetative, vegetative–reproductive (transition), or
reproductive; farming systems: seasonal, rotation, or intercropping; types of the other crops
if intercropped; and finally, any pest controls that the farmer used to control FAW: pesticide,
IPM, or no treatments. Regarding levels of FAW infestation, we classified them into LOW,
MEDIUM, and HIGH. This classification was based on choosing 50 plants from the middle
of the field and counting how many of them were infested. We also classified the fields
as monocropping and intercropping attending the type of crop. All the fields of maize
that we selected were in the vegetative or vegetative–reproductive growth stages as the
FAW impacts in the reproductive growth stage were less detectable using remote sensing.
In addition, we collected data at each site using the FAMEWS app, which contributed to
larger database efforts (https://www.fao.org/fall-armyworm/monitoring-tools/famews-
mobile-app, last accessed 25 June 2022).

An important highlight could be that the most frequently high levels of FAW infes-
tation occurred with monocropping and the most frequent low level of FAW infestation
occurred when intercropping with common beans, which was also identified as part of the
IPM strategy for the FAW [13]. In Zimbabwe, farmers had the option of using pesticides
and their fields were mostly monocropping compared to the other two countries, where
they controlled FAW using cultural controls with ash or handpicking, if any preventative
measures were attempted.
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2.2. Cloud-based Process Satellite Data: Sentinel 2 a+b

We worked with Google Earth Engine’s (GEE’s) application programming interface
(API), which allows for the direct integration of Google-based server processing with
satellite remote sensing data, such as NASA’s Landsat series and the ESA Copernicus EO
program, but also includes extensive geographic, census, and climate data. Before the
validation, through data captured during field campaigns conducted in 2019, we developed
our theoretical framework into a fully functional code (https://code.earthengine.google.
com/281c50b864af3836ca26345e09c4c248, last accessed 25 June 2022) in the GEE platform
for extracting the NDVI and a time-lagged NDVI first derivative. This code was used to
power image analyses from Sentinel 2 and study the impact and distribution of the FAW
across Africa on a country-by-country basis. In the context of agriculture in Africa, cloud
cover is an issue, but unique GEE algorithms allowed us to produce cloud-free image
mosaics by combining multiple satellite image scenes using cloud masks applied at a pixel
level. In collaboration with the United Nations Food and Agriculture Organization (FAO),
we used the data from the FAMEWS mobile app (https://www.fao.org/fall-armyworm/
monitoring-tools/famews-mobile-app, last accessed 25 June 2022), which we also helped to
develop and refine, and was developed specifically for gathering data on the invasive pest
FAW and assessing impacts on maize fields, and other crops, across the African continent
(more specific details provided below in the farmer field sampling and questionnaire
protocols) (Figure 3).

The left of Figure 4a is a graphical representation of the theoretical signal of the FAW
in terms of vegetation change (Figure 4a); this is not the NDVI, but rather a derivative of
the NDVI, (∆NDVI), where we anticipate opportunities to separate FAW impacts from a
normal crop growth phenology. The rationale of the shape of this curve is that the FAW will
decrease the crop leaf area during the vegetative growth stage, when it primarily eats the
young leaves; however, the FAW will preferentially move to the cob once the crop enters
the reproductive stage. In this moment, crop yield will be reduced but the crop leaf area
may yet recover/regrow partially. The FAW has also been observed to infest a crop area
and then quickly move on to another area, leaving the young crop, even still in a vegetative
stage, to recover afterwards. Likewise, a similar recovery signal is observed in the case of a
FAW infestation that is then treated afterwards. In Figure 4b, this part was based on the
preliminary FAW data from known outbreak sites that were collected by the FAO FAMEWS
app prior to our research initiation (https://www.fao.org/fall-armyworm/monitoring-
tools/famews-mobile-app/, last accessed 25 June 2022).

At first, only a small amount of data was available for testing the capacities of the
Google Earth Engine platform, resulting in the loss of >50% of the data available for looking
at more detailed changes in crop vegetation growth dynamics. The combined Sentinel 2
a+b satellites, with a 5 day repeat interval once both satellites allowed for improved cloud-
free mosaics every 10–15 days. Still, the data points provided by the early FAMEWS app
FAW data extracted over one growing season was limited once filtered for cloud masking.
Still, this was deemed to be minimally sufficient for the testing of the proof-of-concept
for the two selected anomaly detection calculations. This derivative analysis approach
may additionally prove useful as an approach for the detection of any crop phenology
anomalies related to extreme weather events as suggested above, whereas the fusion of
Sentinel 2 satellite data with weather anomalies may help to further improve the data
analyses presented here.
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Figure 4. (a) Conceptual framework of the time series analyses that was expected through the four
stages of maize response to the FAW. (1) The crop growth as normal, emergence, increased rate
of growth until reaching a plateau at near full growth. (2) FAW infestation results in the loss of
vegetative cover, marked as “negative growth.” (3) The negative values of the first derivative end
with treatment or cob development (as the FAW will move to the cob during the maize reproductive
phase). (4) The crop may recover and the FAW may attack again up until the maize reproductive
phase-cob development, when subsequent FAW impacts will result in symptoms not observable
by remote sensing techniques, being a somewhat hidden yield loss. (b) Exemplary actual Sentinel
2 NDVI time change first-derivative time series at a location of documented high FAW damage,
according to FAMEWS. The satellite image analysis results using the GEE API from the preliminary
data point of FAW infestation from the 2016–2017 maize field season where the most data points
remained after cloud mask filtering at the pixel level.

2.3. Manually Processed Satellite Data: Sentinel 2 a+b and PlanetScope

Satellite image analysis was conducted manually, with data extractions and analysis
corresponding to each maize field in vegetative stages from the different campaigns in
Zimbabwe and Kenya. No cloud-free satellite images were available for the field campaign
dates in Tanzania. For each country, the data were gathered during the respective maize
field season. Sentinel-2 satellite data have 12 spectral bands: 443, 494, 560, 665, 704, 740,
781, 834, 944, 1375, 1612, and 2194 nm. The data were captured every 5 days at 10 m of
resolution and the images were free to download. We used the Earth Explorer portal of
the United States Geological Survey (USGS, https://earthexplorer.usgs.gov, last accessed
25 June 2022) to download them, and we applied a 50% cloud filter. For Zimbabwe, we
downloaded seven images for each field between 1 February 2019 and 17 May 2019. Re-
garding Kenya, we downloaded five images for each field between 12 April 2019 and
6 July 2019. Table S1 shows the day of each image of Sentinel 2 a+b. We also used the
commercial microsatellite PlanetScope with four bands (485, 545, 630, and 820nm) which
offer daily images at 3 m resolution. We used the Planet Explorer (https://www.planet.
com/explorer, last accessed 25 June 2022, requires access account) to download the im-
ages. For Zimbabwe, we downloaded 7 images for each field between 31 January 2019 and
17 May 2019. Regarding Kenya, we downloaded 8 images for each field between
11 April 2019 and 14 July 2019. Table S1 shows the day of each image of PlanetScope.
We used the QGIS program (https://qgis.org, last accessed 25 June 2022) and we calculated
the NDVI from the images of Sentinel-2 and PlanetScope.

For the NDVI [21], we calculated the following equation from Sentinel-2a+b bands:

NDVI =
(B8NIR : 834nm − B8RED : 665nm)

(B8NIR : 834nm + B8RED : 665nm)
(1)

For the NDVI, we calculated the following equation from PlanetScope bands [43]:

NDVI =
(B4NIR : 820nm − B3RED : 630nm)

(B4NIR : 820nm + B3RED : 630nm)
(2)
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We used the program QGIS [44] to calculate the NDVI from the images of Sentinel-2
and PlanetScope. Once we had the NDVI for each day, we processed the time series curves,
and we calculated the first derivative of the difference between each NDVI along the time
series curve.

2.4. Unnamed Airborne Vehicle (UAV) Data Collection and Analysis

We managed to arrange for hiring locally licensed UAV pilots in two different coun-
tries as we were not approved with permits to fly UAVs in any of the three project coun-
tries. One was in Zimbabwe from 1 to 5 of April, and the second was in Tanzania from
23 to 24 of May. In both Zimbabwe and Tanzania, UAV data were collected 50 m above
ground level (a.g.l.) using a DJI Phantom 4, with an RGB camera with a sensor of 1/2.3”
CMOS (0.01 m/pixel). We carried out 6 flights in Zimbabwe and 12 flights in Tanzania.
With the photographs taken with the UAV, we created orthomosaics for each field with
the structure-from-motion Agisoft Metashape (https://www.agisoft.com, last accessed
25 June 2022). Once we had the orthomosaics, we used FIJI (https://imagej.net/software/
fiji/, last accessed 25 June 2022) and the Mosaic tool (https://gitlab.com/sckefauver/
MosaicTool, last accessed 25 June 2022) to cut the orthomosaics, where we obtained the
area of interest. Then, we extracted the green area (GA) index values by applying the
Breedpix algorithms incorporated into our free open-source software developed in previ-
ous research in collaboration with CIMMYT (https://github.com/sckefauver/CIMMYT,
last accessed 25 June 2022), which can assess the total green biomass similar to the NDVI,
but based on RGB images. In the hue–saturation–intensity (HSI) color space, the hue (H)
component describes color chroma traversing the visible spectrum in the form of an angle
between 0◦ and 360◦. Thus, the green area (GA) index is the percentage of pixels in the
image in the hue range from 60◦ to 180◦, ranging from yellow to bluish green [45,46]. In
some countries of Africa, all UAV flights were prohibited, such as in Kenya; thus, we used a
QX1 RGB camera on a 5-meter-high telescoping pole and then used the MaizeScanner FIJI
plugin, as described above, to calculate the GA index from these images for comparison
purposes. The difference between the spatial resolution can be observed in Figure 5.
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Figure 5. The different spatial resolutions that were used a long the article. (a) Calculated NDVI
with Sentinel bands with a resolution of 10 m/pixel. (b) Calculated NDVI with PlanetScope bands
with a resolution of 3 m/pixel. (c) Photo taken with a DJI Phantom 4 UAV at an altitude of 50 m and
with a resolution of 0.01 m/pixel. (d) Photo taken with a multispectral camera at 5 m of altitude and
with a resolution of 0.06 m/pixel. (e) Photo taken with a RGB camera at 5 m of altitude, and with a
resolution of 0.009 m/pixel. (f) Photo taken with a mobile phone with a fisheye adapter from below,
and with a resolution of 0.001 m/pixel.

2.5. Multispectral Data Collection and Analysis

The multispectral field photos were taken in three different campaigns. First, in
Zimbabwe, we collected multispectral data from 1 to 5 of April. Second, we collected
multispectral data in Tanzania from 23 to 24 of May. Finally, we collected multispectral
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data in Kenya from 27 to 30 of May. For the multispectral data, we used an AIRINOV
MultiSpec4-C multispectral camera with four bands (550, 660, 735, and 790 nm) on a 5-m
pole. The images were acquired in continuous capture mode every 2 s, while crossing the
fields in simulated UAV flight lines, so as to provide as close as full coverage of each field
as possible in order to compare field averages for the NDVI across scales. In total, we took
images in a total of 34 maize fields: 9 fields in Zimbabwe with an average of 150 images
per field, 12 fields in Tanzania, with an average of 200 images per field, and 13 fields in
Kenya with an average of 100 images per field. The number of images acquired changed
depending on the size of the maize field. After the acquisition of the data, we customed
an image processing code in FIJI to align the separate sensor images (550, 660, 735, and
790 nm) and to calculate the NDVI [47] following the equation below:

NDVI =
(B4NIR : 790nm − B3RED : 735nm)

(B4NIR : 790nm + B3RED : 735nm)
(3)

2.6. Hemispherical (Fisheye) Lens Image Processing in CAN-EYE

For this technique, we took a digital image from under crops looking skywards using
a hemispherical (fisheye) lens adapter that enables the collection of calibration/validation
data if performed correctly using an adequately calibrated lens and complex calculations,
as provided by the free software CAN-EYE (https://www6.paca.inrae.fr/can-eye, last
accessed 25 June 2022) [18,48]. The CAN-EYE software provides an effective LAI, in which
pixels are classified interactively, as well as easy processing and camera calibration protocols.
We acquired these data across 39 fields, including maize farms from three different field
campaigns in Zimbabwe, Tanzania, and Kenya. Hemispherical photographs were taken in
jpeg format at the highest possible resolution (4632 × 3474 pixels) with a mobile camera
Moto G (S5). We captured the three RGB photos in the middle of each field from below in
the middle of four plants.

3. Results
3.1. Sentinel 2 a+b Time Series Analyses

Seasonal averages for known maize fields compared before and after the invasion of
the FAW and the first-derivative negative incidences of the LAI/NDVI times series over
the whole of the local maize season at each study location in Africa.

Figure 6 shows a comparison of the time series means of the NDVI values of December
2015, before the FAW, and the time series means of the NDVI values of December 2018
against the level of infestation with an R2 = 0.401. The values of the NDVI decrease as the
level of infestation increases, following a logical negative correlation.

The resulting signal is a pulse of vegetation change that may be quantified in terms
of depth and timing. In the graphic conceptualization of the FAW pulse signal, Sentinel
2 NDVI time change derivative series presented on the right side of Figure 4a shows the
satellite image analysis results using the GEE API from the preliminary data point of FAW
infestation during the 2016–2017 maize field season (Figure 4b) where the most data points
remained after cloud mask filtering at the pixel level.

Figure 7 shows the results for the fall season of 2018 in Kenya using the FAMEWS app
v1 data. In this case, the analysis of the first derivative of the NDVI time series of Sentinel-2
satellite image data shows an R2 of 0.81, with the infestation level of the FAW in each field
exhibiting a markedly negative relationship. This was conducted with filtered data to
include only vegetative state maize data for Kenya in these months. This suggests that
using derivative NDVI time series analysis appears to be less sensitive to year over year
factors, and thus better correlates with FAW severity, besides also potentially providing
FAW infestation timing, which would be useful for developing an early warning system.
No correlation was observed between the level of FAW infestation and NDVI observations.
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Since the launch of Sentinel 2b, the repeat interval has been reduced by half, but a
very high loss of data was still observed in relation to cloud cover over the three project
study sites where satellite information was used, indicating the somewhat limited utility
for satellite-based FAW monitoring at a large scale, except in largely cloud-free areas. Vege-
tation time series and anomaly change detection alone have not proved to be sufficiently
reliable for uniquely identifying FAW; however, promising results were achieved from
vegetation time series first-derivative analysis based on time step interval-based cloud-free
mosaics. Subsequently, these analyses were expanded to include the whole of Africa using
the same FAMEWS data for the same time, with poor reproducibility of results potentially
related to environmental factors (data not shown).

3.2. Description of the Maize Fields That We Visited in Zimbabwe, Tanzania, and Kenya

For the in-situ validation of the satellite image anomaly detection results presented
in Section 3.1, we visited 39 maize fields in the three different countries in total. Table
S2 shows details of each field, including country, province, approximate sowing data,
and crop stage as vegetative or vegetative–reproductive, and the approximate BBCH
crop stage as well. Moreover, we described the farming system of each individual field,
i.e., if there was rotation, seasonal crop, or intercropping. However, if the farming system
was intercropping, the maize crop shared the field with other crops, including pumpkins,
common beans, groundnuts, and sunflowers. We also included information on the level
of the FAW infestation in each field, as estimated using the FAMEWS protocol for the
field-level FAW infestation and how the smallholder farmers treated FAW, if any treatment
was applied.

In Zimbabwe, most of the farmers used pesticides for control, and only one used ash as
an alternative treatment. With respect to the field for Tanzania, only one farmer attempted
to control the FAW using hand picking, but more detailed informationwas not available.
In Kenya, the majority used ash to try to reduce the FAW infestation, and others did not
use anything. Regarding the date of sowing, in Zimbabwe where the sowing months of
maize were usually November–December, we can see that the sowing was late in January
(Table S1), which could be because the year 2018 was relatively dry [49], which encouraged
late sowing practices. On the other hand, in Tanzania and Kenya, almost all the maize fields
were planted between March and April, with the exceptions of three fields at beginning of
May. Given the present high level of FAW infestation, avoiding late planting is one of the
IPM strategies, as some farmers attempted to avoid FAW infestation by adjusting their crop
phenological cycles [11].

3.3. Comparison of the NDVI, GA Index, and LAI at Different Spatial Resolution

We conducted observations (NDVI, LAI, and GA index) at three different scales
(PlanetScope, phenopole, and fisheye hemispherical lens taken from below the plant and
looking upwards) from each country to field scales, all taken on the same day. Therefore,
these data were collected in Kenya in the maize fields from 28 to 29 of May. The difference
between the spatial resolution can be observed in Figure 5.

In Figure 8, the results show a comparison between the different indices taken with
different sensors at different scales. In Figure 8a, we show the determination coefficient (R2)
of the LAI taken from the fisheye in a mobile phone against the NDVI extracted from images
from PlanetScope (nanosatellite) with an R2 = 0.737 (RSE: 0.05), the LAI against the NDVI
extracted from images taken with a multispectral camera (at an altitude of 5 m) averaged
over each field with an R2 = 0.617 (RSE: 0.05), and the LAI against the GA index extracted
from the photo taken from an RGB camera (at an altitude of 5 m) with an R2 = 0.684
(RSE: 0.15). In Figure 8b, we can see the relationship between the GA (as we mentioned
before) against the NDVI extracted from PlanetScope presents an R2 = 0.936 (RSE: 0.02) and
the GA against the NDVI extracted from the multispectral camera presents an R2 = 0.708
(RSE: 0.05). Finally, the results presented in Figure 8c show the direct relation between
the NDVI from the PlanetScope nanosatellite and NDVI values from the multispectral
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camera with an R2 = 0.713 (RSE: 0.05). R2 was higher than 60% between each category,
despite differences in the observation level and image capture or averaging technique.
Regarding the NDVI extracted from Sentinel 2 a+b, we could not compare these data easily
to any other sources, as the day that we captured these field data was 28 May 2019, and
there were no data from Sentinel 2 a+b on this specific day, whereas the closest possible
(i.e., unclouded) day was 7 May 2019 and afterwards in July. Moreover, the GA that was
taken from the UAV was not comparable either, as the UAV flights in Kenya were prohibited
at the time of this field campaign.

Remote Sens. 2022, 14, 5003 12 of 19 
 

 

did not use anything. Regarding the date of sowing, in Zimbabwe where the sowing 
months of maize were usually November–December, we can see that the sowing was late 
in January (Table S1), which could be because the year 2018 was relatively dry [49], which 
encouraged late sowing practices. On the other hand, in Tanzania and Kenya, almost all 
the maize fields were planted between March and April, with the exceptions of three fields 
at beginning of May. Given the present high level of FAW infestation, avoiding late plant-
ing is one of the IPM strategies, as some farmers attempted to avoid FAW infestation by 
adjusting their crop phenological cycles [11]. 

3.3. Comparison of the NDVI, GA Index, and LAI at Different Spatial Resolution  
We conducted observations (NDVI, LAI, and GA index) at three different scales 

(PlanetScope, phenopole, and fisheye hemispherical lens taken from below the plant and 
looking upwards) from each country to field scales, all taken on the same day. Therefore, 
these data were collected in Kenya in the maize fields from 28 to 29 of May. The difference 
between the spatial resolution can be observed in Figure 5. 

