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1. Introduction

In the last decades, the study of complex nilmanifolds has proved to be very useful 
in the understanding of several aspects of compact complex manifolds. By a complex 
nilmanifold we mean a compact quotient of a simply connected nilpotent Lie group G

* Corresponding author.
E-mail addresses: adela.latorre@upm.es (A. Latorre), ugarte@unizar.es (L. Ugarte), 

raquelvg@unizar.es (R. Villacampa).
https://doi.org/10.1016/j.jalgebra.2022.09.021
0021-8693/© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.jalgebra.2022.09.021
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jalgebra.2022.09.021&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:adela.latorre@upm.es
mailto:ugarte@unizar.es
mailto:raquelvg@unizar.es
https://doi.org/10.1016/j.jalgebra.2022.09.021
http://creativecommons.org/licenses/by-nc-nd/4.0/


272 A. Latorre et al. / Journal of Algebra 614 (2023) 271–306
endowed with a left invariant complex structure J (namely, defined on the Lie algebra 
g of G) by a cocompact discrete subgroup Γ. Hence, the study of nilpotent Lie algebras 
g with complex structures J constitutes a crucial step in the construction of complex 
nilmanifolds.

Some recent results where complex nilmanifolds play an important role can be found in 
[2–5], [7], [8], [10–14], [24], [27–31] and the references therein. These include cohomologi-
cal aspects of compact complex manifolds (Dolbeault, Bott-Chern, Aeppli cohomologies 
and Frölicher spectral sequence), existence of different classes of Hermitian metrics (as 
SKT, locally conformal Kähler or balanced metrics, among others), as well as the be-
havior of complex properties under holomorphic deformations. It is worth to note that 
in the previous results the complex structures J on the Lie algebras g underlying the 
nilmanifolds usually satisfy Z(g) ∩ J (Z(g)) �= {0}, being Z(g) the center of g. These 
complex structures are known as quasi-nilpotent (see Definition 2.1) and include complex-
parallelizable as well as abelian complex structures. By [22, Section 2], any g with a 
quasi-nilpotent complex structure can be constructed as a certain extension of a lower 
dimensional nilpotent Lie algebra endowed with a complex structure. Therefore, the ‘es-
sentially new’ complex structures J that arise in each even real dimension are those for 
which the only J-invariant subspace of the center Z(g) is the trivial one. These are called 
strongly non-nilpotent, or SnN for short, complex structures.

Although the complex geometry of nilmanifolds endowed with SnN complex struc-
tures still remains to be studied in general, some partial results have been obtained. 
For instance, in [21,23] several families of such complex nilmanifolds are constructed, 
allowing to prove the existence of infinitely many real homotopy types of nilmanifolds 
with balanced Hermitian metrics and generalized complex structures of any type, respec-
tively. Moreover, nilmanifolds endowed with SnN complex structures admitting neutral 
Calabi-Yau metrics with interesting deformation properties are given in [19].

A first step to investigate the properties of nilpotent Lie algebras with SnN complex 
structure is carried out in [22], where several algebraic constraints to their existence in 
terms of the ascending central series of g are found. For instance, the nilpotency step 
s of the Lie algebra g satisfies s � 3, and the dimension of the center is bounded by 
dimZ(g) � n − 3, where 2n = dim g � 8. Somehow, the existence of SnN complex 
structures J on g seems to require a large nilpotency step and a small center, which 
gives the idea that these J ’s might be very twisted.

It is known that SnN complex structures do not exist in real dimension � 4, and 
that there are only two non-isomorphic 6-dimensional nilpotent Lie algebras admitting 
such structures (see [6] for details). However, there is no classification in higher (even) 
dimensions, and our goal in this paper is to provide the complete list of 8-dimensional 
nilpotent Lie algebras g that admit SnN complex structures up to isomorphism. We recall 
that real nilpotent Lie algebras are classified only up to dimension 7. So, our method 
will consist in two steps: in the first one we will obtain a classification of SnN complex 
structures up to equivalence; then, we will achieve the classification of real Lie algebras 
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admitting such structures. Notice that, by the previous upper bound for Z(g), these Lie 
algebras must have 1-dimensional center.

Let g be an 8-dimensional nilpotent Lie algebra, NLA for short, with 1-dimensional 
center admitting a complex structure J . We first prove that there is a partition into two 
families (labeled as I and II) according to the value of an algebraic invariant associated 
to the pair (g, J) (see Proposition 3.1 and Definition 3.2). This allows us to find an 
appropriate reduction of the structure equations that is suitable for their classification 
up to equivalence. Indeed, Theorem 3.3 provides a classification of complex structures J
on 8-dimensional NLAs g with 1-dimensional center. The proof of this result is given 
in Section 3.1 for the case that J belongs to the Family I, and in Section 3.2 for the 
Family II. We recall that similar results were obtained on 6-dimensional nilpotent Lie 
algebras in the case of abelian complex structures [1] and of any other type of complex 
structure [6]. Also complex parallelizable structures up to complex dimension seven are 
classified in [17] (see also [26]).

We then provide the relation between the equivalence classes of complex structures 
on 8-dimensional nilpotent Lie algebras g with 1-dimensional center and the ascending 
central series of g (see Tables 1 and 2 in Theorem 3.3). This is a crucial step for the 
proof of the following classification result, which is the main result of this paper:

Theorem 1.1. (Classification of nilpotent Lie algebras) Let g be an 8-dimensional NLA 
with 1-dimensional center. Then, g has a complex structure if and only if it is isomorphic 
to one (and only one) in the following list:

g
γ
1 = (05, 13 + 15 + 24, 14 − 23 + 25, 16 + 27 + γ · 34), where γ ∈ {0, 1},

gα2 = (04, 12, 13 + 15 + 24, 14 − 23 + 25, 16 + 27 + α · 34), where α ∈ R,

g
γ
3 = (04, 12, 13 + γ · 15 + 25, 15 + 24 + γ · 25, 16 + 27), where γ ∈ {0, 1},

g
α, β
4 = (04, 12, 15 + (α + 1) · 24, (α− 1) · 14 − 23 + (β − 1) · 25, 16 + 27 + 34 − 2 · 45),

where (α, β) ∈ R∗ ×R+ or R+ × {0},

g5 = (04, 2 · 12, 14 − 23, 13 + 24, 16 + 27 + 35),

g6 = (04, 2 · 12, 14 + 15 − 23, 13 + 24 + 25, 16 + 27 + 35),

g7 = (05, 15, 25, 16 + 27 + 34),

g8 = (04, 12, 15, 25, 16 + 27 + 34),

g
γ
9 = (03, 13, 23, 35, γ · 12 − 34, 16 + 27 + 45), where γ ∈ {0, 1},

g
γ
10 = (03, 13, 23, 14 + 25, 15 + 24, 16 + γ · 25 + 27), where γ ∈ {0, 1},

g
α,β
11 =

(
03, 13, 23, 14 + 25 − 35, α · 12 + 15 + 24 + 34, 16 + 27 − 45 − β(2 · 25 + 35)

)
,

where (α, β) = (0, 0), (1, 0), (0, 1) or (α, 1) with α ∈ R+,

g
γ
12 = (02, 12, 13, 23, 14 + 25, 15 + 24, 16 + 27 + γ · 25), where γ ∈ {0, 1}.
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For the description of the nilpotent Lie algebras in Theorem 1.1 we use the standard 
abbreviated notation (see Notation 4.1 for details). We note that the first eight families of 
Lie algebras, i.e. gγ1 , . . . , g8, are those having complex structures in Family I, whereas the 
complex structures on gγ9 , . . . , g

γ
12 belong to Family II. The list above is ordered according 

to the ascending type of the nilpotent Lie algebras. The proof of Theorem 1.1 is given 
in Section 4 (see Section 4.1 for the Lie algebras underlying Family I and Section 4.2 for 
those underlying Family II).

The precise relation between the Lie algebras in Theorem 1.1 and the classification of 
complex structures (Theorem 3.3) can be found in Tables 3 and 5. Hence, given a real 
nilpotent Lie algebra g in Theorem 1.1, the information provided in these tables allows 
to construct the whole space of complex structures J on g up to equivalence.

An important (and still open) problem in the geometry of complex nilmanifolds (M, J)
is whether their Dolbeault cohomology groups are or not canonically isomorphic to the 
Lie-algebra Dolbeault cohomology of the underlying pair (g, J). In [7], [9], [12], [29] and 
[31], several steps towards a positive answer to this question are given. The results in 
these papers require that (M, J) satisfies some special properties, which in turn force 
the pair (g, J) to satisfy some algebraic constraints. Here we focus on the result obtained 
in [12], where it is required that the complex nilmanifold (M, J) is suitably foliated in 
toroidal groups. In this setting one needs the existence of a non-trivial abelian J-invariant 
ideal f in the nilpotent Lie algebra g. It was first proved in [20] that in general such an 
ideal f may not exist. In Section 5 we study this existence problem on nilpotent Lie 
algebras up to eight dimensions, obtaining a classification of those NLAs g that admit a 
complex structure J having a non-trivial abelian J-invariant ideal.

2. Complex structures on nilpotent Lie algebras

In this section we recall some results about real nilpotent Lie algebras (NLA for short) 
endowed with complex structures, paying special attention to real dimension 8.

Let g be a real Lie algebra of dimension 2n. Its ascending central series {gk}k�0 is 
given by g0 = {0}, and

gk = {X ∈ g | [X, g] ⊆ gk−1},

for any k � 1. In particular, g1 = Z(g) is the center of g. A Lie algebra g is said to be 
nilpotent if there is an integer s � 1 such that gk = g, for every k � s. In such case, 
the smallest integer s satisfying the previous condition is called nilpotency step of g, and 
the Lie algebra is said to be s-step nilpotent. Thus, any nilpotent Lie algebra g has an 
associated s-tuple

(m1, . . . ,ms−1,ms) := (dim g1, . . . ,dim gs−1,dim gs)

which strictly increases as 0 < m1 < · · · < ms−1 < ms = 2n. We will say that 
(m1, . . . , ms) is the ascending type of g.
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Obviously, NLAs with different ascending types are non-isomorphic. However, the 
converse is only true up to real dimension 4. Indeed, there are three non-isomorphic 4-
dimensional NLAs whose ascending types are (4), (2, 4), and (1, 2, 4). In contrast, there 
exist four non-isomorphic 6-dimensional NLAs with the same ascending type (2, 6), for 
instance.

