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ABSTRACT

Motivation: The correct identification of translation initiation sites

(TIS) remains a challenging problem for computational methods that

automatically try to solve this problem. Furthermore, the lion’s share

of these computational techniques focuses on the identification of

TIS in transcript data. However, in the gene prediction context the

identification of TIS occurs on the genomic level, which makes things

even harder because at the genome level many more pseudo-TIS

occur, resulting in models that achieve a higher number of false

positive predictions.

Results: In this article, we evaluate the performance of several

‘simple’ TIS recognition methods at the genomic level, and compare

them to state-of-the-art models for TIS prediction in transcript data.

We conclude that the simple methods largely outperform the

complex ones at the genomic scale, and we propose a new model

for TIS recognition at the genome level that combines the strengths

of these simple models. The new model obtains a false positive rate

of 0.125 at a sensitivity of 0.80 on a well annotated human

chromosome (chromosome 21). Detailed analyses show that the

model is useful, both on its own and in a simple gene prediction

setting.

Availability: Datafiles and a web interface for the StartScan

program are available at http://bioinformatics.psb.ugent.be/

supplementary_data/

Contact: yvan.saeys@psb.ugent.be

1 INTRODUCTION

The computational identification of translation initiation sites

(TIS) is a major component of every gene prediction system,

and is thus of major importance in genome annotation projects.

In the literature, a large number of machine-learning methods

have been described to identify TIS in transcripts such as

mRNA, EST and cDNA sequences. These methods are all

based on the scanning model (Kozak, 1989), which states

that in eukaryotes the first AUG occurring at the 50 end of the

mRNA transcript is typically the correct TIS. However,

exceptions can occur through mechanisms, such as leaky

scanning, reinitiation and internal initiation of translation

(Kozak 1999), resulting in another AUG being the true TIS.

The first method to identify TIS was proposed by Kozak

(1987), who described a weight matrix to model the more or less

conserved context around the TIS. However, the first real

automated system for TIS prediction was the NetStart system,

introduced in Pedersen and Nielsen (1997), who used an

artificial neural network (ANN) to classify TIS in mRNA

sequences, based on a window of 100 bp upstream and 100 bp

downstream of the AUG. Around the same time, Salzberg used

a conditional probability (CP) matrix (an extension of the

weight matrix and equivalent to a first order Markov model) to

model TIS (Salzberg, 1997). These ideas were further combined

in Zien et al. (2000), who combined the use of support vector

machines with specially developed kernels based on Salzberg’s

CP matrices. This work was continued by Li and Jiang (2004)

who developed a new Edit–Kernel approach called TIShunter.
Another method based on ANN was proposed by

Hatzigeorgiou (2002), who used a multi-step integrated neural

network. ATGpr, developed by Salamov et al. (1998), is a

program that uses a linear discriminant approach for the

recognition of TIS. An improved version of ATGpr, named

ATGpr_sim, also includes similarity information, and achieves

better performance in terms of sensitivity and specificity

(Nishikawa et al. 2000). Other methods for identifying

TIS include the use of Gaussian mixture models (Li et al.,

2005) and the expectation-maximization (EM) algorithm

(Wang et al., 2003).
A new path of designing TIS models was opened by Zeng

et al., (2002), who explored a large number of potentially

discriminating and biologically motivated features (k-mer

frequencies). Feature selection methods were then used to

find the most interesting features, relevant to the TIS prediction

task, and a large amount of classifiers and meta-classifier

schemes were evaluated. In later work, the authors modified

their feature set by extracting amino acid patterns instead of

k-mers (Liu et al., 2004). Their system, referred to as TisMiner,

has shown state-of-the-art TIS prediction performance on the

dataset originally proposed in Pedersen and Nielsen (1997).

