biblio.ugent.be

The UGent Institutional Repository is the electronic archiving and dissemination platform for all UGent research publications. Ghent University has implemented a mandate stipulating that all academic publications of UGent researchers should be deposited and archived in this repository. Except for items where current copyright restrictions apply, these papers are available in Open Access.

This item is the archived peer-reviewed author-version of:

Title:

2-Triazole-Substituted Adenosines: A New Class of Selective A3 Adenosine Receptor Agonists, Partial Agonists, and Antagonists

Author(s): Liesbet Cosyn, Krishnan K. Palaniappan, Soo-Kyung Kim, Heng T. Duong, Zhan-Guo Gao, Kenneth A. Jacobson, Serge Van Calenbergh

Source: JOURNAL OF MEDICINAL CHEMISTRY(2006), 49(25), 7373-7383, DOI:
10.1021/jm0608208

2-Triazole-Substituted Adenosines: A New Class of Selective A $_{3}$ Adenosine Receptor Agonists, Partial Agonists, and Antagonists

Liesbet Cosyn ${ }^{\dagger}$, Krishnan K. Palaniappan ${ }^{\ddagger}$, Soo-Kyung Kim ${ }^{\ddagger}$, Heng T. Duong ${ }^{\ddagger}$, Zhan-Guo Gao ${ }^{\ddagger}$, Kenneth A. Jacobson ${ }^{* *}$, Serge Van Calenbergh ${ }^{* *}$
${ }^{\dagger}$ Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences (FFW), Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium.
${ }^{\ddagger}$ Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.

*Corresponding authors: Prof. S. Van Calenbergh, Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences (FFW), Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium; Dr. K.A. Jacobson, Bldg. 8A, Rm. B1A-19, NIH, Bethesda, MD USA 20892-0810. Tel.: +32(0)9 26481 24; fax: +32(0)9 2648146 (SVC); +1 301496 9024; fax: +1 3014808422 (KAJ); e-mail address: serge.vancalenbergh@ugent.be; kajacobs@helix.nih.gov

Abstract

‘Click chemistry’ was explored to synthesize two series of 2-(1,2,3-triazolyl) adenosine derivatives (1-14). Binding affinity at the human $\mathrm{A}_{1}, \mathrm{~A}_{2 \mathrm{~A}}$ and A_{3} ARs (adenosine receptors) and relative efficacy at the $\mathrm{A}_{3} \mathrm{AR}$ were determined. Some triazol-1-yl analogues showed $\mathrm{A}_{3} A R$ affinity in the low nanomolar range, a high ratio of $\mathrm{A}_{3} / \mathrm{A}_{2 \mathrm{~A}}$ selectivity and a moderate-to-high $\mathrm{A}_{3} / \mathrm{A}_{1}$ ratio. The 1,2,3-triazol-4-yl regiomers typically showed decreased $\mathrm{A}_{3} \mathrm{AR}$ affinity. Sterically demanding groups at the adenine C 2 position tended to reduce relative $\mathrm{A}_{3} \mathrm{AR}$ efficacy. Thus, several 5'-OH derivatives appeared to be selective $\mathrm{A}_{3} \mathrm{AR}$ antagonists, i.e. 10, with 260 -fold binding selective in binding in comparison to the $\mathrm{A}_{1} \mathrm{AR}$ and displaying a characteristic docking mode in an A_{3} AR model. The corresponding 5'-ethyluronamide analogues generally showed increased $A_{3} A R$ affinity and behaved as full agonists, i.e. 17 , with 910 -fold $\mathrm{A}_{3} / \mathrm{A}_{1}$ selectivity. Thus, N^{6}-substituted-2-(1,2,3-triazolyl) adenosine analogues constitute a novel class of highly potent and selective nucleoside-based $\mathrm{A}_{3} \mathrm{AR}$ antagonists, partial agonists and agonists.

Introduction

Adenosine receptors (AR) are G protein-coupled receptors and consist of four subtypes classified as $A_{1}, A_{2 A}, A_{2 B}$ and A_{3}. Among the four AR subtypes, the $A_{3} A R$ is the most recently identified. ${ }^{1}$ The distribution of $\mathrm{A}_{3} \mathrm{AR}$ is species-dependent and in humans this subtype occurs in the lungs, liver, heart, kidneys, and brain. ${ }^{2-4}$ Activation of this receptor subtype inhibits adenylyl cyclase activity, increases phosphatidylinositol-specific phospholipase C activity, and stimulates Ca^{2+} mobilization. ${ }^{3}$ Adenosine A_{3} receptor stimulation induces cardioprotection through the activation of $\mathrm{K}_{\text {ATP }}$ channels ${ }^{4}$ and is also involved in neuroprotection, suggesting the possibility of using $\mathrm{A}_{3} \mathrm{AR}$ agonists to treat cardial and cerebral ischemia. ${ }^{5} \mathrm{~A}_{3} \mathrm{AR}$ agonists also exhibit systemic anticancer and chemoprotective effects. ${ }^{6} \mathrm{~A}_{3} \mathrm{AR}$ modulators have been proposed as antiinflammatory and antiasthmatic drugs. ${ }^{7,8}$ Selective $\mathrm{A}_{3} \mathrm{AR}$ antagonists promise to be useful in the regulation of cell growth ${ }^{8,9}$ and as cerebroprotective agents. ${ }^{10,11}$ They also seem to enhance anticancer treatment by counteracting P-glycoprotein efflux in multidrug resistance. ${ }^{12} \mathrm{~A}_{3} \mathrm{AR}$ antagonists are also proposed as potential therapeutics for the treatment of glaucoma; application of $\mathrm{A}_{3} \mathrm{AR}$ antagonists externally to the eye substantially lowers intraocular pressure in mice and monkeys. ${ }^{13-15}$

Although diverse in structure, most AR antagonists share some common structural features. In general, they are planar, aromatic or π-electron rich and nitrogen-containing heterocycles.

Additionally, most AR antagonists lack the ribose moiety which seems essential for agonist activity. ${ }^{16}$ Various heterocyclic classes have been identified as promising leads for $\mathrm{A}_{3} \mathrm{AR}$ antagonists, among them: 1,4-dihydropyridines, pyridines, deazaadenines, pyrazolopyrimidines, adenines, and 1,2,4-triazolo[4,3-a]quinoxalin-1-ones. ${ }^{4,7,17,18}$

However, the $\mathrm{A}_{3} \mathrm{AR}$, more than other AR subtypes, is amenable to the design of nucleoside-based antagonists. The efficacy of nucleoside derivatives in activation of the $\mathrm{A}_{3} \mathrm{AR}$ is particularly sensitive to molecular substitution of the ligand. ${ }^{19} \mathrm{~A}$ wide range of adenosine derivatives have been shown to antagonize this receptor, including the highly potent $\mathrm{A}_{1} \mathrm{AR}$ agonist 2 -chloro- N^{6} cyclopentyladenosine. N^{6}-Benzyl groups are associated with reduced A_{3} AR efficacy, leading to partial agonists and antagonists. However, many of the nucleosides so far demonstrated to be antagonists of the $\mathrm{A}_{3} \mathrm{AR}$ are not highly subtype selective. ${ }^{20}$ Nucleoside-based $\mathrm{A}_{3} \mathrm{AR}$ antagonists maintaining an intact ribose moiety were reported by Volpini et al., ${ }^{21}$ with a series of 8-alkynyl adenosine derivatives that exhibited A_{3} AR selectivity, but suffered from weak $A_{3} A R$ affinity. A spirolactam derivative, in which the 5^{\prime}-alkyluronamide group was cyclized onto the 4^{\prime} carbon, was found to potently and selectively antagonize the $\mathrm{A}_{3} \mathrm{AR} .{ }^{15,19} \mathrm{An}$ advantage of nucleosidebased $\mathrm{A}_{3} \mathrm{AR}$ antagonists over other heterocyclic antagonists is the ability to achieve high affinity at murine species.

Recently, researchers from CV Therapeutics described a series of 2-pyrazolyl-adenosine analogues. ${ }^{22}$ Several representative compounds, containing an N^{6}-methyl substituent proved to display high affinity and selectivity for the $A_{3} A R$. This study confirms the former finding ${ }^{23}$ that introduction of a methyl group into the N^{6} position increases the affinity for the human $\mathrm{A}_{3} \mathrm{AR}$ and enhances the selectivity versus A_{1} and $\mathrm{A}_{2 \mathrm{~A}}$ ARs. Based on these results, we explored the versatile 'click chemistry' approach ${ }^{24}$ to synthesize two series of N^{6}-methyl-2-(1,2,3-triazolyl) adenosine derivatives and evaluated their affinity, selectivity and efficacy at the $A_{3} A R$. Although a number
of 1,2,3-triazole nucleoside derivatives have been described, ${ }^{25}$ most involve base replacement with 1,2,3-triazole, or introduction of 1,2,3-triazole at C-8 or at the sugar moiety.

Results and Discussion

Chemistry

The synthesis of the 1,2,3-triazol-1-yl adenosine derivatives is depicted in Scheme 1. 2-Iodo- N^{6} methyladenosine $\mathbf{2 2 ^ { 2 3 }}$ was prepared by reacting $2 \mathbf{1 1}^{26}$ with $2.0 \mathrm{M} \mathrm{CH}_{3} \mathrm{NH}_{2}$ in THF. Since the reaction conditions ${ }^{27}$ for a $\mathrm{Cu}(\mathrm{I})$-catalysed nucleophilic substitution are very similar to those used in the 'click' variant of Huisgen's 1,3-dipolar cycloaddition, we initially attempted to perform a one-pot conversion of $\mathbf{2 2}$ to the desired 1,4-disubstituted 1,2,3-triazoles. The 2 -azido derivative 23 was isolated as the main reaction product and only a minor amount of the appropriate triazole was formed. This event forced us to perform the reaction in two steps. First the azido intermediate 23 was prepared in 66% yield from 22. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR in DMSO- d_{6} proved the presence of a tautomeric fused tetrazole form (17\%) of the 2-azido adenosine derivative 23, due to a spontaneous cyclization (Scheme 2). Such azido/tetrazole tautomerism has been previously reported for 2-azidoadenine and for 2-azidoadenosine. ${ }^{28,29}$ Next we applied a $\mathrm{Cu}(\mathrm{I})$-catalysed 1,3cycloaddition reaction of azide $\mathbf{2 3}$ with the appropriate alkyne to generate the triazole analogues 1-11 (Scheme 1). ${ }^{30}$ Generally, the use of a water:butanol mixture as a solvent for the $1,3-$ cycloaddition allowed simple isolation of the desired compounds, which precipitated from the reaction medium.

Similarly, the 1,2,3-triazol-4-yl analogues $\mathbf{1 2 - 1 4}$ (Scheme 3) were prepared by a Cu^{+}-catalysed Huisgen 1,3-dipolar cycloaddition reaction of 2-ethynyl- N^{6}-methyladenosine (25) with the appropriate azide.

The synthesis of the $5^{\prime}-\mathrm{N}$-ethylcarbamoyl 2-(1,2,3)-triazol-1-yl adenosine analogues $\mathbf{1 5 - 1 9}$ was carried out starting from 2-iodo-9-($2^{\prime}, 3^{\prime}-O$-isopropylidene- β-D-ribofuranosyl)- N^{6}-methyladenine (26). After permanganate oxidation, carboxylic acid 27 was converted into its p-nitrophenyl ester 28, which upon treatment with ethylamine gave uronamide 29. Deprotection with 80% trifluoroacetic acid yielded 5^{\prime}-ethylcarbamoyl- N^{6}-methyl-2-iodoadenosine (30). ${ }^{30}$ The conversion of this 2-iodo derivative into the azido intermediate $\mathbf{3 1}$ was performed in 79% yield. The presence of a tautomeric fused tetrazole form (20\%) of the 2-azidoadenosine derivative 31, due to a spontaneous cyclization was here also observed in the NMR spectrum. Finally we applied the $\mathrm{Cu}(\mathrm{I})$-catalysed 1,3-cycloaddition reaction of azide 31 with the appropriate alkyne to generate the triazole analogues 15-19 (Scheme 4).

2-Azido- N^{6}-(5-chloro-2-methoxybenzyl)-2-(4-cyclopentylmethyl-1,2,3-triazol-1-yl)-9-(β-Dribofuranosyl)adenine (20) was prepared in 3 steps starting from intermediate 21, as depicted in Scheme 5.

Biological evaluation. The binding affinities of the newly synthesized adenosine derivatives were measured at the $\mathrm{hA}_{1}, \mathrm{hA}_{2 \mathrm{~A}}$ and hA_{3} ARs expressed in CHO (Chinese hamster ovary) cells as previously described, ${ }^{20}$ and their relative efficacy in the activation of the $A_{3} A R$ was determined (Table 1). The binding affinity of more potent compounds at the ARs was evaluated with full competition curves, while the weaker compounds at the hA_{1} and $\mathrm{hA}_{2 \mathrm{~A}}$ ARs were measured at a
fixed concentration of $10 \mu \mathrm{M}$. Several compounds showed affinity for the $\mathrm{A}_{3} \mathrm{AR}$ in the low nanomolar range, a very high ratio of $\mathrm{A}_{3} / \mathrm{A}_{2 \mathrm{~A}}$ selectivity and a moderate-to-high $\mathrm{A}_{3} / \mathrm{A}_{1}$ selectivity ratio. A functional assay of $\mathrm{A}_{3} \mathrm{AR}$ activation consisted of the ability of a single, high concentration of the nucleoside $(10 \mu \mathrm{M})$ to inhibit forskolin-stimulated adenylyl cyclase measured by the method of Nordstet and Fredholm, ${ }^{32}$ in comparison to the full agonist NECA (10 $\mu \mathrm{M})$. Cl-IB-MECA (2-chloro- N^{6}-(3-iodobenzyl)- $5^{\prime}-N$-methylcarboxamidoadenosine) was also a full agonist (100%) in this assay. ${ }^{19}$ The range of efficacies observed depended on the nature of the groups at the 2 and N^{6} positions.

The 2-azido precursor $\mathbf{2 3}$ showed high binding affinity at the $\mathrm{A}_{3} \mathrm{AR}\left(K_{\mathrm{i}}=10.8 \mathrm{nM}\right)$ and modest selectivity in comparison to the A_{1} AR. The 1,2,3-triazol-1-yl derivatives obtained by 1,3-dipolar cycloaddition of azide 23 with acetylene (1), butyne (2) and hexyne (3) maintained high affinity for the $\mathrm{A}_{3} \mathrm{AR}$ and increased selectivity. They displayed K_{i} values of $10.4 \mathrm{nM}, 13.8 \mathrm{nM}$ and 11.7 nM , respectively. Also, aromatic triazole substituents $(\mathbf{6}, 7,9)$ resulted in similar K_{i} values of about 10 nM and even greater selectivity. Introducing nitrogen or oxygen including substituents at position 4 of the $1,2,3$-triazole ring $(4,5$, and $\mathbf{8})$ reduced the $\mathrm{A}_{3} \mathrm{AR}$ affinity. Among the investigated analogues, the 4-cyclopentylmethyl derivative $\mathbf{1 0}$ exhibited the highest affinity for the $\mathrm{A}_{3} \mathrm{AR}\left(\mathrm{K}_{\mathrm{i}}=1.3 \mathrm{nM}\right)$ and 260 -fold selectivity in comparison to the $\mathrm{A}_{1} \mathrm{AR}$. Replacement of the cyclopentyl ring with a phenyl (9) or cyclohexyl (11) moiety adversely affected A_{3} AR affinity. Remarkably, the 1,2,3-triazol-4-yl regiomers (12-14) showed decreased affinity for the $\mathrm{A}_{3} \mathrm{AR}$ in comparison to similar 1,2,3-triazol-1-yl regiomers. In particular, a comparison of homologous compounds $\mathbf{1 2}$ and $\mathbf{9}$ indicated a 6 -fold loss of affinity at the $\mathrm{A}_{3} \mathrm{AR}$ for the 4 -yl isomer,
approximately the same affinity at the $\mathrm{A}_{1} \mathrm{AR}$, and no significant measurable gain in affinity at the $\mathrm{A}_{2 \mathrm{~A}} \mathrm{AR}$.

Replacement of the ribose 4^{\prime}-hydroxymethyl moiety of the 2 -azido derivative 23 by a $5^{\prime}-\mathrm{N}$ ethyluronamide did not appreciably affect affinity at any of the AR subtypes. However, a similar substitution in the 2-(1,2,3-triazol-1-yl)-substituted series provided a modest (2 to 5 -fold) increase in $A_{3} A R$ affinity and small or no changes in $A_{1} A R$ affinity, as demonstrated for the unsubstituted, 4-butyl, 4-pyridin-2-yl and 4-benzyl substituted 1,2,3-triazol-1-yl combinations (15-18, in comparison to $\mathbf{1}, \mathbf{3}, 7$, and 9 , respectively). Curiously, one 5^{\prime}-uronamide, compound 19, exhibited decreased A_{3} AR affinity $\left(K_{i}=11.5 \mathrm{nM}\right)$ compared to its potent $5^{\prime}-\mathrm{OH}$ analogue 10 $\left(K_{i}=1.3 \mathrm{nM}\right)$.