Let J be a complex structure on an NLA g, that is, an endomorphism J : g −→ g

fulfilling J2 = −Id and the integrability condition

NJ (X,Y ) := [X,Y ] + J [JX, Y ] + J [X, JY ] − [JX, JY ] = 0,

for all X, Y ∈ g. Observe that the terms gk in the ascending central series may not 
be invariant under J . For this reason, a new series {ak(J)}k adapted to the complex 
structure J is introduced in [9]:{

a0(J) = {0}, and

ak(J) = {X ∈ g | [X, g] ⊆ ak−1(J) and [JX, g] ⊆ ak−1(J)}, for k � 1.

This series {ak(J)}k is called the ascending J-compatible series of g. Observe that every 
ak(J) ⊆ gk is a J-invariant ideal of g, and a1(J) is indeed the largest subspace of the 
center g1 which is J-invariant.

Depending on the behavior of the series {ak(J)}k, complex structures on NLAs can 
be classified into different types:

Definition 2.1. [9,22] A complex structure J on a nilpotent Lie algebra g is said to be

(i) strongly non-nilpotent, or SnN for short, if a1(J) = {0};
(ii) quasi-nilpotent, if a1(J) �= {0}; moreover, J is called

(ii.1) nilpotent, if there exists an integer t > 0 such that at(J) = g,
(ii.2) weakly non-nilpotent, if there is an integer t > 0 satisfying at(J) = al(J), for 

every l � t, and at(J) �= g.

Remark 2.2. Some algebraic constraints to the existence of complex structures on an 
NLA g are studied in [25] in terms of the descending central series of g. These constraints 
imply some estimates on the nilpotency step s; in particular, g cannot be filiform [18]. We 
also recall that quasi-filiform Lie algebras of dimension � 8 do not admit any complex 
structure [16]. Hence, s � 2n − 3 for any NLA g of dimension 2n � 8 endowed with a 
complex structure.

Remark 2.3. In the recent paper [15], the structure of Lie algebras endowed with a 
maximal nilpotent J is studied. Such J ’s are defined as those nilpotent complex structures 
for which t = n, where t is the smallest integer such that at(J) = g in the ascending 
J-compatible series of g.
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One can see that quasi-nilpotent complex structures on NLAs of a given dimension 
can be constructed from other complex structures defined on (strictly) lower dimensional 
NLAs (see [22, Section 2] for details). Therefore, the essentially new complex structures 
that arise in each even real dimension are those of strongly non-nilpotent type. That is 
to say, SnN complex structures constitute the fundamental piece to fully understand the 
class of NLAs endowed with complex structures.

In real dimension 4 it is well known that SnN complex structures do not exist, whereas 
in dimension 6 one has the following result:

Theorem 2.4. [6] Let g be an NLA of real dimension 6. If g admits an SnN complex 
structure, then its ascending type is (dim gk)k = (1, 3, 6) or (1, 3, 4, 6).

More generally, all the pairs (g, J) with dim g = 6 are classified in [6] by means of their 
complex structure equations. There are only two NLAs, up to isomorphism, admitting 
SnN complex structures.

Concerning higher dimensions, [22] provides several general restrictions on the terms 
of the ascending central series of NLAs admitting SnN complex structures. Among them, 
we highlight the following one:

Theorem 2.5. [22, Theorem 3.11] Let (g, J) be a 2n-dimensional nilpotent Lie algebra, 
with n � 4, endowed with a strongly non-nilpotent complex structure J . Then, 1 �
dim g1 � n − 3.

From Definition 2.1 one can clearly deduce that any complex structure on an NLA 
with 1-dimensional center is of SnN type. Thanks to Theorem 2.5, the converse also 
holds in eight dimensions:

Corollary 2.6. Let g be an 8-dimensional NLA admitting a complex structure J . The 
following properties are equivalent:

• the center of g has dimension 1;
• the complex structure J is strongly non-nilpotent.

A structural result in the spirit of Theorem 2.4 is available in eight dimensions:

Theorem 2.7. [22, Theorem 4.1] Let g be an NLA of real dimension 8. If g admits an SnN 
complex structure, then its ascending type is (dim gk)k = (1, 3, 8), (1, 3, 5, 8), (1, 3, 6, 8), 
(1, 3, 5, 6, 8), (1, 4, 8), (1, 4, 6, 8), (1, 5, 8), or (1, 5, 6, 8).

Furthermore, the complex structure equations for any pair (g, J) with dim g = 8
and a1(J) = {0} are given in [22]. Before presenting them, we need to recall some basic 
concepts.
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Let gC∗ denote the dual of the complexification gC of g. Then, there is a natural bi-
graduation induced on 

∧∗
gC

∗ = ⊕p,q

∧p,q
J (g∗), where the spaces 

∧1,0
J (g∗) and 

∧0,1
J (g∗)

are, respectively, the eigenspaces of the eigenvalues ±i of J as an endomorphism of gC∗. 
For simplicity, we will denote 

∧p,q
J (g∗) by gp,qJ . Let d :

∧∗
gC

∗ −→
∧∗+1

gC
∗ be the ex-

tension to the complexified exterior algebra of the usual Chevalley-Eilenberg differential. 
Since J is a complex structure, we have that π0,2◦d|g1,0

J
≡ 0, where π0,2 :

∧2
gC

∗ −→ g
0,2
J

denotes the canonical projection. In fact, this is equivalent to the integrability condi-
tion NJ ≡ 0. Under these assumptions the differential d splits as d = ∂ + ∂̄, where 
∂̄ : gp,qJ −→ g

p,q+1
J is defined by ∂̄ = πp,q+1 ◦ d|gp,q

J
, and ∂ is the conjugate of ∂̄. From 

d2 = 0 we have ∂̄2 = 0, and the associated Lie-algebra Dolbeault cohomology is given by

Hp,q

∂̄
(g, J) = Ker{∂̄ : gp,qJ −→ g

p,q+1
J }/ Im{∂̄ : gp,q−1

J −→ g
p,q
J }. (1)

Let {ωk}nk=1 be any basis of g1,0
J . From the integrability condition of J we have

dωk =
∑

1�r<s�n

Ak
rs ω

rs +
∑

1�r,s�n

Bk
rs̄ ω

rs̄, 1 � k � n, (2)

for certain Ak
r s, B

k
r s̄ ∈ C. Here, and in the rest of the paper, we denote by ωjk, resp. 

ωjk, the wedge product ωj ∧ωk, resp. ωj ∧ωk, where ωk indicates the complex conjugate 
of ωk. Since g is an NLA, by [32] one can take the basis {ωk}nk=1 so that

dω1 = 0 and dωk ∈ I(ω1, . . . , ωk−1), for 2 � k � n, (3)

where I(ω1, . . . , ωk−1) is the ideal in 
∧∗

gC
∗ generated by {ω1, . . . , ωk−1}.

Note that one can construct J by defining an appropriate space g1,0
J . Even more, one 

can construct a pair (g, J) by defining appropriate equations. More precisely, consider 
equations of the form (2) satisfying the condition (3), and declare {ωk}nk=1 to be a basis 
of bidegree (1, 0). Then, they define a Lie algebra g with a complex structure J as long 
as d2 = 0, namely, the corresponding Lie bracket satisfies the Jacobi identity. Notice 
that this imposes several conditions on the coefficients Ak

rs, B
k
rs̄ ∈ C in (2). Since we are 

interested in defining SnN complex structures on 8-dimensional NLAs, we need to fix 
n = 4 and pay attention to the dimension of the center of g. This motivates the following 
definition:

Definition 2.8. The coefficients Ak
rs, B

k
rs̄ ∈ C are said to be admissible if the equations 

(2) satisfy d2 = 0 and the associated Lie algebra has 1-dimensional center.

Proposition 2.9. Let J be an SnN complex structure on an 8-dimensional NLA g. Then, 
there exists a basis of (1, 0)-forms {ωk}4

k=1 in terms of which the complex structure 
equations of (g, J) are of the form
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dω1 = 0,
dω2 = Aω11̄ −B(ω14 − ω14̄),
dω3 = F ω11̄ + K ω22̄ + C ω12 + Dω12̄ + Gω21̄ − E (ω14 − ω14̄)

−H (ω24 − ω24̄),
dω4 = Lω11̄ + i s ω22̄ + i t ω33̄ + (M ω12̄ − M̄ ω21̄) + (N ω13̄ − N̄ ω31̄)

+ (P ω23̄ − P̄ ω32̄),

(4)

where the coefficients A, . . . , P ∈ C and s, t ∈ R are admissible.

Proof. In [22] admissible complex equations are obtained depending on the dimension of 
the second term g2 in the ascending central series of any 8-dimensional NLA g endowed 
with an SnN complex structure J (see Propositions 4.12, 4.13 and 4.14 in [22] for the 
three possible cases dim g2 = 3, 4 or 5, respectively). We here simply note that we can 
gather those equations in the more general setting provided by (4). �
3. Classification of SnN complex structures in dimension 8

In this section, we classify the SnN complex structures on 8-dimensional NLAs up to 
equivalence. Let g and g′ be two Lie algebras endowed with respective complex structures 
J and J ′. They are said to be equivalent if there is an isomorphism of Lie algebras 
f : g −→ g′ such that J = f−1 ◦ J ′ ◦ f . That is, if there exists a C-linear isomorphism 
F (:= f∗) : g′ 1,0J ′ −→ g

1,0
J such that dg ◦F = F ◦ dg′ , where dg and dg′ are the (extended) 

Chevalley-Eilenberg differentials of g and g′, respectively. We will usually denote both 
differentials by the same letter d.

Note that the equivalence above induces an isomorphism F : Hp,q

∂̄
(g′, J ′) −→

Hp,q

∂̄
(g, J) for every p, q. In the following result we study the invariant given by the 

Lie-algebra Dolbeault cohomology group of bidegree (p, q) = (0, 1).