Another advantage of the TisMiner system appears to be that,

apart from being applied to transcript sequences, it can also be

applied to genomic sequences. A more in-depth study of the

different techniques involved in TIS recognition can be found

in Li et al. (2004).
As mentioned earlier, all the previously described methods

are focused on recognizing TIS in transcripts, except for

the TisMiner system. However, recognizing TIS in mRNA,

cDNA or EST transcripts is different from recognizing TIS

in genomic sequences, mainly because of the following reasons:

(1) scanning models cannot be applied to genomic sequences

unless transcription start sites (TSS) are known, (2) transcripts

typically contain zero or one TIS, which facilitates recognition

significantly, (3) genomic data contains introns, which disrupt*To whom correspondence should be addressed.
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the coding structure downstream of the TIS and (4) eukaryotic

genomes contain millions of candidate TIS, which requires the

implementation of the TIS prediction system to be computa-

tionally efficient. In this article, we focus on the identification

of TIS at the genomic level. We investigate some simple, but

extremely fast TIS prediction techniques, based on the essential

characteristics of TIS recognition, and compare them to state-

of-the-art models. Based on these results, we formulate some

new insights for TIS prediction at the genomic scale, and we

propose some guidelines for future research.

2 METHODS

2.1 Dataset construction

In our experiments, three datasets were used (see Table 1). The first

dataset was constructed by Pedersen and Nielsen, and already dates

back to 1997 (Pedersen and Nielsen, 1997). Although being rather old,

it is included here for comparison purposes, as many TIS prediction

techniques still use this dataset to validate their method. The dataset

was originally extracted from Genbank and checked for suspicious

annotations. Subsequently, all sequences were spliced by removing

introns and joining the exon parts to mimic mRNA. The parts of

the sequence upstream of the TIS are limited, the average length of the

50 UTR being 96 bp. For model building, pseudo TIS were defined as

all ATGs in the sequences that were not annotated as TIS.

The second dataset was compiled from the consensus CDS (CCDS)

database.1 The CCDS project is a collaborative effort to identify a core

set of human protein coding regions that are consistently annotated

and of high quality. Annotation updates represent genes that are

defined by a mixture of manual curation and automated computa-

tional processing. The quality tests performed include consistency in

cross-species analysis, analyses to identify putative pseudogenes,

retrotransposed genes, consensus splice sites, supporting transcripts

and protein homology. We downloaded the CCDS database (release

date: 2 March 2005), which contains 14 802 genes. The pseudo TIS were

defined as all ATG trinucleotides appearing in a window of 1000 bp

upstream and 1000 bp downstream of the actual TIS of each gene.

Furthermore, all genes from chromosome 21 were discarded, to ensure

a non-biased validation on this chromosome (see further).

The third dataset consists of human chromosome 21, for which the

sequence and annotation were downloaded from Ensembl2 (based on

NCBI build 36 version 1). This dataset contains 294 genes, 258 of which

have a consensus TIS (i.e. the triplet ATG). These ones were chosen as

the positive examples of the dataset, while the remaining ATGs were

included as negative examples. This dataset was only used for testing

purposes at the genomic scale. Some more detailed characteristics of

the three datasets are shown in Table 1.

2.2 Features for TIS identification

In order to build a successful classifier for the recognition of TIS,

the model should include sequence features that help as much as

possible in discriminating between true TIS and pseudo TIS. One of the

earliest observations was made by Kozak (1987), who defined a

consensus context around the TIS, representing some binding mechan-

ism to the TIS. Apart from this short context around the TIS, other

features such as presence of signaling peptides (Pedersen and Nielsen,

1997) and the presence/absence of coding potential downstream/

upstream of the TIS have been investigated in the literature

(Liu et al. 2004). From previous research on identifying the most

relevant features for TIS prediction (Li et al., 2004; Saeys, 2004), it is

known that the most prominent feature for TIS identification is the

transition from a non-coding region to a coding region in the first

reading frame (i.e. coinciding with the codon structure). It is clear that

future TIS predictors should thus focus on these characteristics.

2.3 Simple classifiers for TIS recognition

When designing new algorithms for a given modeling task, it is standard

practice to start with the most simple models, evaluate them, and then

gradually build further upon these models to improve modeling

performance. However, one should be cautious not to end up with

overly complex models, as a simpler hypothesis should always be

preferred over a complex one when performance is about the same.

From a machine learning point of view, simple methods are preferred

over complex ones because they have less risk of overfitting, i.e. they

better generalize to unseen examples.

Based on these design principles, we here define three simple models

for TIS recognition: a model based on a position weight matrix,

a model based on interpolated context models (ICM), and a model

based on stop codon frequencies. The first of these models has already

been applied to TIS recognition, while the latter two are new in the field

of TIS identification. We will now describe each of these TIS prediction

models in more detail.