Replacement of the N^{6}-methyl substituent of the 2-azido precursor $\mathbf{2 3}$ by a sterically demanding 2-chloro-5-methoxybenzyl group yielded 33 , which manifested very high A_{3} AR affinity $\left(K_{i}=1.4\right.$ nM). A similar replacement of the N^{6}-methyl group of an analogue 10, also having a bulky 2 position substituent, to yield 20, reduced A_{3} AR affinity, but not appreciably. This was in accordance with previous observations that a simultaneous substitution at the 6 and 2 positions did not improve $\mathrm{A}_{3} \mathrm{AR}$ affinity. ${ }^{22,33}$ Thus, the effects of substitution at the 2 and N^{6} positions were not independent, however it was possible to retain considerable A_{3} AR selectivity (46 -fold in compound 20). This was not representative of findings in a previous study in which double substitution greatly diminished the affinity and selectivity at the human $\mathrm{A}_{3} \mathrm{AR} .{ }^{22}$

Whereas some previously synthesized 2 -substituted adenosine derivatives ${ }^{22,23}$ displayed selective $\mathrm{A}_{3} \mathrm{AR}$ agonist activity, all 2-triazol-1-yl- N^{6}-methyl adenosine analogues synthesized with an unmodified ribose moiety (1-11 and 20) behaved as antagonists or weak partial agonists. Similar findings were reported for 2-ester derivatives of adenosine, in which a combination of 2 and N^{6} substitution reduced efficacy. ${ }^{34}$ Direct ring substitution at the 4 -position of the 1,2,3-triazole with alkyl or aryl groups resulted in weak partial agonists ($\mathbf{1}, \mathbf{2}, \mathbf{4 - 8}$), but subtle changes of structure resulted in a loss of efficacy, e.g. the 4-butyl derivative 3. 2-Triazol-1-yl- N^{6}-methyl-adenosine analogues with a methylene spacer between the 1,2,3-triazole moiety and a ring system yielded full $\mathrm{A}_{3} \mathrm{AR}$ antagonists $(\mathbf{9 - 1 1}, \mathbf{2 0})$, since they bound to the receptor but did not activate it. The 2-triazol-4-yl- N^{6}-methyl-adenosine derivatives (12-14) also behaved as full $\mathrm{A}_{3} \mathrm{AR}$ antagonists. Thus, the $5^{\prime}-\mathrm{OH}$ derivatives $\mathbf{3}, \mathbf{9 - 1 4}$, and $\mathbf{2 0}$ appeared to be $\mathrm{A}_{3} \mathrm{AR}$ antagonists with the following order of decreasing selectivity for the $\mathrm{A}_{3} \mathrm{AR}$ in comparison to the $\mathrm{A}_{1} \mathrm{AR}$: 4-cyclopentylmethyl-N^{6}-methyl 10 (260-fold) > 4-butyl- N^{6}-methyl 3 (72-fold), 4-cyclohexylmethyl- N^{6}-methyl 11 (67fold) > 4-cyclopentylmethyl- N^{6}-(5-chloro-2-methoxybenzyl) 20.

Interestingly, the $5^{\prime}-N$-ethyluronamide modification was able to reestablish the A_{3} AR agonist activity in analogues with sterically bulky substitution at the 2 position. This is consistent with previous findings that similar 5^{\prime}-uronamides overcome the efficacy-reducing activity of substitution at the adenine 2 and N^{6}-positions, but not at the ribose 3^{\prime}-position. ${ }^{19,35,36}$ Indeed, all $5^{\prime}-N$-ethyluronamide analogues studied here (15-19) proved to be full agonists at the $\mathrm{A}_{3} \mathrm{AR}$. Among them are highly selective $\mathrm{A}_{3} \mathrm{AR}$ agonists, N^{6}-methyl-adenosine- $5^{\prime}-N$-ethyluronamide 2-(1,2,3-triazol-1-yl) derivatives: pyridin-2-yl 17 (910-fold) > unsubstituted $\mathbf{1 5}$ (280-fold) > benzyl

18 (180-fold). The 2 -azido- N^{6}-methyl precursors 23 and 31 also showed full agonist activity, whereas azide 33 having a bulky N^{6} group showed partial agonist activity.

Selected potent agonists in this series were measured in a functional assay of the human $\mathrm{A}_{2 \mathrm{~B}} \mathrm{AR}$. At a concentration of $10 \mu \mathrm{M}$, compounds $\mathbf{3 - 7 , 1 5}$, and $\mathbf{1 6}$ did not significantly stimulate adenylyl cyclase in human $\mathrm{A}_{2 \mathrm{~B}} \mathrm{AR}$-expressing CHO cells ($<10 \%$ of the effect of $10 \mu \mathrm{M}$ NECA, as a full agonist). Compounds $2,8-14,17,19$, and 23 at $10 \mu \mathrm{M}$ stimulated adenylyl cyclase by $<50 \%$. Compounds 18 and 31 produced approximately 50% stimulation at $10 \mu \mathrm{M}$. Thus, selectivity for the $A_{3} A R$ was demonstrated; these nucleosides that activate the $A_{3} A R$ at low $n M$ concentrations activated the $\mathrm{A}_{2 \mathrm{~B}} \mathrm{AR}$ only at substantial $\mu \mathrm{M}$ concentrations.

Based on previous findings, it is predicted that only the analogues containing the substituted N^{6} benzyl group (5-chloro-2-methoxy), i.e. full agonist 20 and partial agonist 33, would be expected to bind in the nanomolar range to the rat $\mathrm{A}_{3} \mathrm{AR}$. Small alkyl groups at the N^{6} position, such as methyl and ethyl, although conducive to high affinity at the human $\mathrm{A}_{3} \mathrm{AR}$, led to negligible affinity at the rat homologue of the receptor. Selected compounds were measured in binding to the rat $\mathrm{A}_{3} \mathrm{AR}$ expressed in CHO cell membranes using [$\left.{ }^{125} \mathrm{I}\right] \mathrm{I}$-AB-MECA. The K_{i} values determined were as follows: compounds $\mathbf{5}, 7$, and $\mathbf{8}, \mathrm{K}_{\mathrm{i}}>10 \mu \mathrm{M}$; compound $\mathbf{9}, \mathrm{K}_{\mathrm{i}}=1.79 \mu \mathrm{M}$; compound 10, $\mathrm{K}_{\mathrm{i}}=0.312 \mu \mathrm{M}$.

Molecular modeling. To explain the structural basis for the high binding affinity of the nucleoside 2-(4-cyclopentylmethyl-1,2,3-triazol-1-yl)- N^{6}-methyl-9-(β-D-ribofuranosyl)adenine

10 at $\mathrm{hA}_{3} \mathrm{AR}$, we performed a computational study of ligand docking in a previously derived A_{3} AR model based on the high resolution structure of bovine rhodopsin. ${ }^{37,38}$ Various bound conformations of the C 2 -substituent and χ_{1} angles for the adenine ring were generated for an energetically favorable binding location and orientation, and the resulting conformations were compared energetically in the putative binding site.

The result of docking $\mathbf{1 0}$ in the putative binding site of the $\mathrm{A}_{3} \mathrm{AR}$ is shown in Figure 1A. The purine ring was surrounded by a hydrophobic pocket, defined by L91 (3.33) and L246 (6.51). In addition, the H-bonds formed between the exocyclic amine and the hydroxyl group of S247 (6.52) and between the purine N^{1} atom and the side chain of N 250 (6.55). The $2^{\prime}-\mathrm{OH}$ group of the ribose moiety formed a H-bond with the side chain of Q167 (EL2), and the 3'-OH group formed an intramolecular H -bond with the $5^{\prime}-\mathrm{OH}$ group. Unlike the previously reported docking models of N^{6}-substituted adenosines, ${ }^{37}$ here the $5^{\prime}-\mathrm{OH}$ group H -bonded with the side chain of H 272 (7.43) and the backbone carbonyl group of S271 (7.42). The cyclopentyl moiety interacted with aliphatic hydrophobic residues, M177 (5.38) and V178 (5.39), through a hydrophobic interaction and were situated in proximity to F168 (EL2) F182 (5.43), consistent with the optimized binding affinity of compound $\mathbf{1 0}$.

A comparison of the docking modes of Cl-IB-MECA and compound $\mathbf{1 0}$ in the putative binding domain showed considerable overlap of the ribose rings and of the adenine moieties, although in compound $\mathbf{1 0}$ both were situated a little closer to extracellular loop 2 (Figure 1B). Previously, it was noted that 5^{\prime}-uronamide analogues, typically of derivatives having bulky N^{6}-subsitituents, generally gain affinity in comparison to the corresponding 5^{\prime}-hydroxyl analogue. Here, the 5^{\prime} -
uronamide analogue 19 (agonist) of the most potent 5'-hydroxyl analogue 10 (antagonist) displayed a lower binding affinity, which could be explained by the shift of the ribose position in adenosine analogue having a bulky 2-(4-cyclopentylmethyl-1,2,3-triazol-1-yl) substituent in comparison to those having N^{6} bulky substituents. The binding of the cyclopentylmethyl group in $\mathbf{1 0}$ was directed more toward the upper part of TM5, partially overlapping with the binding site of the 3 -iodophenyl ring in Cl-IB-MECA. Curiously, other closely related triazolo derivatives displayed a higher potency of the 5^{\prime}-uronamide analogues, thus the compound $\mathbf{1 0}$ must bind to the receptor in a very distinct manner. There was a subtle difference in orientation between the 2 cyclopentyl group and bulkier groups like benzyl (9) or cyclohexylmethyl (11), which were associated with unfavorable van der Waals interactions and resulting in a decrease of binding affinity of 7-and 16 -fold, respectively. In addition, the same preferred χ_{1} angles of the energetically favorable bound conformation, common to Cl-IB-MECA and compound 10, was consistent with the empirical finding that the combination of bulky N^{6} and C 2 substituents was unfavorable for $\mathrm{A}_{3} \mathrm{AR}$ selectivity because of competitive interaction of these bulky substituents. Thus, the modeling has demonstrated the human $\mathrm{A}_{3} \mathrm{AR}$ preference of 2-(4-cyclopentylmethyl-1,2,3-triazol-1-yl) derivatives in the 5^{\prime} 'OH series might be explained by optimal van der Waals interactions.

Conclusions

Several 2-(1,2,3-triazol-1-yl)- N^{6}-methyl-substituted adenosine derivatives described in the present study displayed $\mathrm{A}_{3} \mathrm{AR}$ affinities in the low nanomolar range, showed very high $\mathrm{A}_{3} / \mathrm{A}_{2 \mathrm{~A}}$ and a moderate to high $\mathrm{A}_{3} / \mathrm{A}_{1}$ selectivity. Contrary to what we expected, the 2 -triazole analogues with an unmodified ribose moiety (1-14) showed antagonist or weak partial agonist activity at the
A_{3} AR. A 2-(4-cyclopentylmethyl-(1,2,3-triazol-1-yl))- N^{6}-methyl derivative $\mathbf{1 0}$ was 260 -fold selective in binding in comparison to the $\mathrm{A}_{1} \mathrm{AR}$. The binding of the 4-cyclopentylmethyl group in 10, in distinction to the binding of closely related bulky groups pendant on the triazole ring, was directed more toward the upper part of TM5 partially overlapping with the binding site of the 3iodophenyl ring in $\mathrm{Cl}-\mathrm{IB}-\mathrm{MECA}$. The $5^{\prime}-\mathrm{N}$-ethyluronamide modification was dominant over the efficacy reducing effects at the 2 position and was capable of fully re-establishing the $\mathrm{A}_{3} \mathrm{AR}$ agonist activity, resulting in highly potent and selective $\mathrm{A}_{3} \mathrm{AR}$ agonists 15-19. The most selective agonist derivative was compound 17, 9-(5-ethylcarbamoyl- β-D-ribofuranosyl)- N^{6}-methyl-2-(4-pyridin-2-yl-1,2,3-triazol-1-yl)adenine, which was 910 -fold selective in binding to the $\mathrm{A}_{3} \mathrm{AR}$ in comparison to the $\mathrm{A}_{1} \mathrm{AR}$. The retention of high human $\mathrm{A}_{3} \mathrm{AR}$ affinity in compound $\mathbf{2 0}$ was not typical of previous findings that double bulky substitution at the 2 and N^{6} positions tended to reduce $\mathrm{A}_{3} \mathrm{AR}$ affinity markedly. Thus, the 2-triazol-1-yl N^{6}-methyl adenosine analogues $\mathbf{1 - 1 1}$ constitute a novel class of highly potent and selective nucleoside-based $\mathrm{A}_{3} \mathrm{AR}$ partial agonists and antagonists, all of which maintain an intact ribose in the molecular structure, and agonists. Since the reported analogues show excellent affinity for the $\mathrm{A}_{3} \mathrm{AR}$ and span the full intrinsic activity range, they might be useful as pharmacological tools or as leads for further optimisation.

Experimental section

All reagents were from standard commercial sources and of analytic grade, except for the benzylic azides, which were prepared by treating the corresponding benzylic bromides with NaN_{3} in DMF. Precoated Merck silica gel F254 plates were used for TLC, and spots were examined under UV light at 254 nm and further visualized by sulphuric acid-anisaldehyde spray. Column chromatography was performed on ICN silica gel ($63-200 \mu \mathrm{~m}, 60 \AA$, ICN Biochemicals, Eschwege, Germany). NMR spectra were obtained with a Varian Mercury 300 MHz spectrometer. Chemical shifts are given in ppm (δ) relative to the residual solvent signals, which in the case of DMSO- d_{6} were 2.54 ppm for ${ }^{1} \mathrm{H}$ and 40.5 ppm for ${ }^{13} \mathrm{C}$. Structural assignment was confirmed with COSY and DEPT. All signals assigned to hydroxyl groups were exchangeable with $\mathrm{D}_{2} \mathrm{O}$. Exact mass measurements were performed on a quadrupole/orthogonal-acceleration time-of-flight (Q/oaTOF) tandem mass spectrometer (qToF 2, Micromass, Manchester, UK) equipped with a standard electrospray ionization (ESI) interface. Samples were infused in a 2propanol/water (1:1) mixture at $3 \mu \mathrm{~L} / \mathrm{min}$. For the compounds that precipitated from the reaction medium, the yields were calculated from the amount obtained after filtration, and are lower than the actual yields, since in most cases a considerable amount remained in solution.
N^{6}-Methyl-9-(β-D-ribofuranosyl)-2-(1,2,3-triazol-1-yl)adenine (1). In a pressure tube was added $23(165 \mathrm{mg}, 0.51 \mathrm{mmol})$ trimethylsilylacetylene ($292 \mu \mathrm{~L}, 2.05 \mathrm{mmol}$) and 4 mL DMF. The mixture was stirred at $105^{\circ} \mathrm{C}$ for 15 h . After solvent evaporation, the yellowish residue was dissolved in 2 mL of a 1.0 M solution of tetrabutylammonium fluoride in THF and stirred for 5 h . The reaction was monitored by NMR After evaporation of the solvent, the residue was dissolved in ethyl acetate. Water was added and the triazole product precipitated in the water layer. After overnight cooling and filtration, the precipitate was further purified on a silica gel column
$\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 92: 8\right)$ and yielded compound $\mathbf{1}$ as a white solid ($82 \mathrm{mg}, 46 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d d_{6} : $\delta 3.06\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=4.5 \mathrm{~Hz}, N^{6}-\mathrm{CH}_{3}\right.$), $3.54-3.61$ (m, 1H, H-5'A), 3.65-3.72 (m, $1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{B}$), 3.96 (dd, $1 \mathrm{H}, \mathrm{J}=3.8$ and $\left.7.9 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 4.20\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.7\right.$ and $\left.8.2 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 4.65$ (app q, $\left.J=5.9 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 4.98\left(\mathrm{t}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}, 5^{\prime}-\mathrm{OH}\right), 5.23\left(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}, 3^{\prime}-\mathrm{OH}\right), 5.48$ (d, 1H, J = 6.2 Hz, 2'-OH), $5.95\left(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 7.92(\mathrm{~d}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}, \mathrm{H} 4$ "), $8.37(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=4.6 \mathrm{~Hz}, N^{6}-\mathrm{H}$), 8.46 (s, 1H, H-8), 8.82 (br s, $1 \mathrm{H}, \mathrm{H}-5$ "); ${ }^{13} \mathrm{C}$ NMR (300 MHz , DMSO-d d_{6}): $\delta 27.84\left(N^{6}-\mathrm{CH}_{3}\right), 62.19\left(\mathrm{C}-5^{\prime}\right), 71.13\left(\mathrm{C}-3^{\prime}\right), 74.30\left(\mathrm{C}-2^{\prime}\right), 86.42\left(\mathrm{C}-4{ }^{\prime}\right), 88.01\left(\mathrm{C}-1^{\prime}\right), 119.75$ (C-5), 124.67 (C-5"), 134.25 (C-4"), 141.13 (C-8), 149.56 and 149.85 (C-2 and C-4), 156.082 (C6); HRMS (ESI-MS) $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{8} \mathrm{O}_{4}:[\mathrm{M}+\mathrm{H}]^{+}: 349.1367$ found; 349.1372 calcd. Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{8} \mathrm{O}_{4} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-(4-Ethyl-1,2,3-triazol-1-yl)- N^{6}-methyl-9-(β-D-ribofuranosyl)adenine (2). Compound 23 (70 $\mathrm{mg}, 0.217 \mathrm{mmol})$, sodium ascorbate $(8.6 \mathrm{mg}, 0.043 \mathrm{mmol})$ and $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(2.2 \mathrm{mg}, 0.009 \mathrm{mmol})$ were suspended in $20 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}: \mathrm{tBuOH}(3: 1)$. The mixture was saturated with 1-butyne and stirred for 4 d at room temperature in a parr apparatus. Purification on a preparative silica gel TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 90: 10\right)$ resulted in compound 2 as a white solid in 40% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d d_{6} : $\delta 1.27\left(\mathrm{t}, 3 \mathrm{H}, J=7.62 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.75\left(\mathrm{q}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.05(\mathrm{~d}, 3 \mathrm{H}, J$ $\left.=4.4 \mathrm{~Hz}, N^{6}-\mathrm{CH}_{3}\right), 3.51-3.59\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{A}\right), 3.61-3.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{B}\right), 3.94(\mathrm{dd}, 1 \mathrm{H}, J=4.0$ en $\left.7.6 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 4.15\left(\mathrm{dd}, 1 \mathrm{H}, J=4.4\right.$ and $\left.7.9 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 4.60\left(\mathrm{app} \mathrm{q}, J=5.6 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 4.97(\mathrm{t}$, $\left.1 \mathrm{H}, J=5.6 \mathrm{~Hz}, 5^{\prime}-\mathrm{OH}\right), 5.22\left(\mathrm{~d}, 1 \mathrm{H}, J=4.7 \mathrm{~Hz}, 3^{\prime}-\mathrm{OH}\right), 5.47\left(\mathrm{~d}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}, 2^{\prime}-\mathrm{OH}\right), 5.93$ (d, 1H, J=6.2 Hz, H-1'), $8.34\left(\mathrm{~d}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}, N^{6}-\mathrm{H}\right), 8.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 8.55\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right)$; ${ }^{13} \mathrm{C}$ NMR (300 MHz, DMSO- d_{6})): $\delta 14.32\left(\mathrm{CH}_{3}\right), 19.08\left(\mathrm{CH}_{2}\right), 27.84\left(\mathrm{~N}^{6}-\mathrm{CH}_{3}\right), 62.13(\mathrm{C}-5$) $)$, 71.15 (C-3'), 74.34 (C-2'), 86.43 (C-4'), 87.84 (C-1'), 119.57 (C-5), 120.962 (C-5'), 140.92 (C-
8), $149.31,149.63,149.88$ (C-2, C4 and C-4"), 156.05 (C-6); HRMS (ESI-MS) $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{8} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}: 377.1682$ found; 377.1685 calcd. Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{8} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

General procedure for the synthesis of 4"-substituted 2-(1,2,3-triazol-1-yl)adenosine derivatives 3-11. Compound $\mathbf{2 3}(70 \mathrm{mg}, 0.217 \mathrm{mmol})$, sodium ascorbate $(8.6 \mathrm{mg}, 0.043 \mathrm{mmol})$ and $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(2.2 \mathrm{mg}, 0.009 \mathrm{mmol})$ were suspended in $2 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}: \mathrm{tBuOH}(3: 1)$. The appropriate alkyne (2 equiv.) was subsequently added and the mixture was stirred overnight at room temperature. The 2-triazol-1-yl compounds (generally) precipitated from this reaction medium and were isolated by filtration with water.