Proposition 3.1. For any SnN complex structure J on an 8-dimensional NLA g, the 
dimension of the Lie-algebra Dolbeault cohomology group H0,1

∂̄
(g, J) is either 2 or 3.

Proof. From (1) we have H0,1
∂̄

(g, J) = Ker{∂̄ : g0,1
J −→ g

0,2
J }. By Proposition 2.9 we 

can take a basis {ωk}4
k=1 of (1, 0)-forms satisfying (4) for some tuple A, . . . , P ∈ C and 

s, t ∈ R of admissible coefficients. Clearly, ∂̄ω1̄ = 0 = ∂̄ω4̄, so dimH0,1
∂̄

(g, J) � 2.
If dimH0,1

∂̄
(g, J) = 4, then ∂̄ω2̄ = 0 = ∂̄ω3̄ and this implies B = C = E = H = 0 in 

the equations (4). However, in this case U = Re (Z4) and JU = −Im (Z4) would belong 
to the center of g, being Z4 the dual of ω4. This is a contradiction to the fact that the 
tuple of coefficient is admissible, so one concludes that 2 � dimH0,1

∂̄
(g, J) � 3. �

This result provides a partition of the space of SnN complex structures J into two 
families:
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Definition 3.2. We say that J belongs to Family I (resp. Family II ) if the invariant 
H0,1

∂̄
(g, J) has maximal dimension, i.e. equal to 3 (resp. minimal dimension, i.e. equal 

to 2).

The main goal of this section is to prove the classification result below. Recall that 
by Corollary 2.6, a complex structure on an 8-dimensional NLA is SnN if and only if the 
center of the NLA is 1-dimensional.

Theorem 3.3. (Classification of complex structures) Let J be a complex structure on an 
8-dimensional NLA g with 1-dimensional center. Then, there exists a basis of (1, 0)-
forms {ωk}4

k=1 in terms of which the complex structure equations of (g, J) are one (and 
only one) of the following:

(i) if J belongs to Family I, then⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dω1 = 0,
dω2 = ε ω11̄,

dω3 = ω14 + ω14̄ + aω21̄ + i δ ε b ω12̄,

dω4 = i ν ω11̄ + b ω22̄ + i δ (ω13̄ − ω31̄),

(5)

where δ = ±1, (a, b) ∈ R2 − {(0, 0)} with a � 0, and the tuple (ε, ν, a, b) takes the 
following values:

(0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, b/|b|), (0, 1, 1, b), (1, 0, 0, 1), (1, 0, 1, |b|) or

(1, 1, a, b).

Moreover, the ascending type of g is (dim gk)k = (1, 3, 8), (1, 3, 6, 8), (1, 4, 8), 
(1, 4, 6, 8), (1, 5, 8), or (1, 5, 6, 8), and the relation between the parameters in (5)
and the ascending type of g is given in Table 1.

(ii) if J belongs to Family II, then⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dω1 = 0,
dω2 = ω14 + ω14̄,

dω3 = aω11̄ + ε (ω12 + ω12̄ − ω21̄) + i μ (ω24 + ω24̄),
dω4 = i ν ω11̄ − μω22̄ + i b (ω12̄ − ω21̄) + i (ω13̄ − ω31̄),

(6)

where a, b ∈ R, and the tuple (ε, μ, ν, a, b) takes the following values:

(1, 1, 0, a, b), (1, 0, 1, a, b), (1, 0, 0, 0, b), (1, 0, 0, 1, b), (0, 1, 0, 0, 0) or (0, 1, 0, 1, 0).

Moreover, the ascending type of g is (dim gk)k = (1, 3, 5, 8) or (1, 3, 5, 6, 8), and the 
relation between the parameters in (6) and the ascending type of g is given in Table 2.
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Table 1
Complex structures in Family I up to equivalence.

(dim gk)k ε ν a b δ

(1, 3, 8) 0 0 1 0 ±11

(1, 3, 6, 8)
1 0 1 b � 0

±10 1
b ∈ R1 1 a > 0

(1, 4, 8) 1 1 0 2δ ±1

(1, 4, 6, 8) 1 0 0 1 ±1
1 b ∈ R− {0, 2δ}

(1, 5, 8) 0 0 0 1 ±1

(1, 5, 6, 8) 0 1 0 −1 ±11

Table 2
Complex structures in Family II up to equiva-
lence.

(dim gk)k ε μ ν a b

(1, 3, 5, 8)
0 1 0 0, 1 0
1 0 0

b ∈ R
1 1 0 a ∈ R

(1, 3, 5, 6, 8) 1 0 1 a ∈ R b ∈ R

The rest of this section is devoted to the proof of Theorem 3.3. Starting from the 
complex structure equations given in Proposition 2.9, we will arrive at an appropriate 
reduction (see Proposition 3.6 below) that is suitable for the classification of SnN complex 
structures.

Firstly, we obtain several conditions derived from the fact that the coefficients 
A, . . . , P ∈ C and s, t ∈ R in (4) are admissible (see Definition 2.8). We notice that 
the Jacobi identity, i.e. d2ωk = 0 for 1 � k � 4, is equivalent to the following equations:

AH −BG + B̄D = 0, AK = BK = 0, tH = tK = t C = 0,

KN̄ − PC̄ − P̄G = 0, H ReL = 0, tD = tG = 0,

isA− FP̄ −NC̄ + N̄D = 0, Re (PH̄) = 0, itE + BP = 0,

isB − EP̄ −NH̄ = 0, Re (MB̄ + NĒ) = 0, itF + AP = 0.

(7)

For the condition on the center, let us denote by {Zk}4
k=1 the dual basis to {ωk}4

k=1. 
Using the well-known formula dα(X, Y ) = −α([X, Y ]), for any α ∈ g∗ and X, Y ∈ g, 
and its extension to the complexification, it is easy to check from (4) that

[X,Z4 + Z̄4] = 0 (8)

for any X ∈ g. Since the center of g is 1-dimensional, necessarily g1 = 〈Re Z4〉. Fur-
thermore, it is clear from equations (4) that the vanishing of the tuples (B, E, H), 
(N, P, t), or (C, D, G, H, K, M, P, s), implies Im Z4 ∈ g1, 〈Re Z3, Im Z3〉 ⊂ g1, or 
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〈Re Z2, Im Z2〉 ⊂ g1, respectively, which would give a contradiction to dim g1 = 1. 
Hence, the following conditions must be satisfied:

(B,E,H) �= (0, 0, 0), (N,P, t) �= (0, 0, 0), (C,D,G,H,K,M,P, s) �= (0, . . . , 0). (9)

In what follows, we consider (4) bearing in mind the conditions (7) and (9). As noticed 
above, for the classification up to equivalence, one can study C-linear isomorphisms 
F : g′ 1,0

J ′ −→ g
1,0
J commuting with the differentials, i.e. d ◦ F = F ◦ d. Thus, whenever 

an equivalence exists, we will construct it by means of an explicit change of (1, 0)-bases.

Lemma 3.4. In the equations (4), one can assume t = 0.

Proof. Let us suppose that t �= 0 in equations (4). By (7), we get C = D = G = H =
K = 0. Hence, conditions (7) and (9) reduce to

isA− FP̄ = 0, itE + BP = 0, Re (MB̄ + NĒ) = 0, (N,P, t) �= (0, 0, 0),

isB − EP̄ = 0, itF + AP = 0, (B,E) �= (0, 0), (M,P, s) �= (0, 0, 0).
(10)

We first observe that B �= 0, as otherwise the condition itE = 0 would imply E = 0, 
which gives a contradiction to (B, E) �= (0, 0). Bearing this in mind, we now consider 
two cases.

On the one hand, if E = 0 then (10) implies F = P = s = 0. Taking τk = ωk, 
for k = 1, 4, τ2 = ω3 and τ3 = ω2, one directly gets equations of the form (4) for the 
new (1,0)-basis {τk}4

k=1 with tτ = 0. We are denoting by tτ the coefficient of τ33̄ in the 
equation dτ4.

On the other hand, for E �= 0 we consider the (1, 0)-basis {τk}4
k=1 defined by τk = ωk, 

for k = 1, 3, 4, and τ2 = E ω2 −B ω3. Then, the structure equations in terms of {τk}4
k=1

are again of the form (4). Using (10) it can be directly seen that the coefficient tτ satisfies

tτ = i s
|B|2
|E|2 + i t + B P

E
− B̄ P̄

Ē
= B̄

|E|2 (isB −EP̄ ) + 1
E

(itE + BP ) = 0. �
Lemma 3.5. In the equations (4), in addition to t = 0, we can also set P = K = 0.

Proof. By Lemma 3.4 we can assume t = 0. If we suppose that P �= 0, then by (7) we 
immediately get A = B = 0. Hence, (7) and (9) are simplified to the following conditions:

KN̄ − PC̄ − P̄G = 0, H ReL = 0, (E,H) �= (0, 0),

F P̄ + NC̄ − N̄D = 0, Re (PH̄) = 0, (N,P ) �= (0, 0),

EP̄ + NH̄ = 0, Re (NĒ) = 0, (C,D,G,H,K,M,P, s) �= (0, . . . , 0).

(11)

Since E = −NH̄/P̄ , the condition (E, H) �= (0, 0) in (11) implies H �= 0. In turn, this 
gives Re L = 0, again by (11). We consider the (1, 0)-basis {τk}4

k=1 defined by
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τ1 = N ω1 + P ω2, τ2 = ω1, τk = ωk, k = 3, 4.

Using Re L = 0, a direct calculation shows that the structure equations in terms of 
{τk}4

k=1 are again of the form (4), with corresponding coefficients tτ = 0 and Pτ = 0 in 
the equation dτ4.