In Figure 8, the results show a comparison between the different indices taken with 
different sensors at different scales. In Figure 8a, we show the determination coefficient 
(R2) of the LAI taken from the fisheye in a mobile phone against the NDVI extracted from 
images from PlanetScope (nanosatellite) with an R2 = 0.737 (RSE: 0.05), the LAI against the 
NDVI extracted from images taken with a multispectral camera (at an altitude of 5 m) 
averaged over each field with an R2 = 0.617 (RSE: 0.05), and the LAI against the GA index 
extracted from the photo taken from an RGB camera (at an altitude of 5 m) with an R2 = 
0.684 (RSE: 0.15). In Figure 8b, we can see the relationship between the GA (as we men-
tioned before) against the NDVI extracted from PlanetScope presents an R2 = 0.936 (RSE: 
0.02) and the GA against the NDVI extracted from the multispectral camera presents an 
R2 = 0.708 (RSE: 0.05). Finally, the results presented in Figure 8c show the direct relation 
between the NDVI from the PlanetScope nanosatellite and NDVI values from the multi-
spectral camera with an R2 = 0.713 (RSE: 0.05). R2 was higher than 60% between each cat-
egory, despite differences in the observation level and image capture or averaging tech-
nique. Regarding the NDVI extracted from Sentinel 2 a+b, we could not compare these 
data easily to any other sources, as the day that we captured these field data was 28 May 
2019, and there were no data from Sentinel 2 a+b on this specific day, whereas the closest 
possible (i.e., unclouded) day was 7 May 2019 and afterwards in July. Moreover, the GA 
that was taken from the UAV was not comparable either, as the UAV flights in Kenya 
were prohibited at the time of this field campaign.  

 
Figure 8. Coefficient of determination (R2) of the different indices of aboveground biomass against 
each other, all taken on the same day (28 May 2019). (a) In the x axis, the LAI is taken with the fisheye 
(from below the plant) and the y axis shows the NDVI calculated from PlanetScope (nanosatellite), 
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sources: the multispectral sensor and the nanosatellite. (c) The comparison between the NDVI from 

Figure 8. Coefficient of determination (R2) of the different indices of aboveground biomass against
each other, all taken on the same day (28 May 2019). (a) In the x axis, the LAI is taken with the fisheye
(from below the plant) and the y axis shows the NDVI calculated from PlanetScope (nanosatellite),
the NDVI calculated from the multispectral sensor (at 5 m), and the GA index extracted from the RGB
camera (at 5 m). (b) The GA index from the camera compared against the two different NDVI sources:
the multispectral sensor and the nanosatellite. (c) The comparison between the NDVI from the
nanosatellite and the NDVI from the field multispectral camera. (* = Pearson correlation significant
with p < 0.05).

3.4. Vegetation Growth Curves Based on Manually Processed Sentinel 2a+b and PlanetScope
Image Data

Figure 9 shows the results of four different fields visited on 28 May 2019 in Kenya (first
season of maize), showing the NDVI vegetation growth curve (continuous green line) and
the first derivative of the NDVI curve first derivative (dashed light green line) along the
season. With respect to the curves from Sentinel 2 shown in Figure 9, we can see that the
curves do not present anomalies on the values of NDVI in the middle of the curve. These
increase as the plants grow until the maize starts to dry (the color is not green anymore).
The same happens for the first derivative of the NDVI curve.
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NDVI curves (dashed light green line) were taken from Sentinel 2 a+b (left) and PlanetScope (right)
along the first season of maize from the end of April to the end of July. The field presented three
levels of infestations: LOW, MEDIUM, and HIGH. The vertical red dotted line is the day that we
were in the field taking the data (28 May 2019). The x-axis (left) values between 0 and 0.8 belong to
the NDVI index and x-axis (right) values between -0.2 and 0.8 belong to the NDVI first derivative.
The Y axis belongs to the maize crop season from the sowing day to the harvest day.

4. Discussion
4.1. Sentinel 2 a+b Time Series Analyses

Improved data filtering can exclude other possible causes of sudden increases in
NDVI/LAI values of maize crops. One study assessed the spatial distribution of the
differences in the time lag between a dry year with negative precipitation and vegetation
NDVI anomalies and a wet year with positive precipitation and vegetation NDVI anomalies
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in a drought-prone region in China [23]. In addition, in one study in a maize field in
northeastern Indiana, by comparing NDVI values for individual image dates with the
derived normal curve, the response of crop growth to environmental factors was quantified
as NDVI residuals, and regression analysis revealed a significant relationship between the
yield and NDVI residual during the pre-silking period, indicating that NDVI residuals
reflect crop stress in the early growing period that impacts yield [50]. Furthermore, in a
study in Zimbabwe, the development of the regional NDVI time series was composited
for cultivated areas and adjusted temporally, according to the timing of the rainy season
and this adjustment standardized the NDVI response vis-à-vis the expected phenological
response of maize. As a consequence of that, a national time series index was developed
and this national time series provided an effective summary of vegetation response in
agricultural areas, allowing for the identification of NDVI green-up during grain filling [33].

All Sentinel 2 images for this period were used in pairs to create cloud cover reduced
image composites. These was then compared with the previous composites in a time
step of 11 days to calculate the NDVI change derivative. At the time of the first analyses,
there was only one Sentinel 2 satellite sensor launched, and the code was prepared such
that it would benefit from the launch of the Sentinel 2b sensor and be prepared for the
analysis of new FAMEWS data starting in the summer of 2018. Meanwhile, the powerful
computing capability of the GEE platform using greatly improved efficiency of dense
image series analysis was in line with previous studies on crop and forest monitoring
using GEE and satellite data [51–53]. A comparison between scalable techniques (Figure 4)
(e.g., with nanosatellites, aircraft, and UAVs), all of which could provide higher spatial
resolution coverage and higher frequency, which indicates better temporal coverage, is
proposed for the supplemental or replacement acquisition of FAW monitoring data, as these
techniques were not dependent on cloud cover [54–56]. These analyses which compare
sensors at different scales could allow for temporal gap filling with real data and could
improve the potential use of NDVI derivative anomaly detection, possibly related to the
FAW. Furthermore, these techniques could help to confirm the qualitative observation of
better performance in lowland areas where geographical variability is minimized.

4.2. Comparison of the NDVI, GA Index, and LAI at Different Spatial Resolutions

Once we had the preliminary data from GEE and some curves of the NDVI showed
promise for FAW monitoring, we visited three different countries in Africa: Zimbabwe,
Tanzania, and Kenya. In this part, we visited the small farmers’ fields and recorded the
geographic coordinates of each one, because afterwards we needed to extract the related
satellite information. At the same time, we used different sensors to measure the biomass
in the maize fields. A close but not perfect relationship between LAI values and the spectral
index NDVI is generally expected when compared for the same crop and across similar
growing conditions. The slightly lower values of correlation with the field multispectral
sensor were most apparent due to a lack of full-field coverage when deployed with a
telescoping pole (FOV approx. 5m), but with limited coverage compared to data from
a UAV, which provided more precise full coverage. We carried out this comparison to
demonstrate the relationships between different technologies and sensors for validation
because satellite data were often not available for our monitoring purposes due to cloud
cover issues, especially when manually processing the satellite image data. The initial
proposal was to use UAVs combined with satellites for data gap filling; however, in the
countries in Africa that were included in this project, UAVs were either prohibited or
highly limited, as we mentioned before. Moreover, gap-filling time series interpolation
techniques would not work for using a first-derivative NDVI approach, but the scalability
of the proof of concept for LAI assessments also needed some further investigation, even if
the relationship under normal conditions is fairly well understood.

The parameters LAI, NDVI, and GA can be considered as similar total green biomass
assessments, when measured in the vegetative growth stage for the same crop. These
indices should be comparable enough to enable gap filling with real data in the case
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of cloud cover during the FAW critical monitoring periods There are many studies that
compared the LAI using the LI-COR LAI-2000 meter (LI-COR, Inc., Lincoln, NE, USA),
an approach similar to our fisheye technique, against NDVIs calculated from differ-
ent satellites. Kovacs [57] showed that the NDVI calculated from a high-resolution
IKONOS satellite (1x1 m the pixel) against the LAI taken from below the plant presents an
R2 = 0.70. Moreover, a multiscale comparison between the LAI taken with a LI-COR
LAI-2000 against the NDVI (Sentinel-2) showed an R2 = 0.77, and the same LAI against
the NDVI from PlanetScope presented a correlation of 0.80. In addition, LAI compared to
NDVI taken from the multispectral camera taken with a UAV showed an R2 = 0.67 [58].
Moreover, there are many studies in precision viticulture which compare NDVI at different
scales evaluated by Matese [56], and they presented a correlation between the nanosatellite
and the UAV (R2 = 0.70).

More advanced LAI assessment techniques with better calibration between the differ-
ent approaches may provide improvements on the results presented above, even though
we implemented a calibrated and standardized classic scientific approach using hemispher-
ical lens photography. The LAI can be measured even by a smartphone using a variety
of different apps and techniques, at specific angles (LAI above vs LAI below), or with
hemispherical lens photography, as indicated here [20,48]. In fact, all of our LAI data were
collected using the Android mobile app that we developed using ODK Collect for metadata
recording, image capture, and geolocation, as well as data backup, all of which could
allow for very low-cost citizen science-based data filling of LAI datasets for improving FAW
monitoring in theory, incorporated as an optional module within the existing FAMEWS app,
and potentially validated using the ESA Sentinel 2 SNAP Toolbox. This proof-of-concept
scaling extension went beyond the scope of this project but may be pursued in future
collaborative work.

4.3. Vegetation Growth Curves Based on Manually Processed Sentinel 2a+b and PlanetScope
Image Data

This section focuses on the fields that we visited in the different target countries;
we also estimated the FAW damage for the field as a categorical variable. We calculated
the NDVI time series curves and first-derivative times-series curves using the data from
Sentinel 2 and PlanetScope from the day that the maize was sowed until the reproductive
stage was finished. In the case of negative values in the first derivative of the NDVI,
something caused a marked and sudden reduction in the total green biomass (NDVI),
whether by the FAW or some other biotic or abiotic factor.

The PlanetScope curves in Figure 9 presented possible FAW-related anomalies in
the values of NDVI, where the first derivative of NDVI values is negative. After these
values start to increase again, indicating that the crop recovered its growth again, and
that something caused a marked and sudden reduction in the total green biomass (NDVI),
probably the timing and impact of a FAW pest invasion, notably because field measurements
and surveys were conducted during those same days. In fact, field data were taken on
28 May 2019, indicated by the vertical red line in Figure 9.

Supplemental Figures S1–S4 show the NDVI vegetation curve and NDVI first-derivative
curve along the season of maize. Figure S1a–c shows values from the fields measured in
Zimbabwe during the maize season. Figures S2–S4 show the fields measured in Kenya
during the maize season.

They presented negative values on the NDVI first derivative calculated with Plan-
etScope data but could not confirm this pattern caused by the FAW, abiotic stress, or biotic
stress. One of the preventative methods used by smallholder farmers was intercropping, us-
ing ground nuts or beans because they repelled and helped prevent FAW infestation [11,13].
On the other hand, repeating the same analysis for the 2020 crop season to test these
concepts further for their potential for FAW monitoring was not possible due to the Locust
(Schistocerca gregaria Forskål) invasion that year, which similarly attacked the plant through
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herbivory, often massively reducing the crop aboveground biomass and thus reducing both
NDVI and LAI values [59–61].

5. Conclusions and Future

The first derivative of the Sentinel-2 a+b and PlanetScope NDVI time series showed
the most promising results but only in select locations and is yet to be fully implemented
with adequate spatial and false-positive anomaly filters. Again, the analyses presented
here are best limited to vegetative growth stages with mostly maize as the main crop,
though possible feasible with intercropping. Intercropping may be considered a source
of variability, which will always be present for any type of image analysis. Cloud cover
also reduced some of the useable data and is a major limitation using passive remote
sensing approaches. One of the possible suggestions for future continuations of this work
could be integration at different scales of remote sensing. For example, companies or
governments could have regional control of the small farmer’s fields through monitoring
with Sentinel 2 a+b and/or commercial nanosatellites with more detailed resolutions and
shorter return intervals (depends on the type of satellite) to calculate the NDVI vegetation
and derivative curves. Then, if the analysis showed that the NDVI was down in the middle
of the season, they could travel to the field and double check using a mobile app, such as
Nuru from PlantVillage [62,63] (see https://plantvillage.psu.edu/projects for more details,
last accessed 25 June 2022) to recognize if the cause is the FAW or not, and verify that the
dip in the NDVI growth curves was not caused by intercropping, weeds, or abiotic and
other biotic factors (Figure 10).
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14195003/s1. Table S1. Days of the images from Sentinel 2
a+b and PlanetScope downloaded from USGS. Table S2. Relevant data taken from each field that
we visited, using the FAMEWS app. Figure S1. (a–c) NDVI curves of vegetation from Zimbabwe
(continue green line) and the first derivative of the NDVI curves (dashed light green line) were taken
from Sentinel 2 a+b (left) and PlanetScope (right) along the first season of maize from January to the
end of March and April. Figure S2. (a,b) NDVI curves of vegetation from Kenya (continue green
line) and the first derivative of NDVI curves (dashed light green line) were taken from Sentinel 2 a+b
(left) and PlanetScope (right) along the first season of maize from the end of April to the end of July.
Figure S3. NDVI curves of vegetation from Kenya (continue green line) and the first derivative of
NDVI curves (dashed light green line) were taken from Sentinel 2 a+b (left) and PlanetScope (right)
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along the first season of maize from the end of April to the end of July. Figure S4. NDVI curves of
vegetation from Kenya (continue green line) and the first derivative of NDVI curves (dashed light
green line) were taken from Sentinel 2 a+b (left) and PlanetScope (right) along the first season of
maize from the end of April to the end of July.
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Abstract
Main conclusion By combining hyperspectral signatures of peanut and soybean, we predicted Vcmax and Jmax with 70 
and 50% accuracy. The PLS was the model that better predicted these photosynthetic parameters.

Abstract One proposed key strategy for increasing potential crop stability and yield centers on exploitation of genotypic 
variability in photosynthetic capacity through precise high-throughput phenotyping techniques. Photosynthetic parameters, 
such as the maximum rate of Rubisco catalyzed carboxylation (Vc,max) and maximum electron transport rate supporting 
RuBP regeneration (Jmax), have been identified as key targets for improvement. The primary techniques for measuring 
these physiological parameters are very time-consuming. However, these parameters could be estimated using rapid and 
non-destructive leaf spectroscopy techniques. This study compared four different advanced regression models (PLS, BR, 
ARDR, and LASSO) to estimate Vc,max and Jmax based on leaf reflectance spectra measured with an ASD FieldSpec4. Two 
leguminous species were tested under different controlled environmental conditions: (1) peanut under different water regimes 
at normal atmospheric conditions and (2) soybean under high  [CO2] and high night temperature. Model sensitivities were 
assessed for each crop and treatment separately and in combination to identify strengths and weaknesses of each modeling 
approach. Regardless of regression model, robust predictions were achieved for Vc,max (R2 = 0.70) and Jmax (R2 = 0.50). Field 
spectroscopy shows promising results for estimating spatial and temporal variations in photosynthetic capacity based on leaf 
and canopy spectral properties.

Keywords Advanced regression models · ARDR · Bayesian ridge model · High-throughput phenotyping · Jmax · Lasso · 
Leaf reflectance · Peanut · Photosynthesis · PLS · Soybean · Vc,max
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Jmax  Maximum electron transport rate supporting 
RuBP regeneration

LASSO  Least absolute shrinkage and selection operator 
model

NIR  Near-infrared spectral reflectance
PLSR  Partial least squares regression model
RuBP  Ribulose 1,5-bisphosphate
SWIR  Shortwave infrared spectral reflectance
Vc,max  Maximum rate of rubisco-catalyzed 

carboxylation
VIS  Visible spectral reflectance

Introduction

One of the great challenges for the future is the production of 
sufficient food for a growing population. From 1961 to 2012, 
the human population more than doubled from approxi-
mately 3 billion to 7 billion people and a further increase to 
9.3 billion is projected for the year 2050 (FAOSTAT 2016). 
This means that crop production must double by 2050 to 
meet the predicted production demands of the global popu-
lation. However, achieving this goal will be a significant 
challenge for agriculture since crop yields would have to 
increase at a rate of 2.4% per year, yet the average rate of 
increase is only 1.3%, with yields stagnating in up to 40% 
of land under cereal production (Araus and Cairns 2014). 
Further, climate change will exacerbate this challenge by 
intensifying field crop exposure to abiotic stress conditions, 
including rising temperature, drought, and increased  CO2 
concentration  [CO2] (Christensen et al. 2007). This is a 
major issue because climatic factors since the end of the 
1980s have counterbalanced the wheat genetic progress 
of recent decades in Europe (Oury et al. 2012). Indeed, as 
observed by Oury et al. (2012) and Gray and Brady (2016), 
the beneficial effects expected from the increase in atmos-
pheric  [CO2] in the World’s crop production during recent 
decades have been constrained by the effects of temperature 
increases and extended drought.

Grain legumes are the main source of proteins, miner-
als, and fibers for animals and humans (Meena et al. 2018). 
To achieve significant improvements in crop yield, breeding 
strategies aiming to increase biomass gains and crop pro-
ductivity need to focus on radiation uptake, photosynthetic 
efficiency, and harvest index (HI) (Reynolds et al. 2012; 
Koester et al. 2014). However, to date, breeding for higher 
photosynthetic efficiency or for tolerance to different envi-
ronmental stresses has only played a minor role in increas-
ing crop productivity over past decades (Zhu et al. 2010). 
In a rational sense, plant physiology research should focus 
on improving photosynthesis due to its central part in plant 
productivity (Long et al. 2004). Recently, different studies 

have advanced how to optimize photosynthetic processes in 
different crops (Ort et al. 2015; Simkin et al. 2019).

One way to improve crop photosynthesis is to increase 
our knowledge of genomic control of photosynthesis under 
different environmental conditions. To achieve this, diverse 
crop populations representing hundreds of cultivars need to 
be screened (phenotyped) under different environments to 
associate traits of interest (i.e., photosynthetic parameters) 
with specific genomic regions. With the rise of genomic and 
bioinformatics technologies, phenotyping entire populations 
for traits of interest is the bottleneck that delays scientific 
advancement in genomics (Adachi et al. 2011; Yan et al. 
2015; de Oliveira Silva et al. 2018; Oakley et al. 2018). 
Therefore, genomic approaches and breeding solutions need 
to implement new high-throughput phenotyping techniques 
that allow rapid measurement of photosynthetic traits for 
screening cultivars in the shortest amount of time (Araus and 
Cairns 2014; Araus et al. 2018). By improving techniques 
for measuring photosynthetic traits, more efficient cultivar 
selection will likely improve both yield potential and resil-
ience to abiotic stresses.

Photosynthetic performance is frequently measured with 
an infrared gas analyzer that assesses plant  CO2 assimila-
tion rate. Photosynthetic parameters, such as leaf mid-day 
photosynthesis and leaf diurnal photosynthesis, can be used 
to assess in situ plant performance under different abiotic 
stresses (Sanz-Sáez et al. 2012, 2017). More detailed pho-
tosynthetic parameters, such as maximum rate of rubisco-
catalyzed carboxylation (Vc,max) and maximum electron 
transport rate supporting RuBP regeneration (Jmax), have 
been identified as selection parameters for tolerance to abi-
otic stress, such as drought (Aranjuelo et al. 2009, 2013), 
elevated tropospheric ozone (Yendrek et al. 2017), or for 
improved performance under elevated atmospheric  CO2 
(Ainsworth et al. 2004; Soba et al. 2020). Depending on 
the parameter to be measured, sampling can take a few min-
utes each (e.g., mid-day photosynthesis) or 20–60 min per 
sample for photosynthetic parameters, such as Vc,max and 
Jmax, which are calculated using photosynthesis to intercel-
lular  CO2 curves or A–Ci curves (Farquhar et al. 1980; Long 
and Bernacchi 2003). In addition, Vc,max and Jmax are essen-
tial input parameters for the FvCB model (Farquhar et al. 
1980) that relates photosynthetic biochemistry responses to 
known environmental conditions (Von Caemmerer 2013). 
This model has also been used in earth systems models for 
predicting ecosystem responses to environmental changes 
(Rogers 2014).