2-(4-Butyl-1,2,3-triazol-1-yl)- N^{6}-methyl-9-(β-D-ribofuranosyl)adenine (3).The reaction of 23 ($70 \mathrm{mg}, 0.217 \mathrm{mmol}$) with 1-hexyne ($50 \mu \mathrm{~L}, 0.435 \mathrm{mmol}$) gave compound $\mathbf{3}$ in 59% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 0.93\left(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$), $1.38\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.66(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 2.71\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{C} 4{ }^{\prime}{ }^{\prime}-\mathrm{CH}_{2}\right), 3.05\left(\mathrm{~d}, 3 \mathrm{H}, J=4.0 \mathrm{~Hz}, N^{6}-\mathrm{CH}_{3}\right), 3.52-3.62(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ $5^{\prime} \mathrm{A}$), 3.62-3.72 (m, 1H, H-5’B), 3.95 (dd, $1 \mathrm{H}, \mathrm{J}=3.6$ and $\left.7.2 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 4.18$ (dd, $1 \mathrm{H}, \mathrm{J}=4.8$ and $\left.8.1 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right)$, $4.62\left(\operatorname{appq} \mathrm{q}, 1 \mathrm{H}, J=5.7 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.01\left(\mathrm{t}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}, 5^{\prime}-\mathrm{OH}\right), 5.29(\mathrm{~d}$, $\left.1 \mathrm{H}, J=4.0 \mathrm{~Hz}, 3^{\prime}-\mathrm{OH}\right), 5.54\left(\mathrm{~d}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}, 2^{\prime}-\mathrm{OH}\right), 5.94(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{H}-1$ '), $8.36(\mathrm{~d}$, $\left.1 \mathrm{H}, J=4.1 \mathrm{~Hz}, N^{6}-\mathrm{H}\right), 8.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 8.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5 ") ;{ }^{13} \mathrm{C}$ NMR (300 MHz, DMSO- d_{6}) : δ $14.37\left(\mathrm{CH}_{3}\right), 22.37\left(\mathrm{CH}_{2}\right), 25.21\left(\mathrm{CH}_{2}\right), 27.83\left(N^{6}-\mathrm{CH}_{3}\right), 31.68\left(\mathrm{CH}_{2}\right), 62.14\left(\mathrm{C}-5^{\prime}\right), 71.15\left(\mathrm{C}-3^{\prime}\right)$, 74.36 (C-2'), 86.43 (C-4'), 87.88 (C-1'), 119.56 (C-5), 121.33 (C-5"), 140.96 (C-8), 147.88 and 149.90 (C-2, C-4 and C4"), 156.07 (C-6); HRMS (ESI-MS) $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{8} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 405.1992$ found, 405.1998 calcd. Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{8} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-[4-(2-Hydroxyethyl)-1,2,3-triazol-1-yl]- N^{6}-methyl-9-(β-D-ribofuranosyl)adenine (4). The reaction of $23(70 \mathrm{mg}, 0.217 \mathrm{mmol})$ with 3-butyn-1-ol ($33 \mu \mathrm{~L}, 0.435 \mathrm{mmol}$) afforded compound 4 without precipitation. After solvent evaporation, the mixture was purified on a silica gel column
$\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 90: 10+1 \% 7 \mathrm{~N} \mathrm{NH}_{3}\right.$ in MeOH$)$ yielding compound 11 as a white solid in 68% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}$): $\delta 2.85\left(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$), $3.03(\mathrm{~d}, 3 \mathrm{H}, J=4.7 \mathrm{~Hz}$, $N^{6}-\mathrm{CH}_{3}$), 3.52-3.59 (m, 1H, H-5'A), 3.63-3.72 (m, 3H, H-5'B and CH_{2}), $3.94(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.5$ and $\left.7.3 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 4.16\left(\mathrm{dd}, 1 \mathrm{H}, J=4.8\right.$ and $\left.8.1 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 4.59\left(\operatorname{app~q}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right)$, $4.74\left(\mathrm{t}, 1 \mathrm{H}, J=5.8 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{OH}\right), 4.97\left(\operatorname{app} \mathrm{t}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}, 5^{\prime}-\mathrm{OH}\right), 5.24(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}$, $\left.3^{\prime}-\mathrm{OH}\right), 5.50\left(\mathrm{~d}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}, 2^{\prime}-\mathrm{OH}\right), 5.93\left(\mathrm{~d}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 8.31(\mathrm{~d}, 1 \mathrm{H}, J=4.7 \mathrm{~Hz}$, $\left.N^{6}-\mathrm{H}\right), 8.43$ (s, 1H, H-8), $8.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5 ") ;{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 27.83\left(N^{6}-\mathrm{CH}_{3}\right)$, $29.70\left(\mathrm{CH}_{2}\right), 60.85\left(\mathrm{CH}_{2}-\mathrm{OH}\right), 62.13\left(\mathrm{C}-5^{\prime}\right), 71.15\left(\mathrm{C}-3^{\prime}\right), 74.35\left(\mathrm{C}-2^{\prime}\right), 86.43(\mathrm{C}-4$ ') $87.81(\mathrm{C}-$ $\left.1^{\prime}\right), 119.56$ (C-5), 122.02 (C-5'), 140.49 (C-8), 145.49, 149.88 and 149.65 (C-2, C-4 and C4"), 156.05 (C-6); HRMS (ESI-MS) $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{8} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 393.1630$ found, 393.1634 calcd. Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{8} \mathrm{O}_{5} . \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-(4-Dimethylaminomethyl-1,2,3-triazol-1-yl)- N^{6}-methyl-9-(β-D-ribofuranosyl)adenine (5). The reaction of $23(70 \mathrm{mg}, 0.217 \mathrm{mmol})$ with 1-dimethylamino-2-propyne ($47 \mu \mathrm{~L}, 0.435 \mathrm{mmol}$) gave compound 5 without precipitation. The volatiles were removed under reduced pressure, and the residue purified on a silica gel column $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 80: 10+1 \% 7 \mathrm{NH}_{3}\right.$ in MeOH$)$. Compound 5 was obtained as a white solid in 67% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 2.20$ ($\mathrm{s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}$), $3.05\left(\mathrm{~d}, 3 \mathrm{H}, J=4.4 \mathrm{~Hz}, N^{6}-\mathrm{CH}_{3}\right), 3.54-3.62\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-5\right.$ ' A and CH_{2}), 3.65-3.72 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{B}$), $3.95\left(\mathrm{dd}, 1 \mathrm{H}, J=4.1\right.$ and $\left.7.6 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 4.18\left(\mathrm{dd}, 1 \mathrm{H}, J=5.0\right.$ and $\left.8.2 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right)$, $4.62\left(\operatorname{app~q}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 4.98\left(\mathrm{t}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}, 5^{\prime}-\mathrm{OH}\right), 5.23\left(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}, 3^{\prime}-\right.$ $\mathrm{OH}), 5.49\left(\mathrm{~d}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}, 2^{\prime}-\mathrm{OH}\right), 5.95\left(\mathrm{~d}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 8.38\left(\mathrm{~d}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}, N^{6}-\right.$ H), $8.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 8.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5 ") ;{ }^{13} \mathrm{C}$ NMR (300 MHz, DMSO- d_{6})): $\delta 27.85\left(\mathrm{~N}^{6}-\mathrm{CH}_{3}\right)$,
 $\left.1^{\prime}\right), 119.64$ (C-5), 123.328 (C-5''), 140.97 (C-8), 144.41, 149.59, 149.79 (C-2, C4 and C-4"),
156.05 (C-6); HRMS (ESI-MS) $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{9} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 406.1944$ found, 406.1951 calcd. Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{9} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N} ; \mathrm{N}$ calcd, 31.09; found, 30.41.
N^{6}-Methyl-2-(4-phenyl-1,2,3-triazol-1-yl)-9-(β-D-ribofuranosyl)adenine (6). The reaction of $23(70 \mathrm{mg}, 0.217 \mathrm{mmol})$ with phenylacetylene ($48 \mu \mathrm{~L}, 0.435 \mathrm{mmol}$) yielded compound $\mathbf{6}$ (54%) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 3.11\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=4.5 \mathrm{~Hz}, N^{6}-\mathrm{CH}_{3}\right), 3.55-3.63$ (m, 1H, H-5'A), 3.67-3.74 (m, 1H, H-5’B), 3.97 (dd, $J=3.6$ and $7.2 \mathrm{~Hz}, \mathrm{H}-4$ '), 4.21 (dd, $J=4.8$ and $\left.8.1 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 4.66\left(\operatorname{app~q}, J=5.4 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.03\left(\operatorname{app} \mathrm{t}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}, 5^{\prime}-\mathrm{OH}\right), 5.29(\mathrm{~d}$, $\left.1 \mathrm{H}, J=5.0 \mathrm{~Hz}, 3^{\prime}-\mathrm{OH}\right), 5.54\left(\mathrm{~d}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}, 2^{\prime}-\mathrm{OH}\right), 5.99\left(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 7.4(\mathrm{t}$, $1 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{Ph}), 7.50(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{Ph}), 8.06(\mathrm{~d}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{Ph}), 8.44(\mathrm{~d}, 1 \mathrm{H}, J=4.5$ $\left.\mathrm{Hz}, N^{6}-\mathrm{H}\right), 8.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 9.31\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5\right.$ "); ${ }^{13} \mathrm{C}$ NMR (300 MHz, DMSO-d ${ }_{6}$): $\delta 27.92\left(N^{6}-\right.$ CH_{3}), 62.16 ($\mathrm{C}-5^{\prime}$), 71.17 ($\mathrm{C}-3^{\prime}$), 74,39 ($\mathrm{C}-2^{\prime}$), 86.48 ($\left.\mathrm{C}-4^{\prime}\right), 87.94(\mathrm{C}-1$ '), $119.85(\mathrm{C}-5), 120.68$ (C-5"), 126.27, 128.95, 129.61 and $130.85(\mathrm{Ph}), 141.082$ (C-8), 147.02 and 149.77 (C-2, C-4 and C-4"), 156.10 (C-6); HRMS (ESI-MS) $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{8} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 425.1689$ found, 425.1685 calcd. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{8} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N^{6}-Methyl-2-[4-pyridin-2-yl-1,2,3-triazol-1-yl]-9-(β-D-ribofuranosyl)adenine (7). The reaction of $23(70 \mathrm{mg}, 0.217 \mathrm{mmol})$ with 2-ethynylpyridine $(44 \mu \mathrm{~L}, 0.435 \mathrm{mmol})$ afforded compound 7 as a white solid in 55% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 3.09(\mathrm{~d}, 3 \mathrm{H}, J=$ $4.1 \mathrm{~Hz}, N^{6}-\mathrm{CH}_{3}$), 3.57-3.66 (m, 1H, H-5'A), 3.67-3.76 (m, 1H, H-5'B), 3.97 (dd, $1 \mathrm{H}, \mathrm{J}=3.9$ and $7.5 \mathrm{~Hz}, \mathrm{H}-4$ '), $4.19\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.8\right.$ and $\left.8.1 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 4.64\left(\mathrm{app} \mathrm{q}, 1 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 4.99(\mathrm{t}$, $\left.1 \mathrm{H}, J=5.6 \mathrm{~Hz}, 5^{\prime}-\mathrm{OH}\right), 5.26\left(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}, 3^{\prime}-\mathrm{OH}\right), 5.54\left(\mathrm{~d}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}, 2^{\prime}-\mathrm{OH}\right), 5.99$ (d, 1H, $J=5.9 \mathrm{~Hz}, \mathrm{H}-1$ '), $7.42(\mathrm{~m}, 1 \mathrm{H}$, pyridin-2-yl) , $7.96(\mathrm{~m}, 1 \mathrm{H}$, pyridin-2-yl), $8.16(\mathrm{~d}, 1 \mathrm{H}, J=$ 7.3 Hz , pyridin-2-yl), $8.42\left(\mathrm{~d}, 1 \mathrm{H}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}, N^{6}-\mathrm{H}\right), 8.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 8.68(\mathrm{~d}, 1 \mathrm{H}, J=4.1$ Hz, pyridin-2-yl), 9.16 (s, 1H, H-5"); ${ }^{13} \mathrm{C}$ NMR (300 MHz , DMSO-d d_{6}): $\delta 27.92\left(\mathrm{~N}^{6}-\mathrm{CH}_{3}\right), 62.13$
(C-5'), 71.14 (C-3'), 74.49 (C-2'), 86.47 (C-4'), 88.16 (C-1'), 119.92 (C-5), 120.53 (C-5')), 121.07 (pyridin-2-yl), 122.25 (pyridin-2-yl), 137.79 (pyridin-2-yl), 141.28 (C-8), 148.47, 150.45 and 150.56 (C-2, C-4, C-4" and pyridin-2-yl), 156.28 (C-6); HRMS (ESI-MS) $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{9} \mathrm{O}_{4} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 448.1458$ found, 448.1457 calcd. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{9} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N^{6}-Methyl-2-[4-(4-propoxyphenyl)-1,2,3-triazol-1-yl]-9-(β-d-ribofuranosyl)adenine (8). The reaction of $\mathbf{2 3}(70 \mathrm{mg}, 0.217 \mathrm{mmol})$ with 1-eth-1-ynyl-4-propoxybenzene ($57 \mu \mathrm{~L}, 0.435 \mathrm{mmol}$) afforded compound $\mathbf{8}$ as a white solid in 36% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 0.99(\mathrm{t}$, $\left.3 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.71-1.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.10\left(\mathrm{~d}, 3 \mathrm{H}, J=4.1 \mathrm{~Hz}, N^{6}-\mathrm{CH}_{3}\right), 3.54-3.62(\mathrm{~m}$, 1H, H-5'A), 3.64-3.72 (m, 1H, H-5'B), 3.98 (m, 3H, H-4' and CH_{2}), 4.18 (dd, $1 \mathrm{H}, \mathrm{J}=4.8$ and 8.1 $\left.\mathrm{Hz}, \mathrm{H}-3^{\prime}\right), 4.64\left(\mathrm{appq}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 4.99\left(\mathrm{t}, 1 \mathrm{H}, J=5,7 \mathrm{~Hz}, 5^{\prime}-\mathrm{OH}\right), 5.25(\mathrm{~d}, 1 \mathrm{H}, J=$ $\left.4.1 \mathrm{~Hz}, 3^{\prime}-\mathrm{OH}\right), 5.50\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.9 \mathrm{~Hz}, 2^{\prime}-\mathrm{OH}\right), 5.97\left(\mathrm{~d}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}, \mathrm{H}-1{ }^{\prime}\right), 7.03(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.8 \mathrm{~Hz}, \mathrm{Ph}), 7.94(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{Ph}), 8.36\left(\mathrm{~d}, 1 \mathrm{H}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}, N^{6}-\mathrm{H}\right), 8.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8)$, 9.15 (s, $1 \mathrm{H}, \mathrm{H}-5$ "); ${ }^{13} \mathrm{C}$ NMR (300 MHz, DMSO- d_{6}): $\delta 11.08\left(\mathrm{CH}_{3}\right), 22.73\left(\mathrm{CH}_{2}\right), 27.90\left(N^{6}-\right.$ $\left.\mathrm{CH}_{3}\right), 62.16\left(\mathrm{C}-5^{\prime}\right), 69.71\left(\mathrm{OCH}_{2}\right), 71.18\left(\mathrm{C}-3^{\prime}\right), 74.38\left(\mathrm{C}-2^{\prime}\right), 86.46(\mathrm{C}-4$ '), $87.91(\mathrm{C}-1$ '), 115.50 (Ph), 119.60 (C-5), 123.28 (C-5’’), 127.66 (Ph), 140.01 (C-8), 147.01, 149.82, 150.45 (C-4, C-2 and C-4"), 156.10 (C-6); HRMS (ESI-MS) $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{8} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 483.2109 found, 483.2104 calcd. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{8} \mathrm{O}_{5}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N^{6}-Methyl-2-(4-benzyl-1,2,3-triazol-1-yl)-9-(β-D-ribofuranosyl)adenine (9). The reaction of $23(70 \mathrm{mg}, 0.217 \mathrm{mmol}$) with 3-phenyl-1-propyne ($54 \mu \mathrm{~L}, 0.435 \mathrm{mmol}$) gave compound $\mathbf{9}$ as a white solid in 43% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 3.03\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=3.8 \mathrm{~Hz}, N^{6}-\mathrm{CH}_{3}\right.$), 3.53-3.62 (m, 1H, H-5'A), 3.64-3.71 (m, 1H, H-5’B), 3.95 (dd, 1H, $J=3.7$ and $\left.7.2 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right)$, $4.11\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.17\left(\mathrm{dd}, 1 \mathrm{H}, J=4.8\right.$ and $\left.8.1 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 4.61\left(\operatorname{appq}, 1 \mathrm{H}, J=5.7 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right)$, 4.97 (app t, $1 \mathrm{H}, J=5.3 \mathrm{~Hz}, 5^{\prime}-\mathrm{OH}$), $5.22\left(\mathrm{~d}, 1 \mathrm{H}, J=4.7 \mathrm{~Hz}, 3^{\prime}-\mathrm{OH}\right), 5.47\left(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}, 2^{\prime}-\right.$
$\mathrm{OH}), 5.94(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{H}-1$ '), $7.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}), 7.32(\mathrm{~d}, 4 \mathrm{H}, J=4.4 \mathrm{~Hz}, \mathrm{Ph}), 8.34(\mathrm{~d}, 1 \mathrm{H}, J$ $\left.=3.8 \mathrm{~Hz}, N^{6}-\mathrm{H}\right), 8.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 8.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5 ")$) ${ }^{13} \mathrm{C}$ NMR (300 MHz , DMSO-d d_{6}): $\delta 25.32$ $\left(N^{6}-\mathrm{CH}_{3}\right), 32.51\left(\mathrm{CH}_{2}\right), 62.11\left(\mathrm{C}-5^{\prime}\right), 71.13\left(\mathrm{C}-3^{\prime}\right), 74.43\left(\mathrm{C}-2^{\prime}\right), 86.41\left(\mathrm{C}-4^{\prime}\right), 87.96\left(\mathrm{C}-1{ }^{\prime}\right)$, 121.42 (C-5), 121.97 (C-5"), 126.91, 129.12, 129.21 and 140.02 (Ph), 140.88 (C-8), 147.42, 149.58 and 149.81 (C-4, C-2 and C-4"), 156.09 (C-6); HRMS (ESI-MS) $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{8} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 439.1846 found, 439.1842 calcd. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{8} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-(4-Cyclopentylmethyl-1,2,3-triazol-1-yl)- N^{6}-methyl-9-(β-D-ribofuranosyl)adenine (10). The reaction of $\mathbf{2 3}$ ($70 \mathrm{mg}, 0.217 \mathrm{mmol}$) with 3-cyclopentyl-1-propyne ($57 \mu \mathrm{~L}, 0.435 \mathrm{mmol}$) yielded compound $10(32 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 1.23-1.28(\mathrm{~m}$, 2 H , cyclopentyl), 1.48-1.62 (m, 4H, cyclopentyl), 1.71-1.75 (m, 2H, cyclopentyl), 2.19-2.25 (m, 1 H , cyclopentyl), $2.72\left(\mathrm{~d}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$-cyclopentyl), $3.05\left(\mathrm{~d}, 3 \mathrm{H}, J=3.9 \mathrm{~Hz}, N^{6}-\mathrm{CH}_{3}\right)$, 3.53-3.61 (m, 1H, H-5'A), 3.63-3.72 (m, 1H, H-5'B), 3.96 (dd, 1H, J = 3.6 and $7.2 \mathrm{~Hz}, \mathrm{H}-4^{\prime}$), 4.19 (dd, $1 \mathrm{H}, J=4.8$ and $8.1 \mathrm{~Hz}, \mathrm{H}-3^{\prime}$), 4.62 (app q, $1 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{H}-2$ '), $4.98(\mathrm{t}, 1 \mathrm{H}, J=5.3$ $\left.\mathrm{Hz}, 5^{\prime}-\mathrm{OH}\right), 5.23\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.7 \mathrm{~Hz}, 3^{\prime}-\mathrm{OH}\right), 5.49\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, 2^{\prime}-\mathrm{OH}\right), 5.95(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $\left.5.9 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 8.34\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.9 \mathrm{~Hz}, N^{6}-\mathrm{H}\right), 8.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 8.55\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR (300 MHz, DMSO-d d_{6}): $\delta 25.37$ (cyclopentyl), $27.83\left(N^{6}-\mathrm{CH}_{3}\right), 31.56\left(\mathrm{CH}_{2}\right), 32.55$ (cyclopentyl), 62.15 (C-5'), 71.15 (C-3'), 74.34 (C-2'), 86.43 (C-4'), 87.87 (C-1'), 119.60 (C-5), 121.58 (C-5"), 140.92 (C-8), 147.33, 149.89 (C-4, C-2 and C4"), 156.07 (C-6); HRMS (ESI-MS) $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{8} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}: 431.2153$ found, 431.2155 calcd. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{8} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-(4-Cyclohexylmethyl-1,2,3-triazol-1-yl)- N^{6}-methyl-9-(β-d-ribofuranosyl)adenine (11). The reaction of $23(70 \mathrm{mg}, 0.217 \mathrm{mmol})$ with cyclohexyl-1-propyne ($63 \mu \mathrm{~L}, 0.435 \mathrm{mmol}$) gave compound $\mathbf{1 1}$ in 82% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 0.86-1.28$ (br m, 6 H , cyclohexyl), 1.54-1.72 (br m, 5 H , cylcohexyl), $2.58\left(\mathrm{~d}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.03\left(\mathrm{~d}, 3 \mathrm{H}, J=3.9 \mathrm{~Hz}, N^{6}\right.$ -
CH_{3}), 3.51-3.59 (m, 1H, H-5'A), 3.63-3.70 (m, 1H, H-5’B), $3.94(\mathrm{dd}, 1 \mathrm{H}, J=4.2$ and $7.5 \mathrm{~Hz}, \mathrm{H}-$ $\left.4^{\prime}\right)$, $4.16\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.8\right.$ and $\left.8.1 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 4.59\left(\mathrm{app} \mathrm{q}, 1 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 4.97(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=$ $\left.5.5 \mathrm{~Hz}, 5^{\prime}-\mathrm{OH}\right), 5.22\left(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}, 3^{\prime}-\mathrm{OH}\right), 5.47\left(\mathrm{~d}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}, 2^{\prime}-\mathrm{OH}\right), 5.93(\mathrm{~d}, 1 \mathrm{H}, J$ $\left.=6.0 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 8.30\left(\mathrm{~d}, 1 \mathrm{H}, J=3.9 \mathrm{~Hz}, N^{6}-\mathrm{H}\right), 8.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 8.51\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR (300 MHz, DMSO-d d_{6}): $\delta 26.31$ (cyclohexyl), 26.66 (cyclohexyl), $27.84\left(N^{6}-\mathrm{CH}_{3}\right), 33.16$ (cyclohexyl), $38.22\left(\mathrm{CH}_{2}\right), 62.14\left(\mathrm{C}-5^{\prime}\right), 71.15\left(\mathrm{C}-3^{\prime}\right), 74.35\left(\mathrm{C}-2^{\prime}\right), 86.44\left(\mathrm{C}-4^{\prime}\right), 87.86(\mathrm{C}-1$ '), 119.60 (C-5), 121.93 (C-5"), 140.92 (C-8), 146.45, 149.92 (C-4, C-2 and C-4"), 153.51 (C-6); HRMS (ESI-MS) $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~N}_{8} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 445.2305$ found, 445.2311 calcd. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{8} \mathrm{O}_{4}\right) \mathrm{C}$, H, N.

