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Abstract
The intermediate representation (IR) forms the informa-

tion exchanged among different passes of program compi-
lation. The intermediate format proposed for extensibility
and persistence is written in XML. In this way, the pro-
gram transformations that were internal to the compiler
become visible. The hierarchical structure of XML makes
a natural representation for the abstract syntax tree (AST).
A compiler can parse the program source into an IR, then
output it as an XML document. Separated by orthogonal
namespaces, other IRs are also presented in the same XML
document, gathering program information such as depen-
dence vectors, transforming matrices, iteration spaces de-
pendence graphs and cache reuse distances. This XML
document can be exchanged between the compiler and pro-
gram visualizers for parallelism and locality.Keywords—

intermediate representations, XML, performance visualiza-
tions

1 Introduction
Designers of compiler systems have employed the in-

termediate representation (IR) to systematically define the
data interface between its different subsystems [1, 6, 4].
An IR includes the most common data structures used in
the compiler. The high level data structures include the ab-
stract syntax tree, the symbol and the type table, the call
graph and the dependence graph, and the low level data
structures include the task graph and the instruction tuples.

In order to exchange information between different
passes and to support flexible combination of compile op-
tions, the IR is made persistent through an intermediate
format likeSUIF in the SUIF compiler [15], andLcode
in the IMPACT compiler [7]. Similar efforts are also
made to serialization of Java data structure through the
java.io.Serializable interface [10].

Earlier efforts like ASDL [14] has been made to pickle
or marshal the tree-like IR defined within individual com-
piler like SUIF. After writing several hundred lines of
ASDL definition, thousands line of code implementing the
API for pickling are generated. The API supports the shar-
ing of information among different compilers or between a
compiler and another programming tool.

Experience with ASDL inlcc [8] has shown how to
retrofit an existing compiler by separating its C parser and
the multi-platform code generator into two components
communicating only through ASDL. Afterwards new opti-
mizer components could be inserted without changing the
two parts.

Both the designers and the users of ASDL have notified
that the drawback of using ASDL is a duplication of data
structure in memory [14, 8]. To improve the efficiency,
the Aterm [13] targeting at minimize the storage of trees in
more efficient binary formats.

With the advent of XML [3] as an information ex-
change standard, almost every corner of the software in-
dustry is inspired to share the once-incompatible informa-
tion to the other XML enabled applications. This trends
already deeply touched the compiler industry. Any XML
document, in the first place, has to be valid against its
DTD(document type definition) by an XML parser. An-
other example is theGCCXMLKitware project, where XML
is adopted to output procedural information [9]. Both the
Java serialization and the ASDL pickle can further be con-
verted from and to the XML format [8].

However small, both ASDL and Aterm still have to
occupy memory as additional overhead when retrofit an
existing compiler, while pure event-based XML parser
SAXparser does not. In this paper, we propose a thor-
ough use of XML in the compiler infrastructure. That is,
to exchange all the IR data structures in XML as needed.
This will support persistence of the compiler internal in-
formation and make it extensible for outside tools to share
the information with the compiler. As will be shown in the
paper, not only tree-like AST can be represented, various
IR data structures including complex dependence graphs
can be expressed in XML. The use of orthogonal names-
paces for various data structures makes it possible to bind
related information in a single XML document. The appar-
ent huge requirement for XML storage can be alleviated by
a stand-alone compression tool.

The remainder of the paper is given as follows: sec-
tion 2 discusses the reason to XMLize the common IR used
in most of the compilers; section 3 overviews the compiler
system combined with external transforming tools and vi-
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Table 1:The name-spaces for our compiler IR
namespace representation
ast an abstract syntax tree(AST)
yaxx a YACC parsing tree
par an identified parallel or sequential loop
isdg an iteration space dependence graph
hotspot performance bottleneck locations
trace an execution trace of memory instructions
cache parameters for simulating a cache
rdv a reuse distance vector

sualizers; section 4 visualize other program information
like loop dependence and cache behavior by sharing infor-
mation between the compiler and various visualizers; sec-
tion 5 concludes the work with future perspectives.

