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Abstract. Priority scheduling for packets is a hot topic, as interactive
(voice,video) services are being integrated in existing data networks.
In this paper, we consider a discrete-time queueing system with non-
preemptive (or Head-Of-the-Line) priority scheduling and a general num-
ber of priority classes. Packets of variable length arrive in the queueing
system. We derive expressions for the probability generating functions
of the packet delays. From these functions, some performance measures
(such as moments and approximate tail probabilities) are calculated. We
apply the theoretical results to a queue that handles arriving multimedia
traffic.

1 Introduction

In recent years, there has been much interest in incorporating multimedia ap-
plications in packet-based networks (e.g. IP networks). Different types of traffic
need different QoS standards. For real-time interactive applications, it is im-
portant that mean delay and delay-jitter are bound, while for non real-time
applications, the loss ratio is the restrictive quantity. In order to guarantee ac-
ceptable delay boundaries to delay-sensitive traffic (such as voice/video), several
scheduling schemes – for switches, routers, . . . – have been proposed and ana-
lyzed, each with their own specific algorithmic and computational complexity.
The (strict) priority scheduling is the most drastic one. With this scheduling,
as long as delay-sensitive (or high-priority) packets are present in the queue-
ing system, they will be served first. Delay-insensitive packets can thus only be
transmitted when no delay-sensitive traffic is present in the system. Clearly, this
is the most rigorous way to meet the QoS constraints of delay-sensitive traffic
(and thus the scheduling with the most disadvantageous consequences to the
delay-insensitive traffic), but also the easiest to implement. In the related liter-
ature, there have been a number of contributions with respect to HOL priority
scheduling (see e.g. [1–7]).

In this paper, we focus on the effect of a non-preemptive or HOL (Head-Of-
the-Line) priority scheduling discipline on the performance of a queue with multi-
ple traffic classes. More delay-sensitive traffic is assumed to have non-preemptive
priority over traffic with more flexible delay constraints, i.e., when the server



becomes idle, a packet of the most delay-sensitive traffic that is available is
scheduled for service next. Newly arriving packets cannot interrupt the trans-
mission of a packet that has already commenced, whatever their priority level.
The transmission times of the packets are assumed to be generally distributed
and class-dependent (which reflects the case where different classes represent
different applications). We will demonstrate that an analysis based on proba-
bility generating functions (pgf’s) is extremely suitable for modeling this type
of buffers with a priority scheduling discipline. From these pgf’s, we calculate
closed-form expressions for some interesting performance measures.

2 Mathematical Model

We consider a discrete-time single-server queueing system with infinite buffer
space. Time is assumed to be slotted. There are M types of traffic arriving in
the system. We denote the number of packet arrivals of class-j during slot k by
aj,k (j = 1, . . . , M). All types of packet arrivals are assumed to be i.i.d. from
slot-to-slot and the number of per-slot arrivals are characterized by the joint pgf
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with z defined as a vector with elements zj (j = 1, . . . , M). We define the
marginal pgf’s of the arrivals from class-j during a slot by

Aj(z) , E[zaj,k ] = A(z)
∣

∣

zj=z,zi=1,i6=j
.

We furthermore denote the arrival rate of class-j (j = 1, . . . , M) by λj = A′
j(1)

and the total arrival rate by λT =
∑M

j=1 λj . The service times of the class-j
packets are assumed to be i.i.d. and are characterized by the probability mass
function sj(m), m ≥ 1, and pgf Sj(z) =

∑∞
m=1 sj(m)zm, with j = 1, . . . , M .

We furthermore denote the mean service time of a class-j packet by µj = S′
j(1)

and define the load offered by class-j packets as ρj , λjµj . The total load is

given by ρT ,
∑M

j=1 ρj , and the equilibrium condition requires that ρT < 1.
The system has one server that provides for the transmission of the packets.

Class-i packets are assumed to have non-preemptive priority over class-j packets
when i < j, and within one class the service discipline is FCFS.