General procedure for the synthesis of 4"-substituted 2-(1,2,3-triazol-4-yl)adenosine

derivatives 12-14. Compound 25 ($100 \mathrm{mg}, 0.32 \mathrm{mmol}$), sodium ascorbate ($13 \mathrm{mg}, 0.06 \mathrm{mmol}$ mmol) and $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(3 \mathrm{mg}, 0.013 \mathrm{mmol})$ were suspended in $30 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}: \mathrm{tBuOH}$ (3:1). The appropriate azide (2 equiv.) was subsequently added and the mixture was stirred overnight at room temperature. The 2-triazol-4-yl compounds (generally) precipitated from this reaction medium and were isolated by filtration with water.

2-(1-Benzyl-1,2,3-triazol-4-yl)- N^{6}-methyl-9-(β-D-ribofuranosyl)adenine (12). The reaction of $25(100 \mathrm{mg}, 0.32 \mathrm{mmol})$ with $85 \mathrm{mg}(0.64 \mathrm{mmol})$ benzylazide gave compound $\mathbf{1 2}$ in 78% yield (110 mg). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 3.03$ (br s, $3 \mathrm{H}, \mathrm{N}^{6}-\mathrm{CH}_{3}$), $3.52-3.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5$ 'A), 3.60-3.66 (m, 1H, H-5'B), $3.92\left(\operatorname{app} \mathrm{~d}, \mathrm{H}-4^{\prime}, J=2.9 \mathrm{~Hz}, \mathrm{H}^{\prime}-\mathrm{4}^{\prime}\right), 4.15(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.7$ and 7.6 Hz , $\left.\mathrm{H}-3^{\prime}\right), 4.60\left(\mathrm{app} \mathrm{q}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.08\left(\mathrm{t}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}, 5^{\prime}-\mathrm{OH}\right), 5.19(\mathrm{~d}, 1 \mathrm{H}, J=3.5$ $\left.\mathrm{Hz}, 3^{\prime}-\mathrm{OH}\right), 5.44\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.6 \mathrm{~Hz}, 2^{\prime}-\mathrm{OH}\right), 5.68\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.97\left(\mathrm{~d}, 6.2 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 7.38(\mathrm{br} \mathrm{s}$, $5 \mathrm{H}, \mathrm{Ph}$), 7.82 (br s, $1 \mathrm{H}, N^{6}-\mathrm{H}$), 8.36 (s, $1 \mathrm{H}, \mathrm{H}-8$), 8.66 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-5$ ") ; ${ }^{13} \mathrm{C}$ NMR (300 MHz , DMSO- d_{6}): $\delta 27.54\left(N^{6}-\mathrm{CH}_{3}\right), 53.62\left(\mathrm{CH}_{2}\right), 62.29\left(\mathrm{C}-5^{\prime}\right), 71.30\left(\mathrm{C}-3^{\prime}\right), 74.30\left(\mathrm{C}-2^{\prime}\right), 86.41(\mathrm{C}-$

4'), 87.77 (C-1'), 119.52 (C-5), 126.41 (C-5"), 128.63, 128.86, 129.48 and 136.71 (Ph), 140.27 (C-8), 148.22, 153.56, 153.72 (C-2, C-4 and C-4'), 155.69 (C-6); HRMS (ESI-MS) $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{8} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}: 439.1834$ found, 439.1842 calcd. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{8} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-[1-(3-Methoxybenzyl)-1,2,3-triazol-4-yl)- N^{6}-methyl-9-(β-D-ribofuranosyl)adenine (13).

 The reaction of $\mathbf{2 5}(100 \mathrm{mg}, 0.32 \mathrm{mmol})$ with $104 \mathrm{mg}(0.64 \mathrm{mmol})$ 3-methoxybenzylazide gave compound 13 in 80% yield (120 mg). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 3.03$ (br s, $3 \mathrm{H}, \mathrm{N}^{6}-$ CH_{3}), 3.52-3.60 (m, 1H, H-5’A), 3.64-3.72 (m, 1H, H-5’B), 3.95 (app d, H-4', J = $2.9 \mathrm{~Hz}, \mathrm{H}-4^{\prime}$), $4.15\left(\mathrm{dd}, 1 \mathrm{H}, J=4.7\right.$ and $\left.7.6 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 4.60\left(\operatorname{app} \mathrm{q}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{H}-\mathbf{2}^{\prime}\right), 5.07(\mathrm{t}, 1 \mathrm{H}, J=5.1$ $\left.\mathrm{Hz}, 5^{\prime}-\mathrm{OH}\right), 5.21\left(\mathrm{~d}, 1 \mathrm{H}, J=4.2 \mathrm{~Hz}, 3^{\prime}-\mathrm{OH}\right), 5.46\left(\mathrm{~d}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}, 2^{\prime}-\mathrm{OH}\right), 5.62\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $5.95\left(\mathrm{~d}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{H}^{\prime} 1^{\prime}\right), 6.91(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 7.29(\mathrm{t}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{Ph}), 7.79\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, N^{6}-\right.$ H), 8.34 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-8$), 8.63 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-5$ "); ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 27.59\left(\mathrm{~N}^{6}-\mathrm{CH}_{3}\right)$, $53.45\left(\mathrm{CH}_{2}\right), 55.82\left(\mathrm{OCH}_{3}\right), 62.30\left(\mathrm{C}-5^{\prime}\right), 71.33\left(\mathrm{C}^{\prime} 3^{\prime}\right), 74.25\left(\mathrm{C}-2^{\prime}\right), 86.42\left(\mathrm{C}-4{ }^{\prime}\right), 87.70\left(\mathrm{C}-1^{\prime}\right)$, 114.44 and $114.20(\mathrm{Ph}), 119.51(\mathrm{C}-5), 120.72(\mathrm{Ph}), 130.65(\mathrm{C}-5 "), 138.21(\mathrm{C}-8), 148.22,153.56$, 153.64 (C-2, C-4 and C-4'), 155.69 (C-6), $160.14(\mathrm{Ph}) ;$ HRMS (ESI-MS) $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{8} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 469.1938 found, 469.1947 calcd. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{8} \mathrm{O}_{5}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.2-[1-(3-Chlorobenzyl)-1,2,3-triazol-4-yl)- N^{6}-methyl-9-(β-D-ribofuranosyl)adenine (14). The reaction of $25(100 \mathrm{mg}, 0.32 \mathrm{mmol})$ with $107 \mathrm{mg}(0.64 \mathrm{mmol})$ 3-chlorobenzylazide gave
 CH_{3}), 3.53-3.60 (m, 1H, H-5'A), 3.64-3.71 (m, 1H, H-5'B), 3.96 (app d, H-4', J = $2.9 \mathrm{~Hz}, \mathrm{H}-4^{\prime}$), $4.17\left(\mathrm{dd}, 1 \mathrm{H}, J=4.7\right.$ and $\left.7.6 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 4.64(\operatorname{app~q}, 1 \mathrm{H}, J=5.8 \mathrm{~Hz}, \mathrm{H}-2$ '), $5.09(\mathrm{t}, 1 \mathrm{H}, J=5.3$ $\left.\mathrm{Hz}, 5^{\prime}-\mathrm{OH}\right), 5.20\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.4 \mathrm{~Hz}, 3^{\prime}-\mathrm{OH}\right), 5.45\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}, 2^{\prime}-\mathrm{OH}\right), 5.97(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $6.2 \mathrm{~Hz}, \mathrm{H}-1$ '), 7.31-7.36 (m, 1H, Ph), 4.41-7.47 (m, 3H, Ph), $7.83\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, N^{6}-\mathrm{H}\right), 8.37(\mathrm{~s}, 1 \mathrm{H}$, H-8), $8.72\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5\right.$ "); ${ }^{13} \mathrm{C}$ NMR (300 MHz , DMSO-d d_{6}): $\delta 27.54\left(\mathrm{~N}^{6}-\mathrm{CH}_{3}\right), 52.80\left(\mathrm{CH}_{2}\right), 62.31$
(C-5'), 71.33 (C-3'), 74.27 (C-2'), 86.43 (C-4'), 87.69 (C-1'), 119.56 (C-5), 126.63 (C-5"), $127.53,128.53,128.84,131.42,133.98$ and $139.15(\mathrm{Ph}), 140.36(\mathrm{C}-8), 148.22,150.03$ and 153.43 (C-2, C-4 and C-4'), 155.78 (C-6); HRMS (ESI-MS) $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}: 473.1452$ found, 473.1452 calcd. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{Cl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

9-(5-Ethylcarbamoyl- β-D-ribofuranosyl)- N^{6}-methyl-2-(1,2,3-triazol-1-yl)adenine (15)
In a pressure tube was added $\mathbf{3 1}(110 \mathrm{mg}, 0.30 \mathrm{mmol})$ trimethylsilylacetylene ($259 \mu \mathrm{~L}, 1.81$ mmol) and 4 mL DMF. The mixture was stirred at $105^{\circ} \mathrm{C}$ for 15 h . Solvent evaporation yielded a yellowish solid that was dissolved 6 mL of a 1.0 solution of tetrabutylammonium fluoride in THF and stirred for 5 h . After solvent evaporation, the residue was dissolved in ethyl acetate. Water was added and the triazole precipitated in the water layer. After overnight cooling and filtration, the precipitate was further purified on a silica gel column $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 93: 7\right)$ and yielded compound 15 as a white solid ($49 \mathrm{mg}, 42 \%) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}_{6} \mathrm{~d}_{6}\right): \delta 0.90(\mathrm{t}, 3 \mathrm{H}$, CH_{3}), 3.05-3.21 (m, 2H,N-CH2), $3.05\left(\mathrm{~d}, 3 \mathrm{H}, J=4.2 \mathrm{~Hz}, N^{6}-\mathrm{CH}_{3}\right), 4.26\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.33(\mathrm{~d}$, $\left.1 \mathrm{H}, J=2.1 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 5.61\left(\mathrm{~d}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}, 3^{\prime}-\mathrm{OH}\right), 5.71\left(\mathrm{~d}, 1 \mathrm{H}, J=4.7 \mathrm{~Hz}, 2^{\prime}-\mathrm{OH}\right), 6.04(\mathrm{~d}$, $\left.1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 7.91(\mathrm{~d}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}, \mathrm{H}-4$ "), $8.07(\mathrm{t}, 1 \mathrm{H}, J=5.3 \mathrm{~Hz}, N H C O), 8.41(\mathrm{~d}$, $\left.1 \mathrm{H}, J=4.2 \mathrm{~Hz}, N^{6}-\mathrm{H}\right), 8.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 8.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-5 "){ }^{13} \mathrm{CMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta$ $15.16\left(\mathrm{CH}_{3}\right), 27.85\left(N^{6}-\mathrm{CH}_{3}\right), 34.07\left(\mathrm{CH}_{2}\right), 73.64\left(\mathrm{C}-2^{\prime}\right.$ and $\left.\mathrm{C}-3^{\prime}\right), 84.98\left(\mathrm{C}-4{ }^{\prime}\right), 88.02\left(\mathrm{C}-1^{\prime}\right)$, 119.91 (C-5), 124.70 (C-5"), 134.29 (C-4"), 141.59 (C-8), 149.69 and 149.90 (C-2 and C-4), 156.14 (C-6), 169.73 (C=O); HRMS (ESI-MS) $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{9} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 390.1676$ found, 390.1683 calcd. Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{9} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

General procedure for the synthesis of 4"-substituted 2-(1,2,3-triazol-1-yl) adenosine
derivatives 16-18. To a mixture of $31(100 \mathrm{mg}, 0.28 \mathrm{mmol}), \mathrm{CuI}(5 \mathrm{mg}, 0.03 \mathrm{mmol})$ and triethylamine ($40 \mu \mathrm{~L}, 0.28 \mathrm{mmol}$) in water:acetonitrile (1:1), the appropriate alkyne (2 equiv.)
was added. The mixture was stirred for 5 d at room temperature. The reaction was monitored by ${ }^{1} \mathrm{H}$-NMR. The product was precipitated with water and cooled overnight. After filtration, the yellowish solid was purified on a silica gel column $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: $\left.\mathrm{MeOH} 90: 10\right)$ to obtain the 1,2,3-triazol-1-yl adenosine derivative as a white solid.