Reflectance spectra at leaf and canopy levels can facili-
tate assessment of plant’s structure, nutritional status, and 
certain stress parameters. This includes estimating contents 
of chlorophyll, xanthophylls, nitrogen, phosphorus, fiber, 
sucrose (Gamon et al. 1997; Peñuelas and Filella 1998; 
Petisco et al. 2006; Asner and Martin 2008; Colombo et al. 
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2008; Ainsworth et al. 2014; Serbin et al. 2014; Dechant 
et  al. 2017; Yendrek et  al. 2017), and plant secondary 
metabolites (Couture et al. 2016; Vergara-Diaz et al. 2020). 
In addition, leaf level spectral reflectance has been used to 
predict photosynthetic parameters, such as Vc,max and Jmax 
in soybean (Ainsworth et al. 2014), wheat (Silva-Perez et al. 
2018), maize (Heckmann et al. 2017; Yendrek et al. 2017), 
and trees (Serbin et al. 2012) as well as dark respiration in 
wheat (Coast et al. 2019).

Although translating data acquired with a field spectrom-
eter using a leaf clip to scalable imaging approaches using 
multispectral or hyperspectral cameras in drones or other 
aerial platforms (frequently limited to the 350–1000 nm 
spectral range) may be further complicated by the hetero-
geneous nature of canopies, such techniques could greatly 
expand the scope of applicability of these measurements. In 
the above-mentioned research, relationships between photo-
synthetic parameters and complex data arrays captured by 
leaf level spectrometers need to be analyzed using complex 
multivariate statistical models. Partial least squares regres-
sion (PLSR) is the most commonly used model (Serbin 
et al. 2012; Ainsworth et al. 2014; Heckmann et al. 2017; 
Silva-Pérez et al. 2017; Yendrek et al. 2017). However, Fu 
et al. (2020) recently reported that other machine learning 
algorithms such as Least Absolute Shrinkage and Selection 
Operator (LASSO) can estimate photosynthetic parameters 
as accurately or better than PLSR, since LASSO is more 
robust when comparing different environments or plant 
species (Tibshirani 1996). Therefore, to bypass PLSR per-
formance problems, we propose to explore other powerful 
machine learning algorithms with appropriate feature extrac-
tion capacities, which include LASSO (Vergara-Diaz et al. 
2020), Bayesian Ridge (BR; Neal 1996), and Automatic Rel-
evance Determination Regression (ARDR; Tipping 2001).

For these multivariate models, utilized data must repre-
sent enough phenotypic variability to support proper model 
functioning. To achieve sufficient phenotypic variability, 
several researchers have applied a range of growth condi-
tions, including different levels of abiotic stresses, such as 
drought (Silva-Perez et al. 2017), elevated tropospheric 
ozone (Ainsworth et al. 2014; Yendrek et al. 2017), or high 
temperature (Serbin et al. 2012). Another means for increas-
ing phenotypic variation is by including several related spe-
cies in the same model. For example, Doughty et al. (2011) 
used 149 tropical tree species to create a PLSR model to 
estimate mid-day photosynthesis using canopy hyperspectral 
imaging; and Serbin et al. (2012) combined hyperspectral 
data of two tree species to estimate Vc,max. However, to the 
best of our knowledge, no published study has combined 
multiple leguminous row crops species. In our research, 
we focused on soybean (Glycine max) and peanut (Arachys 
hypogea), which are leguminous crops often grown under 
high abiotic stress levels (drought and elevated temperature) 

in the southeastern United States. These legume crops are 
also important in rotation with corn and cotton.

The aims of this study were (i) to estimate photosynthetic 
capacity parameters, such as mid-day photosynthesis, leaf 
chlorophyll content (LCC), Vc,max, and Jmax of two legume 
crops (soybean and peanut) using full-range leaf level reflec-
tance spectra (VIS–NIR–SWIR, 400–2500 nm) with PLSR, 
BR, ARDR and LASSO models and (ii) to simulate pho-
tosynthetic parameter model performance using four com-
mon types of sensors with more limited wavelength ranges: 
VIS–NIR (350–1000 nm), NIR–SWIR (1000–2500 nm), 
SWIR (1400–2500 nm), and an advanced multispectral sen-
sor imitating the ESA Copernicus Sentinel 2 satellite with 
12 spectral bands.

Materials and methods

Trial setup and design

Experiments were conducted in field trials and controlled 
conditions located at Auburn University (Alabama, USA). 
The study was carried out with two leguminous crops (soy-
bean and peanut) that were exposed to different growth con-
ditions. The first experiment involved two soybean (Glycine 
max. L) cultivars grown under ambient and elevated  [CO2] 
at an Open Top Chamber Facility. The second experiment 
involved four soybean cultivars grown under high night 
temperature in growth chambers. The third experiment was 
performed with 6 peanut (Arachis hypogea L.) cultivars 
grown under well-watered and water-stress conditions in a 
greenhouse.

Experiment 1: soybean cultivar response to elevated 
 [CO2]

Two soybean cultivars representing high (PI398223) and low 
(PI567201A) water use efficiencies (WUE) were chosen for 
the study based on previous screening by Dhanapal et al. 
(2015). The two cultivars were planted on 16 May 2019 in 
20 L pots filled with commercial growth media (Pro-Mix, 
Premier Tech, Quebec, Canada) at the Open Top Chamber 
Facility located at the USDA-ARS National Soil Dynamics 
Laboratory, Auburn, AL, USA. Open top chambers (OTC) 
(Rogers et al. 1983), encompassing 7.3  m2 of ground sur-
face area, were used to deliver target  [CO2] of ~ 410 ppm 
(ambient) or ambient plus 200 ppm (elevated)  [CO2] dur-
ing light hours using a delivery and monitoring system 
described elsewhere (Mitchell et al. 1995). There were four 
replicate chambers of each  CO2 level for a total of eight 
experimental plots. Each OTC held two pots of each cultivar 
to have two sub-replicates for each plot. The experiment 
was conducted as a split plot design with  CO2 level being 
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the main plot factor and cultivar being the split plot factor. 
Mid-day photosynthesis and A–Ci curves were performed 
when plants were at the beginning of pod development (R3, 
Fehr et al. 1971, 15 July) and at the beginning of seed filling 
(R5, 26 July) according to growth stages defined by Fehr 
et al. (1971). Relative chlorophyll content and leaf hyper-
spectral reflectance measurements were performed concur-
rently with photosynthetic parameter measurements. More 
detailed information on experimental design was previously 
reported by Soba et al. (2020).

Experiment 2: soybean cultivar response to high 
night temperatures

Four soybean cultivars (PI360846, DS25-1, PI458098, and 
Agx9) were planted in 3.8 L pots containing a peat-moss: 
perlite potting mixture (2:1) on 1 May 2019. Plants were 
grown at the Auburn University Plant Science Research 
Center greenhouse complex. Temperatures were maintained 
at 28/20 °C (day/night) until plants reached the first flow-
ering stage (R1). To impose night temperature treatments, 
plants were then moved to two Conviron CMP 6010 growth 
chambers (Conviron, Manitoba, Winnipeg, Canada) main-
tained on a 12 h photoperiod (1200 µmol   m−2  s−1 PAR) 
with 50/70% RH (day/night). Control plants were grown 
at 30/20 °C (day/night) and high night temperature plants 
were grown at 30/30 °C (day/night). Three replicates per 
cultivar and chamber were used and the whole experiment 
was repeated twice. Fourteen days after temperature treat-
ments were imposed, mid-day photosynthesis, A–Ci curves, 
LCC, and leaf hyperspectral reflectance were performed as 
explained below.

Experiment 3: peanut cultivar response to drought

Six peanut cultivars (AUG16-28, AU17, 18H19-3738, G06-
G, AU8-19, and AU18-21) were planted at the Auburn Uni-
versity Plant Science Research Center greenhouse complex 
on 21 April 2019. Plants were grown in 20 L pots containing 
a mixture of sand and sandy-loam field soil (1:1, w/w) col-
lected from EV-Smith Research Center, Shorter, AL, USA. 
Plants were maintained under well-watered conditions (80% 
relative soil water content, RSWC) until 60 days old; at this 
time, the drought experiment was initiated. Weighing pots 
every 2–3 days initially and every day towards the end of 
the experiment allowed RWSC to be gravimetrically main-
tained. Well-watered plants were maintained at 80% RSWC 
while drought plants were maintained at a 30% RSWC. Four 
replicates per cultivar and stress treatment were used in this 
experiment. At 20 and 40 days after drought initiation (i.e., 
80- and 100-day-old plants), mid-day photosynthesis, A–Ci
curves, LCC, and leaf hyperspectral reflectance measure-
ments were performed as explained below.

Physiological parameter assessments

In this study, mid-day photosynthesis, A–Ci curves, and 
SPAD measurements were taken from 3 different experi-
ments and coupled with full-range (350–2500 nm), high-
resolution (3–8 nm) spectral reflectance measurements taken 
with a Field Spec Hi-Res four field spectrometer (Analytical 
Spectral Devices, Boulder, CO, USA) to predict physiologi-
cal parameters that characterize photosynthetic traits.

Mid‑day photosynthesis measurements

Depending on experiment size, mid-day photosynthesis 
measurements were taken one day before A–Ci curves 
using two or three LI-6400 (Li-Cor Biosciences, Lincoln, 
NE, USA) systems. Measurements were performed on fully 
expanded young leaves corresponding with the third/forth 
leaf from the top in soybean, and second/third leaf from 
the top of the main stem in peanut. Prior to measurements, 
systems were set to match environmental growth conditions 
(light intensity and temperature) and maintained at a relative 
humidity of 60–70%. While photosynthesis measurements 
were in progress, relative chlorophyll content and spectral 
reflectance measurements were also performed on the same 
leaves using a SPAD meter (Minolta SPAD-502, Spectrum 
Technologies Inc., Plainfield, IL, USA) and the Field Spec 
Hi-Res 4 field spectrometer, respectively.

A–Ci curves

To calculate maximum rate of rubisco-catalyzed car-
boxylation (Vc,max) and maximum electron transport rate 
supporting RuBP regeneration (Jmax), A–Ci curves were 
performed at different developmental stages in each experi-
ment. In general, the A–Ci curves were the same for pea-
nut and soybean except for different light saturation points: 
1750 μmol  m−2  s−1 PAR for soybean (Ainsworth et al. 2004) 
and 2000 μmol  m−2  s−1 PAR for peanuts (Ferreyra et al. 
2000). Photosynthesis was initially induced at the growth 
 [CO2] (410 ppm for ambient and 610 ppm for elevated 
 CO2 treatments), and then  [CO2] was reduced stepwise to 
the lowest concentration of 50 ppm. Afterwards,  [CO2] 
was increased stepwise to the highest  CO2 concentration 
of 1500 ppm. A total of 11 measurements per curve were 
recorded (Sanz-Sáez et al. 2017). During measurements, 
block temperature was set at 28 °C (i.e., mean mid-day tem-
perature at Auburn, AL). The equations and spreadsheet 
developed by Sharkey et al. (2007) were used to calculate 
Vc,max and  Jmax normalized at 25 °C as it has been demon-
strated by (Khan et al. 2021) that different temperatures and 
the effect on reflectance does not affect prediction of these 
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normalized parameters. While A–Ci curves were taken, con-
current spectral reflectance measurements were performed 
on the same leaves.

Relative chlorophyll content

Relative chlorophyll content was taken on the same mid-day 
photosynthesis leaves using a SPAD-502 chlorophyll meter 
(Konica Minolta, Tokyo, Japan). Five subsample measure-
ments per leaf were collected and averaged.

Leaf spectral reflectance measurements

Leaf spectral reflectance was measured with a FieldSpec 
Hi-Res 4 concurrently on the same leaves used for photo-
synthetic measurements. This device has three sensors with 
a full spectro-radiometer range of 350–2500 nm, with a 
resolution of 3 nm in visible (VIS; 350–700) and near-infra-
red (NIR; 700–1000 nm) and 8 nm in shortwave-infrared 
(SWIR; 1000–2500 nm). Measurements were taken via a 
leaf clip coupled to a fiber-optic cable. The FieldSpec has a 
radiometrically calibrated internal light source, which was 
standardized for relative reflectance using white reference 
measurements every 15 min. For each leaf, 6 reflectance 
measurements were recorded on different regions of a single 
leaf per pot. We used the FieldSpectra package in R to aver-
age the six samples and align the VIS, NIR, SWIR sensors 
with a spectral splice correction (Serbin et al. 2014; Yendrek 
et al. 2017).

To accomplish the second research aim, we simulated if a 
more limited spectral range (corresponding to other remote 
sensing devices) would be able to estimate photosynthetic 
parameters with the same accuracy as the full-range spec-
tra achieved with the Field Spec HiRes4. Simple spectral 
resampling of four different sensors was performed to sim-
ulate commercial spectrophotometer sensors, such as the 
UniSpec-DC VIS/NIR (310–1100 nm; PP Systems, Ames-
bury, MA, USA), the USB 2000 VIS/NIR (340–1014 nm; 
Ocean Optics, Dunedin, FL, USA), and the Liga SWIR 
spectrophotometer (850–1888 nm; STEAG Micro Parts, 
Dortmund, Germany). We also included a resampling simu-
lation for the bands and bandwidths of the ESA Copernicus 
Sentinel-2 satellite, with 12 spectral bands (443, 494, 560, 
665, 704, 740, 781, 834, 944, 1375, 1612, and 2194 nm) 
representing VIS, NIR, and SWIR (see more in Drusch et al. 
2012; Segarra et al. 2020).

Statistical analysis of measured and estimate values

Statistical analyses were conducted using R Studio (RStu-
dio Team 2020) and Python 3.7 (Python Software Foun-
dation, https:// www. python. org) via a Jupiter notebook 
(Wofford et al. 2019). Effects of abiotic stress treatments 

and differences between cultivars on studied variables were 
assessed using analysis of variance (ANOVA) in R Stu-
dio. We also analyzed correlations between photosynthetic 
parameters against each spectrum band by Pearson’s correla-
tion using R Studio.

With respect to the different advance regression models, 
we used the SciPy module (Jones et al. 2001; Varoquaux 
et al. 2015) in Python 3.7 and the Scikit-Learn library for 
the estimation of different parameters to estimate deter-
mination (R2) and the root means squared error (RMSE). 
For cross-validation, we used the “train test split method” 
where, we split our data into training (60% of the data used 
to build the model) and testing (40% of the data used to test 
the model). This method quantifies the prediction error, the 
RMSE, which measures the average prediction error made 
by the model in predicting the outcome for an observation. 
That is, the average difference between the observed known 
outcome values and the values predicted by the model. Asso-
ciations between photosynthetic parameters (response vari-
ables) and the leaf reflectance spectrum (explanatory) vari-
ables were analyzed using four advances models: (i) Partial 
Least Squares Regression (PLSR) is based on the dimen-
sion reduction method (Wold et al. 2001). For this model, 
we used between 5 and 11 components, choosing the num-
ber of components that gave the highest R2 and the lower 
RSME; (ii) Least Absolute Shrinkage and Selection Opera-
tor (LASSO) is a shrinkage method (Tibshirani 1996); (iii) 
Bayesian ridge (BR) and (iv) Automatic relevance determi-
nation regression (ARDR) are both high-dimensional meth-
ods (Neal 1996; Tipping 2001). Figures were prepared using 
the matplotlib (Hunt 2019) and Seaborn Python (Waskom 
et al. 2017) modules in Python 3.7.

Results

Effect of abiotic stress and cultivar 
on photosynthetic parameters

Analyzing the effect of abiotic stress and cultivars can 
yield valuable insights into phenotypic range of varia-
tion within each experiment. In Experiment 1, the two 
soybean cultivars showed significant effects of  [CO2] on 
mid-day photosynthesis and LCC, but not on Vc,max and 
Jmax (Table 1 and Fig. S2). We observed treatment effects 
for mid-day photosynthesis and LCC (Table 1a). In sum-
mary, phenotypic variation was noticeable with a range 
of 17.01–36.22 µmol  m−2  s−1 for mid-day photosynthesis, 
34.55–51.35 for LCC, 182.9–348.4 µmol  m−2  s−1 for Vc,max, 
174.7–263.7 µmol  m−2  s−1 for Jmax, and 29.4–30.37 °C for 
leaf temperature. In Experiment 2, four soybean cultivars 
were grown under high night temperature (30/30 °C day/
night) for comparison to controls (30/20 °C day/night). 
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Cultivar effects with treatment showed a significant effect 
on mid-day photosynthesis, LCC, and Jmax (Table  1b). 
Overall, phenotypic variation was noticeable with a range 
of 11.52–32.68 µmol  m−2  s−1 for mid-day photosynthesis, 
34.01–53.95 for LCC, 48.01–135.2 µmol  m−2  s−1 for Vc,max, 
61.01–165.1 µmol  m−2  s−1for Jmax, and 29.9–30.33 °C for 
leaf temperature. In Experiment 3, the effect of drought 
was significant for all measured peanut parameters except 
for Vc,max and Jmax (Table 2). Cultivars only showed sig-
nificant effects for LCC and Jmax. The interaction effects 
of drought and cultivars was only slightly significant for 
Vc,max (P = 0.094). Phenotypic variation was percepti-
ble since mid-day photosynthesis ranged from 5.051 to 
26.41  µmol   m−2   s−1, LCC varied from 42.30 to 52.45, 
Vc,max varied from 64.38 to 171.3 µmol  m−2  s−1, Jmax ranged 
from 79.3 to 206.1  µmol   m−2   s−1, and 28.6 to 30.5  °C 
for leaf temperature. When phenotypic variation of all 
three experiments was considered together, the range for 
mid-day photosynthesis was 5.051–36.22 µmol   m−2  s−1, 
34.55–53.95 for LCC, 48.01–348.4 µmol  m−2  s−1 for Vc,max, 
61.01–263.7 µmol  m−2  s−1 for Jmax, and 26.33–31.55 °C 

for leaf temperature (Fig. S2, shows the Box plot for each 
experiment).