2.3.1 Position weight matrices Position weight matrices (PWM)

are one of the simplest, and most widely used techniques to model

sequence motifs. As many of these motifs (including TIS) can be linked

to biological binding mechanisms, some parts of the motif may be more

conserved than others. Recognition of motifs using PWM is done by

observing the frequencies of nucleotides (in the case of DNA or RNA)

at each position in a set of example occurrences of the motif. A new

motif is then scored by observing the nucleotides at each position,

and multiplying their probability of occurrence, as was estimated from

the example occurrences.

For the problem of TIS prediction, we define this more formally

as follows. Given a local context of u nucleotides upstream, and

d nucleotides downstream of the TIS, the motif length is w ¼ uþ d

(the ATG triplet is invariant and thus we do not include it in the

context). A training set T consists of a number of positive examples

(true TIS) and negative examples (pseudo TIS), and for each of these

Table 1. Dataset characteristics

Name Type Number of

Positives

Number of

Negatives

Positive/Negative

ratio

Pedersen–Nielsen mRNA 3312 10 191 1/3

CCDS Genomic 13 917 350 578 1/25

Human chromosome 21 Genomic 258 1 267 443 1/4912

1http://www.ncbi.nlm.nih.gov/CCDS/
2http://www.ensembl.org
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two classes (true/pseudo) we calculate the frequency of observing

nucleotide i at position j: pjijclass with i 2 fA;T;C;Gg, 1 � j � w and

class 2 ftrue;pseudog. A putative TIS occurrence z ¼ z1 � � � zw can then

be scored by calculating its log odds score, and a threshold value can be

chosen for which all examples having a score higher than the threshold

are classified as true TIS, while the other ones are predicted as pseudo

TIS. The score is calculated as

predpwmðzÞ ¼ ln

Qw
i¼1 p

i
zi
jtrueQw

i¼1 p
i
zi
jpseudo

ð1Þ

when using the PWM to identify TIS, only the parameters u and d need

to be tuned. In our experiments, tuning these parameters was done

using a 3-fold cross-validation of the training set. In the case of testing

the PWM on the genomic scale, u and d were tuned using a 3-fold cross-

validation on the CCDS set, exploring all possible combinations of

u; d 2 f1, . . . ; 40g. The optimal values on the CCDS dataset were u¼ 6

and d¼ 39, and these settings were evaluated on the chrom21 dataset

(see Results Section).

2.3.2 Interpolated context models As mentioned earlier, TIS

are characterized by a transition from a non-coding, untranslated

region (UTR) to a coding (translated) region in the first reading frame.

In order to better model this transition, a new model is proposed, based

on a method that was specifically designed to make the difference

between coding and non-coding regions. In gene prediction, such

techniques to identify coding potential lie at the heart of the gene

prediction system (Borodovsky and McIninch, 1993), and a wealth of

markov based models has been designed to cope with this problem.

All of these methods have in common that they look for certain k-mers

that are highly specific to some region, the so-called sequence biases.

Based on these biases, unseen sequences can be scored as being either

more likely to code for proteins, or not (Fickett and Tung, 1992).

In this work, we chose the ICM (Delcher et al., 1999) as a submodel

to identify coding and non-coding sequences. The ICM has the advant-

age of both being able to identify correlations between nucleotides and

being computationally efficient. The order k of an ICM determines

the size of the window in which to look for nucleotide correlations,

and these need not necessarily be adjacent. In this way, the ICM

extends the traditional markov models to the notion of a Bayesian

decision tree, i.e. a sparse probability distribution expressed as a tree.

A more extensive description of this algorithm falls outside the scope

of this article, and we refer the interested reader to Delcher et al., 1999

and Salzberg et al., 1999 for more details.