Finally, now that we have P = t = 0, it suffices to use the second equation of (7) to 
obtain K = 0, as N �= 0 by (9). �

Taking into account Lemmas 3.4 and 3.5, we have:

Proposition 3.6. Let J be a complex structure on an 8-dimensional NLA g with 1-
dimensional center. Then, there exists a basis of (1, 0)-forms {ωk}4

k=1 in terms of which 
the complex structure equations of (g, J) are of the form:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dω1 = 0,
dω2 = Aω11̄ −B(ω14 − ω14̄),
dω3 = F ω11̄ + C ω12 + Dω12̄ + Gω21̄ −E (ω14 − ω14̄) −H (ω24 − ω24̄),
dω4 = Lω11̄ + i s ω22̄ + (M ω12̄ − M̄ ω21̄) + (N ω13̄ − N̄ ω31̄),

(12)

where the coefficients A, . . . , N ∈ C and s ∈ R are admissible; in particular, they satisfy 
the conditions:

AH −BG + B̄D = 0, isB −NH̄ = 0, HReL = 0, (B,E,H) �= (0, 0, 0),

Re (MB̄ + NĒ) = 0, isA−NC̄ + N̄D = 0, N �= 0, (C,D,G,H,M, s) �= (0, . . . , 0).
(13)

Moreover, the complex structure J belongs to Family I (resp. Family II) if and only if 
B = 0 (resp. B �= 0) in the equations (12).

Proof. Lemmas 3.4 and 3.5 directly imply the first part of the proposition. We now prove 
that dimH0,1

∂̄
(g, J) = 3 (that is, J belongs to Family I) if and only if B = 0. By (12) it 

is clear that H0,1
∂̄

(g, J) = 〈ω1̄, ω2̄, ω4̄〉 when B vanishes. Hence, it remains to prove that 
B �= 0 implies dimH0,1

∂̄
(g, J) = 2.

Suppose B �= 0, and let λω2̄ + μω3̄ be ∂̄-closed for some λ, μ ∈ C with (λ, μ) �= (0, 0). 
From the equations (12) it follows that this implies C = H = 0. Then, by (13) we have 
D = G = s = 0, together with the condition Re (MB̄ + NĒ) = 0, where B, M, N �= 0. 
Let {Zk}4

k=1 be the dual basis to {ωk}4
k=1. A direct calculation from (12) shows that 

both

U = Re (NZ̄2 −MZ̄3) and JU = −Im (NZ̄2 −MZ̄3)

belong to the center of g. However, this implies dimZ(g) > 1, which is a contradic-
tion. �
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In the following Sections 3.1 and 3.2 we study the Families I and II, respectively, in 
order to prove the parts (i) and (ii) of Theorem 3.3.

3.1. Study of Family I

We here accomplish the study up to equivalence of those complex structures belonging 
to Family I. We first prove that all such complex structures are parametrized by the 
equations (5) in Theorem 3.3. Then, we classify them up to equivalence and compute the 
ascending central series of the underlying 8-dimensional nilpotent Lie algebras, reaching 
Table 1.

Lemma 3.7. Let J be a complex structure in Family I. Then, there exists a basis of 
(1, 0)-forms {ωk}4

k=1 satisfying (12) with B = F = C = H = M = 0, and

isA + N̄D = 0, Re (NĒ) = 0, NE �= 0, (D,G, s) �= (0, 0, 0). (14)

Proof. We first observe that if we impose B = 0 in (13), then we are forced to consider 
H = 0. Consequently, equations (13) become

isA−NC̄ + N̄D = 0, Re (NĒ) = 0, NE �= 0, (C,D,G,M, s) �= (0, 0, 0, 0, 0).

Let us show that the coefficients C, F , and M in (12) can be set equal to zero. This 
can be done by defining the new (1, 0)-basis {τk}4

k=1 as follows:

τ1 = ω1, τ2 = ω2, τ3 = ω3 + M̄

N̄
ω2, τ4 = ω4 − C

E
ω2 + MĀ + NF̄

NĒ
ω1.

Indeed, in terms of {τk}4
k=1 the complex structure equations are of the form (12) with 

new coefficients Aτ , . . . , Nτ , sτ satisfying Bτ = Fτ = Cτ = Hτ = Mτ = 0. Renaming 
the basis and the coefficients, we directly get the result. Notice that the conditions (13)
reduce to (14). �
Lemma 3.8. For any complex structure in Family I, there is a (1, 0)-basis {ωk}4

k=1 sat-
isfying

dω1 = 0, dω2 = ε ω11̄, dω3 = ω14 + ω14̄ + i δ ε b ω12̄ + Gω21̄,

dω4 = Lω11̄ + b ω22̄ + i δ(ω13̄ − ω31̄),

with ε ∈ {0, 1}, δ = ±1, G, L ∈ C and b ∈ R such that (G, b) �= (0, 0).

Proof. Starting with a basis of (1, 0)-forms {ωk}4
k=1 as given in Lemma 3.7, we consider 

{τk}4
k=1 defined by τk = λk ω

k, for 1 � k � 4, where
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λ1 = |Im (NĒ)|1/2, λ2 =
{

1, if A = 0,
|Im (NĒ)|

A , if A �= 0,
λ3 = −i

|Im (NĒ)|1/2
E

, λ4 = i.

It suffices to rename the basis and the coefficients in the corresponding structure equa-
tions in order to get the desired result. Here, we simply note that the value ε = 0 (resp. 
ε = 1) in the statement of the lemma comes from the case A = 0 (resp. A �= 0). More-
over δ = ±1, where the sign precisely corresponds to sign(Im (NĒ)). We note that the 
coefficient in ω12̄ comes from the condition d2ω4 = 0. �

Using the previous lemma, in the following result we arrive at the desired reduced 
structure equations (5) of Theorem 3.3 for complex structures in the Family I.

Proposition 3.9. Every complex structure J in Family I can be described by equations of 
the form

dω1 = 0, dω2 = ε ω11̄, dω3 = ω14 + ω14̄ + aω21̄ + i δ ε b ω12̄,

dω4 = i ν ω11̄ + b ω22̄ + i δ(ω13̄ − ω31̄),

where ε, ν ∈ {0, 1}, δ = ±1, and a, b ∈ R with a � 0 and (a, b) �= (0, 0).

Proof. Consider the complex structure equations in Lemma 3.8 in terms of a (1, 0)-basis 
{σk}4

k=1 with coefficients (εσ, δσ, bσ, Gσ, Lσ). We first normalize the coefficient Lσ by 
applying the change of basis

τ1 = σ1, τ2 = σ2, τ3 = λ

(
σ3 + iReLσ

2δσ
σ1

)
, τ4 = λσ4,

where λ ∈ R∗ is defined by either λ = 1 if Im Lσ = 0, or λ = 1
ImLσ

otherwise. The new 
structure equations still follow Lemma 3.8, but now with coefficients ετ = εσ, Gτ = λ Gσ, 
bτ = λ bσ, δτ = δσ and Lτ = λ (Lσ −Re Lσ) = i λ Im Lσ = iν ∈ {0, i}, in terms of the 
(1,0)-basis {τ k}4

k=1.
Now, writing the complex coefficient Gτ as Gτ = |Gτ |eiα for some α ∈ [0, 2 π), we 

define a new (1, 0)-basis {ωi}4
i=1 as follows:

ω 1 = e−
i α/2 τ1, ω 2 = τ2, ω 3 = e−

i α/2 τ3, ω 4 = τ4.

This concludes the proof, simply denoting a = |Gτ | � 0. �
After having reduced the complex structure equations of the Family I, next we study 

their equivalences in terms of the different parameters involved in our equations.
Let J and J ′ be two complex structures in Family I on an NLA g. Consider bases 

{ωk}4
k=1 and {ω′ k}4

k=1 for g1,0
J and g1,0

J ′ satisfying structure equations as in Proposi-
tion 3.9 with parameters (ε, ν, δ, a, b) and (ε′, ν′, δ′, a′, b′), respectively. Any equivalence 
of complex structures, as presented at the beginning of Section 3, is defined by
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F (ω′ i) =
4∑

j=1
λi
j ω

j , for each 1 � i � 4, (15)

and satisfies the conditions

d
(
F (ω′ i)

)
= F (dω′ i), (16)

where the matrix Λ = (λi
j)1�i,j�4 belongs to GL(4, C). To simplify our discussion, we 

will make use of the following notation.

Notation 3.10. We will denote by 
[
d
(
F (ω′ k)

)
− F (dω′ k)

]
ij

the coefficient for ωij in the 

expression d
(
F (ω′ k)

)
− F (dω′ k). Similarly, for the coefficient of ωij̄ .

The following result reduces the general expression of the isomorphism (15).

Lemma 3.11. The forms F (ω′ i) ∈ g
1,0
J satisfy the conditions:

F (ω′ 1) ∧ ω1 = 0, F (ω′ 2) ∧ ω12 = 0, F (ω′ 3) ∧ ω123 = 0, F (ω′ 4) ∧ ω14 = 0.

In particular, the matrix Λ = (λi
j)1�i,j�4 defining F is triangular, and thus

Π4
i=1λ

i
i = det Λ �= 0.

Proof. A direct calculation of the conditions (16) for i = 1, 2 shows that λ1
3 = λ1

4 =
λ2

3 = λ2
4 = 0. Consequently, F (ω′ 1), F (ω′ 2) ∈ 〈ω1, ω2〉. In particular, F (ω′ 2) ∧ ω12 = 0, 

as stated in the lemma. Moreover, since Λ becomes a block triangular matrix, we get 
detΛ = det (λi

j)i,j=1,2 · det (λi
j)i,j=3,4 �= 0.

If we now compute (16) for i = 3, then one in particular obtains[
d
(
F (ω′ 3)

)
− F (dω′ 3)

]
31̄ = −i δ λ3

4 = 0,

which implies λ3
4 = 0. Thus, F (ω′ 3) ∧ ω123 = 0 as required. Moreover, 0 �=

det (λi
j)i,j=3,4 = λ3

3 λ
4
4 and necessarily λ1

1 �= 0, since these three coefficients are related 
by the annihilation of [

d
(
F (ω′ 3)

)
− F (dω′ 3)

]
14 = λ3

3 − λ1
1 λ

4
4.