Relationships between spectral signatures 
and photosynthetic parameters

Figure 1 presents the sensitivity of leaf reflectance spectrum 
for different species and abiotic stresses. Under high night 
temperature, soybean reflectance spectrum shows higher 
variability than the control with a larger peak at ~ 550 nm 
and wider reflectance band between ~ 750–1400, 1550–1800 
and 2000–2300 nm (Fig. 1a, b). Elevated  CO2 in soybean 
tended to reduce variability of the reflectance spectrum 
between ~ 500–600 and 750–1400 while maintaining the 
variability in the reflectance spectrum between 1550–1800 
and 2000–2300 nm (Fig. 1c, d). In peanut, drought increased 
variability at all wavelengths with the exception of the 
500–600 nm range (Fig. 1e, f). When comparing reflectance 
of the two legume species, we noted that peanut added a 
lot of spectral variation in the range from 750 to 2300 nm, 

Table 1  Mean values of mid-day photosynthesis (µmol  m−2  s−1), leaf 
chlorophyll content (LCC, arbitrary units), maximum rate of rubisco-
catalyzed carboxylation  (Vc,max, µmol  m−2   s−1), maximum electron 
transport rate supporting RuBP regeneration  (Jmax, µmol  m−2   s−1), 

and leaf temperature (°C) per each treatment. (a) Experiment 1: two 
varieties of soybean grown at 410 ppm and 610 ppm of  [CO2]; n = 32. 
(b) Experiment 2: four soybean varieties grown at low (20  °C) and
high (30 °C) night temperature; n = 48

Levels of significance: x, P < 0.1; *P < 0.05; **P < 0.01; ***P < 0.001

(A)
Genotype Treatment Photosynthesis 

(µmol  m−2  s−1)
LCC (arbitrary unit) Vcmax (µmol  m−2  s−1) Jmax (µmol  m−2  s−1) Leaf Temperature (°C)

Pi398223 410 23.3 ± 3.6 b 45.5 ± 3.6 a 249.5 ± 44.5 ab 212.2 ± 23.3 a 30.31 ± 0.388 a
Pi567201 410 25.1 ± 3.9 b 41.6 ± 3.3 b 269.8 ± 50.5 a 227.8 ± 31.9 a 30.06 ± 0.708 a
Pi398223 610 30.4 ± 2.1 a 46.3 ± 3.5 a 227.2 ± 22.7 b 211.4 ± 19.7 a 30.37 ± 0.706 a
Pi567201 610 31.2 ± 4.8 a 46.7 ± 2.2 a 257.4 ± 40.9 ab 219.2 ± 16.2 a 29.42 ± 1.377 a
ANOVA [CO2] 0.001*** 0.15* 0.242 0.569 0.354
ANOVA Varieties 0.344 0.13 0.092· 0.173 0.06·
ANOVA [CO2]*Varieties 0.678 0.077· 0.733 0.646 0.265

(B)
Genotype Treatment Photosynthesis 

(µmol  m−2  s−1)
LCC (arbitrary unit) Vcmax (µmol  m−2  s−1) Jmax (µmol  m−2  s−1) Leaf Temperature (°C)

PI360846 Low T 17.7 ± 5.2 b 45.1 ± 0.6 ab 72.7 ± 28.6 a 102.6 ± 33.7 bc 30.06 ± 0.059 ab
PI458098 Low T 21.4 ± 4.8 ab 49.8 ± 3.7 a 91.7 ± 37.2 a 128.6 ± 43.1 ab 29.98 ± 0.418 ab
DS25-1 Low T 22.2 ± 1.3 ab 38.4 ± 3.9 c 82.7 ± 9.5 a 111.0 ± 10.2 abc 29.86 ± 0.450 b
AG48 × 9 Low T 27.2 ± 3.9 a 45.9 ± 1.5 a 107.6 ± 13.1 a 149.0 ± 16.6 a 29.98 ± 0.216 ab
PI360846 High T 16.9 ± 5.3 b 47.3 ± 4.7 a 100.6 ± 29.1 a 136.3 ± 34.3 ab 30.33 ± 0.170 a
PI458098 High T 16.9 ± 0.5 b 50.1 ± 4.1 a 84.7 ± 29.7 a 108.0 ± 14.7 abc 29.91 ± 0.188 ab
DS25-1 High T 15.6 ± 3.6 b 39.7 ± 3.2 bc 68.7 ± 7.4 a 78.67 ± 16.3 c 30.08 ± 0.202 ab
AG48 × 9 High T 27.5 ± 5.1 a 45.7 ± 3.2 a 109.3 ± 26.0 a 146.6 ± 25.2 ab 30.01 ± 0.146 ab
ANOVA Temperature 44.81 0.522 0.833 0.624 0.312
ANOVA Varieties 0.010** 0.002** 0.303 0.042* 0.561
ANOVA Temp*Varieties 0.999 0.999 0.999 0.999 0.999
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Table 2  Mean values of midday photosynthesis (µmol  m−2  s−1), leaf 
chlorophyll content (LCC, arbitrary units), maximum rate of rubisco-
catalyzed carboxylation (Vc,max, µmol  m−2   s−1), maximum electron 
transport rate supporting RuBP regeneration (Jmax, µmol  m−2   s−1), 

and leaf temperature (°C) in six varieties of peanut grown under well-
watered (WW, 80% SWC) and water-stress (WS, 30% SWC) condi-
tions

Levels of significance: x, P < 0.1; *P < 0.05; **P < 0.01; ***P < 0.001; n = 48

Genotype Treartment Photosynthesis 
(µmol  m−2  s−1)

LCC (arbitrary unit) Vc,max (µmol  m−2  s−1) Jmax (µmol  m−2  s−1) Leaf Temperature (°C)

18H19-3738 WW 22.2 ± 2.1 a 50.7 ± 1.4 bcd 126.2 ± 17.1 a 169.2 ± 14.9 ab 28.93 ± 0.906 ab
AU17 WW 21.1 ± 4.8 a 49.6 ± 1.9 cde 135.9 ± 19.9 a 179.9 ± 29.8 a 28.67 ± 0.727 b
AU18-21 WW 21.1 ± 1.9 ab 45.7 ± 0.8 e 129.6 ± 15.1 a 159.5 ± 31.4 abc 29.96 ± 0.662 ab
AU16-28 WW 20.2 ± 4.8 ab 46.6 ± 3.6 de 136.1 ± 20.4 a 183.4 ± 18.9 a 29.01 ± 0.974 ab
AU18-19 WW 17.9 ± 2.5 abc 46.9 ± 2.7 de 108.9 ± 19.2 abc 150.2 ± 22.6 abc 29.58 ± 1.377 ab
G-06-G WW 17.9 ± 5.0 abc 45.6 ± 2.2 e 123.1 ± 35.2 ab 139.8 ± 45.1 bcd 29.37 ± 1.489 ab
18H19-3738 WS 15.4 ± 3.5 bcd 56.6 ± 1.2 a 125.7 ± 40.4 ab 153.94 ± 31.5 abc 30.40 ± 0.640 ab
AU17 WS 14.1 ± 2.1 cd 53.1 ± 4.6 abc 131.1 ± 22.6 a 152.3 ± 5.8 abc 29.24 ± 0.688 ab
AU18-21 WS 10.7 ± 5.4 d 52.1 ± 4.1 abc 85.4 ± 32.8 c 109.1 ± 22.8 d 29.24 ± 0.688 ab
AU16-28 WS 12.5 ± 2.8 d 54.9 ± 2.7 ab 113.7 ± 14.6 abc 121.3 ± 26.7 cd 30.56 ± 0.707 a
AU18-19 WS 11.9 ± 3.2 d 54.8 ± 4.1 ab 135.4 ± 15.9 a 133.6 ± 37.3 bcd 30.58 ± 0.224 a
G-06-G WS 10.3 ± 1.8 d 49.3 ± 2.8 cde 89.1 ± 25.8 bc 126.7 ± 15.9 cd 29.47 ± 1.351 ab
ANOVA Drought 0.001*** 0.001*** 0.46 0.275 0.02*
ANOVA Varieties 0.154 0.001*** 0.196 0.092· 0.837
ANOVA Drought*Varieties 0.884 0.353 0.094· 0.352 0.461

Fig. 1  a Mean, ± standard devi-
ation (n = 24), and minimum 
and maximum leaf reflectance 
for soybean at high night tem-
perature grown in growth cham-
bers. b Mean, ± standard devia-
tion (n = 24), and minimum and 
maximum leaf reflectance for 
soybean at control temperature 
grown in growth chambers. 
c Mean, ± standard deviation 
(n = 18), and minimum and 
maximum leaf reflectance for 
soybean at 610 ppm grown at 
an Open Top Chamber Facility. 
d Mean, ± standard deviation 
(n = 18), and minimum and 
maximum leaf reflectance for 
soybean at 410 ppm grown at 
an Open Top Chamber Facility. 
e Mean, ± standard deviation 
(n = 24), and minimum and 
maximum leaf reflectance 
for peanut drought grown 
under greenhouse conditions. 
f Mean, ± standard deviation 
(n = 24), and minimum and 
maximum leaf reflectance for 
peanut irrigated grown under 
greenhouse conditions
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probably due to the drought treatment; meanwhile soybean 
added more variability in the 500–600 nm range (Fig. S1).

Pearson’s correlations were performed to highlight which 
zones of spectral signatures presented negative or positive 
correlations with each measured parameter. Pearson’s cor-
relations between the parameter and each wavelength were 

presented separately for soybean (Fig. 2a), peanut (Fig. 2b), 
and both species combined (Fig. 2c). Regarding soybean 
Vc,max and Jmax values, correlation against each band showed 
significant (P < 0.05) negative values (Pearson coefficient 
around − 0.6) in the VIS (400 nm) and in almost all SWIR 
(1400–2500 nm) bands (Fig. 2a). On the other hand, mid-day 

Fig. 2  Pearson’s correlation coefficients (r) between photosynthetic 
parameters and each wavelength from the leaf reflectance spectrum 
for each species and both species combined. a Soybean varieties 
under two treatments, one at high  [CO2] and the other at high tem-
perature. b Peanut varieties at water stress. c Soybean and peanut data 

pooled together. Each graphic presents in the x-axis the wavelength 
spectrum between 350 and 2500 nm and in the y-axis the Pearson’s 
correlation coefficient from − 1 to 1. The discontinuous line in each 
graphic means the significance level P < 0.05 below the x-axis
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photosynthesis and LCC presented lower and no significant 
correlation coefficients against each band from the reflec-
tance spectrum. In the case of peanut (Fig. 2b), photosynthe-
sis values against each wavelength band showed significant 
correlation (r = − 0.6, P < 0.05) in VIS–NIR (400–1000 nm) 
bands. LCC and each wavelength showed strong correlation 
(r = − 0.7, P < 0.05) in the NIR (700 nm). For Vc,max and 
Jmax, the correlation against each wavelength was very low 
or non-significant (Fig. 2b). With increased variability from 
combining all experiments, we could observe that mid-day 
photosynthesis against each wavelength showed a signifi-
cant correlation (r = − 0.5, P < 0.05) in the VIS (400 nm). 
Regarding the coefficient of correlation between Vc,max and 
Jmax, significance (r = 0.6, P < 0.05) in the VIS (400 nm) 
and most of the SWIR (1400–2500 nm) bands indicated an 
improvement relative to species analyzed separately. For this 
reason, we ran all advance models using combined pheno-
typic and spectral data from each species and environmental 
condition.

Estimating photosynthetic parameters using field 
spectroscopy and advance regression models

To test how accurately a given model estimated different 
photosynthetic parameters, we presented the coefficient of 
determination (R2) and RMSE for each model and mean 
parameter, i.e., interpreted as the proportion of information 
in data that is explained by each model (Fig. 3). Since esti-
mation of the Vc,max and Jmax parameters did not work well 
in the peanut experiment but worked well for the soybean 
(Table S1), and since the LCC estimation does not work 
with soybean, we decided to combine these three experi-
ments and focus on the combination of the two crop spe-
cies in this manuscript (Fig. 3). Mid-day photosynthesis 
showed a higher R2 (0.62) and low RMSE (4.79) using 
the PLSR model using 10 components, followed by BR 
(R2 = 0.41 and RMSE = 5.92) with the worst model being 
the ARDR (R2 = 0.28 and RMSE = 6.55) (Fig. 3a). LCC 
was better assessed by PLSR (R2 = 0.56 and RMSE 3.83) 
using 10 components, followed by ARDR (R2 = 0.34 and 
RMSE = 4.71) with the BR model showing the worst perfor-
mance (R2 = 0.08 and RMSE = 5.55; Fig. 2b). The best Vc,max 
model was obtained by PLSR (R2 = 0.70 and RMSE = 42.80) 
using nine components followed by the other three models 
with similar values (R2 = 0.56–0.59; RMSE = 50.11–52.03). 
Regarding Jmax, the best model was PLSR (R2 = 0.50 and 
RMSE = 35.83) using nine components closely followed by 
Lasso (R2 = 0.46 and RMSE = 37.1) and BR (R2 = 0.45 and 
RMSE = 37.41), with ARDR (R2 = 0.40 and RMSE = 39.29) 
being the worst model.

For each of the four models, we calculated the coeffi-
cient of weight for each band and model (Fig. 4). These 
coefficients showed waveband contributions along the 

VIS–NIR–SWIR spectrum for photosynthetic parameter 
estimations using leaf reflectance spectrum of pooled spe-
cies, cultivars, and growing conditions. The coefficient of 
weight for estimating mid-day photosynthesis using PLSR 
showed maximum values around 400, 750, and 1750 nm, 
while ARDR and LASSO showed high coefficient weights at 
400 nm. On the other hand, BR did not show any remarkable 
coefficient weights for mid-day photosynthesis (Fig. 4a). 
With respect to LCC, PLSR showed maximum coefficients 
at 400, 750, and 1750 nm, while ARDR showed a peak 
around 400 nm (Fig. 4b). LASSO and BR showed very low 
coefficients at all wavelengths (Fig. 4b). In Fig. 4c, we can 
observe the different coefficients of each band for Vc,max, 
where the maximum peaks were at 400, 700 and around 
2000 nm for PLSR, BR and LASSO, while for ARDR it 
was only at 400 and 750 nm. For estimates of Jmax, the 
highest coefficient weights for PLSR were located in SWIR 
(2200–2300), followed by NIR (900–1100). For the LASSO 
model, the strongest areas were at 400, 750, and 1750 nm 
(Fig. 4d), while the highest coefficients were found in the 
SWIR (1400–2500 nm) for BR and ARDR.

Scaling up estimations of photosynthetic 
parameters for potential hyperspectral aerial 
or satellite applications

To assess their ability to estimate photosynthetic param-
eters compared to full spectra captured by the Field Spec 
Hi-Res4 (VIS–NIR–SWIR, 350–2500 nm), we simulated 
other sensors with limited wavelength ranges, specifically 
VIS–NIR (350–1000 nm), NIR–SWIR (1000–2500 nm), 
SWIR (1400–2500 nm), and the 12 wavelength bands of 
Sentinel-2 satellites (Table S2). To test this, we used reflec-
tance data acquired by the Field Spec Hi-Res4 and separated 
the reflectance data according to the wavelength range of 
each before mentioned sensor. We then performed photo-
synthetic estimations using the same 4 models (PLSR, BR, 
ARDR, and LASSO).

Table 3, Figs. 5, and 6 show estimations of photosyn-
thetic parameters using pooled data from both species. For 
mid-day photosynthesis and LCC, simulations with different 
sensors with just the VIS–NIR (350–1000 nm), NIR–SWIR 
(1000–2500 nm), and SWIR (1400–2500 nm) spectrum 
regions were best performed using PLSR compared to BR, 
ARDR, and LASSO models (Table 3; Figs. 5, 6). However, 
LCC was estimated best by BR, ARDR, and LASSO using 
the simulated ESA Copernicus Sentinel-2 satellite multi-
spectral bands (Table 3; Figs. 5, 6). Concerning estimation 
of Vc,max within the VIS–NIR range (350–1000 nm) and the 
ESA Copernicus Sentinel-2 satellite sensors, the best per-
forming model was PLSR using 10 components (R2 = 0.63 
and 0.53, respectively). For simulations of the NIR–SWIR 
(1000–2500 nm), SWIR (1400–2500 nm), BR was the best 
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Fig. 3  Measured against estimated values correlation for different 
physiological parameters estimated with PLSR (blue), BR (green), 
ARDR (red), and LASSO (yellow) predictive models. The estimated 
physiological parameters are: mid-day photosynthesis (a), leaf chloro-
phyll content (b), maximum rate of Rubisco catalyzed carboxylation 
(Vc,max, c) and maximum electron transport rate supporting RuBP 

regeneration (Jmax, d) for soybean and peanut cultivars all pooled 
together. All the models were built using train and test data splitting 
them into 60 and 40%, respectively. In each graph, the R2, the RMSE 
of the train and test of the model are shown along with the size of the 
train and test population and number of model components (comp) 
used in each PLSR model. The gray dashed line shows the 1:1 line
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model for assessing Vc,max (R2 = 0.62 and 0.60, respectively). 
For estimating Jmax with the VIS–NIR (350–1000 nm) sen-
sor, the best model was LASSO (R2 = 0.42). For the range 
NIR–SWIR (1000–2500  nm), SWIR (1400–2500  nm) 
ARDR estimated Jmax similarly (R2 = 0.51). PLSR, BR, and 
LASSO presented the same coefficient of determination 

(R2 = 0.41) when using ESA Copernicus Sentinel-2 satellite 
simulated wavebands to assess Jmax.

Regarding comparison of different sensors (VIS–NIR, 
NIR–SWIR, and SWIR) against original FieldSpec data 
(VIS–NIR–SWIR), we observed that estimation of mid-
day photosynthesis by the different models was similar to 

Fig. 4  Spectral-specific coef-
ficients for each prediction 
model (PLSR, BR, ARDR and 
LASSO) used to predict the fol-
lowing photosynthetic param-
eters of the two species pooled 
together. a Mid-day photosyn-
thesis. b Leaf chlorophyll con-
tent (LCC). c Maximum rate of 
Rubisco carboxylation (Vc,max). 
d Maximum electron transport 
rate supporting RuBP regenera-
tion (Jmax,). Continuous vertical 
lines delineate different regions 
of the spectrum: VIS = 450–
700 nm, NIR = 700–1400, and 
SWIR = 1400–2500 nm

Table 3  Coefficient of determination (R2) and root mean squared 
error (RMSE) of mid-day photosynthesis (µmol  m−2  s−1), leaf chloro-
phyll content (arbitrary units) of all species pooled together based on 
leaf reflectance spectra at different ranges [VIS–NIR (350–1000 nm), 
NIR-SWIR (1000-–2500 nm), SWIR (1400–2500 nm), and Sentinel-2 

bands] through advance regression models: Partial Least Squares 
Regression (PLSR), Bayesian Ridge (BR), the Automatic Relevance 
Determination Regression (ARDR), and Least Absolute Shrinkage 
and Selection Operator (LASSO)

“–” indicates that the estimation model did not yield results

Estimation using the species, cultivars, and growing conditions together

n = 146 From 350 to 1000 nm From 1000 to 2500 nm From 1400 to 2500 nm Simulation of Senti-
nel-2

Model R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Mid-day photosyn-
thesis

 PLSR 0.47 5.61 0.42 6.1 0.52 5.53 – –
 BR 0.28 6.54 0.47 5.84 0.50 5.69 – –
 ARDR 0.27 6.59 0.40 6.20 0.49 5.70 – –
 LASSO 0.34 6.29 – – – – – –

Leaf chlorophyll content
 PLSR 0.35 4.98 0.33 4.09 0.22 4.41 – –
 BR 0.26 4.98 – – – – 0.23 7.04
 ARDR – – – – 0.33 40.90 0.26 6.90
 LASSO 0.15 5.33 – – – – 0.28 6.79
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that of simulated sensors (Figs. 3, 5, 6 and Table 3). With 
ESA Copernicus Sentinel-2 satellite, estimation of mid-day 
photosynthesis did not work. Estimation of LCC using ESA 
Copernicus Sentinel-2 satellite was lower than when the 
whole spectrum was used. Regarding the estimation of the 

Vc,max simulating ESA Copernicus Sentinel-2 satellite, the 
PLSR and LASSO presented an R2 (0.50) that was a little 
lower than the FieldSpec (R2 = 0.70). With respect to Jmax 
estimation, we observed that coefficients for the simulated 
NIR–SWIR and SWIR sensor ranges were very similar (but 

Fig. 5  Measured (X-axis) against estimated (Y-axis) correlation of 
maximum rate of rubisco-catalyzed carboxylation (Vc,max) esti-
mated with PLSR (blue), BR (green), ARDR (red), and LASSO (yel-
low) predictive models. These models were based on leaf reflectance 
spectra at different ranges [VIS–NIR (350–1000  nm), NIR–SWIR 
(1000–2500 nm), SWIR (1400–2500 nm), and Sentinel-2 bands] for 

soybean and peanut cultivars all pooled together. All the models were 
built using the training and test split method (60 and 40%, respec-
tively). Each graph shows the train and test R2 and the RMSE values 
of for each model. For PLSR models, we used 10 components. Size 
of population is n = 158. The gray dashed line shows the 1:1 line
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Fig. 6  Measured (axis  X) against estimated (axis  Y) correlation of 
maximum electron transport rate supporting RuBP regeneration 
(Jmax) estimated with PLSR (blue), BR (green), ARDR (red), and 
LASSO (yellow) predictive models. These models were based on 
leaf reflectance spectra at different ranges [VIS–NIR (350–1000 nm), 
NIR–SWIR (1000–2500 nm), SWIR (1400–2500 nm), and Sentinel-2 

bands] for soybean and peanut cultivars all pooled together. All the 
models were built using the training and test split method (60 and 
40%, respectively). Each graph shows the train and test  R2 and the 
RMSE values of for each model. For PLSR models, we used 10 com-
ponents. Size of population is n = 158. The gray dashed line shows 
the 1:1 line
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slightly lower) to the full-range FieldSpec (Figs. 3, 5, 6 and 
Table 3). The VIS–NIR and ESA Copernicus Sentinel-2 
satellite simulations presented values that were lower than 
using the whole spectrum (Figs. 3, 5, 6 and Table 3).