2-(4-Butyl-1,2,3-triazol-1-yl)-9-(5-ethylcarbamoyl- β-D-ribofuranosyl)- N^{6}-methyladenine

 (16). The reaction of compound $31(100 \mathrm{mg}, 0.28 \mathrm{mmol})$ with 1-hexyne ($64 \mu \mathrm{~L}, 0.56 \mathrm{mmol}$) gave $65 \mathrm{mg}(53 \%)$ of compound $\mathbf{1 6}$ as a white solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}$) δ 0.88-0.95 (m, $\left.6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.31-1.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.61-1.71\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.72(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{C} 4$ '’CH_{2}), 3.05-3.22 (m, 2H, $N-\mathrm{CH}_{2}$), $3.05\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=4.1 \mathrm{~Hz}, N^{6}-\mathrm{CH}_{3}\right), 4.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3$ '), $4.33(\mathrm{~d}$, $\left.1 \mathrm{H}, J=2.1 \mathrm{~Hz}, \mathrm{H}^{\prime} 4^{\prime}\right), 4.73\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 5.59\left(\mathrm{~d}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}, 3^{\prime}-\mathrm{OH}\right), 5.69(\mathrm{~d}, 1 \mathrm{H}, J=4.5$ $\left.\mathrm{Hz}, 2^{\prime}-\mathrm{OH}\right), 6.04\left(\mathrm{~d}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{H}^{\prime} 1^{\prime}\right), 8.09(\mathrm{t}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}), 8.37\left(\mathrm{~d}, 1 \mathrm{H}, J=4.1 \mathrm{~Hz}, N^{6}-\right.$ H), 8.53 (s, 1H, H-8), $8.56\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5\right.$ "); ${ }^{13} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): 14.36\left(\mathrm{CH}_{3}\right), 15.17$ $\left(\mathrm{CH}_{3}\right), 22.35\left(\mathrm{CH}_{2}\right), 25.21\left(\mathrm{CH}_{2}\right), 27.84\left(N^{6}-\mathrm{CH}_{3}\right), 31.70\left(\mathrm{CH}_{2}\right), 34.07\left(\mathrm{CH}_{2}\right), 73.60$ and $73.64(\mathrm{C}-$ 2' and C-3'), 84.99 (C-4"), 87.91 (C-1'), 119.79 (C-5), 121.45 (C-5"), 141.49 (C-8), 147.97, 149, 72 and 149.93 (C-2, C-4 and C-4"), 156.11 (C-6), 169.73 (C=O); HRMS (ESI-MS) $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{9} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 446.2256$ found, 446.2264 calcd. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{9} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
9-(5-Ethylcarbamoyl- β-D-ribofuranosyl)- N^{6}-methyl-2-(4-pyridin-2-yl-1,2,3-triazol-1-

yl)adenine (17). The reaction of compound 31 ($50 \mathrm{mg}, 0.14 \mathrm{mmol}$) with 2-ethynyl-pyridine (56 $\mu \mathrm{L}, 0.56 \mathrm{mmol}$) gave $35 \mathrm{mg}(54 \%)$ of compound 17 as a white solid. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d d_{6} : $\delta 0.93\left(\mathrm{t}, 3 \mathrm{H}, \quad J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$), 3.09-3.21 (m, 2H, $\left.N-\mathrm{CH}_{2}\right), 3.10(\mathrm{~d}, 3 \mathrm{H}, J=4.2 \mathrm{~Hz}$, $\left.N^{6}-\mathrm{CH}_{3}\right), 4.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.35\left(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 4.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 5.68(\mathrm{~d}, 1 \mathrm{H}, J=$ 6.6 Hz, 2'-OH), 5.75 (d, 1H, J = $\left.4.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{OH}\right), 6.08(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{H}-1$ '), $7.41(\mathrm{~m}, 1 \mathrm{H}$, pyridin-2-yl), $7.96(\mathrm{~m}, 1 \mathrm{H}$, pyridin-2-yl), $8.10(\mathrm{t}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{NHCO}), 8.16(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1$

Hz, pyridin-2-yl), $8.48\left(\mathrm{~d}, 1 \mathrm{H}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}, N^{6}-\mathrm{H}\right), 8.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 8.67(\mathrm{~d}, \mathrm{H}, J=5.1 \mathrm{~Hz}$, pyridin-2-yl), 9.17 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-5 ") ;{ }^{13} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 15.18\left(\mathrm{CH}_{3}\right), 27.94\left(N^{6}-\mathrm{CH}_{3}\right)$, $34.11\left(\mathrm{~N}-\mathrm{CH}_{2}\right), 73.69$ and $73.78\left(\mathrm{C}-2^{\prime}\right.$ and $\left.\mathrm{C}-3^{\prime}\right)$, $84.95\left(\mathrm{C}-4^{\prime}\right), 87.98\left(\mathrm{C}-1^{\prime}\right), 120.04(\mathrm{C}-5)$, 120.65 (C-5"), 122.20 and 124.11 (pyridin-2-yl), 138.027 (pyridin-2-yl), 141.64 (C-8), 147.95, 149,64, 149.67 and 149.98 (C-2, C-4, C-4" and pyridin-2-yl), 150.49 (pyridin-2-yl), 156.13 (C6), $169.76(\mathrm{C}=\mathrm{O})$; $\mathrm{HRMS}(\mathrm{ESI}-\mathrm{MS}) \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{10} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 467.1899$ found, 467.1903 calcd. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{10} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N} ; \mathrm{N}$ calcd, 30.03; found, 29.55.

9-(5-Ethylcarbamoyl- β-D-ribofuranosyl)- N^{6}-methyl-2-(4-benzyl-1,2,3-triazol-1-yl)adenine

 (18). The reaction of compound 31 ($70 \mathrm{mg}, 0.19 \mathrm{mmol}$) with 3-phenyl-1-propyne $(49 \mu \mathrm{~L}, 0.56$ mmol) gave $35 \mathrm{mg}(38 \%)$ of compound 18 as a white solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): δ $0.87\left(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.03-3.20\left(\mathrm{~m}, 2 \mathrm{H}, N-\mathrm{CH}_{2}\right), 3.03\left(\mathrm{~d}, 3 \mathrm{H}, 4.5 \mathrm{~Hz}, N^{6}-\mathrm{CH}_{3}\right), 4.11(\mathrm{~s}$, 2H, CH_-Ph), 4.24 (m, 1H, H-3'), 4.32 (d, 1H, J = 2.1 Hz, H4'), 4.72 (m, 1H, H-2'), 5.59 (d, 1H, $\left.J=6.6 \mathrm{~Hz}, 3^{\prime}-\mathrm{OH}\right), 5.69\left(\mathrm{~d}, 1 \mathrm{H}, J=4.5 \mathrm{~Hz}, 2^{\prime}-\mathrm{OH}\right), 6.03\left(\mathrm{~d}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{Hl}{ }^{\prime}\right), 7.22(\mathrm{~m}, 1 \mathrm{H}$, Ph), $7.32(\mathrm{~d}, 4 \mathrm{H}, J=4.2 \mathrm{~Hz}, \mathrm{Ph}), 8.06(\mathrm{t}, 1 \mathrm{H}, J=5.7 \mathrm{~Hz}, \mathrm{NHCO}), 8.38\left(\mathrm{~d}, 1 \mathrm{H}, J=4.1 \mathrm{~Hz}, N^{6}-\mathrm{H}\right)$, 8.54 (s, 1H, H-8), $8.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5 ") ;{ }^{13} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}_{6}\right): \delta 15.16(\mathrm{CH} 3), 27.84$ (N^{6} $\left.\mathrm{CH}_{3}\right), 31.72\left(\mathrm{CH}_{2}\right), 34.07\left(\mathrm{~N}^{2}-\mathrm{CH}_{2}\right), 73.64\left(\mathrm{C}-2{ }^{\prime}\right.$ and $\left.\mathrm{C}-3^{\prime}\right), 84.98\left(\mathrm{C}-4\right.$ '), $87.87\left(\mathrm{C}-1{ }^{\prime}\right), 119.91(\mathrm{C}-$ 5), 122.11 (C-5"), 126.93, 129.13, 129.22 and 140.07 (Ph), 140.48 (C-8), 147.05, 149.87 (C-4, C2 and C-4"), 156.12 (C-6), 169.71 (C=O); HRMS (ESI-MS) $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{9} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 480.2098$ found, 480.2107 calcd. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{9} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.2-(4-Cyclopentylmethyl-1,2,3-triazol-1-yl)-9-(5-ethylcarbamoyl- β-D-ribofuranosyl)- N^{6} methyladenine (19). Compound $31(60 \mathrm{mg}, 0.17 \mathrm{mmol})$, sodium ascorbate ($13 \mathrm{mg}, 0.066 \mathrm{mmol}$) and $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(3.5 \mathrm{mg}, 0.013 \mathrm{mmol})$ were suspended in $4 \mathrm{mLtBuOH}: \mathrm{H}_{2} \mathrm{O}(1: 1) .3-$ cyclopentyl-1-propyne ($58 \mu \mathrm{~L}, 0.44 \mathrm{mmol}$) was subsequently added and the mixture was stirred
two d at room temperature. The 2 -triazol-1-yl compound precipitated from the reaction medium. Water was added and the mixture was cooled overnight. The precipitate was filtered off and washed with water and hexane to obtain 19 as a white solid in 33% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 0.89\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.19-1.28(\mathrm{~m}, 2 \mathrm{H}$, cyclopentyl), 1.45-1.75 (m, 6H, cyclopentyl), 2.15-2.25 (m, 1H, CH, cyclopenty), $2.72\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.06\left(\mathrm{~d}, 3 \mathrm{H}, J=4.5 \mathrm{~Hz}, N^{6}-\right.$ CH_{3}), 3.09-3.22 (m, 2H, N-CH2), $4.24(\mathrm{dt}, 1 \mathrm{H}, J=1.5$ and $4.8 \mathrm{~Hz}, \mathrm{H}-3$ '), $4.33(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}$, H-4'), 4.71-7.76 (app q, 1H, $\left.J=6.6 \mathrm{~Hz}, \mathrm{H}^{2} \mathbf{2}^{\prime}\right), 5.61\left(\mathrm{~d}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}, 2^{\prime}-\mathrm{OH}\right), 5.71(\mathrm{~d}, 1 \mathrm{H}, J=$ $\left.4.8 \mathrm{~Hz}, 3^{\prime}-\mathrm{OH}\right), 6.03(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-1$ '), $8.10(\mathrm{t}, 1 \mathrm{H}, J=5.7 \mathrm{~Hz}, N H C O), 8.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $5.1 \mathrm{~Hz}, N^{6}-\mathrm{H}$), 8.54 (s, $1 \mathrm{H}, \mathrm{H}-8$), 8.56 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-5$ "); ${ }^{13} \mathrm{C}$ NMR (300 MHz, DMSO- d_{6}): $\delta 15.17$ $\left(\mathrm{CH}_{3}\right), 25.36$ (cyclopentyl), $27.85\left(N^{6}-\mathrm{CH}_{3}\right), 31.53$ (cyclopentyl), $31.51\left(\mathrm{CH}_{2}\right), 34.07\left(\mathrm{CH}_{2}\right)$, 73.63 and 73.56 (C-2' and C-3'), 84.99 (C-4'), 87.93 (C-1'), 119.77 (C-5), 121.69 (C-5"), 141.51 (C-8), 147.48 and 149.92 (C-2, C-4 and C-4"), 156.10 (C-6), 169.74 (C=O); HRMS (ESI-MS) $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{9} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 472.2415$ found, 472.2420 calcd. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{9} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N^{6}-(5-Chloro-2-methoxybenzyl)-2-(4-cyclopentylmethyl-1,2,3-triazol-1-yl)-9-(β-Dribofuranosyl)adenine (20). Compound 33 ($100 \mathrm{mg}, 0.22 \mathrm{mmol}$), sodium ascorbate (17 mg , $0.086 \mathrm{mmol})$ and $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(3.5 \mathrm{mg}, 0.017 \mathrm{mmol})$ were suspended in $4 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}: \mathrm{tBuOH}(1: 1)$. 3-Cyclopentyl-1-propyne ($29 \mu \mathrm{~L}, 0.44 \mathrm{mmol}$) was subsequently added and the mixture was stirred two d at room temperature. The 2-triazol-1-yl compound precipitated from the reaction medium. Water was added and the mixture was cooled overnight. The precipitate was filtered off and washed with water and hexane to obtain 20 as a white solid in 59% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d ${ }_{6}$): $\delta 1.23-1.28$ (m, 2H, cyclopentyl), 1.48-1.61 (m, 4H, cyclopentyl), 1.66-1.73 (m, 2H, cyclopentyl), 2.15-2.25 (m, 1H, cyclopentyl), 2.72 (d, $2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}$-cyclopentyl), 3.56-3.61 (m, 1H, H-5’A), 3.66-3.71 (m, 1H, H-5’B), 3.97 (m, 1H, H-4'), 4.20 (m, 1H, H-3'),
$4.64\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 4.73\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, N^{6}-\mathrm{CH}_{2}\right), 4.96\left(\mathrm{t}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}, 5^{\prime}-\mathrm{OH}\right), 5.22(\mathrm{~d}, 1 \mathrm{H}, J=4.8$ $\left.\mathrm{Hz}, 3^{\prime}-\mathrm{OH}\right), 5.48\left(\mathrm{~d}, 1 \mathrm{H}, J=5.7 \mathrm{~Hz}, 2^{\prime}-\mathrm{OH}\right), 5.95\left(\mathrm{~d}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 7.04(\mathrm{~d}, 1 \mathrm{H}, J=9.0$ Hz, Ph), 7.25-7.29 (m, 2H, Ph), 8.40 (s, 1H, H-8), 8.81 (s, 1H, H-5"), 8.81 (br s, $1 \mathrm{H}, N^{6}-\mathrm{H}$); ${ }^{13}$ NMR (300 MHz, DMSO- d_{6}): $\delta 25.36$ (cyclopentyl), $31.54\left(\mathrm{CH}_{2}\right), 32.54$ (cyclopentyl), 38.86 $\left(\mathrm{CH}_{2}\right), 56.57\left(\mathrm{OCH}_{3}\right), 62.13\left(\mathrm{C}-5^{\prime}\right), 71.15\left(\mathrm{C}-3^{\prime}\right), 74.37\left(\mathrm{C}-2^{\prime}\right), 86.46(\mathrm{C}-4$ '), $88.07(\mathrm{C}-1$ '), $113.15(\mathrm{Ph}), 119.58$ (C-5), 121.37 (C-5"), 124.66, 128.23 and $129.93(\mathrm{Ph}), 141.37(\mathrm{C}-8), 147.40$, 149.66 and 150.12 (C-2,C-4 and C-4"), 155.51 (Ph), 156.33 (C-6); HRMS (ESI-MS) $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{8} \mathrm{O}_{5} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$: 571.2184 found, 571.2184 calcd. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{8} \mathrm{O}_{5} \mathrm{Cl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$. 2-Azido- N^{6}-methyl-9-(β-D-ribofuranosyl)adenine (23). Sodium ascorbate (19.4 mg; 0.098 $\mathrm{mmol})$ and $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(12.2 \mathrm{mg} ; 0.049 \mathrm{mmol})$ were added to a mixture of $22(200 \mathrm{mg} ; 0.491$ mmol), sodium azide ($38,3 \mathrm{mg} ; 0.589 \mathrm{mmol}$), L-proline ($11,3 \mathrm{mg} ; 0.098 \mathrm{mmol}$) and sodium carbonate ($10.4 \mathrm{mg} ; 0.098 \mathrm{mmol}$) in $10 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}: \mathrm{tBuOH}(1: 1)$. The reaction was stirred overnight at $65^{\circ} \mathrm{C}$ and was monitored by ${ }^{1} \mathrm{H}$-NMR. 50 mL dilute $\mathrm{NH}_{4} \mathrm{OH}$ was added and the crude mixture extracted with ethyl acetate ($3 \times 60 \mathrm{~mL}$). The organic layer was washed with brine (60 mL), dried over MgSO_{4}, and purified on a silica gel column $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 95: 5\right.$) to afford compound 23 as a slightly yellow solid in 66% yield. ${ }^{1}$ H NMR (300 MHz, DMSO- d_{6}): $\delta 2.91$ (d, $3 \mathrm{H}, J=4.4 \mathrm{~Hz}, N^{6}-\mathrm{CH}_{3}$), 3.48-3.55 (m, 1H, H-5'A), 3.58-3.66 (m, 1H, H-5’B), $3.90(\mathrm{dd}, 1 \mathrm{H}, J=$ 3.8 and $7.3 \mathrm{~Hz}, \mathrm{H}-4$ '), $4.10\left(\mathrm{dd}, 1 \mathrm{H}, J=4.7\right.$ and $\left.9.7 \mathrm{~Hz}, \mathrm{H} 3^{\prime}\right), 4.53\left(\mathrm{app} \mathrm{q}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right)$, $5.04\left(\mathrm{dd}, 1 \mathrm{H}, J=5.2\right.$ and $\left.6.2 \mathrm{~Hz}, 5^{\prime}-\mathrm{OH}\right), 5.19\left(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}, 3^{\prime} \mathrm{OH}\right), 5.43(\mathrm{~d}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}$, $\left.2^{\prime}-\mathrm{OH}\right), 5.78\left(\mathrm{~d}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}, \mathrm{H}-1\right.$ '), $8.12\left(\mathrm{~d}, J=4.4 \mathrm{~Hz}, N^{6}-\mathrm{H}\right), 8.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8)$, small peaks from $1 / 6$ tetrazole tautomeric form: $\left.\delta 3.15\left(\mathrm{~d}, 3 \mathrm{H}, J=5.0 \mathrm{~Hz}, N^{6}-\mathrm{CH}_{3}\right), 3.95(\mathrm{~d}, \mathrm{H}-4)^{\prime}\right), 4.15(\mathrm{~d}$, H-3'), 5.51 (d, 2'-OH), 5.94 (d, H-1'), $8.51(\mathrm{~s}, \mathrm{H}-8) ;{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 27.54$ $\left(N^{6}-\mathrm{CH}_{3}\right), 62.21\left(\mathrm{C}-5^{\prime}\right), 71.17\left(\mathrm{C}-3^{\prime}\right), 74.12\left(\mathrm{C}-2^{\prime}\right), 86.35\left(\mathrm{C}-4{ }^{\prime}\right), 88.01\left(\mathrm{C}-1^{\prime}\right), 118.07(\mathrm{C}-5)$,
139.99 (C-8), 156.06 and 156.20 (C-2 and C-6), small peaks from $1 / 6$ tetrazole tautomeric form: $\delta 31.89\left(N^{6}-\mathrm{CH}_{3}\right), 61.79\left(\mathrm{C}-5^{\prime}\right), 70.77\left(\mathrm{C}-3^{\prime}\right), 74.37\left(\mathrm{C}-4{ }^{\prime}\right), 112.30(\mathrm{C}-12), 142.91(\mathrm{C}-11), 147.60$ (C-6); HRMS (ESI-MS) $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{8} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 323.1208$ found, 323.1216 calcd. Anal. $\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{8} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N^{6}-Methyl-9-(β-D-ribofuranosyl)-2-[2-trimethylsilylethyn-1-yl]adenine (24). Compound 22 ($500 \mathrm{mg}, 1.23 \mathrm{mmol}$), $\mathrm{CuI}(12 \mathrm{mg}, 0.062 \mathrm{mmol})$ and $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{PCl}_{2}$ were dissolved in 9 mL DMF. Triethylamine ($205 \mu \mathrm{~L}, 1.47 \mathrm{mmol}$) and trimethylsilylacetylene ($210 \mathrm{mg}, 1.47 \mathrm{mmol}$) were added and the reaction mixture was stirred overnight. After solvent evaporation, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through a pad of Celite. Purification on a silica gel column $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 95: 5\right)$ yielded $305 \mathrm{mg}(66 \%)$ of compound 23. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): δ $\left.0.00\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right), 2.7,3 \mathrm{H}, N^{6}-\mathrm{CH}_{3}\right), 3.26-3.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{A}\right), 3.37-3.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{B}\right)$, $3.68(\mathrm{dd}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}, \mathrm{H}-4$ '), $3.86(\mathrm{dd}, 1 \mathrm{H}, J=3.4$ and $8.2 \mathrm{~Hz}, \mathrm{H}-3$ '), $4.23(\operatorname{appq}, 1 \mathrm{H}, J=5.9$ Hz , H-2'), $4.87\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.0,5^{\prime}-\mathrm{OH}\right), 4.94\left(\mathrm{~d}, 1 \mathrm{H}, J=4.99 \mathrm{~Hz}, 3^{\prime}-\mathrm{OH}\right), 5.21(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.2$ $\mathrm{Hz}, 2^{\prime}-\mathrm{OH}$), $5.63\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}, \mathrm{H}-1\right.$ '), $7.69\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, N^{6}-\mathrm{H}\right), 8.19(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8)$; HRMS (ESIMS) $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Si}:[\mathrm{M}+\mathrm{H}]^{+}: 378.1586$ found; 378.1597 calcd.