As a consequence of λ1
1, λ

3
3, λ

4
4 being non-zero, the annihilation of[

d
(
F (ω′ 3)

)
− F (dω′ 3)

]
13 = −λ1

1 λ
4
3,

[
d
(
F (ω′ 3)

)
− F (dω′ 3)

]
24 = −λ1

2 λ
4
4

gives λ1
2 = λ4

3 = 0. In particular, we conclude that F (ω′ 1) ∧ ω1 = 0. Finally, from

0 =
[
d
(
F (ω′ 3)

)
− F (dω′ 3)

]
= −λ1

1 λ
4
2,
12
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we obtain λ4
2 = 0, i.e. F (ω′ 4) ∧ ω14 = 0. �

As a consequence, a first relation between the tuples (ε, ν, δ, a, b) and (ε′, ν′, δ′, a′, b′)
is attained:

Proposition 3.12. If the complex structures J and J ′ are equivalent, then

ε′ = ε, ν′ = ν, δ′ = δ.

Moreover, there exists an isomorphism (15) satisfying the conditions in Lemma 3.11 and

λ1
1 = eiθ, λ4

4 = λ ∈ R∗, λ3
3 = λ eiθ, ν(1 − λ) = 0, ε(1 − λ2

2) = 0,

where θ ∈ [0, 2 π).

Proof. We first observe that Lemma 3.11 must hold in order to have an equivalence 
between J and J ′ defined by F . Taking this as a starting point, let us recalculate the 
conditions (16) for each 1 � i � 4. One can easily check that F (dω′ 1) = d

(
F (ω′ 1)

)
. For 

i = 2, one simply has

0 = d
(
F (ω′ 2)

)
− F (dω′ 2) = (ε λ2

2 − ε′ |λ1
1|2)ω11̄. (17)

If ε = 0 then ε′ = 0, as Lemma 3.11 states λ1
1 �= 0. Similarly, if ε = 1 then λ2

2 = ε′ |λ1
1|2 �=

0, and the only possibility is taking ε′ = 1. These observations give ε′ = ε.
For i = 3, we highlight the following terms:[

d
(
F (ω′ 3)

)
− F (dω′ 3)

]
14 = λ3

3 − λ1
1 λ

4
4,

[
d
(
F (ω′ 3)

)
− F (dω′ 3)

]
14̄ = λ3

3 − λ1
1 λ̄

4
4.

Their annihilation leads to

λ4
4 = λ ∈ R∗, λ3

3 = λλ1
1. (18)

For i = 4, one can take into account (18) to get

0 =
[
d
(
F (ω′ 4)

)
− F (dω′ 4)

]
13̄ = i λ (δ − δ′ |λ1

1|2).

Since λ, λ1
1 �= 0 and δ, δ′ ∈ {−1, 1}, one necessarily has

δ′ = δ, |λ1
1|2 = 1.

In particular, we can set λ1
1 = ei θ, for some θ ∈ [0, 2π). Finally,

0 =
[
d
(
F (ω′ 4)

)
− F (dω′ 4)

]
¯ = i (ν λ− ν′) − (b′ |λ2

1|2 + 2 δ Im (λ3
1 e

−iθ)).
11
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The imaginary part of the previous equation implies that either ν′ = ν = 0 or ν′ = ν = 1
with λ = 1, since λ �= 0 and ν, ν′ ∈ {0, 1}. Notice that this is equivalent to

ν′ = ν, ν(1 − λ) = 0.

The expression ε(1 − λ2
2) = 0 comes from rewriting (17). �

From now on, in order to determine the space of complex structures up to equivalence, 
we can fix parameters ε, ν, δ and simply identify J and J ′ with the pairs (a, b) and (a′, b′), 
respectively. Recall that (a, b), (a′, b′) �= (0, 0) and a, a′ � 0.

Proposition 3.13. The complex structures J and J ′ are equivalent if and only if there 
exists an isomorphism given by

F (ω′ 1) = eiθ ω1, F (ω′ 2) = λ2
2 ω

2, F (ω′ 3) = λ eiθ ω3, F (ω′ 4) = λω4, (19)

where θ ∈ [0, 2π), λ2
2 ∈ C∗, λ ∈ R∗ and

Im (λ2
2 e

−2i θ) = 0, ν (1 − λ) = 0, ε (1 − λ2
2) = 0. (20)

Moreover, the parameters (a, b) and (a′, b′) that respectively determine J and J ′ are 
related by

a′ = a
λ

λ2
2 e

−2iθ , b′ = b
λ

|λ2
2|2

. (21)

Proof. According to the previous results, if J and J ′ are equivalent, then there exists an 
isomorphism F defined by (15) in the conditions of Proposition 3.12. We must ensure 
that F fulfills (16) for each 1 � i � 4.

First, one checks that the desired conditions are equivalent to the following equations:

0 =
[
d
(
F (ω′ 3)

)
− F (dω′ 3)

]
11̄ = ε (λ3

2 − i δ b′ λ̄2
1 e

i θ) − λ̄4
1 e

iθ − a′ λ2
1 e

−iθ,

0 =
[
d
(
F (ω′ 3)

)
− F (dω′ 3)

]
12̄ = i δ ε eiθ (b λ− b′ λ̄2

2),

0 =
[
d
(
F (ω′ 3)

)
− F (dω′ 3)

]
21̄ = a λ eiθ − a′ λ2

2 e
−iθ,

0 =
[
d
(
F (ω′ 4)

)
− F (dω′ 4)

]
11̄ = −2 δ Im (λ3

1 e
−iθ) − b′ |λ2

1|2,

0 =
[
d
(
F (ω′ 4)

)
− F (dω′ 4)

]
12̄ = −i δ λ̄3

2 e
iθ − b′ λ2

1 λ̄
2
1,

0 =
[
d
(
F (ω′ 4)

)
− F (dω′ 4)

]
22̄ = b λ− b′ |λ2

2|2.

Now, notice that the pairs (a, b) and (a′, b′), which determine the complex structures J
and J ′, are related by 

[
d
(
F (ω′ 3)

)
− F (dω′ 3)

]
21̄ and 

[
d
(
F (ω′ 4)

)
− F (dω′ 4)

]
22̄. Hence, 

a′ and b′ are given by these expressions, obtaining (21). In particular, the equivalence 
between J and J ′ only depends on the parameters θ, λ, and λ2

2. Hence, the parameters 
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λi
j for i �= j do not affect the relation (21), and they can be chosen to be zero. This 

solves the remaining equations and gives (19).
Finally, the first expression in (20) comes from imposing a′ ∈ R in (21) whereas the 

other two are a direct consequence of Proposition 3.12. �
Finally we can set the main result about equivalences of complex structures in Fam-

ily I:

Theorem 3.14. Up to equivalence, the complex structures in Proposition 3.9 are classified 
as follows:

(i) (ε, ν, a, b) = (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1); (iii) (ε, ν, a, b) = (1, 0, 0, 1), (1, 0, 1, |b|);
(ii) (ε, ν, a, b) = (0, 1, 0, b/|b|), (0, 1, 1, b); (iv) (ε, ν, a, b) = (1, 1, a, b).

Proof. Let us study different cases depending on the values of the pair (ε, ν). Recall that 
the conditions (20)–(21) given in Proposition 3.13 must be satisfied, namely

a′ = a
λ

λ2
2 e

−2iθ , b′ = b
λ

|λ2
2|2

,

where Im (λ2
2 e

−2i θ) = 0, ν (1 −λ) = 0, and ε (1 −λ2
2) = 0. These expressions will give us 

the desired equivalences between (a, b) and (a′, b′), thus between our complex structures.

(i) (ε, ν) = (0, 0): There are no restrictions on λ and λ2
2, so it is possible to normalize 

a and/or b (i.e. take a′ = 1 or b′ = 1) when they are non-zero. Indeed, this is easy 
when ab = 0, whereas for ab �= 0 one can take θ = 0, λ = b/a2 and λ2

2 = b/a.
(ii) (ε, ν) = (0, 1): In this case λ = 1 and λ2

2 ∈ C∗ is a free parameter. When a is 
non-zero, we can normalize it. If a = 0, we can choose λ2

2 =
√

|b|, and thus b′ = ±1.
(iii) (ε, ν) = (1, 0): From the expressions above we get λ2

2 = 1, so a′ = aλe2iθ and 
b′ = bλ, for λ ∈ R∗. Observe that e2iθ is a real number, so the only possible choices 
are θ = 0 or θ = π/2. If a = 0 one can normalize b′, and if a > 0 we can take a′ = 1
and b′ � 0. In fact, in the last case it suffices to consider e2iθ = b/|b| and λ = b/a|b|.

(iv) (ε, ν) = (1, 1): We are forced to impose λ = λ2
2 = 1, hence a′ = ae2iθ and b′ = b. 

Since a, a′ � 0, necessarily e2iθ = 1 and a′ = a. �
To complete the proof of Theorem 3.3 (i), it remains to study the ascending type of 

the Lie algebras underlying Family I. For this we take as starting point the structure 
equations in Proposition 3.9. Let {Zk}4

k=1 be the dual basis to {ωk}4
k=1. Then, a generic 

(real) element X ∈ g can be written as

X =
4∑

αiZi +
4∑

ᾱiZ̄i, (22)

i=1 i=1
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where αi ∈ C, and Z̄i is the conjugate of Zi. From the equations in Proposition 3.9, it 
follows that the brackets [X, Zk], for 1 � k � 4, are given by

[X,Z1] = ε ᾱ1(Z2 − Z̄2) + (α4 + ᾱ4 + i δ ε b ᾱ2)Z3 − a ᾱ2 Z̄3 + i ν ᾱ1(Z4 + Z̄4)

+ i δ ᾱ3(Z4 − Z̄4),

[X,Z2] = a ᾱ1 Z3 + i δ ε b ᾱ1 Z̄3 + b ᾱ2(Z4 − Z̄4),

[X,Z3] = − i δ ᾱ1(Z4 − Z̄4),

[X,Z4] = −α1 Z3 − ᾱ1 Z̄3.

(23)

Note that since X is real, the bracket [X, Z̄k] is just the conjugate of [X, Zk], for 1 �
k � 4. Recall that ε, ν ∈ {0, 1}, δ = ±1, and a, b ∈ R with a � 0 and (a, b) �= (0, 0).