2 Representations in XML
An XML document for the intermediate representation

(IR) is a tree of XML tags. In our design, an IR document
has the following form:

<IR phase="parsed" source="gaussjordan"
xmlns:ast="http://elis.rug.ac.be/fpt"
xmlns:par="http://elis.rug.ac.be/par"
xmlns:yaxx="http://elis.rug.ac.be/yaxx"
...>

...
</IR>

The root ”IR” tag of the document tree has two basic at-
tributes: ”phase” indicates which compiling or visualizing
phase the IR belongs to; ”source” indicates the name of the
source program under investigation. As the document root,
it carries a number of uniform resource identifiers for or-
thogonal name-spaces, e.g. see table 1. Though they are
not a complete set of IR used in program transformations
and visualizations, the extensibility of XML opens possi-
bility for name-spaces of additional applications.

Each child XML tag is prefixed with the name-space
corresponding to a certain intermediate representation. For
example, the abstract syntax tree has anast: prefix, the
parsing tree has ayaxx: prefix, the parallelizable loop
has apar: prefix, etc.

Global data structures are put as the immediate sub-
trees of the document root. E.g.ast:N PROGRAM
as the root of an AST; the name of the starting rule
yaxx:executable program as the root of a parsing
tree, atrace:sequence as the root of a program exe-
cution trace, etc.

Local data structures are put as the children of an AST
node corresponding to its scope. For example, the de-
pendence test annotates each parallel DO loop ”ast:SDO”
with the parallel information:

<ast:S_DO> <par:true/> ... </ast:S_DO>

Similarly, tag isdg:graph is a child of the outermost
loop of a loop nest<ast:S DO>, denoting an itera-
tion space dependence graph. Other information, such as
hotspot:histogram which contains statistic informa-
tion for cache miss patterns can be attached to any state-
ment in the AST, either a program unit, a loop nest or even
a single memory instruction. In this way, program seman-
tic information are othogonally associated with the AST in
one XML document.

3 Extending the system architecture
Using XML to represent the IR in a compiler, we aim to

extend the compiler with the ability to exchange informa-
tion with external tools, such as Omega calculator [11] and
program visualizers including ISV [17] and CacheVis [16].
The design of the integrated system is shown in figure 1.
As a source-to-source optimizing compiler, FPT is sepa-
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Figure 1:The extended system architecture.

rated into several phases: the first phase parse a source
Fortran program into AST; then each phase either changes
the AST or creates additional IR; the last phase unparse the
AST back to a target Fortran program.

The separation of phases was internal to FPT before in-
troducing the XML interface: XML parser and XML un-
parser. They bridge between the IR and the XML docu-
ment, which is then given to external tools, namely, XSLT,
Omega and Visualizers.

The XSLT is a collection of XML transformers:
unroll*.xsl performs loop unrolling transformation
which has been implemented in FPT. Now it is performed
purely in XSLT, showing the potential to implement a com-
piler transformation outside the compiler;fortran.xsl
just produces the Fortran source code from the syntax in-
formation in the IR document, which is similar to FPT un-
parser. But it does not require the document to be loaded
into FPT and does provide a convenient debugging tool for



checking the correctness of transformations;omega.xsl
extracts the iteration space and dependence equations from
an AST as input to the Omega calculator, anddoall.xsl
interfaces with Omega calculator to annotate the parallel
loop loops in the AST; finally,trace.xsl creates an in-
strumented program that allows dependence analyzers in
ISV and cache simulator in CacheVis to visualize the de-
pendence graph and cache miss hot spots.

4 Program Visualizations
The AST in XML form can be obtained from the XML-

enabled parser such as YAXX, then visualized either by
using commercial XML editors such asXMLSpyor open-
source graph layout tools such asGraphViz [5] and
Vcg [12]. Besides the AST, other semantics information
can also be visualized.

For performance optimization, two kinds of program
characteristics are considered extremely important. One
is the parallelism, the other data locality. The semantics
information for studying parallelism is data dependence,
while the information for studying the cache behavior is
reuse distances [2] in cache stack history. The data depen-
dences can be visualized using a loop dependence visual-
izer ISV [17]; the data locality can be visualized using a
cache visualizing tool CacheVis [16]. The integration glue
for them with the compiler is naturally XML.
4.1 AST in XML for visualization

Abstract syntax tree(AST) is the most commonly used
IR for the program syntax. The syntax of high-level pro-
gramming languages are expressed in production rules in
Backus Naur Form (BNF). On reduction of a production
rule, the right-hand sided terms become the children of the
left-hand sided term in a syntax tree.

We adaptedbison , an open-source variant of YACC,
to produce a DTD from the YACC grammar and a pars-
ing tree in the DTD-compliant XML corresponding to a
program follows the grammar. The “start” non-terminal
becomes the root of the XML document. A terminal node
is always a leaf node in the XML tree. A non-terminal
with non-empty production rule have the RHS nodes as its
children.