2-Ethynyl- N^{6}-methyl-9-(β-D-ribofuranosyl)purine (25). 300 mg (0.8 mmol) of compound 24 was dissolved in 7 N ammonia in methanol and stirred for 2 h at $0^{\circ} \mathrm{C}$. After solvent evaporation, the residue was purified by silica gel chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 95: 5\right)$ to obtain 160 mg (65\%) of derivative 25. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{-} \mathrm{d}_{6}$): $\delta 2.91\left(\mathrm{~s}, 3 \mathrm{H}, N^{6}-\mathrm{CH}_{3}\right.$), 3.48-3.56 (m, 1H, H-5'A), 3.61-3.68 (m, 1H, H-5'B), 3.92 (m, 1H, H-4'), 4.02 (s, 1H, C $\equiv \mathrm{CH}$), 4.11 (dd, 1H, J= 5.0 and $8.2 \mathrm{~Hz}, \mathrm{H}-3^{\prime}$), 4.53 (app q, 1H, $J=5.9 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$), 5.15 (m, 2H, $3^{\prime}-\mathrm{OH}$ and $\left.5^{\prime}-\mathrm{OH}\right), 5.44$ (d, 1H, $\left.J=6.15 \mathrm{~Hz}, 2^{\prime}-\mathrm{OH}\right), 5.84\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.16 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 7.95\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, N^{6}-\mathrm{H}\right), 8.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-$ 8); HRMS (ESI-MS) $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{O}_{4}:[\mathrm{M}+\mathrm{H}]^{+}: 306.1197$ found; 306.1202 calcd.

1-Deoxy-1-(6-methylamino-2-iodo-9H-purin-9-yl)-2,3-O-isopropylidene- β-d-
ribufuranuronic acid (27). To a stirred solution of $3.8 \mathrm{~g}(8.5 \mathrm{mmol})$ of 26 in $560 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ were added 1.4 g KOH and, dropwise, a solution of $4.03 \mathrm{~g}(25.5 \mathrm{mmol})$ of KMnO_{4} in 110 mL of $\mathrm{H}_{2} \mathrm{O}$. The mixture was stirred in the dark for 20 h , cooled to $0{ }^{\circ} \mathrm{C}$ and quenched with $30 \mathrm{~mL} 7 \% \mathrm{H}_{2} \mathrm{O}_{2}$. The mixture was filtered through Celite, the filtrate was concentrated in vacuo and then acidified to pH 4 with 3 N HCl . The resulting precipitate was filtered off and successively washed with water and ether to give $2.98 \mathrm{~g}(76 \%)$ of 27 as a white solid. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 1.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.89\left(\mathrm{~d}, 3 \mathrm{H}, J=3.3 \mathrm{~Hz}, N^{6}-\mathrm{CH}_{3}\right), 4.68(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}$, H-4'), $5.40\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.47\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.0\right.$ and $\left.1.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 6.28$ (s, 1H, H-1'), $8.08\left(\mathrm{~d}, 1 \mathrm{H}, J=3.3 \mathrm{~Hz}, N^{6}-\mathrm{H}\right), 8.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8)$; HRMS (ESI-MS) $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{I}:[\mathrm{M}+\mathrm{H}]^{+}$: 462.0273 found; 462.0276 calcd.

9-(5-Ethylcarbamoyl- β-D-ribofuranosyl)-2-iodo- N^{6}-methyladenine (30). p-Nitrophenol (402 $\mathrm{mg}, 2.89 \mathrm{mmol}$) and 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (506 mg , $2.65 \mathrm{mmol})$ were added to a solution of $27(1.11 \mathrm{~g}, 2.41 \mathrm{mmol})$ in 10 mL dry DMF. The reaction mixture was stirred for 3 h at room temperature, cooled to $0^{\circ} \mathrm{C}$ and $1.6 \mathrm{~mL}(24.1 \mathrm{mmol})$ of ethylamine was added. The solution turned yellow immediately and was further stirred for 1 h at room temperature. After evaporating the volatiles, the residue was partitioned between ethyl acetate $(3 \times 100 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$. The organic layer was washed with brine $(100 \mathrm{~mL})$, dried over MgSO_{4} and concentrated to dryness. The residue was dissolved in 80% aquous TFA $(20 \mathrm{~mL})$ and stirred for 2 h at room temperature. The mixture was concentrated in vacuo, coevaporated several times with EtOH and purified by silica gel chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}\right.$ 96:4). Compound 30 was obtained as a white solid in 78% yield (840 mg). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d d_{6}): $\delta 1.05\left(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.91\left(\mathrm{~d}, 3 \mathrm{H}, J=4.4 \mathrm{~Hz}, N^{6}-\mathrm{CH}_{3}\right), 3.19-3.29(\mathrm{~m}, 2 \mathrm{H}$,
$\left.N-\mathrm{CH}_{2}\right), 4.16\left(\mathrm{dt}, 1 \mathrm{H}, J=2.1\right.$ and $\left.4.4 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 4.31\left(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}, \mathrm{H}-4{ }^{\prime}\right), 4.58(\operatorname{app~q}, 1 \mathrm{H}, \mathrm{J}$ $\left.=5.6 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.59\left(\mathrm{~d}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}, 2^{\prime}-\mathrm{OH}\right), 5.71\left(\mathrm{~d}, 1 \mathrm{H}, J=4.7 \mathrm{~Hz}, 3^{\prime}-\mathrm{OH}\right), 5.92(\mathrm{~d}, 1 \mathrm{H}, J$ $\left.=7.1 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 8.12(\mathrm{t}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}, N \mathrm{HCO}), 8.19\left(\mathrm{~d}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}, N^{6}-\mathrm{H}\right), 8.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-$ 8); HRMS (ESI-MS) $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{I}[\mathrm{M}+\mathrm{H}]^{+}: 449.0429$ found, 449.0436 calcd.

2-Azido-9-(5-ethylcarbamoyl- β-D-ribofuranosyl)- N^{6}-methyladenine (31). Sodium ascorbate $(69 \mathrm{mg}, 0.34 \mathrm{mmol})$ and $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(5.6 \mathrm{mg}, 0.17 \mathrm{mmol})$ were added to a mixture of $30(780$ $\mathrm{mg}, 1.74 \mathrm{mmol}$), sodium azide ($226 \mathrm{mg}, 3.48 \mathrm{mmol}$), L-proline ($40 \mathrm{mg}, 0.35 \mathrm{mmol}$) and sodium carbonate ($37 \mathrm{mg}, 0.35 \mathrm{mmol}$) in $20 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}: \mathrm{tBuOH}(1: 1)$. The reaction was stirred for 2 d at 65 ${ }^{\circ} \mathrm{C}$ and monitored by ${ }^{1} \mathrm{H}$-NMR. 100 mL dilute $\mathrm{NH}_{4} \mathrm{OH}$ was added and the crude mixture extracted with ethyl acetate ($5 \times 150 \mathrm{~mL}$) and washed with brine $(150 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and purified on a silica gel column $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 96: 4\right)$ to afford compound 31 as a white solid in 79% yield (500 mg). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 1.06(\mathrm{t}$, $\left.3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.96\left(\mathrm{~d}, 3 \mathrm{H}, J=4.0 \mathrm{~Hz}, N^{6}-\mathrm{CH}_{3}\right), 3.16-3.29\left(\mathrm{~m}, 2 \mathrm{H}, N-\mathrm{CH}_{2}\right), 4.14(\mathrm{dt}, 1 \mathrm{H}$, $J=1.8$ and $\left.4.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 4.29\left(\mathrm{~d}, 1 \mathrm{~h}, ~ J=1.8, \mathrm{H}-4^{\prime}\right), 4.53-4.59\left(\operatorname{app~q}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right)$, $5.52\left(\mathrm{~d}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}, 2^{\prime}-\mathrm{OH}\right), 5.68\left(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}, 3^{\prime}-\mathrm{OH}\right), 5.90\left(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)$, $8.20\left(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}, N^{6}-\mathrm{H}\right), 8.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 8.49(\mathrm{t}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}, N \mathrm{HCO})$ small peaks from $1 / 5$ tetrazole tautomeric form: 1.08-1.12 ($\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}$), $4.34(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}$, H-4'), 4.67-4.73 (app q, 1H, $\left.J=7.2 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.54\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.5 \mathrm{~Hz}, 2^{\prime}-\mathrm{OH}\right) 6.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ 7.2 Hz, H-1 ${ }^{\prime}$); ${ }^{13}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 15.48\left(\mathrm{CH}_{3}\right), 27.52\left(N^{6}-\mathrm{CH}_{3}\right), 33.94\left(N-\mathrm{CH}_{2}\right)$, 73.06 and 73.75 (C-2' and C-3'), 85.15 (C-4'), 88.09 (C-1'), 118.36 (C-5), 140.69 (C-8), 156.032 and 156.143 (C-2 and C-4) 169.79 (C-6); HRMS (ESI-MS) $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{9} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 364.1473$ found, 364.1481 calcd. Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{9} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N^{6}-(5-Chloro-2-methoxybenzyl)-2-iodo-9-(β-D-ribofuranosyl)adenine (32)

Compound $21(1 \mathrm{~g}, 1.86 \mathrm{mmol})$ was dissolved in EtOH (30 mL). 5-chloro-2-
methoxybenzylammonium chloride ($580 \mathrm{mg}, 2.79 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(392 \mu \mathrm{~L}, 2.79 \mathrm{mmol})$ were added, and the solution was refluxed overnight. The mixture was concentrated to dryness, dissolved in $7 \mathrm{~N} \mathrm{NH}_{3}$ in methanol and stirred at room temperature for 2 h to deprotect the 2^{\prime} hydroxyl group. The volatiles were removed under reduced pressure, and the residue was purified by silica gel column $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 97: 3\right)$. The product, compound 32, was realized in 80% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 3.51-3.58$ (m, 1H, H-5'A), 3.63-3.68 (m, 1H, H-5'B), $3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.13\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.52-4.59\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{N}^{6}-\mathrm{CH}_{2}\right.$ and $\mathrm{H}-$ $\left.2^{\prime}\right), 5.03\left(\mathrm{t}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}, 5^{\prime}-\mathrm{OH}\right), 5.21\left(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}, 3^{\prime}-\mathrm{OH}\right), 5.48\left(\mathrm{~d}, 1 \mathrm{H}, J=5.8 \mathrm{~Hz}, 2^{\prime}-\right.$ $\mathrm{OH}), 5.83\left(\mathrm{~d}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 7.03(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{Ph}), 7.16(\mathrm{~d}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}, \mathrm{Ph})$, $7.29(\mathrm{dd}, 1 \mathrm{H}, J=2.7$ and $8.8 \mathrm{~Hz}, \mathrm{Ph}), 8.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 8.62\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, N^{6}-\mathrm{H}\right)$; HRMS (ESI-MS) $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{ICl}[\mathrm{M}+\mathrm{H}]^{+}: 548.0204$ found, 548.0199 calcd.