Discussion

Estimating photosynthetic parameters using field 
spectroscopy and advance regression models

The main objective of this research was to assess which 
advanced statistical model (PLSR, BR, ARDR, and 
LASSO) was the most successful in estimating different 
photosynthetic parameters using leaf reflectance spectra 
(VIS–NIR–SWIR, 350–2500 nm) from two legume species. 
The use of advance regression models to predict different 
physiological parameters needs ample phenotypic variation 
to be accurate (Kuhn and Johnson 2013). Since statistical 
effects of different treatments over some variables were 
not significant (Table 1), we combined findings from three 
experiments (two different species) to increase phenotypic 
range for better parameter estimation with all models rather 
than examining each species separately (Table S1). Similar 
approaches have been used recently to increase phenotypic 
variation and obtain a better prediction model by includ-
ing different species and/or cultivars (Doughty et al. 2011; 
Serbin et al. 2012; Choquette et al. 2019), different abiotic 
stresses such as drought (Silva-Perez et al. 2018), or elevated 
atmospheric ozone concentrations (Ainsworth et al. 2014; 
Yendrek et al. 2017).

In our study, when data from both legumes were com-
bined, almost all of the advanced models were able to esti-
mate Vc,max and Jmax at greater than R2 > 0.50 (Fig. 3). Of the 
four models used to predict these two parameters, PLSR was 
the overall best model for Vc,max (R2 = 0.70 and RMSE 42.80) 
and Jmax (R2 = 0.50 and 35.83), followed by LASSO and BR 
for Vc,max (R2 = 0.59 with RMSE 50.11; 0.59 with a RMSE 
50.15, respectively), and BR and LASSO for Jmax (R2 = 0.45 
with a RMSE 37.11; 0.46 with a RMSE 37.41, respectively) 
(Fig. 3). This may be because the PLSR model does not esti-
mate shrinkage when performing variable selection (spectral 
wavebands) as do BR, ARDR, and LASSO (Neal 1996; Tip-
ping 2001; Wold et al. 2001). Others have also found that 
PLSR and LASSO had similar estimation capacities, show-
ing that LASSO band block contribution was similar to the 
PLSR model (Fu et al. 2020). Specific reasons why PLSR 
was more efficient at estimating photosynthetic parameters 
assessed in this study are discussed in detail below.

Successful predictions of Vc,max (R2 = 0.89 with a RMSE 
15.4) and Jmax (R2 = 0.93 with a RMSE 18.67) using PLSR 
have been previously obtained by combining two tree spe-
cies (Serbin et al. 2012); this study showed statistically 

significant phenotypic variation due to temperature treat-
ments as well as species. In our study, the lower R2 associ-
ated with Vc,max and Jmax estimates could be attributed to the 
lack of effect of some environmental treatments (tempera-
ture, elevated  CO2, and drought) and cultivars over these 
parameters (Table 1). However, Ainsworth et al. (2014) 
showed a significant correlation between measured and esti-
mated Vc,max (R2 = 0.88 with a RMSE 13.4) with the effect 
of treatments (elevated ozone) and cultivars not being sig-
nificant. This demonstrated that good parameter estimation 
and significant treatment or cultivar effects are not mutually 
exclusive and that it is only necessary to have sufficient range 
in variation of phenotypic data. For example, Ainsworth 
et al. (2014) and Serbin et al. (2012) noted Vc,max variation 
(60–280 μmol  m−2  s−1 and 40–170 μmol  m−2  s−1, respec-
tively) similar to the values obtained in this study when all 
three experiments were combined (48–348 μmol  m−2  s−1 
for the current experiment). Since the ranges in variation of 
Vc,max and Jmax data are similar but higher to those obtained 
in the above-mentioned research, why are R2 values in the 
current study for Vc,max (R2 = 0.70) and Jmax (R2 = 0.50) lower 
and RSME (42.80 and 35.83, respectively) higher than in 
those studies? Tibshirani (1996) has noted that PLSR models 
lose accuracy when estimating parameters across different 
environments. Research by Serbin et al. (2012) and Ains-
worth et al. (2014) were each performed in one environ-
ment (greenhouse and field, respectively) for one growing 
season, while our study combined information from three 
experiments representing distinct environments (greenhouse, 
growth chambers, and open top chambers) with plants grown 
at very different environmental conditions. In an experiment 
with several corn breeding lines grown under ambient and 
elevated ozone repeated over three growing seasons, Yen-
drek et al. (2017) obtained Vc,max estimations (R2 = 0.55 with 
RMSE 6.61, and 0.65 with a RMSE 6.60) similar to those 
reported in our study but with a RMSE lower than ours. This 
was probably due to the effects of changing environments 
on PLSR performance (Serbin et al. 2012; Ainsworth et al. 
2014). Regarding the lower RMSE obtained in the above-
mentioned publications (Serbin et  al. 2012; Ainsworth 
et al. 2014; Yendrek et al. 2017) in comparison with those 
obtained in our research, this could be due to the different 
cross-validation used in our approach. In our cross-valida-
tion, the test error rate can be highly variable, depending 
on which observations are included in the training set and 
which observations are included in the validation set. This 
may be the reason for the higher RMSE values observed in 
Vc,max and Jmax. Also the high RMSE values can be due to 
a higher phenotypic range as a result of including two crop 
species grown in three very different environments. This 
highlights the importance of performing calibration experi-
ments under multiple environments. Other issue that can 
arise is the use of these models with completely new set of 
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cultivars and experimental conditions as was tested in Yen-
drek et al. (2017). In such a case, it would be recommenda-
ble to test model precision by measuring spectral reflectance 
under new conditions and corroborating model estimates of 
extreme values for Vc,max with ground truth measurements 
of the photosynthetic parameter. Although this extra step 
will take more time, this procedure could serve to test model 
accuracy and help improve the model with new training data.

To solve this multiple environment/location problem, 
new approaches need to be developed and implemented. 
For example, Fu et al. (2020) increased prediction model 
accuracy by stacking different machine learning algorithms 
(i.e., R2 increases of 0.1–0.2 over single prediction models). 
Another alternative would be creation of a consortium of 
scientists interested in using hyperspectral reflectance tech-
nology to predict physiological traits. Their combined exper-
tise would create strong standardized calibrations that could 
be used across multiple environments as has been done for 
assessing forage quality traits using NIRS technology (i.e., 
NIRS Consortium; https:// www. nirsc onsor tium. org/).

Estimation of mid-day photosynthesis using PLSR, 
BR, ARDR, and LASSO presented lower R2 values (≈ 
0.29–0.62) than for Vc,max and Jmax (Fig. 3) since in situ 
photosynthetic measurements are likely more influenced by 
environment (Sanz-Sáez et al. 2017; Soba et al. 2020) than 
by leaf structure and biochemistry (Serbin et al. 2012; Ains-
worth et al. 2014). Thus, a looser estimation was expected. 
Due to environmental variability, few reports have estimated 
mid-day photosynthesis. However, our PLSR estimation was 
better than the observations of Vitrack-Tamam et al. (2020) 
for cotton stomatal conductance (R2 = 0.23); this was likely 
due to the lower range spectral reflectance device used in 
their experiment (633–1659 nm). Similar estimations of net 
photosynthesis were accomplished using the scaled photo-
chemical reflectance index and a FieldSpec Hi-Res Device 
(Kumari et al. 2012).

Regarding spectral wavelength specific coefficients for 
each estimation model for  Vc,max and  Jmax, the most frequent 
selection for the four models was the VIS waveband (Fig. 4) 
where chlorophyll and other pigments have strong absorp-
tion features (Peñuelas and Filella 1998). However, these 
models also used wavebands in the NIR and SWIR, similar 
to other studies (Hansen and Schjoerring 2003; Doughty 
et al. 2011; Serbin et al. 2012; Ainsworth et al. 2014; Yen-
drek et al. 2017). In addition, Rubisco has several relatively 
broad spectral absorption features in the NIR and SWIR 
(Elvidge 1990). These selections of spectral region combi-
nations indicate that Vc,max and Jmax spectral signatures are 
not simply a function of chlorophyll content, which sug-
gests that more information is needed beyond the VIS–NIR 
wavebands to estimate such complex processes. The inclu-
sion of a broader range of wavebands, due in part to less 
penalizations, is likely why the PLSR model outperformed 

BR, ARDR, and LASSO by more effectively capturing the 
broader spectral absorption features of Rubisco. For exam-
ple, the Vc,max LASSO model only selected specific coeffi-
cients at 540, 680, 720, 2000, and 2250 nm (Fig. 4c), while 
the PLSR model had significant coefficient ranges between 
400–450, 700–800, and 1750–1900 (Fig. 4c). Photosynthe-
sis and LCC also presented the highest selection of spectral 
peaks in the VIS, followed by NIR; this has been extensively 
documented through both vegetation indices that estimate 
chlorophyll pigment content and also by the Photochemi-
cal Reflectance Index (PRI) that predicts photosynthetic 
efficiency through a zeaxanthin absorption feature (Gamon 
et al. 1997; Gitelson et al. 2005; Schlemmera et al. 2013).

We also present a more in-depth comparison of the four 
models. As shown in Fig. 3, the  R2 of models do not present 
significant differences between each other, although we can 
see that the models used different numbers of coefficients to 
estimate each parameter (Fig. 4). This was reflected in the 
algorithm differences in each model approach to parsimony, 
the simple explanation of an occurrence involving the fewest 
entities, assumptions, or changes. This means that a fewer 
number of weight coefficients were used to estimate the dif-
ferent parameters (Vandekerckhove and Matzke 2015). In 
our study, all PLSR models (blue line in Fig. 4) used VIS, 
NIR, and SWIR wavelengths, but potentially over-fitted by 
an over-inclusion of predictor variables (Geladi et al. 1986; 
Wold et al. 2001). This contrasts to the BR (in green), ARDR 
(in red), and LASSO (in yellow) models (Fig. 4), which used 
more specific and limited spectra than restricted models that 
penalize the lesser coefficients (Neal 1996; Tibshirani 1996; 
Tipping 2001).

Scaling up estimations of photosynthetic 
parameters for potential hyperspectral aerial 
or satellite applications

The second aim of this study was to simulate different 
sensors with more limited spectral coverage (VIS–NIR, 
NIR–SWIR, and SWIR), including the ESA Copernicus 
Sentinel-2 satellite13 bands. We found that estimation of 
Vc,max using three different sensor ranges (VIS–NIR–SWIR) 
with the four models performed (R2 = 0.50) surprisingly sim-
ilar to the whole spectrum (Figs. 3 and 5). For Jmax, the high-
est estimation (R2 = 0.51) used NIR–SWIR and SWIR data 
in ARDR. This was quite similar to Meacham-Hensold et al. 
(2020) who used PLSR models and canopy-level spectra 
with three different spectral ranges (500–900, 500–1700, and 
500–2400 nm) to achieve Vc,max estimations near R2 = 0.60 
and Jmax estimations around R2 = 0.40.

We also resampled FieldSpec data to cover the 12 spectral 
bands of the ESA Copernicus Sentinel-2 satellite; these were 
quite similar to spectral ranges selected by the coefficients 
used by the different models to estimate photosynthetic 
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parameters. Concerning the different photosynthetic param-
eters, only Vc,max was estimated at more than R2 = 0.50. This 
could be related to the carboxylation process (Vc,max) having 
several relatively broad spectral absorption features in NIR 
and SWIR centered at 1.5, 1.68, 1.74, 1.94, 2.05, 2.29 µm, 
etc. (Elvidge 1990), which are in close proximity to several 
Sentinel-2 wavelength bands (Table S2). Supplementary 
data (Table S3) and Serbin et al. (2012) showed that wave-
lengths (490, 610, 690, 710, 1680, 1940, 2200, 2400 nm) 
used to estimate Vc,max have some bands similar to Senti-
nel-2. Figure 5d also shows that the spectral regions used in 
PLSR models were similar to Sentinel bands (Yendrek et al. 
2017). The limited success of single-leaf-level estimations of 
photosynthetic capacities using point-based spectral analysis 
(Serbin et al. 2015) found considerable promise in airborne 
and potential promise in space-borne imaging spectroscopy 
such as the NASA HyspIRI mission (Mariotto et al. 2013). 
In this regard, hyperspectral imagery through inversion of 
the Soil-Canopy Observation of Photosynthesis and Energy 
(SCOPE) model to estimate Vc,max also uses sensor resolu-
tions available in airborne or even precision agriculture tech-
nologies (Camino et al. 2019). Recently, one plot-level study 
using sunlit vegetative reflectance pixels from a single vis-
ible near infra-red (VNIR; 400–900 nm) hyperspectral cam-
era reported determination coefficients of R2 = 0.79 for Vc,max 
and R2 = 0.59 for Jmax (Meacham-Hensold et al. 2020). Thus, 
our simulation analyses and other recent literature suggest 
that the wide range of variability in VIS, NIR, and SWIR 
sensors and the Sentinel-2 multispectral sensor (to a more 
limited extent) could be employed to estimate photosynthetic 
parameters (including Vc,max and Jmax) with advanced regres-
sion models. However, more research needs to be done in 
this area as one of the limitations of this work was that we 
measured leaf reflectance with a leaf clip, while UAV and 
satellites measure canopy reflectance that can be different 
from single leaf reflectance. For the future, we suggest to test 
if canopy reflectance measurements at different precision 
levels can predict leaf level photosynthetic measurements 
or even canopy-level photosynthesis as has been done with 
models such as PROSAIL (Berger et al. 2018).

Conclusion and future directions

In this study, we estimated Vc,max and Jmax using leaf 
spectral reflectance data and different advanced regres-
sion models with determination coefficients higher than 
R2 = 0.50–0.70. The combination of different species and 
environmental conditions (elevated  [CO2], high tempera-
ture, and drought) increased phenotypic variation and 
improved model estimations where treatment effects were 
not significant. To achieve higher coefficients of determi-
nation and model performance, this research demonstrated 

that it is more important to have a wider range of pheno-
typic variation than a significant effect of a treatment or 
cultivar. We suggest that estimating photosynthetic capac-
ity from reflectance spectra may be considered sufficiently 
robust to be useful for several different plant physiologi-
cal applications, such as abiotic stress detection, improved 
characterization of photosynthesis process-based crop 
models, and a prescreening tool in breeding programs. We 
demonstrated that PLSR was the best model for predicting 
photosynthetic parameters in comparison to other advanced 
regression models (BR, ARDR and LASSO). However, 
new advance regression approaches that combine different 
regression models may be employed to increase phenotype 
estimation using this technology. Based on simulation of 
four limited spectral range sensors (VIS–NIR, NIR–SWIR 
and SWIR) using a leaf level spectrophotometer, we dem-
onstrated that it is possible to estimate Vc,max with similar 
precision compared to using the whole VIS–NIR–SWIR 
spectrum. This research should encourage future studies 
using different imaging sensors (hyperspectral and multi-
spectral) at different scales for estimating Vc,max and Jmax.
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Abstract 

The second of the United Nations Sustainable Development Goals (SDG 2) highlights the 

importance of food security with the target of doubling the productivity and incomes of small 

shareholder farmers and food producers. In the Middle East and North Africa (MENA), 

horticultural crops are grown extensively year-round for local consumption, both outdoors and 

in protective shade houses, but due to climate change pests and diseases appear increasingly, 

and local farmers do not possess adequate knowledge to treat them, resulting in significant 

reductions in crop productivity. In accordance with SDG 2, there is a real demonstrable need for 

developing a user-friendly crop diagnosis mobile application in the MENA region that can also 

provide accurate decision support for more rapid and effective disease and pest control in order 

reduce crop harvest losses. Meanwhile, the use of machine learning and deep learning 

approaches to process simple mobile phone RGB images has shown promise for automatic plant 

disease and pest diagnosis. In this study, we have developed a system for the big data collection 

that is required for accurately training deep learning models using a combination of open-source 

tools and proprietary software developments. Then, we developed deep learning models based 

on open-source deep learning architectures which can classify 21 different leaf disorders 

(diseases, pests, and nutritional deficiencies) in cucumber, tomato, pepper, and quinoa with an 

overall accuracy of 94%. Finally, we incorporated our deep learning model into a web app and 

an Android based mobile app, called Doctor X UB and Doctor X Nabat, respectively. Both 

applications include an integrated database with a decision support system that provides 

confirmatory symptomology and ecological, traditional/integrated pest management, and 

conventional treatment guidance in the most common three languages of the MENA region. 

Keywords: SDG 2, MENA, Horticultural Crops, Data Collection, Deep Learning, Mobile App 
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1. Introduction 

The Sustainable Development Goals (SDGs) were adopted by the member countries of the 
United Nations in 2015 as a universal call to ”transform the world” (Brown, 2021). There are 17 
goals, which cover the challenges that we are facing with regards to poverty, inequality, climate, 
environmental degradation, prosperity, peace, justice and their interactions (Lee et al., 2016). 
SDG number 2 was defined to address the importance of food security and nutrition; one of the 
principal targets by 2030 is to double the productivity and incomes of small-scale food producers 
(Ayoola et al., 2016). In addition, SDG number 17 promotes the development, transfer, 
dissemination and diffusion of environmentally sound technologies to developing countries on 
favorable terms (Humphreys et al., 2019). Sustainable agricultural development that aims to 
tackle SDG 2 in developing countries must incorporate the ideals set forth in SDG 17 in order 
produce lasting benefits and results towards feeding the future.  

In the African continent, the severe pre-and post-harvest losses due to the high incidence of 
pests, and diseases in crops (Otekunrin et al., 2019) is one of the major causes of hunger. Crop 
losses due to pests and diseases for major food and market crops were estimated between 20% 
and 40% at country and regional levels in the continent (Oerke, 2006). In the Middle East and 
North Africa (MENA) region, agriculture has many challenges; land and water are in short supply, 
and rainfed and irrigated lands are continually degrading due to unsustainable farming methods. 
In addition, as climate change makes the area hotter and drier, agriculture is more vulnerable 
to climate change. For that reason, crop production has been reduced by up 30 to 35% of the 
potential productivity. On one hand, MENA region yields for horticultural crops, like tomatoes 
and cucumbers, are comparable to those of the rest of the world (FAO, 2018). It happened 
because many of these nations, including the United Arab Emirates, increased the practice of 
vegetables crop production in greenhouses. On the other hand, climate change has been 
observed to have a close relationship to the increase in prevalence of diseases in horticultural 
and crops; often, diseases are occurring for the first time in areas where they had not been 
observed before (Johannes et al., 2017). For example, local farm extension support offices who 
are not familiar with these new pests and diseases are unable to offer any support to small 
farmers. For that reason, crop losses are a major threat to the well-being of small farmers (rural 
families), local and national economy and stability, and to food security (Avelino et al., 2015; 
Savary and Willocquet, 2014).  