3 System Contents at Service Initiation Epochs

In order to be able to analyze the packet delay, we first analyze the system
contents at the beginning of so-called start-slots, i.e., slots at the beginning of
which a packet (if available) can enter the server. Note that every slot during
which the system is empty is also a start-slot. We denote the system contents nj,l

as the number of class-j (j = 1, . . . , M) packets in the buffer at the beginning



of the l-th start-slot, including the packet being served (if any). Their joint pgf
is denoted by

Nl(z) ,E
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 . (1)

The set {(n1,l, . . . , nM,l), l ≥ 1} forms a Markov chain, since the arrival process is
i.i.d. and the buffer solely contains entire packets at the beginning of start-slots.
s∗l denotes the service time of the packet that enters service at the beginning
of start-slot l (which corresponds - by definition - to regular slot k). We then
establish the following system equations:

– If n1,l = . . . = nM,l = 0:

ni,l+1 =ai,k for i = 1, . . . , M.

– If n1,l = . . . = nj−1,l = 0, nj,l > 0:

ni,l+1 =ni,l − 1i=j +

s∗

l −1
∑

m=0

ai,k+m for i = 1, . . . , M,

for j = 1, . . . , M . 1X is the indicator function of X.

Using the system equations, we can derive a relation between Nl(z) and Nl+1(z).
We assume that the system is stable (implying that the equilibrium condition
ρT < 1 is satisfied) and as a result Nl(z) and Nl+1(z) converge both to a common
steady-state value N(z) for l → ∞. By taking the l → ∞ limit of the relation
between Nl(z) and Nl+1(z), we obtain:

N(z) =
z1

z1 − S1(A(z))

{

zMA(z) − SM (A(z))

zM
N(0) (2)

+
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]
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}

.

There are M quantities yet to be determined in the right hand side of equation
(2), namely the functions N(zj) (j = 2, .., M) and the constant N(0). First, we
will recursively express N(zm) (m = 1, .., M) in terms of the N(zj) (j = m +

1, .., M) and N(0). We define X0(z) , A(z). In the m-th step of our (recursive)
calculation, we assume that Xm−1(zm) has already been defined and that the
following equation holds:

N(zm) =
zm

zm − Sm(Xm−1(zm))

{

zMXm−1(zm) − SM (Xm−1(zm))
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Substituting m = 1 in this equation yields equation (2), which is the starting
point of our recursive procedure. Applying Rouché’s theorem, it can then be
proved that for given values of zj with |zj | < 1 (j = m + 1, .., M), the equa-
tion zm = Sm(Xm−1(zm)) has a unique solution in the complex unit circle for
zm, which will be denoted by Ym(zm+1) in the remainder, and which is implic-
itly defined by Ym(zm+1) , Sm(Xm−1(zm))|zm=Ym(zm+1). Since any pgf is finite
inside the unit circle and since Ym(zm+1) is a zero of the denominator of the
right hand side of (3), Ym(zm+1) must also be a zero of the numerator. Defining
Xm(zm+1) , Xm−1(zm)|zm=Ym(zm+1) (and X0(z1) = A(z)), this leads to ex-
pression (3) with m substituted by m + 1, which means that the m + 1-th step
of the algorithm can be applied next. After M − 1 iterations we finally find:

N(zM) =N(0)
zMXM−1(zM) − SM (XM−1(zM))

zM − SM (XM−1(zM))
. (4)

Next, we can calculate the functions N(zm) (m = 1, . . . , M − 1) as a function
of N(0). We therefore iteratively substitute the (in that step already) found
expressions of N(zj) (j = m+1, . . . , N) in equation (3). Equaling m to 1 finally
gives N(z) as a function of N(0). The expression for general M is too elaborate
though, but we have outlined the principle by which this M -th dimensional
function can be calculated. The last remaining unknown is N(0). This constant
can be calculated by applying the normalization condition N(1) = 1, with 1 a
vector of size M with all elements equal to 1. This concludes the procedure to
calculate N(z), which is used in the analysis of the packet delays in the next
section.

4 Packet Delays

The delay of a packet is defined as the number of slots between the end of the
packet’s arrival slot and the end of its departure slot. We denote the delay of a
tagged class-j packet by dj and its pgf by Dj(z) (j = 1, . . . , M). We furthermore
denote the arrival slot of the tagged packet by slot k. If slot k is a start-slot, it
is assumed to be start-slot l. If slot k is not a start-slot on the other hand, the
last start-slot preceding slot k is assumed to be start-slot l. In this section, we
show how an expression for Dj(z) - for general j - is derived.