2-Azido- N^{6}-(5-chloro-2-methoxybenzyl)-9-(β-D-ribofuranosyl)adenine (33). Sodium ascorbate ($14 \mathrm{mg}, 0.073 \mathrm{mmol}$) and $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(9 \mathrm{mg}, 0.037 \mathrm{mmol})$ were added to a mixture of 32 ($200 \mathrm{mg}, 0.365 \mathrm{mmol}$), sodium azide ($47 \mathrm{mg}, 0.73 \mathrm{mmol}$), L-proline ($8 \mathrm{mg}, 0.073 \mathrm{mmol}$) and sodium carbonate ($8 \mathrm{mg}, 0.073 \mathrm{mmol}$) in $4 \mathrm{~mL} \mathrm{H} \mathrm{O}: \mathrm{tBuOH}(1: 1)$. The reaction was stirred for 2 d at $65{ }^{\circ} \mathrm{C}$ and monitored by ${ }^{1} \mathrm{H}-\mathrm{NMR} .10 \mathrm{~mL}$ dilute $\mathrm{NH}_{4} \mathrm{OH}$ was added and the crude mixture extracted with ethyl acetate ($5 \times 15 \mathrm{~mL}$) and washed with brine $(15 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and purified on a silica gel column $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 97: 3\right)$ to afford compound 33 as a white solid in 82% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 3.51-3.56\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 5{ }^{\prime}-\mathrm{A}\right)$, 3.60-3.66 (m, 1H, H5'-B), 3.93 (m, 1H, H 4'), 4.13 (m, 1H, H-3'), 4.56-4.62 (m, $3 \mathrm{H}, \mathrm{N}^{6}-\mathrm{CH}_{2}$ and H-2'), $5.03\left(\mathrm{t}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}, 5^{\prime}-\mathrm{OH}\right), 5.17\left(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}, 3^{\prime}-\mathrm{OH}\right), 5.41(\mathrm{~d}, 1 \mathrm{H}, J=6.3$
$\left.\mathrm{Hz}, 2^{\prime}-\mathrm{OH}\right), 5.81(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{H}-1$ '), $7.02(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{Ph}), 7.15(\mathrm{~d}, 1 \mathrm{H}, J=3.0 \mathrm{~Hz}$, $\mathrm{Ph}), 7.28(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.7$ and $8.7 \mathrm{~Hz}, \mathrm{Ph}), 8.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 8.63\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, N^{6}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR (300MHz, DMSO-d ${ }_{6}$): $\delta 38.59\left(\mathrm{CH}_{2}\right), 56.49\left(\mathrm{OCH}_{3}\right), 62.19\left(\mathrm{C}-5^{\prime}\right), 71.15\left(\mathrm{C}-3^{\prime}\right), 74.13\left(\mathrm{C}-2^{\prime}\right)$, 86.36 (C-4'), 88.13 (C-1'), 113.02 (Ph), 119.58 (C-5), 124.29 (Ph), $128.10(\mathrm{Ph}), 129.93(\mathrm{Ph})$, 140.43 (C-8), 150.69 (C-4), 155.51 (Ph and C-2), 156.33 (C-6); HRMS (ESI-MS) $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{8} \mathrm{O}_{5} \mathrm{Cl}$ $[\mathrm{M}+\mathrm{H}]^{+}: 463.1248$ found, 463.1245 calcd. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{8} \mathrm{O}_{5} \mathrm{Cl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Cell culture and membrane preparation. CHO cells expressing recombinant human ARs or the rat A_{3} AR were cultured in DMEM (Dulbecco's modified Eagle's medium) and F12 (1:1) supplemented with 10% fetal bovine serum, 100 units $/ \mathrm{mL}$ penicillin, $100 \mu \mathrm{~g} / \mathrm{mL}$ streptomycin, and $2 \mu \mathrm{~mol} / \mathrm{mL}$ glutamine. After harvest and homogenization, the cells were centrifuged at 500 g for 10 min . The pellet was resuspended in 50 mM Tris- HCl buffer $(\mathrm{pH} 7.4)$ containing 10 mM MgCl_{2} and 1 mM EDTA. The suspension was homogenized with an electric homogenizer for 10 s , and was then recentrifuged at $20,000 \mathrm{~g}$ for 20 min at $4^{\circ} \mathrm{C}$. The resulting pellets were resuspended in buffer containing 3 units $/ \mathrm{mL}$ of adenosine deaminase, and the suspension was stored at $-80^{\circ} \mathrm{C}$ prior to the binding experiments. The protein concentration was measured using the Bradford assay. ${ }^{39}$

Radioligand binding studies. For the $\mathrm{A}_{3} \mathrm{AR}$ binding experiments, the procedures were similar to those previously described. ${ }^{19}$ Briefly, each tube contained $100 \mu \mathrm{~L}$ of membrane suspension, 50 $\mu \mathrm{L}$ of $\left[{ }^{125} \mathrm{I}\right] \mathrm{I}-\mathrm{AB}-\mathrm{MECA}\left({ }^{[25} \mathrm{I}\right] N^{6}$-(4-Amino-3-iodobenzyl)adenosine-5'- N-methyl-uronamide, final concentration 0.5 nM), and $50 \mu \mathrm{~L}$ of increasing concentrations of compounds in tris- HCl
buffer ($50 \mathrm{mM}, \mathrm{pH} 7.4$) containing $10 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ EDTA. Non-specific binding was determined using $10 \mu \mathrm{M}$ NECA (adenosine-5'- N-ethyluronamide). The mixtures were incubated at $25^{\circ} \mathrm{C}$ for 60 min . Binding reactions were terminated by filtration through Whatman GF / B filters under reduced pressure using a MT-24 cell harvester (Brandel, Gaithersburg, MD). Filters were washed three times with ice-cold buffer. Radioactivity was determined in a Beckman 5500B γ-counter. The binding of $\left[{ }^{3} \mathrm{H}\right]$ CCPA (2 -chloro- N^{6}-cyclopentyladenosine) to the recombinant $\mathrm{hA}_{1} \mathrm{AR}$ and the binding of $\left[{ }^{3} \mathrm{H}\right]$ CGS2 1680 (2-[p-(2-carboxyethyl)phenyl-ethylamino]-5'- N -ethylcarboxamido-adenosine) to the recombinant $\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$ was performed as previously described. ${ }^{20,44}$

Cyclic AMP accumulation assay. Intracellular levels of $3^{\prime}, 5^{\prime}$-cyclic AMP were measured by the competitive protein binding method. ${ }^{32} \mathrm{CHO}$ cells expressing recombinant human ${ }^{40}$ ARs were harvested by trypsinization. After resuspension in the medium, cells were plated in 24-well plates in 0.5 mL medium/well. After 24 h the medium was removed and cells were washed three times with $1 \mathrm{~mL} /$ well of DMEM containing 50 mM N-2-hydroxyethylpiperazine- N^{\prime}-2-ethanesulfonic acid, pH 7.4. Cells were then treated with agonists and/or test compounds in the presence of rolipram $(10 \mu \mathrm{M})$ and adenosine deaminase (3 units $/ \mathrm{mL}$) and incubated at $37^{\circ} \mathrm{C}$. For the $\mathrm{A}_{3} \mathrm{AR}$, after 45 min forskolin $(10 \mu \mathrm{M})$ was added to the medium, and incubation was continued for an additional 15 min . The reaction was terminated upon removal of the medium, and the cells were lysed with $200 \mu \mathrm{~L} /$ well of 0.1 M ice-cold HCl . The cell lysate was resuspended and stored at -20 ${ }^{\circ} \mathrm{C}$. For determination of cyclic AMP production, protein kinase A (PKA) was incubated with $\left[{ }^{3} \mathrm{H}\right]$ cyclic AMP $(2 \mathrm{nM})$ in $\mathrm{K}_{2} \mathrm{HPO}_{4} /$ EDTA buffer $\left(\mathrm{K}_{2} \mathrm{HPO}_{4}, 150 \mathrm{mM}\right.$; EDTA, 10 mM$), 20 \mu \mathrm{~L}$ of the cell lysate, and $30 \mu \mathrm{~L} 0.1 \mathrm{M} \mathrm{HCl}$. Bound radioactivity was separated by rapid filtration
through Whatman GF/C filters under reduced pressure and washed once with cold buffer. Bound radioactivity was subsequently measured by scintillation spectrometry. Calculation of the relative maximal efficacy at the $\mathrm{A}_{3} \mathrm{AR}$ was determined at a fixed concentration of the nucleoside analogue $(10 \mu \mathrm{M})$ and expressed as a relative percent of the effect of $10 \mu \mathrm{M}$ NECA determined in each experiment, which typically reached $\sim 50 \%$ inhibition of the forskolin stimulated cyclase.

Molecular Modeling. All calculations were performed on a Silicon Graphics Octane2 workstation (600 MHz IP30 processor, MIPS R14000). Compound 10, 2-(4-cyclopentylmethyl-1,2,3-triazole)- N^{6}-methyl-adenosine was constructed with the use of the Sketch Molecule of SYBYL 7.1 (Tripos Inc., 1699 South Hanley Rd., St. Louis, Missouri 63144, USA.). A grid search was performed, in which flexible bonds were rotated by $0,180^{\circ}$ for $\mathrm{tl}\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{N}^{6}-\mathrm{C}_{\text {Me }}\right)$ at the N^{6} position, $\mathrm{t} 2\left(4^{\prime} \mathrm{O}-4^{\prime} \mathrm{C}-5^{\prime} \mathrm{C}-5^{\prime} \mathrm{OH}\right)$ at the 5^{\prime}-position and $\mathrm{t} 3\left(\mathrm{~N}_{3}-\mathrm{C}_{2}-\mathrm{N}_{1}{ }^{\prime}-\mathrm{N}_{2}{ }^{\prime}\right)$ and by 60,180 , 60° for $\mathrm{t} 4\left(\mathrm{~N}_{3}{ }^{\prime}-\mathrm{C}_{4}{ }^{\prime}-\mathrm{C}_{\mathrm{Me}}-\mathrm{C}_{\mathrm{Cyc}}\right)$ and $\mathrm{t} 5\left(\mathrm{C}_{4}{ }^{\prime}-\mathrm{C}_{\mathrm{Me}}-\mathrm{C}_{\mathrm{Cyc}}-\mathrm{C}_{\mathrm{Cyc}}\right)$ at the C 2 position. The low-energy conformers from the grid search were re-optimized, removing all torsional constraints. Merck molecular force field (MMFF) ${ }^{41}$ and charges were applied with the use of distance-dependent dielectric constants and conjugate gradient method until the gradient reached $0.05 \mathrm{kcal} \cdot \mathrm{mol}^{-1} \cdot$ \AA^{-1}. After clustering the low-energy conformers from the result of the grid search, the representative ones from all groups were re-optimized by semi-empirical molecular orbital calculations with the PM3 method in the MOPAC 6.0 package. ${ }^{42}$

A human $\mathrm{A}_{3} \mathrm{AR}$ model (PDB code: 1OEA) constructed by homology to the X-ray structure of bovine rhodopsin with 2.8 Å resolution (PDB ID: 1 F88) ${ }^{38}$ was used for the docking study. All atom types were assigned by the Amber7_FF99 force field. ${ }^{43}$ Amber charges for protein and

MMFF charges for ligand were calculated. The starting geometry of the ligand conformation was chosen from the human $\mathrm{A}_{3} \mathrm{AR}$ complex model with Cl-IB-MECA, ${ }^{19}$ which was already validated by point-mutation. The ribose binding position was fixed, using an atom-by-atom fitting method for the carbon atoms of the ribose ring. To determine the binding region of the 2-(4-cyclopentylmethyl-1,2,3-triazole) moiety at the adenine 2 position, the flexible bond defining a χ_{1} ($\mathrm{O}-\mathrm{C}_{1}{ }^{\prime}-\mathrm{N}_{9}-\mathrm{C}_{4}$) angle was searched while docked within the putative binding cavity through various low energy conformers with diverse tl to t 5 angles, rotating by $-60,-110,-160^{\circ}$, assuming an anti-conformation. Several conformations without any steric bump were selected for further optimization. The initial structures of all complexes were optimized using the Amber force field with a fixed dielectric constant of 4.0 and a terminating gradient of $0.05 \mathrm{kcal} \cdot \mathrm{mol}^{-1} \cdot$ \AA^{-1}.

Acknowledgements

This research was supported in part by the Intramural Research Program of the NIH, National Institute of Diabetes and Digestive and Kidney Diseases.

Supporting Information Available: elemental analysis data for compounds 1-20, 23, 31 and 33. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) Müller, C. E. Adenosine Receptor Ligands-Recent Developments Part I. Agonists. Curr. Top. Med. Chem. 2000, 7, 1269-1288.
(2) Linden, J. Cloned adenosine A_{3} receptors: pharmacological properties, species differences and receptor functions. Trends Pharmacol. Sci. 1994, 15, 298-306.
(3) Fredholm, B. B.; IJzerman, A. P.; Jacobson, K. A.; Klotz, K. N.; Linden, J. International Union of Pharmacology XXV. Nomenclature and classification of adenosine receptors Pharmacol. Rev. 2001, 53, 527-552.
(4) Jacobson, K. A., Gao, Z.-G. Adenosine receptors as therapeutic targets. Nature Rev. Drug Discov. 2006, 5, 247-246.
(5) Fishman, P.; Bar-Yehuda, S. Pharmacology and Therapeutic Applications of A ${ }_{3}$ Receptor Subtype. Curr. Top. Med. Chem. 2003, 3, 463-469.
(6) Fishman, P. The A_{3} adenosine receptor as a new target for cancer therapy and chemoprotection. Exp. Cell Res. 2001, 269, 230-236.
(7) Müller, C. E. Medicinal Chemistry of Adenosine A_{3} Receptor Ligands. Curr. Top. Med. Chem. 2003, 3, 445-462.
(8) Jacobson, K. A.; Moro, S.; Kim, Y. C.; Li, A. H. A ${ }_{3}$ adenosine receptors: Protective vs. damaging effects identified using novel agonists and antagonists. Drug Dev. Res. 1998, 45, 113-124.
(9) Brambilla, R.; Cattabeni, F.; Ceruti, S.; Barbieri, D.; Franceshi, C.; Kim, Y.; Jacobson, K. A.; Klotz, K. N.; Lohse, M. J.; Abbracchio, M. P. Activation of the A_{3} adenosine receptor effects cell cycle progression and cell growth. Naunyn-Schmiedeberg's Arch. Pharmacol. 2000, 361, 225-234.
(10) von Lubitz, D. K.; Lin, R. C. ; Popik, P. ; Carter, M. F. ; Jacobson, K. A. Adenosine A ${ }_{3}$ receptor stimulation and cerebral ischemia. Eur. J. Pharmacol. 1994, 263, 59-67.
(11) von Lubitz, D. K.; Carter, M. F. ; Deutsch, S. I. ; Lin, R. C. ; Mastrapaolo, J.; Meshulam, Y.; Jacobson, K. A. The effects of adenosine A_{3} adenosine receptor stimulation on seizures in mice. Eur. J. Pharmacol. 1995, 275, 23-29.
(12) Borea, P. A.; Baraldi, P. G.; Chen, S.F.; Leung, E. Enhancing treatment of MDR cancer with adenosine A_{3} antagonists. PCT Int. Appl. WO 2004000224, 2003.
(13) Civan, M. M.; Macknight, A. D. C. The ins and outs of aqueous humour secretion. Exp. Eye Res. 2004, 78, 625-631.
(14) Okamura, T.; Kurogi, Y.; Hashimoto, K.; Sato, S.; Nishikawa, H.; Kiryu, K.; Nagao, Y. Structure-activity relationships of adenosine A_{3} receptor ligands : New potential therapy for the treatment of glaucoma. Bioorg. Med. Chem. Lett. 2004, 14, 3775-3779.
(15) Yang, H., Avila, M.Y.; Peterson-Yantorno, K.; Coca-Prados, M.; Stone, R.A.; Jacobson, K.A.; Civan, M.M. The cross-species A_{3} adenosine-receptor antagonist MRS 1292 inhibits adenosine-triggered human nonpigmented ciliary epithelial cell fluid release and reduces mouse intraocular pressure. Current Eye Res. 2005, 30, 747-754.
(16) Poulsen, S. A.; Quinn, R. J. Adenosine receptors : New opportunities for future drugs. Bioorg. Med. Chem. 1998, 6, 619-641.
(17) Perreira, M.; Jiang, J.-K.; Klutz, A. M.; Gao, Z.-G.; Shainberg, A.; Lu, C.; Thomas, C. J.; Jacobson, K. A. "Reversine" and its 2 -substituted adenine derivatives as potent and selective A_{3} adenosine receptor antagonists. J. Med. Chem. 2005, 48, 4910-4918.
(18) Lenzi, O.; Colotta, V.; Catarzi, D.; Varano, F.; Filacchioni, G.; Martini, C.; Trincavelli, L.; Ciampi, O.; Varani, K.; Marighetti, F.; Morizzo, E.; Moro, S. 4-Amido-2-aryl-1,2,4-triazolo[4,3-a]quinoxalin-1-ones as new potent and selective human A_{3} adenosine receptor antagonists. synthesis, pharmacological evaluation, and ligand-receptor modeling studies. J. Med. Chem. 2006, 49, 3916-3925.
(19) Gao, Z.-G.; Kim, S.-K.; Biadatti, T.; Chen, W.; Lee, K.; Barak, D.; Kim, S. G.; Johnson, C. R.; Jacobson, K. A. Structural determinants of A_{3} adenosine receptor activation: Nucleoside ligands at the agonist/antagonist boundary. J. Med. Chem. 2002, 45, 44714484.
(20) Gao, Z.-G.; Blaustein, J. B.; Gross, A. S.; Melman, N.; Jacobson, K. A. N^{6}-substituted adenosine derivatives: selectivity, efficacy and species differences at A_{3} adenosine receptors. Biochem. Pharmacol. 2003, 65, 1675-1684.
(21) Volpini, R.; Constanzi, S.; Lambertucci, C.; Vittori, S.; Klotz, K.-N.; Lorenzen, A.; Cristalli, G. Introduction of alkynyl chains on C-8 of adenosine led to very selective antagonists of the A_{3} adenosine aeceptor. Bioorg. Med. Chem. Lett. 2001, 11, 1931-1934.
(22) Elzein, E.; Palle, V.; Wu, Y.; Maa, T.; Zeng, D.; Zablocki, J. 2-Pyrazolyl- N^{6}-substituted adenosine derivatives as high affinity and selective adenosine A_{3} receptor agonists. J. Med. Chem. 2004, 47, 4766-4773.
(23) Volpini, R.; Constanzi, S.; Lambertucci, C.; Taffi, S.; Vittori, S.; Klotz, K. N., Cristalli, G. N^{6}-alkyl-2-alkynyl derivatives of adenosine as potent an selective agonists at the human adenosine A_{3} receptor and a starting point for searching $\mathrm{A}_{2 \mathrm{~B}}$ ligands. J. Med. Chem. 2002, 45, 3271-3279.
(24) Lewis, W.G.; Green, L.G.; Grynszpan, F.; Radić, Z.; Carlier, P.R.; Taylor, P.; Finn, M.G.; Sharpless, K.B. Click chemistry in situ: acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angew. Chem. Int. Ed. Engl. 2002, 41, 1053-1057.
(i) Alvarez, R.; Velázquez, S.; San-Félix, A.; Aquaro, S.; De Clercq, E.; Perno, C.-F.;

Karlsson, A.; Balzarini, J.; Camarassa, M. J. 1,2,3-Triazol-[2',5'-Bis-O-(tert-
butyldimethylsilyl)- β-D-ribofuranosyl]-3'-spiro-5"-(4"-amino-1,2"-oxothiole 2",2"-
dioxide) (TSAO) analogues: synthesis and anti-HIV-1 activity J. Med. Chem. 1994, 37, 4185-4198. (ii) Gunji, H.; Vasella, A. Oligonucleotides with a nucleobase-including backbone - part 4-A convergent synthesis of ethylenediyl-linked adenosine tetramers Helv. Chim. Acta 2000, 83, 3229-3245. (iii) Epple, R.; Kudirka, R.; Greenberg, W. A. Solid-phase synthesis of nucleoside analogs J. Comb. Chem. 2003, 5, 292-310. (iv) O’Mahony, G.; Ehrman, E.; Grøtli, M. Synthesis of adenosine-based fluorosides containing a novel heterocyclic ring system Tetrahedron Lett, 2005, 46, 4745-6748. (v) Moukha-Chafiq, O.; Taha, M. L.; Lazrek, H. B.; Pannecouque, C.; Witvrouw, M.; De Clercq, E.; Barascut, L.; Imbach, J. L. Synthesis and biological activity of 4-substituted 1-[1-(2-hydroxymethoxy)-methyl-1,2,3-triazol-(4 \& 5)-ylmethyl]-1H-pyrazolo-[3,4d]pyrimidines. Nucleosides, Nucleotides \& Nucleic Acids 2001, 20, 1797-1810. (vi) Moukha-Chafiq, O.; Taha, M. L.; Lazrek, H. B.; Vasseur, J. J.; Pannecouque, C.; Witvrouw, M.; De Clercq, E. Synthesis and biological evaluation of some 4-substituted 1-[1-(2-hydroxybutyl)-1,2,3-triazol-(4 \& 5)-ylmethyl]-1H-pyrazolo[3,4-d]pyrimidines. Nucleosides, Nucleotides \& Nucleic Acids 2001, 20, 1811-1821. (vi) Wigerinck P.; Van Aerschot, A.; Claes, P.; Balzani, J.; Declercq, E.; Herdewijn, P. 3'-(1,2,3-Triazol-1-yl)$2^{\prime}, 3^{\prime}$ 'dideoxythymidine and 3^{\prime}-(1,2,3-triazol-1-yl)-2',3'-dideoxyuridine. J. Heterocycl. Chem. 1989, 26, 1635-1642.