In addition, these small farmers spend considerable amounts of money on chemical fertilizers 
and pest and disease management, sometimes without adequate technical support, resulting in 
poor control, pollution, and harmful effects. Because of that, the detection and diagnosis of 
plant stressors are urgently needed for the rapid and robust application of crop management in 
precision agriculture (Tanumihardjo et al., 2020). However, in the best scenario plant diagnosis 
is generally conducted through visual examination by experts, sometimes followed by a 
subsequent  (metabolic or genetic) test applied as necessary; therefore this approach may result 
expensive and time-consuming (Tani et al., 2018). Also, there is a risk for error due to a 
subjective perception even if the visual identification is pursued by experts (Dutot et al., 2013). 
Regarding this, different remote sensing (spectroscopic and imaging) techniques have been 
proposed to replace visual examination for detecting plant diseases. Nevertheless, they often 
require precise instruments and bulky sensors, which are expensive (Mahlein et al., 2013; Yuan 
et al., 2014).  

On the other hand, due to the quick advancement of communication networks and the 
accessibility of several new remote, proximal, and touch sensors, new opportunities are opening 
up in the farming industry (Aqeel-Ur-Rehman et al., 2014; Wang et al., 2006). These technologies 
facilitate the low-cost geo-localized real-time transmission of information in the agricultural 
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context (Kumar and Ilango, 2018; Mahan and Yeater, 2008; Polo et al., 2015). A farm 
management information system, which primarily consists of a software system for gathering, 
processing, and storing data in the format needed to carry out farms' operations and activities, 
is one of the smart farming technologies (Fountas et al., 2015; Kaloxylos et al., 2012; Kitchen, 
2008; Lewis, 1998). Another class of smart farming technology is the precision agriculture 
system, which is a farming management concept based on recording technologies to watch and 
measure crop field spatial and temporal variability with the purpose of increasing financial 
returns and minimizing environmental effects (Finger et al., 2019). With a focused and resource-
conscious strategy, smart farming aims to produce agricultural products more effectively, 
qualitatively, and sustainably (Balafoutis et al., 2017). Smart farming should, however, generate 
value from the perspective of the low-income farmers by enabling more precise and faster 
decision-making as well as/or more effective exploitation operations and management at an 
affordable cost (Kernecker et al., 2020).  Advances in decision-making and management are 
taking advantage not only of the increased capacities and decrease in cost of the information 
technologies and remote sensing capacities but also in the fast advance of artificial intelligence 
(AI), particularly of the avenues that machine learning is creating for a fast an efficient use of 
the huge amount of information generated and transmitted through the remote sensing and 
information techniques.  

With respect to data and information processing, machine learning (ML) is the study of 
strategies and techniques for computational applications that can adjust or modify their 
activities to be more accurate. The process of machine learning consists of the following steps: 
data preparation and acquisition, selection of characteristics of interest, algorithm selection, 
parameters selection, training, and rating. (Marsland, 2011). ML algorithms can be divided into 
the following groups: reinforcement learning, evolutionary learning, unsupervised learning, and 
supervised learning (Patrício and Rieder, 2018). The unsupervised learning algorithms compare 
inputs to one another to find similarities and categorize them. Deep learning (DL) is one of these; 
it consists of numerous connected nodes, each with a weight that controls the signal and 
strength of the connection. Additionally, deep learning incorporates automatic parameter 
extraction during training and requires powerful processing capacity to develop an application 
model directly from image data, one of the major differences between machine learning and 
deep learning approaches (Russell and Norvig, 2010). Unsupervised Pretrained Networks, 
Convolutional Neural Networks (CNN), Recurrent Neural Networks, and Recursive Neural 
Networks are the four basic architectures employed, with CNN being one the most used. The 
main goal of a CNN is to learn data features via convolutional operations. Moreover, CNN 
architectures with many processing layers and neurons can efficiently perform high-complexity 
tasks such as image recognition by processing large-size data (Atila et al., 2021).  As a result, this 
kind of network is better suited for identifying patterns in images. LeNet-5 was one of the initial 
CNN architectures that were suggested (LeCun et al., 1998). The nodes with the probabilities of 
the original image falling into one of the ten-digit classes are found in the final layer (Kirk and 
Wen-Mei, 2016). AlexNet (2012) (Krizhevsky et al., 2012), ZF Net (2013) (Zeiler and Fergus, 
2014), VGG Net (2014) (Simonyan and Zisserman, 2015), GoogLeNet (2015) (Szegedy et al., 
2015), and Microsoft ResNet (2015) (He et al., 2016) are a few examples of other network 
architectures that are described in the literature. 

Regarding the popularization of the RGB digital cameras, there are many studies (Arivazhagan 
et al., 2013; Chuanlei et al., 2017; Islam et al., 2017; Qin et al., 2016; Rajan et al., 2017)  about 
automatic plant disease diagnosis via ML and DL that have been widely applied as an alternative 
to the expensive sensors. The combination of RGB and ML or DL in disease detection and 
recognition has shown immense potential to address the problem of early and accurate 
detection of pest and diseases (Arnal Barbedo, 2019; Barbedo, 2018; Bierman et al., 2019; 
Brahimi et al., 2017; Cruz et al., 2017; DeChant et al., 2017; Dhakal and Shakya, 2018; Farjon et 
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al., 2020; Ferentinos, 2018; Johannes et al., 2017; Liu et al., 2018; Ozguven and Adem, 2019; Qin 
et al., 2016). In addition, there already exist a few plant disease detection mobile apps, some of 
which include multi-language support and offer a  tutorial for users; for example Plantix, 
PlantVillage Nuru, MyPestGuide Disease, and Crop doctor (Siddiqua et al., 2022); however none 
of the above are focused specially on vegetable crops in the MENA region. Plant leaves are 
considered the first loci of infection for the germination of bacterial, and fungal capsules due to 
the suitable macro environments. Therefore, plant leaves are the most common part used to 
visually detect and identify diseases (Saikawa et al., 2019). These symptoms are often indicative 
of specific plant pathogens (e.g., fungi, bacteria, and viruses); insect feeding (e.g., sucking insect 
pests); or lack plant nutrition (e.g., lack of macro and micronutrients) (El-Helly et al., 2003). As 
vegetable crops show visible symptoms of diseases or pests, they suffer many different leaf-
level patterns of symptoms, such as for example discolorations that often differ in color, shape, 
and size according to the causal agent, making them discernable using ML or DL image analyses.  

As was mentioned before, SDG 17 is about strengthening the means of implementation and 
revitalizing global partnerships for sustainable development, and the target is to use 
multidisciplinary partnerships to improve agro-food systems. (Lee et al., 2016). In this study, the 
aim is to develop together between four countries, Spain, United Arab Emirates (UAB), Egypt, 
and Tunisia, a user-friendly application for smallholder farmers for the detection of plant 
diseases and nutritional disorders in tomatoes (Solanum lycopersicum), cucumber (Cucumis 
sativus), pepper (Capsicum annuum) and quinoa (Chenopodium quinoa). We present here a 
collaborative multi-actor approach that leverages mobile phone, local, and cloud-based 
supercomputing across multiple countries. As no database existed in order to develop the AI DL 
models for the detection of plant diseases and nutritional disorders in our target crops, we first 
designed a mobile phone to cloud data collection pipeline to collect image datasets and curate 
them. Once a sufficient image database was developed, preliminary AI models could be 
developed and tested for implementation in the final mobile phone and web application for 
automatic identification of our targeted plant diseases, pests, and nutritional disorders. A multi-
language database was then integrated for actionable decision support following conventional, 
organic, and integrated pest management approaches. 

 
2. Materials and Methods 

2.1. Sequence of events 

1. We first produced a data collection and storage pipeline using mobile phone RGB cameras 

and then held several training programs on disorder (diseases, pests and nutritional deficiencies) 

identification and data capture and upload. Then, we did multiple iterations of optimization of 

the data collection process - this was the creation of the first app of the project - the app for 

data collection improved through feedback to build the image database. 

2. During the database curation process, the images were reviewed by a team of plant 

pathologists which evaluated each image batch more thoroughly thanks to the ODK 

Downloader. 

3. We developed the DL model using the curated and labeled centralized image database and 

then we added new curated and labeled images of diseases and disorders to update the model 

as the project progressed. The whole data collection, curation, and labeling pipeline allowed for 

improved feedback and update capacities once in place. 

4. We later launched both outreach and training activities for the improvement of the decision 

support system (DSS) plant disease, pest, and nutritional disorder database of the final mobile 
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application: particular focus was devoted to new ecological and IPM approaches in top of the 

conventional chemical treatment options, and new language support was added to include 

English, French and Arabic. 

 

Figure 1. Experimental workflow of the process from the data collection to the Doctor X Nabat 

application. Feedback was critical in the refinement of the (1&2) data collection/image curation 

ODK app and also in the (3&4) development of the final user-friendly plant 

disease/pest/disorder detection web-based and Android mobile phone application. 

2.2. Dataset collection 

2.2.1 Site of study 

The first part of this project was to collect the image dataset; in this case, images of the leaves 

of tomato, cucumber, and pepper showing symptoms of the targeted diseases were gathered in 

order to train the deep learning algorithm (Table 1). Deep learning requires big data for model 

training and development, and this is key to the overall success of the project. The data were 

collected from trained agriculture extension offices and technicians from four different 

countries including Spain, Tunisia, Egypt, and United Arab Emirates (UAE).  

2.2.2 Dataset  

To arrange all the separately gathered datasets from each country, we used “Open Data Kit” 

(ODK), an open-source application (https://getodk.org/, last accessed November 2022), which 

builds a data collection form or survey (built using XLSForm, for example) to collect the data and 

images on a mobile device and upload to an ODK Aggregate (https://docs.getodk.org/aggregate-

intro/ , last accessed November 2022) open-source server running on the Google Cloud Platform 

(https://universitatbarcelonadoctorxlai.appspot.com/).The aggregate server receives and 

organizes the collected survey and image data and can publish the organized data to other useful 

formats, such as Google Sheets, for further image data image processing. Regarding the forms, 

we built the survey forms to include relevant ancillary information such as location, species, type 

of stress, the potential cause of the stress, one photo of the whole plant, and most importantly 

five images of five different leaves of the plant with visible symptoms of the specific stress taken 

with a standardized background and zenithal (Figure 2). The information contained in the forms 

was used at the time to organize the images. Also, to capture the images in standardized 

conditions, we designed a background with a white balance panel and QR codes for scaling (for 
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instance; Figure 5). The use of ODK and cloud data storage servers for data collection across 

continents and cultures enabled the continuation of data collection efforts between all 4 

collaborating countries despite limitations in mobility or funding. ODK provided the tools for a 

successful decentralized data collection with a centralized and controlled data curation process, 

all the while working entirely remotely. 

 

Figure 2. Visual explanation of important information that people added in the ODK form 

surveys, how they captured the images. After finishing the form and image data capture, they 

uploaded in the data to the ODK aggregate server. 

2.2.3 Technical validation 

We confirmed the identity of the diseases and other disorders by having an expert plant 

pathologist in each country identify and determine the diseases in the field. The experts worked 

in the greenhouses with postdocs and pre-doctoral students providing diagnoses determined 

based on standard approaches used by plant pathologists. Also, for some of the diseases, plant 

pathologists inoculated the crop directly using standard experimental approaches. Lastly, 

additional trained plant pathologists and technicians reviewed the images and forms during the 

data curation process. 

2.3. Data/image curation 

The second part of this project was to sort the image and survey dataset uploaded using the 

ODK application to the aggregate server. As we mentioned above, the ODK mobile app and form 

build a database collection (i.e., a survey); once the ODK survey form and pictures were 

uploaded, they were organized by the UB ODK Aggregate server and published to a shared 

Google Spreadsheet document. For downloading and sorting the spreadsheet database, we 

developed an open-source standalone JAVA software application for PC called the ODK 

Downloader (https://gitlab.com/sckefauverl/odk-downloader) to optimally organize our 

collective data (Figure 3). The ODK Downloader allows for fast and efficient management of our 

“big data'' repository as well as quality control through improved organization and visualization. 

Besides, it allows the user to export, organize and download the data from the Google 

Spreadsheet database with adjustments for a multi-tiered file folder system (to organize images 

by crop type and then pest species, for example), selection of the form submissions to download 

(rows), the images to download (columns) and options for image file naming and labeling. After 

this part, we uploaded the dataset with the different species with diseases in each folder in a 

drive. 
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Figure 3. Data curation from the google sheet, down from the could to PC and sort with the ODK 

Downloader and after upload in the drive for the next step. 

2.4. Development of the algorithm (Jose A) needs to describe all this part. 

The third part of the project was the development of the DL model using a Convolutional Neural 

Network (CNN) architecture for object detection. We were first focused on the design a pipeline 

system (Fig. 4) from the database to classification in order ensure quick and efficient updates as 

more forms and image data future expansions. 

 

Figure 4. Pipeline system: from database (ODK) to disease and pest recognition (labels). 

2.4.1 Database 

Load and process images from Google Drive (ODK images); for this step, we used Google Colab 

as an open-source programming environment, and additionally, as a link between ODK images 

and data processing (Fig. 4). 

2.4.2 Training 
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Features extraction and model parameters (weights) calculation; in this step, the convolutional 

layer, also called the feature map, is calculated and the neural network weights are updated. 

The algorithm codes are being written under Python programming language using open-source 

libraries, such as TensorFlow, Keras, Pandas, Numpy, and OpenCV in order to ensure the 

continued development and use of these algorithms in the future. For the training, we used 

specific stresses for a given plant species (Fig. 5), where image acquisition is more advanced, on 

the order of 200s of images per plant species and disease combination. The study investigated 

a deep learning architecture based on a recent convolutional neural network called ResNET50 

to classify leaf healthy/disease/deficiency images. The model used 25 M of features, ResNet50 

architecture (He et al., 2016), which won the ILSVRC-2015 competition in 2015, is an architecture 

proposed to solve the problem of multiple non-linear layers not learning identity maps and 

degradation problem. ResNet50 is a network in network architecture based on many stacked 

residual units. Residual units are used as building blocks to build the network. These units consist 

of convolution and pooling layers. This architecture uses 3 × 3 filters as VGG16 and takes input 

images of 224 × 224 pixels. 

2.4.3 Classification  

Prediction and object detection; this final step is used for discriminating between labels and 

evaluating the network performance. The system is being developed with the goal to detect as 

many diseases or pests as the leaf-image is affected. 

2.4.4.  Model Accuracy Assessments 

The performance of our model in predicting the affirmative class is described by the precision 

ratio. By dividing the total number of true positives by the sum of true positives and false 

positives, it is determined: 

                                            Precision =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
                                             (1) 

The recall ratio is determined by dividing the quantity of true positives by the total of true 

positives and false negatives, as shown below: 

                                            Recall =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
                                               (2)   

A weighted average of recall and precision is used to determine the F1-score ratio as follows: 

                                          F1 − score = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                             (3)   

 

2.5. Accessibility of the use of the DL model 

2.5.1 GitHub 

Once we had the algorithm training and with a high score of accuracy of detection of diseases in 

the different crops. We added in the GitHub: https://github.com/sckefauver/ml-icba. 

2.5.2 Web-based Application 

Once the algorithms were considered full functional for a minimal selection of crop species and 

pests, we developed a portal web app pages to support the different database languages  

https://doctorxub.com/icbafr, https://doctorxub.com/icbaar, https://doctorxub.com/icba, 
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accessible with any PC, tablet, Windows, Ubuntu, and Apple software functionality with 

connection to internet service, where images may be uploaded and crop diseases, pests or 

deficiencies identified. This part was where we integrated the extensive knowledge base of the 

ICBA research team concerning best practices for the treatment of these crop diseases, pests, 

or deficiencies across MENA.  

2.5.3 Android Mobile Application  

Lastly, the fully functional and integrated crop diseases, pests or deficiency deep learning 

algorithms and MENA best practices knowledge base of the web app testing environment was 

be ported to a native Android (mobile phone) application format so that the whole system can 

be tested and launched for use offline with any Android phone in the field 

(https://play.google.com/store/apps/details?id=com.doctorxnabat&hl=en&gl=US&pli=1).  

3. Results and Discussion 

3.1 Dataset collection & curation 

Using the ODK app, we gathered a total of 20,718 pictures of the 4 distinct plant species from 

Spain, the UAE, Egypt, and Tunisia for this study. Table 1 shows the visual symptoms in leaves 

caused by the different 14 disorders we have included to date in the App.  These include 

nutritional disorders, in this case, potassium and phosphorous deficiencies, and salinity stress. 

Moreover, different fungi, bacteria, viruses, and pests responsible for other visible symptoms 

on leaves were included. Figure 5 shows example leaves of the species that have diseases or 

nutritional issues. 

Table 1. The visual symptoms of the leaf in response to biotic and abiotic stressors 

Stress 

Type 

Agent Nutritional Deficiencies/Disease Plant Affected Visual Symptoms 

Abiotic - Potassium deficiency  Cucumber 

Leaves have sunken main veins and are bronzed and 

discolored, turning yellowish green at the margins. 

Additionally, the margins dry out while the veins continue 

to be green. Later, interveinal chlorosis worsens and 

spreads into the heart of the leaf and is then followed by 

necrosis. 

Abiotic - Phosphorous deficiency  Tomato The most typical sign is leaf purpling, especially in the leaf 

veins. Clearly visible purpling on the petiole, stem, and 

undersides of the leaves. The undersides of the leaves on 

older plants turn reddish-purple, while the leaves on 

young plants turn purplish. leaves that are older and have 

some necrotic patches. The tendency for leaves to turn 

blue gray under severely deficient conditions. Plants grow 

slowly and are stunted or dwarfed. 

Abiotic - Salinity Tomato Plants affected by high salt concentrations often appear 

dark green in the early stages, but rapidly develop 

marginal yellowing and necrosis of older leaves. 

Biotic Fungus Downy mildew (Pseudoperonosoa 

cubensis)  

Cucumber and 

Pepper 

The spots start out yellow and angular on the upper side, 

then they turn brown and sometimes into sizable brown 

patches that damage the leaves. The dots on the 

underside of the leaf blade are brown and covered in 

sporangia, giving the leaf blade a purplish-brown hue. Old 

leaves are the first targets of attacks, then fresh leaves. 
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Biotic Fungus Sooty mold (Capnodium citri)  Pepper A blackish powdery material, resembling black soot, coats 

the leaves. The first develops on leaves, which persist for 

the entire leaf's lifespan. The second variety, which 

persists on the stems and twigs of woody plants, is 

replenished using leftovers from the fungus' production 

from the previous season. Although it's not hazardous to 

the plant, if it's present in sufficient amounts, it can hinder 

photosynthesis in the leaves, suffocating plants until they 

wither and die. 

Biotic Fungus Powdery mildew (Oidiopsis taurica) Tomato Leaf with circular to angular, pale green to yellow dots on 

the upper side that are coated in a white mycelium and 

conidial down. The impacted areas eventually turn brown, 

develop a necrotic center, deteriorate, and tear readily. 

Attacked leaves become brittle and may even fold up their 

blades. 

Biotic Fungus Early blight (Alternaria solani)  Tomato On leaves, 4 to 7 mm-diameter black necrotic patches 

with a yellow halo surround them as they grow in 

concentric circles. We may observe elliptical brown, gray, 

and concentric dots on the stems. 

Biotic Fungus Leaf mold (Passalora fulva)  Tomato First to be infected are the oldest leaves. On the upper 

sides of leaves, little, pale greenish-yellow dots with no 

discernible edges, usually less than 1/4 inch across, 

develop. Below the leaf spots, an olive-green to brown 

velvety mold develops on the bottom leaf surface. Leaf 

splotches coalesce and darken as a group. Although they 

wither and die, leaves frequently stay affixed to the plant. 