The simple ICM-based TIS prediction algorithm that we suggest here

finds its rationale in the fact that a ‘good’ TIS candidate should have

a clear UTR region upstream, combined with a coding region in the

first reading frame downstream. Pseudo TIS will typically not have

these characteristics, and thus a scoring function can be constructed to

measure the ‘goodness’ of a putative TIS. This score is defined as

predicmðzÞ ¼ ICMutr
ðzupstreamÞ þ ICMcod1

ðzdownstreamÞ ð2Þ

where ICMutr
ðxÞ denotes the score of a homogenous (i.e. independent

of the reading frame) ICM for sequence x, and ICMcod1 denotes the

score of being in the first reading frame of a coding region for a frame-

dependent ICM. The sequence zupstream denotes the upstream part of

the TIS context z1, . . . ; zu, while zdownstream denotes the downstream

part of the TIS context, i.e. zuþ1, . . . ; zw.

To obtain these scores, two separate ICM models were trained: one

for detecting UTR, and one for detecting coding sequences. For the

UTR model, windows of 100 bp upstream of each true TIS were

extracted from the training set, and these sequences were used to train

the ICM. To train the coding model, first exon sequences were extracted

for each true TIS in the training set.

For testing purposes however, the parameters u and d still have to be

defined to identify unseen TIS. The ICM-based method thus depends

on three parameters: the upstream and downstream context length u

and d, and the order k of the ICM. In our experiments, all ICM models

were evaluated using order k¼ 8, which enables to include dependencies

between up to 9 nt. The context size parameters u and d were

again tuned using a 3-fold cross-validation of the training set, thereby

exploring all possible combinations of u; d 2 f10; 15; 20 � � � ; 200g.

A 3-fold cross-validation on the CCDS dataset revealed the optimal

parameters to be u¼ 60 and d¼ 140, and these values were used for

genome wide testing on the chrom21 dataset (see Results Section).

2.3.3 Stop codon frequencies Another simple measure to score

putative TIS consists of looking at the stop codon frequencies

downstream of the TIS. The rationale for this approach is the

following. TIS are characterized by the fact that they represent the

start of the first exon, so we know the reading frame of the first exon.

In general, the first exon will have a minimal length, and thus there will

be a minimal amount of sequence downstream of the TIS that does not

contain an in-frame stop codon. On the other hand, pseudo TIS will not

have this constraint, so the presence of in-frame stop codons can be

used to discriminate between true and pseudo TIS. A very simple

predictor can now be constructed that looks at the region following

a putative TIS for the occurrence of in-frame stop codons. The earlier

in this region an in-frame stop codon occurs, the less likely it is that

the putative TIS is a true TIS. To obtain a simple scoring function

that constructs a classifier out of this observation, we calculate the

(cumulative) probability of observing an in-frame stop codon for the

positive, respectively negative examples in the training set. It turns out

that there is a significant difference in the cumulative distributions

of the in-frame stop codons in both datasets.

Then, for each testing example, we scan the downstream part of the

sequence until we find an in-frame stop codon. For this first occurrence

of an in-frame stop codon, we record the position x, and we check the

model to find the probability of having a first in-frame stop codon at

position x following a true TIS. More formally, the score of the stop

codon model is defined as

predstopðzÞ ¼ In p z
in-frame stop
downstream

� �� �
ð3Þ

where p(j) denotes the probability of finding the first in-frame stop

codon at position j downstream of the TIS. The notation

z
in-frame stop
downstream

denotes the first position in zdownstream where an

in-frame stop codon occurs. As a technicality, we would like to mention

that one could also use information from the negative examples, by

subtracting predstopðzÞ by the corresponding score of finding in-frame

stop codons in pseudo TIS. However, experiments showed that this

never led to significantly better results, so we did not include

information of the negative examples in the stop codon score.

3 RESULTS AND DISCUSSION

In this section, we discuss the results of our experiments.

The most important evaluation of the methods discussed earlier

consists of an evaluation of TIS predictions on human

chromosome 21. The large number of putative TIS, and the

limited number of true TIS among those renders this a hard test

for computational TIS prediction techniques. Furthermore,

we provide an analysis of our methods in a very rudimentary

gene prediction setting, for which we discuss some case studies

on human chromosome 21.
In addition to the three simple TIS predictors that were

introduced in the previous section, two additional techniques
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were evaluated. Each of these two predictors combines two

or more of the simple prediction functions: predpwm +icm
combines predpwm and predicm by summing their score

functions:

predpwm+icm ¼ predpwm þ predicm ð4Þ

and predpwm+icm+stop combines all three simple prediction

functions:

predpwm+icm+stop ¼ predpwm þ predicm þ predstop ð5Þ

For simplicity, we will further refer to predpwm+icm+stop
as the StartScan system.