A parsing tree might be used as an AST before several
concerns are addressed.

• The parsing tree from YACC grammar are usually too
deep because a repetitive structure like a list is often
represented by recursive production rules:

List : Item | Item List

However, we can make it more readable by simplify-
ing the production rule using a feature of document
type definition(DTD) element:

<!ELEMENT List ((Item)+) >

• Secondly it is redundant to have two rules like
“A:==B, B:==C” while the first rule is the only rule
defining A. It can be removed by replacing every oc-
currence of A into B.

After the above simplifications, a grammar does not lose
its expressiveness. To express a Fortran program, its AST
is expressed by the following document type definition:

<?xml version="1.0" ?>
<!ELEMENT N_PROGRAM
((N_COMMENT|N_PARAM|N_TYPE|N_STATEMENT|...)+ )>
<!ELEMENT N_COMMENT (#PCDATA)>
<!ELEMENT N_PARAM ((N_PARA)+)>
<!ELEMENT N_TYPE (type (N_ARRAY_DECL|N_VAR)+)>
<!ELEMENT N_STATEMENT

((S_DO | S_IF | S_ASSIGN | ... )+) >
...

The XML tags correspond to different types of AST node.
Consider a small Fortran program as follows.

!gauss-jordan
parameter(n=16)
dimension a(n,n+1),x(n)
do i=1,n

do j=1,n
if(i.ne.j) then

f=a(j,i)/a(i,i)
do k=i+1,n+1

a(j,k)=a(j,k)-f*a(i,k)
enddo

endif
enddo

enddo
do i=1,n

x(i)=a(i,n+1)/a(i,i)
enddo
end

Its AST is generated as an XML document shown in XML-
Spy ( Figure 2a). The AST can also be transformed by
XSLT into GraphViz [5] visualizer as an up-side-down tree
(Figure 2b).
4.2 Loop dependence visualization

As long as the iteration space dependence graph is gen-
erated, one can visualize it in the ISV [17]. The tool shows
the maximum parallelism in the data-flow execution of
the loop and finds a suitable transformation interactively.
First a nested loop is instrumented with output statement
by trace.xsl to generate the symbolic memory trace.
When executing the instrumented program, a memory in-
struction trace is generated. For instance, the instrumented
Gauss-Jordan outputs the following trace:

<trace>
<iteration id="0"><i>1</i><i>2</i></iteration>
<access id="0" type="R"><var>a</var>

<i>2</i><i>1</i></access>
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Figure 2:Visualizing the AST.

<access id="0" type="R"><var>a</var>
<i>1</i><i>1</i></access>

<access id="0" type="W"><var>f</var></access>
<iteration id="1"><i>1</i><i>2</i><i>2</i></iteration>
<access id="1" type="R"><var>a</var>

<i>2</i><i>2</i></access>
<access id="1" type="R"><var>f</var></access>
<access id="1" type="R"><var>a</var>

<i>1</i><i>2</i></access>
<access id="1" type="W"><var>a</var>

<i>2</i><i>2</i></access> ...
</trace>

Here only iterations with non-empty accesses are output.
An access without index is a scalar, e.g.,f .

Then the iteration space visualizer analyzes the depen-
dences using the trace and creates the following iteration
space dependence graph:

<ISDG>
<iteration id="1">1 2 2/iteration>
<iteration id="2">1 2 3</iteration>
<iteration id="3">1 2 4</iteration>
... (30 iteration nodes)
<dep from="1" to="13" type="flow" />
<dep from="1" to="16" type="flow" />
<dep from="1" to="19" type="flow" />
<dep from="2" to="13" type="flow" />
<dep from="2" to="13" type="anti" />
<dep from="2" to="16" type="flow" />
<dep from="2" to="19" type="flow" />
<dep from="2" to="24" type="flow" />

... (83 dependence edges)
</ISDG>

The ISDG is displayed in the three dimensional iteration
space in ISV, as shown in Figure 3. From the graph, one
sees no dependences in eachi plane, i.e. the J, K loops are
parallelizable.

Plane: I = 1

DOALL J, K valid
Sequential time: 30
Dataflow: 4, Speedup: 7.5
Loop time: 4: Speedup: 7.5
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Figure 3:Gauss-Jordan visualized by the ISV in [17].

4.3 Cache miss visualization
Similar to the trace instrumentation done in the ISV, the

memory trace is used to simulate a cache to generate the
information for visualizing the distribution of cache misses
of an program execution [16]. In ”memory trace.dtd”, in-
stead of showing the variable and their subscripts of each
access, its actual memory address is output.

