
Using HPM-Sampling to Drive Dynamic Compilation

Dries Buytaert† Andy Georges† Michael Hind∗ Matthew Arnold∗ Lieven Eeckhout†

Koen De Bosschere†

† Department of Electronics and Information Systems, Ghent University, Belgium
∗IBM T.J. Watson Research Center, New York, NY, USA

{dbuytaer,ageorges}@elis.ugent.be, {hindm,marnold}@us.ibm.com, {leeckhou, kdb}@elis.ugent.be

Abstract

All high-performance production JVMs employ an adaptive

strategy for program execution. Methods are first executed

unoptimized and then an online profiling mechanism is used

to find a subset of methods that should be optimized during

the same execution. This paper empirically evaluates the de-

sign space of several profilers for initiating dynamic com-

pilation and shows that existing online profiling schemes

suffer from several limitations. They provide an insufficient

number of samples, are untimely, and have limited accu-

racy at determining the frequently executed methods. We de-

scribe and comprehensively evaluate HPM-sampling, a sim-

ple but effective profiling scheme for finding optimization

candidates using hardware performance monitors (HPMs)

that addresses the aforementioned limitations. We show that

HPM-sampling is more accurate; has low overhead; and im-

proves performance by 5.7% on average and up to 18.3%

when compared to the default system in Jikes RVM, without

changing the compiler.

Categories and Subject Descriptors D.3.4 [Programming

languages]: Processors—Compilers; Optimization; Run-

time environments

General Terms Measurement, Performance

Keywords Hardware Performance Monitors, Java, Just-in-

time compilation, Profiling

1. Introduction

Many of today’s commercial applications are written in dy-

namic, type-safe, object-oriented languages, such as Java,

because of the increased productivity and robustness these

languages provide. The dynamic semantics of such a lan-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’07, October 21–25, 2007, Montréal, Québec, Canada.
Copyright c© 2007 ACM 978-1-59593-786-5/07/0010. . . $5.00

guage require a dynamic execution environment called a

virtual machine (VM). To achieve high performance, pro-

duction Java virtual machines contain at least two modes

of execution: 1) unoptimized execution, using interpreta-

tion [21, 28, 18] or a simple dynamic compiler [16, 6, 10, 8]

that produces code quickly, and 2) optimized execution us-

ing an optimizing dynamic compiler. Methods are first ex-

ecuted using the unoptimized execution strategy. An online

profiling mechanism is used to find a subset of methods to

optimize during the same execution. Many systems enhance

this scheme to provide multiple levels of optimized execu-

tion [6, 18, 28], with increasing compilation cost and bene-

fits at each level. A crucial component to this strategy is the

ability to find the important methods for optimization in a

low-overhead and accurate manner.

Two approaches that are commonly used to find optimiza-

tion candidates are method invocation counters [10, 18, 21,

28] and timer-based sampling [6, 8, 18, 28, 30]. The coun-

ters approach counts the number of method invocations and,

optionally, loop iterations. Timer-based sampling records the

currently executing method at regular intervals using an op-

erating system timer.

Although invocations counters can be used for profiling

unoptimized code, their overhead makes them a poor choice

for use in optimized code. As a result, VMs that use multi-

ple levels of optimization rely exclusively on sampling for

identifying optimized methods that need to be promoted to

higher levels. Having an accurate sampler is critical to en-

sure that methods do not get stuck at their first level of opti-

mization, or in unoptimized code if a sample-only approach

is employed [6, 8].

Most VMs rely on an operating system timer interrupt to

perform sampling, but this approach has a number of draw-

backs. First, the minimum timer interrupt varies depending

on the version of the OS, and in many cases can result in too

few samples being taken. Second, the sample-taking mecha-

nism is untimely and inaccurate because there is a delay be-

tween the timer going off and the sample being taken. Third,

the minimum sample rate does not change when moving to

newer, faster hardware; thus, the effective sample rate (rela-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55699853?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The remainder of this paper is not in-
cluded as this paper is copyrighted ma-
terial. If you wish to obtain an elec-
tronic version of this paper, please send
an email to bib@elis.UGent.be with a
request for publication P107.212.pdf.

1