3.1 Evaluation on the genomic level

For this evaluation, the CCDS dataset was used for training,

and the chrom21 dataset was used for testing. To provide a fair

comparison between all methods, all of them were compared

at the same level of sensitivity. Sensitivity (or true positive rate)

is defined as the portion of all predicted positives that turn

out to be true TIS, i.e. sensitivity¼TP=ðTPþ FNÞ. For all

methods, the sensitivity was fixed at a value of 0.80, and the

false positive rate (¼ FP=ðFPþ TNÞ) for this level of sensitivity

was compared.3 We will denote this measure as Se80.

Obviously, the lower the Se80 measure, the better the

classification model.

A comparison of all Se80 measures on the chrom21 dataset is

shown in Table 2. As a baseline method, the simple PWM

model with a context of 10 bp upstream and 10 bp downstream

was chosen. This method obtains a value of Se80¼ 0.27, which

is not too bad for such a simple model. If we optimize the

context of the PWM (as explained in the previous section),

we obtain a value of Se80¼ 0.19, which heavily reduces the

number of false positives, compared to the non-optimized

context.

The next method that was evaluated was based on the (ICM).

Again, we optimized the context parameters u and d, which

resulted in a score of Se80¼ 0.237, which is a little worse than

the optimized PWM method.
Next, the predictor based on stop codon frequencies

was analyzed. Surprisingly, this method clearly outperformed

both the optimized PWM and ICM methods, resulting in an

Se80 measure of 0.147 and thereby drastically reducing the

percentage of false positive predictions compared to the simple

PWM. Although being extremely simple, the stop codon model

thus performs extremely well on a genomic scale, emphasizing

the importance of in-frame stop codon frequencies for a correct

identification of the TIS.
Subsequently, we evaluated the results of the combined

methods predpwm+icm and StartScan. To find the optimal

parameters for predpwm+icm, we adopted a greedy approach.

First, the optimal parameters of predicm were chosen (u¼ 60,

d¼ 140), and these were combined with all possible u and d

values for the PWM submodel, u; d 2 f1, . . . ; 40g. This resulted
in the PWM parameters u¼ 6 and d¼ 37. We note that

predpwm+icm obtains an Se80 measure of 0.148, which

significantly outperforms both the single predpwm and

predicm models. The StartScan system, which extends

predpwm+icm with the stop codon model, adopts the same

parameter settings, and performs best (Se80¼ 0.125), obtaining

a reduction of more than 50% in FP rate compared to the

simple PWM model.
In a last experiment, we evaluated the predictive performance

of the TisMiner method on a genomic scale. TisMiner consists

of a support vector machine classifier, combined with an

elaborated feature construction and feature selection procedure

(Liu et al., 2004). This method was chosen because it showed

state-of-the-art performance on the problem of TIS recognition

in transcript data, and it can be also easily applied to genomic

data without jeopardizing the underlying model. The method

was retrained on the CCDS dataset to allow for a fair

comparison, and was then tested on the chrom21 dataset.

The result is extremely poor, compared to the simple predictor

methods, as a high false positive rate of 0.45 was obtained.

This means that TisMiner predicts about twice as much false

positives, compared to a simple PWM. Figure 1 shows the ROC

curves for the simple PWM, StartScan and TisMiner systems.

These curves plot the true positive rate (sensitivity) in function

Table 2. Comparative evaluation of all models on human

chromosome 21

Method Context Se80

PWM [10,10] 0.27

PWM_optimized [6,39] 0.19

ICM_optimized [60,140] 0.237

STOP - 0.147

PWMþICM [6,37]þ[60,140] 0.148

StartScan (PWMþICMþSTOP) [6,37]þ[60,140] 0.125

TisMiner [100,100] 0.45
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of the false positive rate (1-specificity) and are obtained

by shifting the classifier’s decision threshold.