Let us first refer to the packets in the system at the end of slot k, but
that have to be served before the tagged packet as the “primary packets”. So,
basically, the tagged class-j packet enters the server, when all primary packets
and all packets with higher priority that arrived after slot k (i.e., while the tagged
packet is waiting in the queue) are transmitted. In order to analyze the delay
of the tagged class-j packet, the number of packets that are served between the
arrival slot of the tagged class-j packet and its departure slot is important (and
more specifically the time necessary to transmit them), not the precise order
in which they are served. Therefore, in order to facilitate the analysis, we will
consider an equivalent virtual system with an altered service discipline. From
slot k on, we aggregate the j − 1 highest priority classes in one class and serve



the packets in this aggregated class in a LCFS way (those in the queue at the
end of slot k and newly arriving ones). So, a primary packet can enter the server,
when the system becomes free (for the first time) of packets of this aggregated
class that arrived during and after the service time of the primary packet that

preceded it according to the new service discipline. Let v
(n)
i,m (i = 1, . . . , j) denote

the length of the time period during which the server is occupied by the m-th
class-i packet that arrives during slot n and its “successors” of the aggregated
class, i.e., the time period starting at the beginning of the service of that packet
and terminating when the system becomes free (for the first time) of packets
of the j − 1 highest priority classes which arrived during and after its service

time. The v
(n)
i,m’s (i = 1, . . . , j) are called sub-busy periods, initiated by the m-th

class-i packet that arrived during slot n. Notice that the v
(n)
i,m depend on the class

we are analyzing (i.e. class-j), but to alleviate the notation this dependency is
taken into account implicitly. It is clear that the lengths of consecutive sub-busy
periods initiated by class-i packets are i.i.d. and thus have the same pgf Vi(z)
(which implicitly depends on j). This pgf is given by

Vi(z) = Si(zA(V1(z), . . . , Vj−1(z), 1, . . . , 1)), (5)

with i = 1, . . . , j; j = 1, . . . , M . This can be understood as follows: when the
m-th class-i packet that arrived during slot n enters service, its sub-busy period,

v
(n)
i,m, consists of two parts: the service time of that packet itself, and the service

times of the packets of higher priority than the tagged class-j packet (the ag-
gregated class) that arrive during its service time and of their successors of the
aggregated class. This leads to equation (5).

Finally, dj can be expressed in terms of the ni,l, i = 1, . . . , M defined in the
previous section. Dj(z) is then calculated as a function of N(z) by z-transforming
this expression for dj . The function N(z) was already calculated in section 3
and as a result Dj(z) can be found. We refer to [7] and [8] for more details on
similar queueing analyses. Dj(z) is found to be given by (after some extensive
mathematical manipulations)

Dj(z) =
1 −

∑j
i=1 ρi

λj

Sj(z)(zBj−1(z) − 1)

zBj−1(z) − Bj(z)

Bj(z) − Bj−1(z)

Vj(z) − 1
(6)
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 ,

with expression (5) of the Vi(z) expanded to i = j + 1, . . . , M and with Bi(z) ,

A(V1(z), . . . , Vi(z), 1, . . . , 1) (i = 1, . . . , j). Note that this expression is also cor-
rect for D1(z), the pgf of the highest priority class.

5 Performance Measures

The functions Vi(z), defined in the previous section, can be explicitly found only
in case of some specific arrival and service processes. Their derivatives for z = 1,



necessary to calculate the moments of the packet delay, on the contrary, can
be calculated in closed-form. So means, variances and higher moments of the
packet delays of all classes can be calculated straightforwardly by taking the
appropriate derivatives of expression (6) and substituting z by 1.

Furthermore, the tail probabilities of the packet delays can also be approx-
imately calculated from the pgf’s calculated in the previous section. These tail
distributions are often used to impose statistical bounds on the guaranteed QoS
for both classes. In order to determine the asymptotic behavior of the tail dis-
tribution, the dominant singularity of the respective pgf is important. The tail
behavior of the delay of class-j packets is a bit more involved than in usual
queueing analyses, since it is not a priori clear what the dominant singularity of
Dj(z) is. This is due to the occurrence of the functions Vi(z), i = 1, . . . , j − 1
in (6), which are only implicitly defined. In [6] it is proved that these implicitly
defined functions have a branch-point singularity zB where their first derivatives
become infinite but the functions themselves remain finite. zB is then also a
branch point of Dj(z). A second potential singularity of Dj(z) is given by the
(dominant) zero zP of zBj−1(z) − Bj(z) on the real axis (see expression (6)).