Matsuda, A.; Shinozaki, M.; Yamaguchi, T.; Homma, H.; Nomoto, R.; Miyasaka, T.; Watanabe, Y., Abiru, T. Nucleosides and Nucleotides. 103. 2-Alkynyladenosines: a novel class of selective adenosine A_{2} Receptor agonists with potent antihypertensive effects. J. Med. Chem. 1992, 35, 241-252.
(27) Feldman, A., K.; Colasson, B.; Fokin, V.V. One-pot synthesis of 1,4-disubstituted 1,2,3triazoles from situ generated azides. Organic Letters 2004, 6, 3897-3899.
(28) Temple, C. Jr.; Kussner, C. L.; Montgommery, J.A. Studies on the azidomethine-tetrazole equilibrium. V. 2- and 6-azidopurines. J. Org. Chem, 1966, 31, 2210-2215.
(29) Lioux, T.; Gosselin, G.; Mathé, C. Azido/tetrazole tautomerism in 2-azidoadenine beta-Dpentofuranonucleoside derivatives. Eur. J. Org. Chem. 2003, 20, 3997-4002.
(30) Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V.V.; Noodleman, L.; Sharpless, K. B.; Fokin, V.V. Copper(I)-catalysed synthesis of azoles, DFT study predicts unprecedented reactivity and intermediates. J. Am. Chem. Soc. 2005, 127, 210-216.
(31) Umino, T.; Yoshioka, K.; Saitoh, Y.; Minakawa, N.; Nakata, H.; Matsuda, A. Nucleosides and nucleotides. 200. Reinvestigation of 5'-N-ethylcarboxamidoadenosine derivatives: structure-activity relationship for P_{3} purinoceptor-like proteins J. Med.Chem. 2001, 44, 208-214
(32) Nordstedt, C.; Fredholm, B. B. A modification of a protein-binding method for rapid quantification of cAMP in cell-culture supernatants and body-fluid. Anal. Biochem. 1990, 189, 234.
(33) Salvatore, C. A.; Jacobson, M. A.; Taylor, H. E.; Linden, J.; Johnson, R. G. Molecularcloning and characterisation of the human- A_{3} adenosine receptor. Proc. Natl. Acad. Sc.U.S.A. 1993, 90, 10365-10369.
(34) Ohno, M.; Gao, Z.G.; Van Rompaey, P.; Tchilibon, S.; Kim, S.K.; Harris, B.A.; Blaustein, J.; Gross, A.S.; Duong, H.T.; Van Calenbergh, S.; Jacobson, K.A. Modulation of adenosine receptor affinity and intrinsic efficacy in nucleosides substituted at the 2position. Biooorg. Med. Chem. 2004, 12, 2995-3007.
(35) Cosyn, L.; Gao, Z.G.; Van Rompaey, P.; Lu, C.; Jacobson, K.A.; Van Calenbergh, S. Synthesis of hypermodified adenosine derivatives as selective adenosine A_{3} receptor ligands. Bioorg. Med. Chem. 2006, 14, 1403-1412.
(36)

Gao, Z.G.; Jeong, L.S.; Moon, H.R.; Kim, H.O.; Choi, W.J.; Shin, D.H.; Elhalem, E.; Comin, M.J.; Melman, N.; Mamedova, L.; Gross, A.S.; Rodriguez, J.B.; Jacobson, K.A. Structural determinants of efficacy at A_{3} adenosine receptors: Modification of the ribose moiety. Biochem. Pharmacol. 2004, 67, 893-901.
(37) Tchilibon, S.; Kim, S.K.; Gao, Z.G.; Harris, B.A.; Blaustein, J.; Gross, A.S.; Melman, N.; Jacobson, K.A. Exploring distal regions of the A_{3} adenosine receptor binding site: Sterically-constrained N^{6}-(2-phenylethyl)adenosine derivatives as potent ligands. Bioorg. Med. Chem. 2004, 12, 2021-2034.

Palczewski, K.; Kumasaka, T.; Hori, T.; Behnke, C. A.; Motoshima, H.; Fox, B. A.; Le Trong, I.; Teller, D. C.; Okada, T.; Stenkamp, T. E.; Yamamoto, M.; Miyano, M. Crystal structure of Rhodopsin: A G protein-coupled receptor. Science 2000, 289, 739-745.
(39) Bradford, M. M. Rapid and sensitive method for quantification of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 1976, 72, 248.
(40) Baraldi, P. G.; Cacciari, B.; Pineda de las Infantas, M. J.; Romagnoli, R.; Spalluto, G.; Volpini, R.; Constanzi, S.; Vittori, S.; Cristalli, G.; Melman, N.; Park, K.; Jacobson, K. A. Synthesis and biological activity of a new series of N^{6}-arylcarbamoyl, 2-(ar)-alkynyl- N^{6} arylcarbamoyl, and N^{6}-carboxamido derivatives of adenosine- $5^{\prime}-N$-ethyluronamide as A_{1} and A_{3} adenosine receptor agonists. J. Med. Chem. 1998, 41, 3174-3185.
(41) Halgren T. A. MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular-interaction energies and geometries. J. Comput. Chem. 1999, 20, 730-748.
(42) Stewart, J. J. P. MOPAC: A semiempirical molecular orbital program. J. Comput. Aided Mol. Des. 1990, 4, 1-105.
(43) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, Jr., K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. A second generation force field for the simulation of proteins, nucleic acids and organic molecules. J. Am. Chem. Soc. 1995, 117, 5179-5197.
(44) Hutchison, A. J.; Williams, M.; de-Jesus, R.; Yokoyama, R.; Oei, H. H.; Ghai, G. R.; Webb, R.L.; Zoganas, H. C.; Stone, G. A.; Jarvis, M. F. 2-(arylalkylamino)adenosine-5'uronamides - a new class of highly selective adenosine A_{2} receptor ligands. J. Med. Chem. 1990, 33, 1919-1924.

SCHEME AND FIGURE LEGEND

Scheme 1. Synthesis of 1,2,3-triazol-1-yl analogues of N^{6}-methyl-adenosine $\mathbf{1 - 1 1}$. Reagents and conditions: (a) $\mathrm{CH}_{3} \mathrm{NH}_{2}$ in THF, 2 d ; (b) $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, sodium ascorbate, L-proline, $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{NaN}_{3}, \mathrm{H}_{2} \mathrm{O}: \mathrm{tBuOH} 1: 1,60^{\circ} \mathrm{C}$; (c) $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$, sodium ascorbate, alkyne, $\mathrm{H}_{2} \mathrm{O}: \mathrm{tBuOH} 3: 1$, rt.

Scheme 2. Azido/tetrazole tautomerism of a 2-substituted adenosine derivative 23.

Scheme 3. Synthesis of 1,2,3-triazol-4-yl analogues of N^{6}-methyl-adenosine 12 - 14. Reagents and conditions: (a) trimethylsilylacetylene, $\mathrm{CuI},\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{PdCl}_{2}, \mathrm{DMF}$; (b) 7 N NH 33 in $\mathrm{MeOH}, 0^{\circ} \mathrm{C}$; (c) $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, sodium ascorbate, alkyne, $\mathrm{H}_{2} \mathrm{O}: \mathrm{tBuOH} 3: 1$, rt.

Scheme 4. Synthesis of 1,2,3-triazol-1-yl analogues of N^{6}-methyl-adenosine-5'-Nethyluronamide 15 - 19. Reagents and conditions: (a) $\mathrm{KMnO}_{4}, \mathrm{KOH}, \mathrm{rt}, 20 \mathrm{~h}$; (b) pnitrophenol, EDCI, DMF, rt; (c) ethylamine; (d) $80 \% \mathrm{TFA} / \mathrm{H}_{2} \mathrm{O}$; (e) $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$, sodium ascorbate, L-proline, $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{NaN}_{3}, \mathrm{H}_{2} \mathrm{O}: \mathrm{tBuOH} 1: 1,6{ }^{\circ} \mathrm{C}$; (f) $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$, sodium ascorbate, alkyne, $\mathrm{H}_{2} \mathrm{O}: \mathrm{tBuOH} 1: 1$, rt.

Scheme 5. Synthesis of compound 20, 2-(4-cyclopentylmethyl-1,2,3-triazol-1-yl)- N^{6}-(2-chloro-5-methoxybenzyl)-adenosine. Reagents and conditions: (a) 2-chloro-5-methoxybenzylammonium chloride, EtN_{3}, EtOH , reflux; (b) $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$, sodium ascorbate, Lproline, $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{NaN}_{3}, \mathrm{H}_{2} \mathrm{O}: t-\mathrm{BuOH} 1: 1,60^{\circ} \mathrm{C}$; (c) $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$, sodium ascorbate, alkyne, $\mathrm{H}_{2} \mathrm{O}: \mathrm{tBuOH} 1: 1$, rt.

Figure 1. A) Docking complexes of compound 10, 2-(4-cyclopentylmethyl-1,2,3-triazol-1-yl)-N^{6}-methyl-adenosine. B) Superimposition of Cl-IB-MECA in red and compound $\mathbf{1 0}$ in
color by atom type. Residues that were within $5 \AA$ proximity to the ligand in this putative binding site were: L91 (3.33), T94 (3.36), H95 (3.37), Q167 (EL2), F168 (EL2), M172 (EL2), S181 (5.42), M177 (5.38), V178 (5.39), F182 (5.43), W243 (6.48), L246 (6.51), S247 (6.52), N250 (6.55), C251 (6.56), I268 (7.39), S271 (7.42), and H272 (7.43). The ligand is represented by a ball-and-stick model. The H -bonds are indicated with yellow dots. Using MOLCAD ribbon surface program, the $\mathrm{A}_{3} \mathrm{AR}$ is shown in a ribbon model with different colors for each TM (TM1: red, TM2: orange, TM3: yellow, TM4: green, TM5: cyan, TM6: blue, TM7: purple, H8: violet).

Scheme 1

Scheme 2

Scheme 3

$12 \mathrm{R}=$ benzyl
13 R 3-methoxybenzyl
$14 \mathrm{R}=3$-Cl-benzyl

Scheme 4

Scheme 5

Figure 1.

Table 1 Binding affinities of adenosine derivatives at human $\mathrm{A}_{1}, \mathrm{~A}_{2 \mathrm{~A}}$ and A_{3} ARs expressed in CHO cells and relative efficacy at the $\mathrm{A}_{3} \mathrm{AR}$. ${ }^{\mathrm{a}}$

	R1	\mathbf{R}_{2}	\mathbf{R}_{3}	$\mathrm{K}_{\mathrm{i}}(\mathrm{nM})$ or	inhibition)	$10 \mu \mathrm{M}$	$\text { \%Efficacy }{ }^{6}$
				hA ${ }_{1}$	$h^{\prime} \mathbf{2 A}^{\text {a }}$	hA_{3}	h $\mathbf{3}_{3}$
1	$\mathrm{CH}_{2} \mathrm{OH}$	H	CH_{3}	1000 ± 30	(13 $\pm 3 \%)$	10.4 ± 0.2	41 ± 6
2	$\mathrm{CH}_{2} \mathrm{OH}$	ethyl	CH_{3}	2920 ± 910	(18\%)	13.8 ± 3.3	$23^{\text {c }}$
3	$\mathrm{CH}_{2} \mathrm{OH}$	butyl	CH_{3}	848 ± 76	(23\%)	11.7 ± 3.1	3 ± 8
4	$\mathrm{CH}_{2} \mathrm{OH}$	2-hydroxyethyl	CH_{3}	1270 ± 260	(14\%)	45.0 ± 4.4	$25^{\text {c }}$
5	$\mathrm{CH}_{2} \mathrm{OH}$	dimethylaminomethyl	CH_{3}	3800 ± 600	(6\%)	117 ± 25	$8^{\text {c }}$
6	$\mathrm{CH}_{2} \mathrm{OH}$	phenyl	CH_{3}	(36\%)	(5\%)	14.9 ± 1.7	14 ± 8
7	$\mathrm{CH}_{2} \mathrm{OH}$	pyridin-2-yl	CH_{3}	1970 ± 210	(40\%)	10.3 ± 1.5	11 ± 4
8	$\mathrm{CH}_{2} \mathrm{OH}$	4-propoxyphenyl	CH_{3}	(49\%)	(14\%)	25.2 ± 2.6	$31^{\text {c }}$
9	$\mathrm{CH}_{2} \mathrm{OH}$	benzyl	CH_{3}	589 ± 55	(20\%)	9.5 ± 0.7	-1 ± 5
10	$\mathrm{CH}_{2} \mathrm{OH}$	cyclopentylmethyl	CH_{3}	335 ± 13	(39\%)	1.3 ± 0.4	-5 ± 7
11	$\mathrm{CH}_{2} \mathrm{OH}$	cyclohexylmethyl	CH_{3}	1430 ± 60	(16 $\pm 1 \%$)	21.3 ± 8.1	2 ± 5
12	$\mathrm{CH}_{2} \mathrm{OH}$	benzyl	CH_{3}	770 ± 210	(21 $\pm 5 \%$)	53.9 ± 6.6	2 ± 3
13	$\mathrm{CH}_{2} \mathrm{OH}$	3-methoxybenzyl	CH_{3}	957 ± 65	($43 \pm 10 \%$)	86.1 ± 3.8	-1 ± 3
14	$\mathrm{CH}_{2} \mathrm{OH}$	3-Cl-benzyl	CH_{3}	956 ± 6	$(39 \pm 10 \%)$	81.1 ± 5.0	0 ± 5
15	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NHCO}$	H	CH_{3}	590 ± 70	(18 $\pm 3 \%)$	2.1 ± 0.1	102 ± 5
16	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NHCO}$	butyl	CH_{3}	750 ± 110	($43 \pm 1 \%$)	5.6 ± 0.2	89 ± 3
17	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NHCO}$	pyridin-2-yl	CH_{3}	1640 ± 90	($45 \pm 12 \%$)	1.8 ± 0.6	90 ± 7
18	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NHCO}$	benzyl	CH_{3}	510 ± 50	($33 \pm 2 \%$)	2.8 ± 1.3	86 ± 5
19	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NHCO}$	cyclopentylmethyl	CH_{3}	1250 ± 150	(36 $\pm 7 \%$)	11.5 ± 1.4	$83^{\text {c }}$
20	$\mathrm{CH}_{2} \mathrm{OH}$	cyclopentylmethyl	$2-\mathrm{Cl}-5-\mathrm{MeO}-\mathrm{Bn}$	830 ± 40	6000	18 ± 11	-6 ± 3
23	$\mathrm{CH}_{2} \mathrm{OH}$	-	CH_{3}	230 ± 10	(23\%)	10.8 ± 3.1	84 ± 9
31	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NHCO}$	-	CH_{3}	429 ± 55	(18 $\pm 3 \%$)	11.4 ± 4.2	$112^{\text {c }}$
33	$\mathrm{CH}_{2} \mathrm{OH}$	-	$2-\mathrm{Cl}-5-\mathrm{MeO}-\mathrm{Bn}$	60 ± 10	1800 ± 500	1.4 ± 0.1	44 ± 5

a) All $\mathrm{A}_{3} \mathrm{AR}$ experiments were performed using cells stably transfected with cDNA encoding one of the human ARs. Binding at human $\mathrm{A}_{1}, \mathrm{~A}_{2 \mathrm{~A}}$, and A_{3} ARs in this study was carried out as described in Methods using [$\left.{ }^{3} \mathrm{H}\right]$ CCPA, $\left[{ }^{3} \mathrm{H}\right]$ CGS 21680 or $\left[{ }^{[25} \mathrm{I}\right] \mathrm{AB}-\mathrm{MECA}$ as radioligand.

Values from the present study are expressed as K_{i} values (mean \pm s.e.m., $\mathrm{n}=3$, unless noted), or as percent displacement of radioligand.
b) $\%$ Activation at $10 \mu \mathrm{M}$, relative to cyclic AMP inhibitory effect of $10 \mu \mathrm{M} \mathrm{NECA}=$ 100%. Cl-IB-MECA was also a full agonist (100%) in this assay.
c) $n=2$.

[^0]
$\mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{OH}, \mathrm{CONH}-\mathrm{C}_{2} \mathrm{H}_{5}$
$\mathrm{R}_{2}=$ alkyl, aryl, arylalkyl, cycloalkylmethyl $R_{3}=M e$, substituted $B n$
$$
X=C, Y=N ; X=N, Y=C
$$

[^0]: Table of Contents Graphic