To see whether the simple methods developed here would

outperform the TisMiner method on transcript data, we also

explored them on the Pedersen–Nielsen dataset. As this was

a single dataset for training/testing, a 3-fold cross-validation

was used to asses prediction performance. However, due to the

fact that this dataset consists of mRNA, and thus does not

contain in-frame stop codons, predictors using predstop could

not be evaluated on the Pedersen–Nielsen dataset. The results

of this analysis are shown in Table 3. Clearly, the TisMiner

system largely outperforms the simple measures when

identifying TIS in transcript data. We can thus conclude that

TisMiner is well suited for the task of identifying TIS in

transcript data, while the simple measures presented here are to

be preferred when identifying TIS in genomic data.

3.2 Evaluation in a simple gene prediction setting

To evaluate our methods in a rudimentary gene prediction

setting, we combined the StartScan system with a simple sensor

for coding regions, based on the Fourier characteristic

(Tiwari et al. 1997). To evaluate the method on the genomic

level, we discuss two case studies on human chromosome 21

(Fig. 2). The first region (part a) is situated around position

32,200,000 and contains the two first exons (shown as black

boxes) of gene ENSG00000142149, which is oriented in the

sense direction. As can be seen in the figure, both exons are

identified by the coding region sensor, and the first exon

contains a clear prediction of the TIS by the StartScan system.

The prediction is well positioned at the beginning of the exon,

and shows that the occurrence of a TIS on the sense strand is

the most plausible explanation.

A second case study concerns the region around position

32,075,000 (part b), for which no gene is annotated. However,

both the coding region sensor and the antisense TIS prediction

Table 3. Comparative evaluation on the Pedersen–Nielsen dataset

Method Se80

PWM_optimized 0.348

ICM_optimized 0.421

PWMþICM 0.396

TisMiner 0.063
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Fig. 2. Two case studies in a simple gene prediction setting on human chromosome 21. Case study (a) depicts the region of chromosome 21,

extending from position 32,160,000 to position 32,230,000. In this region, the first two exons of the gene ENSG00000142149 can be identified using

the coding potential sensor (lower figure), and a clear TIS can be identified on the sense strand (upper figure). Case study (b) shows the region of

chromosome 21, extending from position 32,050,000 to position 32,100,000. A clear peak in the coding potential sensor (lower figure) and the

antisense TIS predictor (middle figure) indicate clear evidence for a gene missed in the annotation.
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of StartScan show a clear peak around position 32,080,000,
suggesting the presence of a gene that is missed in the
annotation. We examined this region in the Ensembl genome
browser, and found many mRNAs present in this region,

providing clear evidence of a missed gene.

3.3 Online TIS prediction at the genomic scale

Based on the combination of several simple TIS prediction

measure, an online version of the StartScan algorithm was
implemented. This program offers the user the opportunity to
feed in a part of a genomic sequence, and returns a score
for all putative TIS, both in the sense and the antisense

direction. The StartScan system is very fast, and allows for
genome wide TIS prediction. As an example, training the
system on the CCDS dataset, and evaluating it on the chrom21

dataset required less than 10 min on a Pentium 2.4GHz
processor running Linux. The system is available at http://
bioinformatics.psb.ugent.be/supplementary_data/

4 CONCLUSIONS AND FUTURE WORK

In this article, we presented several simple prediction methods
to identify TIS on a genomic scale. We compared these methods

to a state-of-the-art method for identifying TIS in transcript
data, and conclude that the simple methods largely outperform
it on the genomic scale. This provides evidence that simple

methods can deal well with the fact that on a genomic level,
many putative TIS are present, while only a very small fraction
of them are true TIS. A weakness of current TIS predictors on
transcript data appears to be their incapability to deal with such

a high class imbalance between true and pseudo TIS, and future
research to deal with this problem might render them useful in
the context of identifying TIS on a genomic scale.

Further research on the simple methods proposed here
includes the extension of PWM to methods that are able to
better model nucleotide dependencies in the immediate context

of the TIS, and the incorporation of the proposed scores into
more complex classification schemes. In addition, we plan to
combine the use of TIS prediction with new methods for TSS

identification, and initial results indicate that StartScan
predictions can be used as a valuable additional component
to better annotate the beginning of a gene.
As another line of future research, we plan to incorporate

StartScan into a state-of-the-art gene prediction system, where
we will also include the TSS prediction methods we are
currently developing.
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