Infected blooms lose their color and turn black. 

Biotic Bacteria Wilt (Erwinia tracheiphila or 

Curtobacterium flaccumfaciens) 

Cucumber Initially dull green in color leaves wilt during the day before 

recovering at night. Additionally, the edges turn brown 

and yellow and entirely wither and die. Every crop wilt at 

a different rate. Cucumbers quickly wilt and perish. 

Biotic Virus Tomato Yellow Leaf Curl Virus 

(Begomovirus spp.) 

Pepper, Tomato 

and Quinoa 

Small leaves exhibit interveinal and marginal yellowing as 

well as significant crumpling. The margins develop yellow, 

leave upward-curling curls, and become stunted. severe 

necrosis and blighting of the leaves. In seedlings, the 

shoots shorten and then become stunted, and the plant 

grows upright. 

Biotic Pest Spider mite (Tetranychus urticae)  Cucumber and 

Pepper 

Leaves elongate, thicken, and darken. On the underside of 

the leaf, regions of corky brown color can be seen between 

the primary veins. Young vegetation is distorted. When the 

spider mite's population density is high, it is possible to see 

slowed growth and shoot dieback. 

Biotic Pest Leaf hopper (Coccinella 

septempunctata)  

Pepper An excess of leafhoppers can cause leaves and shoot tips 

to turn yellow, then brown, curl, and eventually die. leaves 

to get light flecks on them. Leafhoppers also exude 

honeydew, which supports the growth of a blackish-sooty 

mold. This can contaminate the fruit, foliage, and surfaces 

that are under infected plants. Stunted and deformed 

plant growth. 
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Biotic Pest Aphid (Aphis fabae) Pepper Aphids secrete honeydew, a sugary liquid waste that, in 

high enough concentrations, can inhibit photosynthesis in 

the leaves and cause stunted or delayed plant growth. 

Honeydew supports the formation of a dark-colored 

fungus that appears on honeydew secretions (sooty mold). 

Additionally, they weaken plants in high numbers by 

suckling up the sap they consume and causing leaf 

deformation, twisting, and curling, as well as yellowing and 

withering. 

Biotic Pest Leaf miner (Tuta absoluta) Tomato Completely eaten leaves. Additionally, reduced 

photosynthesis and production. 

 

 

Figure 5. Examples of images of the leaves from different crops with diseases, pests, or 

nutritional disorders. a) Cucumber leaves with Potassium deficiency (-K), Downy Mildew (DM), 

Bacteria Wilt (BW) and Spider Mite (SM). b) Quinoa leaves with Tomato Yellow Leaf Curl Virus 

(TYLCV). c) Pepper leaves with Downy Mildew (DM), Tomato Yellow Leaf Curl Virus (TYLCV), 

Sooty Mold (SM), Spider Mite (SM), Leaf Hopper (LH) and aphids. d) Tomato leaves with 

Phosphorus deficiency (-P), Powdery Mildew (PM), Early blight (EB), Leaf Mold (LM), Tomato 

Yellow Leaf Curl Virus (TYLCV), Leaf Miner (LM) and Salinity and Leaf Miner (LM). 

We collected healthy leaves of the three horticultural species: cucumber, pepper, and tomato 

leaves, two classes of leaves with nutrition deficiencies, and sixteen classes of leaves with 

diseases caused by fungi, bacteria, viruses, and pests. The images in the dataset had different 

quality and sizes because they were taking from different types of mobile phone cameras by 

different people. Additional photos of a few complicated combinations of disorders were also 

gathered and kept for a potential future upgrade to the models and the app. In comparison, 

there are only two main datasets with trusted labels online: Plant Village (PV) (Hughes and 

Salathe, 2015) and Digipathos (Barbedo et al., 2018). Many studies of deep learning are based 

on the PV data set (Atila et al., 2021; Ferentinos, 2018; Kehs et al., 2019; Mohanty et al., 2016), 

which is currently the largest dataset containing 54305 images. Nevertheless, the dataset 

presented in this study was collected in a constrained environment with a homogeneous 
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background and may offer some advantages. While the Digipathos dataset addresses the above 

problem, also the number of images is too small with only 2326 images. 

3.2 Development of the algorithm 

The dataset was divided into three parts: training, validation, and testing. Table 2 shows the 

number of images used in the three phases across the 21 classes in 4 different crop species. The 

number of the images in each phase is determined based on the fine-tuned hyperparameters 

and structure of the CNN model. In Table 2 we can see the total number of the images; the lower 

number is sooty mold in pepper with 197 images and the higher is the powdery mildew on 

tomato with 2940 images.   

Table 2. Database details: the species, disorder, type of disease or deficiency, number of Images 

used in the training, validation, and testing phases across the all the healthy, diseases and 

deficiencies classes that we collect a cross the two years. 

Species Disorder Type 
Train Set 

Count 
Validation Set 

Count 
Test Set Count 

Total Number of 
Images 

Cucumber 

Healthy - 140 46 47 233 

Nutrient 
Deficiency 

Potassium 597 199 199 995 

Fungus Downy Mildew 183 61 61 305 

Bacteria Wilt 171 57 57 285 

Pest Spider Mite 600 200 200 1000 

Pepper 

Healthy - 189 62 63 314 

Fungus 
Downy Mildew 699 233 233 1165 

Sooty mold 119 39 38 197 

Virus TYLCV 135 45 45 225 

Pest 

Spider Mite 608 202 202 1012 

Leaf Hopper 168 55 56 279 

Aphid 675 224 225 1124 

Tomato 

Healthy - 610 203 183 1016 

Nutrient 
Deficiency 

Phosphorous 1229 409 410 2048 

Fungus 

Powdery Mildew 1764 588 494 2940 

Early Blight 339 113 113 565 

Leaf Mold 669 223 223 1115 

Virus TYLCV 1475 491 491 2457 

Pest Leaf Miner 1425 475 475 2375 

Abiotic + Biotic 
Salinity + Leaf 

Miner 
171 56 57 284 

Quinoa Virus TYLCV 471 156 157 784 

Total 12.437 4137 4144 20.718 

 

The confusion matrix for the CNN model in Figure 6 gives a detailed analysis of how the model 

performance changes for different disease classes. The matrix rows the actual (true) classes, and 

the columns correspond to the predicted classes. The diagonal cells show the proportion of the 
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correct predictions of our CNN model, whereas the of diagonal cells illustrate the error rate of 

our model.  

 

 

Figure 6. The Confusion matrix for the CNN Model for 21 classes. 

In this study, the confusion matrix demonstrates in most cases, that our model can differentiate 

between the healthy/disease/deficiency classes and achieve high levels of prediction accuracy 

(Fig. 6). Nevertheless, the model in some cases algorithms confuses the diseases of each crop 

such as the algorithm confuses the cucumber healthy with twice times wilt and 3 times spider 

mites. 
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Figure 7. Examples of tomato leaves with Leaf Miner. a) In left leaf with brighter lighting and in 

the right with slightly darker lighting. b) In the left, older leaf with higher impact the pest and in 

the right younger leaf with a relatively low impact of pest. c) In the left an older and bigger leaf 

and on the right a smaller leaf with a similar level of pest impact. 

Figure 7 illustrates three distinct scenarios that the model application may encounter during 

classification. Figure 7a) shows the variations in light that can affect an image because of the 

collecting of data from many individuals in various locations, light conditions and cameras 

around the world. Additionally, Fig. 7b) demonstrates that the disease may be in an early or late 

stage. Finally, we can see how the size of the leaves differs in Fig. 7c. This range of variation was 

included in the model training on purpose as part of the data collection planning process in order 

to capture the full range of conditions that might need to be identified for each specific pest, 

disease or deficiency. 

Table 3. The Precision vs. Recall vs. f1-score values of the CNN Model for all the healthy, disease, 

pest, and deficiencies classes. 

Species Type Precision Recall f1-score Support 

Cucumber 

Healthy 1.00 0.89 0.94 47 

Potassium 1.00 0.96 0.98 199 

Downy Mildew 0.98 1.00 0.99 61 

Wilt 0.80 1.00 0.89 57 

Spider Mites 0.96 0.99 0.98 200 

Pepper 
Healthy 0.98 0.95 0.97 63 

Downy Mildew 1.00 0.90 0.95 233 
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TYLCV 0.98 0.91 0.94 45 

Sooty mold 0.84 0.97 0.90 38 

Spider Mites 1.00 1.00 1.00 202 

Leaf Hopper 0.90 0.98 0.94 56 

Aphids 0.84 0.98 0.91 225 

Tomato 

Healthy 0.90 0.97 0.94 183 

Phosphorous 0.93 0.96 0.94 410 

Powdery Mildew 0.99 0.90 0.95 494 

Early Blight 0.98 0.78 0.87 113 

Leaf Mold 0.86 0.95 0.90 223 

TYLCV 0.96 0.85 0.90 491 

Leaf Miner 0.91 0.96 0.93 475 

Salinity + Leaf Miner 0.88 1.00 0.93 57 

Quinoa TYLCV 0.92 0.97 0.94 157 

Accuracy     0.94 4029 

Macro avg 0.93 0.95 0.94 4029 

Weighted avg 0.94 0.94 0.94 4029 

 

Table 3 shows the accuracy, recall, and F1-score ratios for our CNN model using various 

probability thresholds and reflect the trade-off between the true-positive rate and the positive 

predictive values.  Precision shows the positive predictive value of our model, the recall 

measures (i.e. how many true positives are accurately detected), while the F1-score considers 

the number of false positives and false negatives. 

We confirmed that our model showed good diagnostic performance not only for single disease 

and deficiency cases but also for multiple infection cases. The precision for each class ranged 

from 80 to 100%, the recall varies between 78 to 100% and the f1-score was from 87 to 100% 

(Table 3). These data could be compared with the confusion matrix, in which the algorithm 

confuses the classes, and with the cases in Fig. 6. The model development, RedNet50 using 25 

M features, can classify 21 classes with an average accuracy of 94%. This means our model can 

recognize 15 single diseases, caused by fungi, viruses, bacteria, and pests, also 1 class with 

multiple disorders, caused by a combination of salinity stress and leaf miner, besides 2 

nutritional deficiencies and 3 healthy leaves of tomato, pepper, and cucumber. 

There are many studies where that used different models to detect/identify/recognize 

diseases/deficiencies in plants. Joshi et al., (2021) proposed the CNN layers model for the 

detection de viral infection with a maximum accuracy of 98.27%, maximum precision of 98.42%, 

maximum recall of 96.54%, and maximum f1-score of 97.37%. Another study developed an 

identification system for mildew disease in pearl millet using a model VGG16 CNN where the 

maximum accuracy was 95%, the maximum precision was 90.50%, the maximum recall was 

94.50%, and the maximum f1-score of 91.75% (Coulibaly et al., 2019).  For recognition of plants 

diseases using the dataset create for Plant Village (Hughes and Salathe, 2015),  Sladojevic et al., 

(2016) used the model Caffe deep learning and achieved an accuracy of 96.3%. Other study  used 

a deep CNN and they presented an accuracy of 93.4% (Ma et al., 2018) 

3.3. Accessibility of the use of the DL model 
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Figure 8. Image of the Doctor X UB web app, that is in three different languages: English, French 
and Arabic.   

Regarding Figure 8, we show the front end of the web app that we released before the Android 
app. As part of the project multi-actor feedback approach, we first did a trial web app with 8 
common diseases and nutritional disorders. Then, we conducted training and feedback 
meetings in Egypt, Tunisia, and UAE with researchers, government extension officers, and 
smallholder farmers, and they give us the suggestions to add in more languages to the app, in 
this case, we added French and Arabic to English. In addition, we collected more images 
subsequently and soon thereafter expanded the model to include 21 different classes in the web 
app with a fully expanded database for the decision support systems (DSS) in all three languages. 
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Figure 9. Images of the Doctor X Nabat Android app, that is in three different languages English, 

French and Arabic. a) The list of the supported plant diseases/deficiencies. b) Detection the 

pepper leaf with spider mite in this example was with 99% of confidence.  

Once we developed the web app, we built the Android application. Figure 9 shows two images 

of the Doctor X Nabat on Google Play. The app is free and publicly developed and supported 

application that can be used as a digital assistant to help MENA farmers diagnose major 

horticultural diseases and other disorders through the acquisition of images with smartphones. 

The Android application currently uses the same cloud-based image processing server for 

applying the model, but it may work eventually without an internet connection. When online it 

gives feedback in real-time. Further, the presented high accuracy for the target disorder is more 

than 94% for the entire set of plants disorders encompassing the app. Based on 

recommendations from ICBA, the app has been specifically designed to meet the demands of 

the MENA region. It supports Arabic, French, and English, the three most important languages.  

In contrast to other previously released apps, we used a bottom-up, multi-actor stakeholder-

driven development method to make sure the app satisfies the unique requirements of our end 

customers in MENA. The end users have directly contributed to its establishment, fostering trust 

in its usefulness and functionality. On the other hand, Plantix is currently the most complete 

app, in addition to being free. However, it is worth to mention that it has been developed for 

the past 5-7 years, involving a larger multidisciplinary team fully devoted to build up and 

maintain the app, which means the budgetary support behind has been much larger. Moreover, 

apps such as Plant Village Nuru or MyPestGuide Diseases focus on a more limited number of 

diseases and other disorders for other regions of the world. Some apps are not fully free to use 

or include paid services (Plant Disease Identifier, Agrio). Other apps may have a different focus, 

and, instead of identifying disorders, the app performs quantitative assessments for plant 

diseases that have been a priory identified (Leaf Doctor) or have focused on three species mostly 

for the USA environment (Purdue Tree Doctor). Some others also depend on access to 
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multispectral or hyperspectral images captured by a drone (Plant Scope), or provide only general 

information upon request, rather than identifying disorders directly with a built in DSS (Crop 

Doctor; MyPestGuide Reporter). 

4. Conclusions and future work 

The ODK data collection demonstrated that multiple countries' data may be gathered using a 

reliable open-source system. More than 20.000 images of quinoa, cucumber, pepper, and 

tomato leaves in good health, with a wide range of disease or pest foliar symptoms, or in need 

of improved nourishment were gathered. As an added bonus, we developed the ODK 

Downloader, a PC based tool that facilitated the arrangement of the complete ODK dataset 

online by scrapping details out of a Google Spreadsheet shared document and may be adapted 

to support other similar ODK databases. The CNN DL algorithm developed for classifying the 

classes was successful in achieving its 94% accuracy goal while covering 21 different plant-

symptom combinations. Additionally, the creation of a user-friendly, local language-supporting 

web and Android apps makes cutting-edge technologies more available to MENA countries and 

both of these were launched with an integrated DSS. For future work, we may consider 

expanding this app to cover more diseases, pests, and nutritional disorders, and also the 

combinations of different diseases, as this has been indicated as another common complication 

in real world field conditions. This paper illustrates the experience of building up an affordable 

albeit efficient mobile phone- hosted app for automatic identification of plant disorders. The 

app represents an example of successful participatory endeavor, embracing the collaborative 

work of end users (i.e., farmers) together with international institution with a global mandate 

to improve MENA agriculture and the academia. 
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DISCUSSION 

 

The Sustainable Development Goals (SDGs) of the United Nations (UN)– targets aimed to be 

achieved by 2030 – are focused on both developing and developed countries. The “Zero Hunger” 

SDG is number two, focused on doubling the productivity and incomes of small-scale food 

producers, ensuring sustainable food production, and implementing resilient agricultural 

practices. Agriculture in the world is highly dependent on climate change conditions, such as 

abiotic stress which includes nutrient deficiency in soils, intensifying rising temperatures, 

drought, and increasing CO2 concentrations. Also, biotic stress increases can also be linked to 

climate change and can have large impacts on agricultural sustainability, including invasive 

pests, disease outbreaks, and decreases in crop productivity. This doctoral Thesis represents the 

practical implementation of non-destructive methods using remote sensing (RS) technologies 

applied at different scales and using different types of sensors, which all provide insights into 

nutrient deficiency, pest invasions, estimation of photosynthesis parameters, and detection of 

crop diseases and other plant disorders. Besides, this dissertation furthermore provides a 

comparison of maturity levels between different types of technologies through technological 

readiness levels (TRL) assessments along the four chapters. 

Food Security and the second Sustainable Development Goal (SDG 2) “Zero Hunger” 

With respect to food security in the world, developing countries are more vulnerable to climate 

change, and depend more on local agricultural production. We developed the 

campaigns/science of 3 of the 4 results chapters of this dissertation in developing countries. In 

Fig. 5 we can see where are de countries that each chapter are involved in each project. 
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Fig. 5. World map indicates the different countries where research included in this thesis was 

development. The 1st chapter field campaign was conducted in Zimbabwe and focused on maize. 

The 2nd chapter was carried out in Zimbabwe, Tanzania, and Kenya using remote sensing and 

also focused on maize. The 3rd chapter was completed during an exchange in United States and 

focused on soybean and peanut. Finally, the 4th chapter was carried out in Spain, Tunisia, Egypt, 

and United Arab Emirates (UAE).    

The first and second chapters were conducted primarily in Sub-Saharan Africa (SSA) and focused 

on the maize crop under abiotic (1st) and biotic (2nd) stress. In SSA there are 37 million ha of 

maize produced annually, of which 95% of the farms, belong to small farmers (less than 2 ha, 

FAOSTAT 2016). After water, the most important input for maize production is nitrogen, and in 

SSA fertilizer applications are often negligible, and this has become one of the most important 

abiotic stresses that directly affects the production capacity of small holder farmers (Masuka et 

al. 2012). On the other hand, in 2016 the Fall Armyworm (FAW) arrived and spread fast across 

Africa; one of the most damaging pests ever to invade the African continent, and one that feeds 

preferentially on maize and is still causing billons US$ of losses annually in maize yield in SSA 

(Day et al. 2017; Hailu et al. 2018). These two important abiotic and biotic stresses continue to 

threaten the livelihoods of millions of small farmers in SSA.  

The third chapter was developed in the United States, in collaboration with the Auburn 

University in Alabama. There, advanced technologies were made available for a more in-depth 

study of the potential remote sensing capacities under field conditions using advanced portable 

spectroscopy equipment. The study focused on soybean, which is the main source of proteins 

at the World level, minerals for humans and animals. Second species evaluated was peanut, a 

main crop in the southeast of the United States and a major source of proteins and lipids not 

only in the USA but also in many developing countries of africa (Onuegbu and Ibeabuchi 2021) 

The fourth chapter was developed between four countries: Spain, Tunisia, Egypt, and the United 

Arab Emirates, and focused on the principal vegetable crops eaten in the Middle East and North 

Africa (MENA) region, plus an herbaceous crop introduced during the last decades in the region. 

We based the study on tomato, pepper, cucumber, and quinoa. In the region of MENA, the 

control of diseases and pests in common horticulture has been a challenge for small farmers 

(Zolfaghari and Farzaneh 2021). Rapid response in the treatment of crops is often critical in order 

to ensure sustainable productivity in adverse conditions. Thus, we focused here on developing 

tools for the quick identification of pests, diseases, and common nutrient deficiencies in these 

four crops. 
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The following summary of the four chapters is focused on each as an effort to contribute to the 

UN SDG 2 “Zero Hunger,” the goal of which, as mentioned before, is to double the productivity 

and incomes of small scales producers, and thus this dissertation has attempted to contribute 

to through international cooperation and applying remote sensing technologies. 

Remote Sensing in agriculture 

In this part, we compared the different types of resolution: spectral, spatial, and temporal and 

the observation scales to determine the monitoring capacities of the different chapters. 