Clearly, [X, Z4 − Z̄4] = 0 for every X ∈ g, so g1 = 〈Im Z4〉. Observe that this is 
consistent with (8), as the change of basis in the proof of Lemma 3.8 switches the real 
and imaginary parts of ω4, thus of Z4.

Lemma 3.15. In the conditions above, the term g2 in the ascending central series is given 
by:

(i) for a �= 0: g2 = 〈Re Z3, Im Z3, Im Z4〉 and so dim g2 = 3;
(ii) for a = 0, ε = 1: g2 = 〈2δ Im Z2 + b Re Z4, Re Z3, Im Z3, Im Z4〉, so dim g2 = 4;
(iii) for a = ε = 0: g2 = 〈Re Z2, Im Z2, Re Z3, Im Z3, Im Z4〉, hence dim g2 = 5.

Proof. Let X be a generic element in g given by (22). Then, X belongs to the term g2
in the ascending central series if and only if [X, Zk] ∈ g1, for every 1 � k � 4. Since 
g1 = 〈Im Z4〉, bearing in mind (23) we get that X ∈ g2 if and only if

α1 = 0, a α2 = 0, α4 + ᾱ4 − i δ ε b α2 = 0.

In particular, one directly has Re Z3, Im Z3 ∈ g2. Now, to solve the previous system it 
suffices to distinguish the three different cases in the statement of the lemma. One gets 
the desired result simply substituting the corresponding solutions into (22). �
Proposition 3.16. Let g be an 8-dimensional NLA endowed with a complex structure J
in Family I with equations given in Proposition 3.9. Then, the ascending type of g is as 
follows:

(i) if a �= 0 and (ε, ν) 
{

= (0, 0), then (dim gk)k = (1, 3, 8);
�= (0, 0), then (dim gk)k = (1, 3, 6, 8);

(ii) if a = 0, ε = 1 and (ν, b) 
{

= (1, 2δ), then (dim gk)k = (1, 4, 8);
�= (1, 2δ), then (dim g ) = (1, 4, 6, 8);
k k
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(iii) if a = ε = 0 and ν =
{

0, then (dim gk)k = (1, 5, 8);
1, then (dim gk)k = (1, 5, 6, 8).

Proof. A generic element X given by (22) belongs to the term g3 in the ascending central 
series if and only if [X, Zk] ∈ g2, for every 1 � k � 4. From (23) it follows that this 
happens for k = 2, 3 and 4, since 〈Re Z3, Im Z3, Im Z4〉 ⊆ g2 by Lemma 3.15. Hence, 
we must focus on the bracket [X, Z1], which can be rewritten as

[X,Z1] = 2i ᾱ1 (ε ImZ2 + νReZ4) + Υ,

for some Υ ∈ g2. Therefore, X will belong to g3 depending on whether ε Im Z2+νRe Z4 ∈
g2 or ε Im Z2 + νRe Z4 /∈ g2. The analysis of these two cases leads to our result, bearing 
in mind the description of g2 given in Lemma 3.15. �

Combining the previous result with Theorem 3.14, one obtains part (i) of Theorem 3.3.

3.2. Study of Family II

In this section we arrive at the reduced equations (6) in Theorem 3.3, as well as 
at the classification of the complex structures in the Family II. Moreover, we study 
the ascending type of the 8-dimensional nilpotent Lie algebras admitting such complex 
structures, reaching Table 2. Our starting point is Proposition 3.6.

Lemma 3.17. Let J be a complex structure in Family II. Then, there exists a basis of 
(1, 0)-forms {ωk}4

k=1 such that

{
dω1 = 0, dω3 = F ω11̄ + C ω12 + C̄(ω12̄ − ω21̄) − is (ω24 + ω24̄),
dω2 = ω14 + ω14̄, dω4 = Lω11̄ + s ω22̄ + i b (ω12̄ − ω21̄) + i (ω13̄ − ω31̄),

(24)

where the coefficients C, F, L ∈ C and b, s ∈ R are admissible; in particular, they satisfy 
s Im L = 0 and (C, b, s) �= (0, 0, 0).

Proof. It follows from Proposition 3.6 that J admits complex structure equations of the 
form (12) with B �= 0. By (13) we also have N �= 0, so one can define the (1, 0)-basis

τ1 = ω1, τ2 = − i

B
ω2, τ3 = N̄ω3 − E N̄

B
ω2, τ4 = i ω4 + i

Ā

B̄
ω1.

With respect to {τk}4
k=1, the complex structure equations (12) in Proposition 3.6 become

{
dτ1 = 0, dτ3 = Fτ τ

11̄ + Cτ τ
12 + Dτ τ

12̄ + Gτ τ
21̄ −Hτ (τ24 + τ24̄),

dτ2 = τ14 + τ14̄, dτ4 = L τ11̄ + s τ22̄ + (M τ12̄ + M̄ τ21̄) + i (τ13̄ − τ31̄),
τ τ τ τ
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where the coefficients Fτ , Cτ , Dτ , Gτ , Hτ , Lτ , Mτ ∈ C and sτ ∈ R are expressed in 
terms of the original ones as follows:

Cτ = i B N̄
B̄

(
CB̄ −HĀ

)
, Dτ = −i B̄ N̄D, Gτ = i N̄

(
BG−AH

)
,

Hτ = BHN̄, Mτ = MB̄ + NĒ, sτ = −s |B|2.

Note that, in order to get the result, it suffices to check that Dτ = −Gτ = sCτ , Hτ = i sτ , 
and Mτ ∈ i R. This can be done using the conditions in (13). �
Lemma 3.18. Let J be a complex structure in Family II. Then, there exists a basis of 
(1, 0)-forms {ωk}4

k=1 satisfying (24) with C = ε, L = i ν and s = −μ, where ε, μ, ν ∈
{0, 1} such that μ ν = 0 and (ε, μ, b) �= (0, 0, 0).

Proof. Since J is in Family II, by Lemma 3.17 there is a basis {ωk}4
k=1 satisfying the 

equations (24). Hence, writing C = |C| ei β for some β ∈ [0, 2 π), one can define a new 
(1, 0)-basis as follows:

τ1 = λω1, τ2 = λω2, τ3 = 1
λ̄

(
ω3 + iReL

2 ω1
)
, τ4 = ω4, where

λ =
{

1, if C = 0,
|C|1/3 ei β , if C �= 0.

In terms of {τk}4
k=1 we obtain equations of the form (24) with new coefficients Cτ ∈

{0, 1}, Fτ ∈ C, Lτ = i ντ for some ντ ∈ R, and bτ , sτ ∈ R. We rename Cτ = ετ and 
sτ = −μτ . Note that by Lemma 3.17 we have μτ ντ = 0 and (ετ , bτ , sτ ) �= (0, 0, 0).

Now, we focus our attention on the fact that the parameters μτ , ντ ∈ R satisfy the 
condition μτ ντ = 0. Thus, we consider the following cases:
• Let us suppose μτ = 0. If ντ �= 0, then we can define the (1, 0)-basis σ 1 = τ1, 
σk = 1

ντ
τk, for k = 2, 3, 4, to get similar equations but with the normalized coefficient 

νσ = 1.
• If μτ �= 0, then ντ = 0 and we consider σ 1 = τ1, σk = μτ τ

k for k = 2, 3, 4. We arrive 
at similar equations but with the normalized coefficient μσ = 1.

Finally, renaming the basis and the coefficients, the lemma is proved. �
Using the previous lemma, in the following result we arrive at the desired reduced 

structure equations (6) of Theorem 3.3 for complex structures in the Family II.

Proposition 3.19. Every 8-dimensional nilpotent Lie algebra g endowed with a complex 
structure J in Family II admits a basis of (1, 0)-forms satisfying the structure equations{

dω1 = 0, dω3 = aω11̄ + ε (ω12 + ω12̄ − ω21̄) + i μ (ω24 + ω24̄),
dω2 = ω14 + ω14̄, dω4 = i ν ω11̄ − μω22̄ + i b (ω12̄ − ω21̄) + i (ω13̄ − ω31̄),
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where ε, μ, ν ∈ {0, 1} such that μν = 0, (ε, μ) �= (0, 0), and a, b ∈ R.

Proof. By Lemma 3.18, it suffices to see that the coefficient F in (24) can be chosen to 
be a real number. Two cases are distinguished depending on ε:
• If ε = 0, it suffices to write F = |F | ei α, for some α ∈ [0, 2 π), and apply the change of 
basis defined by τk = e−i α ωk, for k = 1, 2, 3, and τ 4 = ω4.
• For ε = 1, the result follows by considering the new (1, 0)-basis defined by

τ1 = ω1, τ 2 = ω2 − iImF

2 ω1,

τ 3 = ω3 + μ ImF

2 ω2 + iImF (4 b− 3μ ImF )
8 ω1, τ4 = ω4.

Finally, (ε, μ) �= (0, 0) because otherwise the dimension of the center of g would be 
greater than 1. �

After having reduced the complex structure equations of the Family II, we next study 
their equivalences in terms of the different parameters involved in the equations. Let J
and J ′ be two complex structures in Family II on an NLA g. Let {ωk}4

k=1 and {ω′ k}4
k=1

be bases for g1,0
J and g1,0

J ′ satisfying structure equations as in Proposition 3.19 with 
parameters (ε, μ, ν, a, b) and (ε′, μ′, ν′, a′, b′), respectively. Any equivalence F between J
and J ′ is defined by (15)–(16). Similarly to Lemma 3.11, for Family II the isomorphism 
F can be simplified as follows:

Lemma 3.20. The forms F (ω′ i) ∈ g
1,0
J satisfy the conditions:

F (ω′ 1) ∧ ω1 = 0, F (ω′ 2) ∧ ω12 = 0, F (ω′ 3) ∧ ω123 = 0, F (ω′ 4) ∧ ω4 = 0.

In particular, the matrix Λ = (λi
j)1�i,j�4 that defines F is triangular and thus

Π4
i=1λ

i
i = detΛ �= 0.