<!ELEMENT trace (( access )* )>
<!ELEMENT access #PCDATA ) >
<!ATTLIST access addr CDATA #REQUIRED,

type (R | W) #REQUIRED>

Besides, the cache parameters are given to the cache
simulator as an configuration file. E.g. a 1KB direct-
mapped cache with cache line size 32 bytes is given.

<cache>
<capacity unit="byte">1024</capacity>
<line_size unit="byte">32</line_size>
<associativity>1</associativity>

</cache>

The visualizer computes the histogram from the cache
miss trace in the following format.

<!ELEMENT histogram (type*, item*)>
<!ELEMENT type EMPTY>
<!ATTLIST type name CDATA #REQUIRED,

color CDATA #REQUIRED>
<!ELEMENT item (value*)>
<!ATTLIST item name CDATA #REQUIRED>
<!ELEMENT value (#PCDATA)>
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Figure 4: Gauss-Jordan in the cache visualizer [16]. Upper-left window shows a trace of cache misses wrapped at the horizontally
border; lower-left window shows a histogram chart of cache misses over array references, its legend also explains the colors used (see
upper), its X-axis are array references numbered by the lexicographical order in code (see right); the array references in the right window
are spectrumly colored (blue to red stands for small to large) by the intensity of capacity misses.

Both traces and histograms of the Gauss-Jordan pro-
gram are displayed in figure 4. The graphs show the dom-
inant cache misses are capacity miss, and most capacity
misses occur to the 3rd and 4th references in the innermost
loop.
4.4 Cache reuse distance visualization

Besides the traces and histograms, the cache visualizer
also shows the distribution of the reuse distances [2] among
the hot spots in the source code. When consecutive reuses
of data occur far appart in time, there is a high probability
for a cache miss.

First the hot spots are defined by the following DTD.

<!ELEMENT hotspots (source, highlight*)>
<!ELEMENT source (#PCDATA) >
<!ELEMENT hotspot (position, position)>
<!ATTLIST highlight id CDATA #REQUIRED,

color CDATA #REQUIRED>
<!ELEMENT position EMPTY>
<!ATTLIST position row CDATA #REQUIRED,

col CDATA #REQUIRED>

A hot spots document indicates the source file name by
source child. Each hot spot is a region from(row1, col1)
to (row2, col2) in the source code. Thus the source code is
visualized with the hot spots highlighted in specified col-
ors. The distribution of reuse distance in the source code is
visualized by colors in the right window in figure 4.

Another way of presenting the hot spots is using a graph
layout toolvcg [12]. First the cache simulator outputs the

document defined by the following DTD:

<!ELEMENT count (#PCDATA)>
<!ELEMENT fromid (#PCDATA)>
<!ELEMENT frompu (#PCDATA)>
<!ELEMENT function (reference*)>
<!ATTLIST function pu CDATA #REQUIRED>
<!ELEMENT log2distance (#PCDATA)>
<!ELEMENT reference (reuse*)>
<!ATTLIST reference id CDATA #REQUIRED>
<!ELEMENT reuse (log2distance, frompu, fromid, count)>
<!ELEMENT reuse_distance_graph (function+)>

Each instruction has a histogram counting the memory ac-
cesses over different log2 reuse distances. The reused in-
structions with long reuse distances that generate capac-
ity misses are filtered, then these instructions pairs are dis-
played as directed graph invcg .

The long reuse distances ofhealth , one of the Olden
benchmark programs, are visualized in figure 5. One can
see these hot spots coincide with the performance observa-
tion comments in the program.

5 Conclusion
Compiler transformations use intermediate representa-

tions which were internal to the compiler. The interme-
diate representations such as abstract syntax tree, depen-
dence distances, transforming matrices, loop dependence
graphs, memory traces and cache reuse distances can now
be exchanged in XML, because XML is extensible to ex-



Figure 5:The long reuse distances visualized as hot spots

press any structural data in DTD or Schema. An IR of ex-
isting compiler can be re-engineered incrementally through
adding orthogonal namespaces to support additional com-
piler transformations. Transformations can be done even
outside the compiler to exchange information with various
XML-enabled programming tools. Thus, XML becomes
a glue to form an open research environment by seam-
lessly binding the compiler with external transformation
tools such as Omega calculator and visualizers for loop de-
pendences and cache reuse distances.
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