The tail behavior of the packet delay of class-j packets is thus characterized
by the singularities zP or zB , depending on which one is dominant (i.e., which
one has the smallest modulus). Three types of tail behavior may occur, namely
when zP is dominant, zP = zB and zB is dominant. In those three cases, the tail
probabilities of the class-j packet delay are given by (see [6] for more details)

Prob[dj = n] ≈



























K1z
−n+1
P if zP dominant

K2n
−1/2z−n

B√
zBπ

if zP = zB dominant

K3n
−3/2z−n

B

2
√

π/zB

if zB dominant.

(7)

The constants Ki (i = 1, 2, 3) can be found by investigating the pgf Dj(z) in
the neighborhood of its singularity. The first expression of (7) shows a typical
geometric tail behavior, the third expression shows a typical non-geometric tail
behavior and the second expression gives a transition between both.

6 Numerical Examples

In this section, we present some numerical examples. We assume traffic of three
traffic classes being handled by a queue, e.g. a class consisting of voice traffic, one
of Video-on-Demand (VoD) traffic and a third one of data traffic. We call these
class-1, class-2 and class-3 respectively in the remainder. Evidently, an interactive
voice application will have the most stringent delay requirements while data (file
transfer) will have the loosest delay bounds, with VoD somewhere in between.
This is reflected by the priority level that has been assigned to each of the
three traffic classes. The numbers of per-slot arrivals of class-j are distributed
according to a Poisson process with arrival rate λj . We furthermore assume



deterministic service times for class-j equal to µj number of slots. The arriving
packets are transmitted via an output link. We assume that this link has a
transmission rate of 620 Mb/s. The video and data packets all carry 1500 bytes
corresponding to the length of an Ethernet packet. Due to the relatively low
bitrate of a voice codec (8-64 kb/s), the filling time of a voice packet can become
significant if the packet length is too high; as a result voice packets are usually
kept small and are chosen to be equal to 200 bytes in this section. The slot-
length ∆ then equals the amount of time to transmit 100 bytes, or ∆ = 1.29µs.
Define αj (j = 1, 2, 3) as the fraction of load of class-j in the total traffic mix,
i.e., αj = ρj/ρT .

In Figure 1a., the means of the packet delay of the class-1, class-2 and class-
3 packets are shown as functions of the total load ρT for α1 = 0.05, 0.1 and
0.2 respectively and for α2 = 0.4. One can observe the influence of assigning
priorities: mean delay of voice packets is kept as low as possible. Since the voice
packets constitute a limited fraction of the traffic stream, the mean delay of the
video packets is also kept relatively low. However, one can see that, especially
for α1 = 0.2 and for high loads, the influence of the voice packets on the mean
delay of the video packets is not negligible. The price to pay for limiting the
delay of voice and video packets is a larger mean delay of the data packets (as
expected). This figure also shows that the mean delays of all classes suffers as
the share of the high-priority traffic in the overall load increases.
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Fig. 1. Numerical examples

Figure 1b. shows the tail probabilities of the packet delay of the class-2
(video) packets with ρ1 = 0.05, 0.1 and 0.2 respectively and ρ2 = 0.4. The value
of d2 of this figure is expressed in µs. For each value of ρ1 we have plotted two
curves. The lower curves depict the tail probabilities when no data traffic arrives
(i.e, ρ3 = 0). The upper curves show the tail probabilities when the bandwidth
that is not used by the voice or video traffic is consumed entirely by data packets
(ρ3 = 1 − ρ1 − ρ2). We see that data packets have a non-negligible influence on
the delay characteristics of video traffic (since the priority scheduling is non-
preemptive and thus video packets that arrive during the transmission of a data



packet have to wait until that packet is fully transmitted), although this influence
remains limited. The impact of the voice packets on the delay characteristics of
the video packets is much larger. This was to be expected because of the priority
given to voice packets over video packets.

7 Conclusions

In this paper, we analyzed the packet delays of all classes in a queueing system
with a non-preemptive (HOL) priority scheduling discipline and with a general
number of priority classes. A generating-functions-approach was adopted, which
led to closed-form expressions of the moments and accurate approximations of
the tail probabilities of the packet delays of all the classes, that are easy to
evaluate. The service times are class-based and generally distributed. Therefore,
the results could be used to evaluate the system performance in packet-based
networks, that support multiple applications to which different priorities are
assigned. An example is touched upon wherein voice, video and data streams
are multiplexed.
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