Proof. The result comes straightforward by imposing F (dω′ i) = d(F (ω′ i)) for i =
1, 2, 3, taking into account that (ε, μ) �= (0, 0) and detΛ �= 0. �

Moreover, in a similar way to Proposition 3.12 one finds a first relation between the 
tuples (ε, μ, ν, a, b) and (ε′, μ′, ν′, a′, b′):

Lemma 3.21. In the conditions above, if there exists an equivalence between J and J ′, 
then

ε = ε′, μ = μ′, ν = ν′.
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As a consequence, we can focus on the relations between the pairs (a, b) and (a′, b′)
to study the equivalences between the complex structures J and J ′. In fact, applying 
similar techniques as in the proof of Proposition 3.13 one obtains the following result:

Proposition 3.22. Suppose that the complex structures J and J ′ are equivalent. We have:

(i) if (ε, μ, ν) = (1, 0, 0), then a′ = λ a and b′ = b, with λ ∈ R∗;
(ii) if (ε, μ, ν) = (0, 1, 0), then a′ = a/κ5 and b′ = 1/κ2

(
b + 2 κ Im λ2

1
)
, with κ ∈ R∗;

(iii) otherwise, a′ = a and b′ = b.

Furthermore, any equivalence F between J and J ′ defined by (15)–(16) satisfies 
Lemma 3.20 together with

λ4
4 = λ ∈ R∗, λ2

2 = λλ1
1, λ3

3 = λ

λ̄1
1
, λ3

2 = i μ λ λ2
1,

and 

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ1

1 = 1, Imλ2
1 = Imλ3

1 = 0, if (ε, μ, ν) = (1, 0, 0);

λ1
1 = κ ∈ R∗, λ = 1

κ2 , Imλ3
1 = 1

κ

( 1
2 |λ2

1|2 − b
κ Imλ2

1 − 2 (Imλ2
1)2

)
,

if (ε, μ, ν) = (0, 1, 0).

Finally, we arrive at the main result about equivalences of complex structures in 
Family II:

Theorem 3.23. Up to equivalence, the complex structures in Proposition 3.19 are classified 
as follows:

(i) (ε, μ, ν, a, b) = (1, 1, 0, a, b); (iii) (ε, μ, ν, a, b) = (1, 0, 0, 0, b), (1, 0, 0, 1, b);
(ii) (ε, μ, ν, a, b) = (1, 0, 1, a, b); (iv) (ε, μ, ν, a, b) = (0, 1, 0, 0, 0), (0, 1, 0, 1, 0).

Proof. We first observe that parts (i) and (ii) of the theorem come straightforward from 
Proposition 3.22. Moreover, this proposition also gives us the relation between the pairs 
(a, b) and (a′, b′) whenever there exists an equivalence between the complex structures 
J and J ′.

For (ε, μ, ν) = (1, 0, 0), observe that one has a′ = λ a and b′ = b with λ ∈ R∗. It 
suffices to set the values λ2

1 = λ3
1 = 0 and, either λ = 1

a when a �= 0, or λ = 1 when 
a = 0, in order to obtain (iii).

For (ε, μ, ν) = (0, 1, 0), we have a′ = a
κ5 and b′ = 1

κ2

(
b + 2 κ Im λ2

1
)
, with κ ∈ R∗. 

Hence, one can take λ2
1 = − i b

2κ , λ3
1 = i b2

8κ3 and (λ, κ) = (1, 1) when a = 0, or (λ, κ) =
(a−2/5, a1/5) otherwise, so that we get b′ = 0 and a′ ∈ {0, 1}. This gives (iv) and completes 
the proof of the theorem. �
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Finally, one can explicitly compute the ascending central series of the nilpotent Lie 
algebras underlying Family II from the equations given in Proposition 3.19. The ideas 
behind the proof are similar to those applied to Family I, so we omit the argument here.

Proposition 3.24. Let g be an 8-dimensional NLA endowed with a complex structure J
in Family II with equations given in Proposition 3.19. Then, the ascending type of g is 
one of the following:

(i) (dim gk)k = (1, 3, 5, 8) if and only if ν = 0;
(ii) (dim gk)k = (1, 3, 5, 6, 8) if and only if ν = 1.

The combination of this result and Theorem 3.23 gives part (ii) of Theorem 3.3.
It is worth noting that Propositions 3.16 and 3.24 show that the NLAs underlying 

Families I and II do not share the same ascending type. This provides a stronger re-
sult than the partition of SnN complex structures into the families I and II proved in 
Proposition 3.1.

4. Classification of nilpotent Lie algebras with SnN complex structures

In this section we classify the 8-dimensional NLAs admitting an SnN complex struc-
ture J . The study is divided into two parts depending on the family to which J belongs 
(see Section 4.1 for J in Family I and Section 4.2 for J in Family II). As a consequence, 
Theorem 1.1 is proved.

4.1. Classification of NLAs underlying Family I

The goal of this section is to prove that the non-isomorphic real Lie algebras underlying 
Family I are those in Theorem 1.1 denoted by

g
γ
1 , gα2 , g

γ
3 , g

α, β
4 , g5, g6, g7, g8, (25)

where γ ∈ {0, 1}, α ∈ R, and (α, β) ∈ R∗ ×R+ or R+ × {0}. Moreover, their ascending 
types are listed in the first column of Table 3 below.

Notation 4.1. For the description of the structure equations of the Lie algebras in The-
orem 1.1 we are using the following abbreviated notation. For instance,

g
γ
1 = (05, 13 + 15 + 24, 14 − 23 + 25, 16 + 27 + γ · 34)

means that there is a basis {ej}8
j=1 of the dual (gγ1)∗ of the nilpotent Lie algebra gγ1

satisfying de1 = · · · = de5 = 0, de6 = e1∧e3+e1∧e5+e2∧e4, de7 = e1∧e4−e2∧e3+e2∧e5, 
and de8 = e1 ∧ e6 + e2 ∧ e7 + γ e3 ∧ e4.
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Table 3
Real Lie algebras and complex structures in Family I.
Ascending type (ε, ν, a, b) Real basis {ek}8

k=1 NLA

(1, 3, 8)
(0, 0, 1, b),
b ∈ {0, 1}

ω1 = δ e1 − i e2, ω2 = −e3 + δ i e4,

ω3 = δ e6 − i e7, ω4 = 1
2 e5 + 2 δ i e8.

g
b
1

(1, 3, 6, 8)

(0, 1, 1, b)
ω1 = δ e1 − i e2, ω2 = 4 (δ e3 − i e4),
ω3 = −4 (e6 − δ i e7), ω4 = −2

(
δ e5 + 4 i e8) . g

−4δb
2

(1, 1, a, 0)
0 < a < 2

(I) g
0
2

(1, 1, 2, 0)

ω1 = δ√
2 (e1 + i e2),

ω2 = − 1
2 (e3 − e4) − i e5,

ω3 =
√

2 δ (e6 + i e7),
ω4 = 1

2 (e3 + e4) + e5 + 2 δ i e8.

g
1
3

(1, 1, a, 0),
a > 2

(II)
g
0
3

(1, 0, 1, 0)
ω1 = 1√

2 (δ e1 − i e2),
ω2 = − 1

2 (e3 − e4) + i δ e5,

ω3 = 1√
2 (δ e6 − i e7), ω4 = 1

4 (e3 + e4) + i δ e8.

(1, 0, 1, b)
b > 0 (III) g

as

b
, |b−2δν|

a
4(1, 1, a, b)

a > 0, b �= 0, 2δ

(1, 1, a, 2δ)
a > 0

ω1 = − 1
2
(
e1 − e2 − i (e1 + e2)

)
,

ω2 = a
2 e4 + i

(
e3

2 + e5
)
,

ω3 = − a
2
(
e6 − e7 − i (e6 + e7)

)
,

ω4 = −
(
a+2
4 e3 + e5) + i δ a e8.

g
a

2
,0

4

(1, 4, 8) (1, 1, 0, 2δ)
ω1 = δ e1 − i e2, ω2 = − δ

2 (e3 − 2 i e5),
ω3 = δ e6 − i e7, ω4 = 2δ

(
δ
4 e4 − 1

2 e5 + i e8) . g5

(1, 4, 6, 8)
(1, 0, 0, 1)

ω1 = δ e1 − i e2,

g6
ω2 = ( 2 δ ν

b − 1) e3 + i δ e5,
(1, 1, 0, b)
b �= 0, 2δ

ω3 = (b − 2δ ν)(δ e6 − i e7),
ω4 =

(
b
2 − δ ν

)
e4 − δ ν e5 + 2δ(b − 2 δ ν) i e8.

(1, 5, 8) (0, 0, 0, 1)
ω1 = δ e1 − i e2, ω2 = −e3 + δ i e4,

ω3 = δ e6 − i e7, ω4 = 1
2 e5 + 2 δ i e8.

g7

(1, 5, 6, 8)
(0, 1, 0, b)
b = ±1

ω1 = δ e1 − i e2, ω2 = −(b e3 + 4 i e4),
ω3 = −4 (e6 − i δ e7), ω4 = −2 (δ e5 + 4 i e8).

g8

Let us recall that any 8-dimensional NLA g with complex structure J in Family I is 
given by the complex structure equations (5) with parameters in Table 1. For each tuple 
(ε, ν, a, b), it suffices to define a real basis {ei}8

i=1 following the third column in Table 3
to get the real Lie algebras above.

In Table 3, note that δ = ±1 and s = sign(b − 2νδ). Moreover, (I), (II), and (III) 
correspond to the following relations between the complex and the real bases:
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(I) For (ε, ν, a, b) = (1, 1, a, 0) with 0 < a < 2, one defines:

Reω1 = −δa2

2
√

3(4 − a2)
e2,

Imω1 = δa2

4
√

3(4 − a2)

(√
4 − a2 e1 + ae2

)
,

Reω2 = a3

24(4 − a2)

(√
4 − a2 e3 + ae4

)
,

Imω2 = −a3

12(4 − a2)3/2
(
ae3 −

√
4 − a2 e4 + ae5

)
,

Reω3 = δa6

48
√

3(4 − a2)2
(
ae6 −

√
4 − a2 e7

)
,

Imω3 = δa6

24
√

3(4 − a2)2
e6,

Reω4 = a4

48(4 − a2)3/2
(
a2e3 − a

√
4 − a2 e4 + 4e5

)
,

Imω4 = δa8

144(4 − a2)5/2
e8.