Spectral resolution 

The spectral resolution refers to the wavelength width and the number of the different 

frequency bands. Concerning the VIS (visible light), it ranges from 400-700 nm, it refers to the 

images acquired by the conventional RGB (Red, Green, Blue) cameras. Vegetation Indices (VIs) 

derived from conventional digital RGB images have been proposed as means of estimating green 

biomass and grain yield (GY) of crops under stress conditions (Casadesus et al. 2007; Vergara-

Diaz et al. 2015). In the first chapter, by taking photos of the maize canopy under low nitrogen, 

we used RGB VIs, extracted from the photos, for yield estimation. In addition, RGB digital 

cameras have been used for automatic disease diagnosis via machine learning (ML) and deep 

learning (DL). One study proved the potential of the proposed algorithms, where five different 

cucumber leaf diseases are considered and classified with an accuracy of 98.08% in just 10.52 

seconds using DL (Khan et al. 2020). In the fourth chapter, we developed an algorithm that can 

identify 21 different plant disorders on leaves of cucumber, tomato, pepper, and quinoa with an 

overall classification accuracy of 94%, all with just RGB observations limited to the VIS spectral 

region. 

On the other hand, the VNIR (VIS+NIR, near infrared) reflectance (400-1000nm) covers a larger 

spectral range and is also very common approach for phenotyping. Within the VNIR region, the 

Normalized Difference Vegetation Index (NDVI) is an classical standard in remote sensing and a 

very powerful vegetation signal. This index is one of the most common remote sensing indices, 

that provides a simplified yet reliable estimate of green biomass (Tucker 1979; Van Hoek et al. 

2016). Similarly, this may be also compared to the Green Area (GA) index from the VIS range, 

which quantify the portion of green pixels to the total pixels of the image and can provide a 

reliable estimation of vegetation cover (Lukina et al. 1999). In chapter one we compared the 

RGB VIs mentioned above with NDVI, and the data showed that the estimation of the grain yield 

of the maize was higher through RGB VIs than with NDVI. One reason could be that the data of 

the NDVI was saturated, and they do not present differences significative between the values. 
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Regarding the second chapter, we used these two indices that mention before NDVI and GGA, 

and in addition the Leaf Area Index (LAI). That is the area of leaves over a corresponding area on 

the ground (Area of leaves/square meter on the ground (Van Gardingen et al. 1999). The LAI 

values were calculated from images captured with a mobile camera RGB (Demarez et al. 2008; 

Garrigues et al. 2008). We analyzed these three separate indices at various scales, and the 

results showed that despite variations in observation scale and picture quality, there was a 

coefficient of determination higher than R2 = 0.60 between each category. That suggests that 

even using different of range of the spectrum, we can estimate the biomass of the plant. 

Regarding the VIS-NIR-SWIR (SWIR, short wave infrared) full spectral range (400-2500 nm), one 

may acquire the full leaf optical reflectance spectra, with which advanced regression models like 

the Partial Least Squares Regression (PLSR) may be applied to estimate more complex traits as 

the maximum rate of rubisco-catalyzed carboxylation (Vc,max) and maximum electron transport 

rate supporting RuBP regeneration (Jmax) in different species/or cultivars (Doughty et al. 2011; 

Serbin et al. 2012; Choquette et al. 2019) under different abiotic stresses such as drought (Silva-

Perez et al. 2018) or elevated atmospheric ozone concentrations (Ainsworth et al. 2014; Yendrek 

et al. 2017b). In the third chapter, we estimated the Vc,max and Jmax of two legume crops (soybean 

and peanut) using full range leaf level reflectance spectra with four different advance regression 

models: PLSR, Automatic relevance determination regression (ARDR), Bayesian ridge (BR), and 

least absolute shrinkage and selection operator (Lasso). 

 

Spatial resolution 

The spatial resolution is the resolution of the sensor in terms of area on the ground, and this 

depends on the sensor and the remote sensing platform that you use to monitor your crop. In 

the first and second chapters, this concept of spatial resolution was considered relevant. 

In the first chapter we compared the RGB VIs taken from ground level and unmanned aerial 

vehicle (UAV) platform level. The Pearson correlation between similar indices acquired at 

ground and aerial levels was higher than r = 0.75 between the relevant indices such as GA, and 

Green Greener Area (GGA). We did this comparison to observe if the resolution of the pixels 

from the cameras can affect the results and if we could replace the RGB photos from ground 

level for RGB photos at UAV levels due to the difference in the pixels. One similar study showed 

an estimation of grain yield of maize through RGB images from a UAV with R2 = 0.82 (Gracia-

Romero et al. 2017). Additionally, one study showed a good correlation of grassland yield using 

RGB VIs taken from UAV with R2 = 0.62 (Lussem et al. 2018). Regarding the second chapter, we 
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conducted an observation at three different scales. In analyzing correlations of NDVI from 

microsatellites (3m/pixel resolution), NDVI from phenopoles at 5 m (0.06m/pixel), GA from 

phenopoles at 5 m (0.009 m/pixel), and LAI from the fisheye hemispherical lens were taken from 

below the plant and looking upwards (0.001m/pixel). We did these comparisons between the 

different technologies and sensors validation because often the satellite data was not available 

for our monitoring purposes due to the cloud cover issues. These parameters were considered 

similar to total green biomass assessments as we mention above. There are many studies that 

compare these indices at different scales, and most were with an R2 higher than 0.70 (Kovacs et 

al. 2004; Matese et al. 2015; Ihuoma et al. 2021). This could suggest that the spatial resolution 

does not affect the results with data from different scales.  

Concerning of third chapter, we did a simulation of the bands of the Sentinel 2 a+b using the 

data from the ASD FieldSpec VIS-NIR-SWIR data to see the limitation of the single-leaf-level 

estimations of photosynthetic capacities using point-based spectral analysis. For that reason, we 

resampled FieldSpec data to cover the 12 of the 13 bands of Sentinel 2 a+b to the estimation of 

the Vc,max
 and Jmax, and the results showed a R2 = 0.50.  

In the fourth chapter, all the data that we used was very high resolution and were captured at 

ground level using the RGB cameras of mobile phones for the estimation of leaf 

diseases/deficiencies through DL. The images also had a range of different resolutions because 

these images were taken by different persons and different types of mobile phones as part of 

the international collaboration. 

Temporal resolution 

The temporal resolution is considered a measure of the frequency at which the sensor revisits 

the same area in the study. 

In the first chapter, this temporal resolution was an interesting factor because we only took the 

data with UAV at an early stage of the maize season and the effects of the under nitrogen mostly 

started to appear after. This study suggests that if a research plan has only one shot to capture 

data, it is better to study first what is the most suited crop growth stage and then estimate when 

the key growth stage would be to assess the abiotic or biotic stress. 

In the second chapter, we applied a time-series anomaly change detection and first derivative 

growth pattern analyses of NDVI using Sentinel 2 a+b with a temporal resolution fixed by 5 days 

and Planet Scope with a temporal resolution of 1 day during the maize vegetative growth stage 

to observe a reduction of the NDVI caused by FAW. One of the biggest problems of this study 
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was cloud cover, because it reduced the data frequency and was a major limitation of using a 

passive remote sensing approach. 

For the third chapter, as we mentioned in the spatial resolution considerations, we did a 

simulation using the bands of the Sentinel 2 a+b, which exhibited a determination coefficient 

higher than 0.5. In this case, using a spectrophotometer sensor was flexible and we could adjust 

the timing to capture data. We compared this to using an open-source satellite, having a defined 

temporal frequency, as they are in orbit. Satellites capture data frequently, but sometimes the 

data is not useful for agriculture, such as if there are clouds present. Also, measurements at a 

fixed temporal resolution may not fit the actual crop or stressor temporal resolution for a 

specific purpose. Regarding the fourth chapter, we also used a hand-held platform to capture 

the images, a mobile phone provided with a RGB camera, and the temporal resolution was not 

as relevant, though very flexible for a quick assessment of the crop disease and timely decision 

support. 

Observation scales 

Regarding remote sensing platforms in this thesis, we can find the three types: ground, aerial, 

and space level along of the four chapters 

In the first chapter, both ground-based and airborne sensors were utilized. We examined RGB 

photos collected from 50 meters away and from one meter away from crop and discovered a 

strong association between them. When we considered the information discerned from the RGB 

data from the UAV and processing of 200 plots, it would suggest that deploying the UAV could 

result in significant savings in terms of time, requiring about 10 minutes in the field, 20 minutes 

to mosaic, and 30 minutes to extract and process the data. The field part would roughly 

quadruple time spent if the data were gathered from the ground-level for image capture and 

processing. Due to advancements in digital photography, including image processing, low-

altitude aerial imagery is now feasible and an affordable monitoring tool for agriculture. 

We employed three separate platform categories for the second chapter. Before moving to the 

field, we first used the proof-of-concept approach, which simply uses data from Sentinel 2, such 

the frequency of image capture and percentage of clouds. Then, we traveled to other fields and 

employed RGB cameras on a UAV, but this information was not displayed due to the poor quality 

of the data and the fact that UAV flight was prohibited in one country. We then used as 

alternative a 5-meter pole equipped with an RGB and multispectral sensor to replace the images 

cultured from sensors placed at UAV. Finally, we calculated the LAI and attempted to validate 

the satellite data using a cell phone with a fisheye lens. 
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In the third chapter, we observed at the single leaf level and performed resampling using this 

data to recreate the Sentinel 2 bands, which revealed a greater than 50% estimation of the 

photosynthetic parameters. This demonstrated the strong potential of imaging spectroscopy 

that is airborne or spaceborne, like the NASA AVIRIS and HyspIRI programs (Mariotto et al. 2013; 

Chapman et al. 2019). Additionally, the Soil-Canopy Observation of Photosynthesis and Energy 

(SCOPE) models were used to invert hyperspectral data (Camino et al. 2019). 

In the final chapter, we used a low-level platform—a mobile camera—to collect leaf images for 

the purpose of identifying illnesses and deficiencies. Many studies have employed unmanned 

aerial vehicles (UAVs) to acquire pictures, some of which do so at low altitudes. For example, 

one study uses a UAV at a height of 6 meters to capture photos of maize with Northern Leaf 

Blight (Stewart et al. 2019). Additionally, another study deployed a UAV at a height of 2 meters 

to automatically detect illnesses in soybean leaves (Tetila et al. 2020). 

Technological Readiness Levels 

As was mentioned before, the TRL indicates its maturity level and ranges from TRL 1 (basic 

principles observed) to TRL 9 (actual system proven in operational environment). Based on this 

classification, TRL was specified for the four chapters presented a long of the dissertation. 

The first chapter, we have assessed as TRL 2-TRL 3 (application formulated-proof of concept), 

denotes that the application was carried out as planned, and the study was successful in 

demonstrating why the best-performing quartile of maize varieties should be chosen. However, 

the control treatment for the study was planted in a separate year. Additionally, at the time 

when we took the data from RGB cameras at observation levels the maize crop under lower 

nitrogen was in an early growth stage and much of the low nitrogen symptoms appeared after 

that date, as evidenced by other ground measurements. In order to advance the TRL further, we 

recommend capturing the imagery at a slightly later growth stage when the visual symptoms 

start to have appeared. 

We have an example of a TRL 3 proof-of-concept in the second chapter, as it was considered 

inadequate and unspecific even though we saw a decline in the NDVI curve, which could have 

been brought on by intercropping, weeds, abiotic, or other biotic factors. Moreover, it could be 

a bit of TRL 4 because we have an experimental pilot, because we used the UAV, but the data 

was not very good due to the pilot’s lack of knowledge on how do flights for remote sensing data 

capture. Further work would be needed could include the ESA Sentinel 1 SAR and possibly have 

more results and data regarding the crop canopy to advance a TRL 4-5 
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In the third chapter, estimated at TRL 4, we ran an experimental pilot and showed that we can 

estimate the Vc,max, and Jmax of soybean and peanut with 70% accuracy by utilizing leaf spectral 

reflectance and advance regression models. Furthermore, we recommend a specific suggestion 

for increasing the TRL. In this case, scaling the leaf to a canopy level and then moving on to the 

demonstration pilot (TRL 5).  

The fourth chapter demonstrated a good system design that makes it scalable, extremely 

accurate, and user-friendly. Through this work, we consider that the concept moved from TRL 4 

to TRL 8. There are four processes in this system: data collecting, data/image curation, 

development of the algorithm CNN DL, and accessibility of the use of the DL model GitHub, web 

app and android app. This project will continue to conduct experimental, demonstration, and 

industrial pilots for the new additional diseases or inadequacies. On the other hand, the mobile 

app Doctor X Nabat, which will debut in December of 2022, has a 94% accuracy rating for the 

categorization and recognition of 21 healthy/disease/deficiency conditions, making it a TRL 8 

(initial release version). 
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CONCLUSIONS 

The evaluation of the practical applications of non-destructive techniques utilizing remote 

sensing (RS) technology has been used in different countries at various scales and using various 

types of sensors. However, it is crucial to consider the study goals when applying these 

approaches to agriculture because the specific goals of the study determine the kinds of 

spectral, spatial, and temporal resolutions considered optimal for each project.  

Regarding the evaluation of the TRLs in the four chapters of this dissertation, it may be argued 

that the level of technology depends on the goals and techniques of the study, the time invested 

in developing the research, the volume of data collected, and the statistical and validation 

approaches employed. 

Chapter 1.  

As with the SPAD and NDVI sensors (ground level and VIS-NIR), the RGB (VIS) sensors from the 

ground and from the aerial level can be regarded as functional technology. 

In order to maximize the benefits of utilizing RGB sensors at the ground and aerial levels in 

support of plant phenotyping, the data-collecting process must be structured and timed 

appropriately. 

We evaluated the efficiency of these technologies to estimate grain yield under low nitrogen. 

The TRL was identified as between 2 and 3, which could be because the RGB (VIS) sensors data 

was not taken at the optimal moment when the symptoms of low nitrogen appeared in the 

leaves. 

Chapter 2. 

The most promising findings were shown by the Sentinel 2 a+b and Planet Scope NDVI-time-

series first derivative analysis, but only in a few areas of study, and they have yet to be 

completely integrated with suitable spatial and false positive anomaly filters. Although 

intercropping may be possible, it is advisable to keep the analyses to the vegetative 

development stage and predominantly maize as the major crop. Actually, our study focused on 

this species, crop management and crop stage conditions. In fact, intercropping and weeds are 

considered sources of variability that may affect remote sensing studies of agriculture. Also, 

cloud cover is a significant barrier to adopting RS methods and can decrease the amount of data 

that is useful. 
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We evaluated the efficiency of several technologies to develop an RS system for monitoring and 

early warning systems of an invasive pest. The TRL was assessed between number 3 and 4, due 

to the NDVI-time-series first derivative analysis that could show the FAW was eating the maize. 

Nevertheless, the signal could be distorted by other environmental factors. 

Chapter 3. 

The photosynthetic para meters of soybean and peanut together were successful estimated 

using data of leaf spectral reflectance and various advanced regression models with 

determination coefficients ranging between 0.50 and 0.70. 

To achieve higher coefficients of determination and model performance, this research showed 

that it is more crucial to have a larger range of phenotypic variation than any significant effect 

of a treatment or cultivar in order to achieve greater coefficients of determination and model 

performance. In contrast to other advanced regression models, we showed that PLSR was the 

most effective model for estimating photosynthetic parameters (BR, ARDR, and LASSO). 

We evaluated that through leaf spectral reflectance we can estimate the Vc,max and Jmax of 

soybeans and peanuts. The TRL was estimated at 4, because we demonstrate the technology 

that we estimated a 70% of the Vc,max and Jmax. To increase the level of the TRL, the objective 

could be to estimate the Jmax or Vc,max of all varieties of legumes in a non-controlled environment. 

Chapter 4. 

The ODK data collection showed that a robust open-source technology could be used to collect 

data from different countries. More than 20,000 photos of healthy, diseased, and nutritionally 

deficient leaves from quinoa, cucumber, pepper, and tomato were gathered. 

Additionally, we created the ODK Downloader, a program that made it easier to organize the 

entire ODK dataset and did a great job of organizing and curating the data. 

Furthermore, an artificial intelligence approach, through deploying deep learning, was created 

for the categorization of the different classes of disorders, achieving an overall 94% accuracy. 

For MENA nations, the development of a user-friendly app and with local language support 

should make advanced technologies more accessible and thus increase their TRL. 

For chapter four, we estimated the TRL as between 4 and 8, as this project was developed over 

almost 3 years and we improved our research process several times with feedback between the 

different steps such as data collection, data curation, and development of the algorithm until 

producing the final mobile app. 
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RESUMEN DE LA TESIS DOCTORAL 

La seguridad alimentaria personal significa que tienen acceso físico y económico a alimentos 

suficientes, seguros y de calidad. Por otro lado, existen tres causas principales de la inseguridad 

alimentaria: 1. la alta vulnerabilidad de la agricultura al cambio climático; 2. conflictos locales, 

nacionales o internacionales; y 3. desigualdad económica. Los Objetivos de Desarrollo Sostenible 

(ODS) de las Naciones Unidas (ONU), que son objetivos que deben alcanzarse para 2030, están 

dirigidos tanto a las naciones en desarrollo como a las desarrolladas. El segundo ODS, "Hambre 

cero", tiene como objetivo duplicar la productividad y los ingresos de los productores de 

alimentos a pequeña escala, al tiempo que promueve métodos agrícolas resilientes y garantiza 

la producción sostenible de alimentos. La agricultura depende en gran medida de factores 

relacionados con las condiciones del cambio climático, como el estrés abiótico, que incluye 

deficiencias de nutrientes del suelo, aumentos acelerados de temperatura, sequía y aumento 

de las concentraciones de CO2; y estrés biótico, que incluye plagas invasoras, brotes de 

enfermedades y disminución de la producción de cultivos. Las tecnologías de teledetección 

remota (RS) pueden proporcionar varios métodos no destructivos para identificar y cuantificar 

varios tipos de estrés. Para la aplicación de RS, es relevante considerar los diferentes tipos de 

resolución: espectral, espacial, temporal y radiométrica. Además, las diferentes escalas de 

observación son terrestres, aéreas, espaciales o utilizando satélites orbitales. En esta tesis, 

evaluamos la implementación práctica de métodos no destructivos utilizando tecnologías RS en 

los cuatro capítulos. Además, comparamos los niveles de madurez entre diferentes tipos de 

tecnologías utilizando evaluaciones de nivel de preparación tecnológica (TRL). En el primer 

capítulo, nuestro objetivo era estimar el rendimiento de grano del maíz bajo un nivel bajo de 

nitrógeno usando índices de vegetación (VI) de sensores RGB (imágenes compuestas de color 

rojo, verde y azul) a nivel del suelo y del aire en el África subsahariana (SSA). Desarrollamos un 

sistema RS en el segundo capítulo para monitorear un gusano cogollero de advertencia 

temprana (FAW) en SSA. En el tercero, usando reflectancia espectral de hoja y modelos de 

regresión avanzada, estimamos la Vc,max y Jmax de soja y maní. Y en el último capítulo, 

desarrollamos una aplicación móvil fácil de usar para los países de Medio Oriente y África del 

Norte (MENA) para la detección de trastornos de las plantas en tomates, pepinos, pimientos y 

quinua, que cubre todo, desde la recopilación de datos hasta la creación de modelos de 

aprendizaje profundo, al lanzamiento de aplicaciones web y móviles. Se utilizaron diferentes 

tecnologías RS en diferentes países a diferentes escalas y con diferentes tipos de sensores. Sin 

embargo, fue muy relevante considerar los objetivos de cada estudio porque determinaron el 

tipo de resolución espectral, espacial, temporal y la escala de observación. Con respecto a los 
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TRL en los cuatro capítulos, sugieren que el nivel de preparación tecnológica depende de los 

objetivos, el tiempo para desarrollar el proyecto, la cantidad de recopilación de datos requerida 

y la solidez de la validación. 
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