(II) For (ε, ν, a, b) = (1, 1, a, 0) with a > 2, one considers:

Reω1 = − δa2

(a2 − 4)

√
3
2

(
e1 + 1

2 −
√

3
e2
)
,

Imω1 = δa2

2(a2 − 4)

√
3
2

(
(a +

√
a2 − 4) e1 + a−

√
a2 − 4

2 −
√

3
e2

)
,

Reω2 = − 3a3

4(a2 − 4)

(
a−

√
a2 − 4

(2 −
√

3)2
e3 − (a +

√
a2 − 4) e4

)
,

Imω2 = 3a3

2(a2 − 4)3/2

(
a−

√
a2 − 4

(2 −
√

3)2
e3 + (a +

√
a2 − 4) e4 − 2a

2 −
√

3
e5

)
,

Reω3 = −δa6

(a2 − 4)2(2 −
√

3)

(
3
2

)3/2
(
a−

√
a2 − 4

2 −
√

3
e6 − (a +

√
a2 − 4) e7

)
,

Imω3 = −3δa6

(2 −
√

3)(a2 − 4)2

√
3
2

(
1

2 −
√

3
e6 − e7

)
,

Reω4 = − 3a5

8(a2 − 4)3/2

(
a−

√
a2 − 4

(2 −
√

3)2
e3 + (a +

√
a2 − 4) e4 − 8

a(2 −
√

3)
e5

)
,

Imω4 = −9δa8
√

2 2 5/2
e8.
(2 − 3) (a − 4)
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(III) For the cases (ε, ν, a, b) = (1, 0, 1, b) with b > 0, and (ε, ν, a, b) = (1, 1, a, b) with 
a > 0 and b �= 0, 2δ, let us define:

Reω1 = −δ

2

(√
a

a + s(b− 2νδ) e
1 − e2

)
,

Imω1 = s

2

(√
a

a + s(b− 2νδ) e
1 + e2

)
,

Reω2 = sa

b
e4,

Imω2 = δ s

√
a

a + s(b− 2νδ)

(
e3

2 + e5
)
,

Reω3 = −aδ

2

(
e6 −

√
a

a + s(b− 2νδ) e
7
)
,

Imω3 = sa

2

(
e6 +

√
a

a + s(b− 2νδ) e
7
)
,

Reω4 = −
√

a

a + s(b− 2νδ)

(
a + sb

4 e3 + δνs e5
)
,

Imω4 = δa

√
a

a + s(b− 2νδ) e
8.

We now need to prove that the Lie algebras in (25) are non-isomorphic. Obviously, 
this holds for NLAs having different ascending types. Hence, to complete the proof it 
suffices to analyze the NLAs underlying Family I within each of the different ascending 
types in Table 3.

The following invariants associated to NLAs will be relevant in our study:

• The descending type (dim gk)k: Recall that the descending central series {gk}k�0 of 
a Lie algebra g is defined by g0 = g and gk = [gk−1, g], for any k � 1. When g is an 
s-step NLA, then gs = {0} and we can associate an s-tuple to g, namely,

(m1, . . . ,ms−1,ms) :=
(
dim g1, . . . ,dim gs−1,dim gs

)
which strictly decreases, i.e. 2n > m1 > · · · > ms−1 > ms = 0. We will say that 
(dim gk)k = (m1, . . . , ms) is the descending type of g.

• The Betti numbers bk(g): The Chevalley-Eilenberg cohomology groups of a Lie algebra 
g are defined by

Hk(g;R) = Ker{d :
∧k (g∗) −→

∧k+1 (g∗)}
Im{d :

∧k−1 (g∗) −→
∧k (g∗)}

, for 0 � k � dim g.

We will refer to their dimensions bk(g) := dimHk(g; R) as the Betti numbers of g.
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• The number of functionally independent generalized Casimir operators nI(g): Let 
g be an m-dimensional Lie algebra with basis {xk}mk=1 and brackets [xi, xj ] =∑m

k=1 c
k
ijxk. The vectors

X̂k =
m∑

i,j=1
cjki xj

∂

∂ xi
(26)

generate a basis of the coadjoint representation of g. One can construct a matrix C

by rows from the coefficients of these vectors, and then nI(g) = m − rankC. For 
further details, see [33].

We start showing that the Lie algebras g0
1 and g1

1, which have ascending type (1, 3, 8), 
are not isomorphic. Although one can check that their descending types coincide, the 
result comes as a direct consequence of their Casimir invariants. More precisely:

Lemma 4.2. Let gγ1 = (05, 13 + 15 + 24, 14 − 23 + 25, 16 + 27 + γ · 34), with γ ∈ {0, 1}. 
Then, nI(g0

1) = 4 and nI(g1
1) = 2. Therefore, g0

1 and g1
1 are not isomorphic.

Proof. Using the equations of gγ1 and the well-known formula de(X, Y ) = −e([X, Y ]), 
for e ∈ g∗ and X, Y ∈ g, one can see that the matrix C constructed from the coefficients 
of the vectors (26) is

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −x6 −x7 −x6 −x8 0 0
0 0 x7 −x6 −x7 0 −x8 0
x6 −x7 0 −γ x8 0 0 0 0
x7 x6 γ x8 0 0 0 0 0
x6 x7 0 0 0 0 0 0
x8 0 0 0 0 0 0 0
0 x8 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The minors of orders 8 and 7 are all equal to zero. For those of order 6, one obtains the 
following expressions:

γ2 x2
7 x

4
8, −γ2 x6 x7 x

4
8, −γ2 x7 x

5
8, γ2 x2

6 x
4
8, γ2 x6 x

5
8, γ2 x6

8.

Consequently, if γ = 1 then rankC = 6 and nI = 2 for the algebra g1. However, if γ = 0
then all the previous expressions vanish, and it is possible to see that rankC = 4, 
thus nI = 4 for g0. This gives our result. �

It remains to study the NLAs with ascending type (1, 3, 6, 8). In Table 4, we provide 
the descending type of the NLAs in the families gα2 , gγ3 , and gα,β4 , as well as their number 
of functionally independent Casimir operators.

A direct consequence of these invariants is that some of the NLAs in the previous 
three families cannot be isomorphic. In particular, it suffices to prove the result below:
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Table 4
Some invariants for the NLAs with ascending central series 
(1, 3, 6, 8).

g real parameter(s) dim{gk}k nI(g)

g
α
2

α = 0 (4, 3, 1, 0) 4
α �= 0 2

g
γ
3

γ = 0 (4, 3, 1, 0) 4
γ = 1 (4, 2, 1, 0)

g
α,β
4

α �= 0, β = 1 (4, 2, 1, 0)
2α �= 0, β ∈ (0, 1) ∪ (1,∞), (4, 3, 1, 0)

α > 0, β = 0

Proposition 4.3. The following pairs of Lie algebras are not isomorphic:

(i) g0
2 and g0

3.
(ii) gα2 and gα

′
2 whenever α �= α′ and αα′ �= 0.

(iii) gα
′

2 and gα,β4 whenever α′ �= 0 and β �= 1.
(iv) g

α,1
4 and gα

′,1
4 whenever α �= α′.

(v) g
α,β
4 and gα

′,β′

4 whenever (α, β) �= (α′, β′) and β, β′ �= 1.

In order to study the five cases above, one directly analyzes the existence of isomor-
phisms between any two of the previous Lie algebras. The procedure is quite similar to 
that used to prove the non-equivalence of complex structures in Section 3.1. Indeed, let 
f : g −→ g′ be an homomorphism of Lie algebras. Its dual map f∗ : g′ ∗ −→ g∗ natu-
rally extends to a map F :

∧∗
g′ ∗ −→

∧∗
g∗ that commutes with the differentials, i.e. 

F ◦ d = d ◦ F . If {ei}8
i=1 and {e′ i}8

i=1 are any bases for g∗ and g′ ∗, respectively, then 
any Lie algebra isomorphism is defined by

F (e′ i) =
8∑

j=1
λi
j e

j , i = 1, . . . , 8, (27)

and satisfies the conditions

F (de′ i) = d(F (e′ i)), for each 1 � i � 8, (28)

where the matrix Λ = (λi
j)1�i,j�8 belongs to GL(8, R). Taking bases for g, g′ ∈{

gα2 , g
0
3, g

α,β
4

}
satisfying the corresponding structure equations in Theorem 1.1, one 

obtains a reduction of F that eventually allows to prove the desired result. As this is a 
very technical proof due to the several cases to be considered, we omit the details here. 
Nonetheless, we refer the reader to the proof of Proposition 4.5 in this paper to get an 
idea of how it works.
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4.2. Classification of NLAs underlying Family II

The goal of this section is to prove that the non-isomorphic 8-dimensional NLAs that 
admit complex structures in the Family II are those in Theorem 1.1 denoted by

g
γ
9 , g

γ
10, g

α,β
11 , g

γ
12,

where γ ∈ {0, 1} and (α, β) = (0, 0), (1, 0), (0, 1) or (α, 1) with α ∈ R+. Moreover, their 
ascending types are listed in the first column of Table 5.

Let (g, J) be an 8-dimensional NLA endowed with a complex structure. If J belongs to 
Family II, then the complex structure equations of (g, J) are given by (6) with parameters 
in Table 2. For each tuple (ε, μ, ν, a, b), define a real basis {ei}8

i=1 according to the third 
column in Table 5 to find the real Lie algebras above. In the table, the following notation 
is used

τ =
{

1, a � 0,

−1, a < 0,
and η =

⎧⎪⎨⎪⎩
1, b = 0,

−
√

3
4b , b �= 0.

One can easily check that the Lie algebras g0
9 and g1

9 are not isomorphic, as the former 
has four decomposable d-exact 2-forms, while the latter only has three.

Note also that the second Betti numbers of g0
10 and g1

10 do not coincide, as

H2(g0
10) = 〈 [e12], [e25], [e34], [e35], [e17 + e26], [e38 − e46 − e57] 〉,

H2(g1
10) = 〈 [e12], [e25], [e34], [e35], [e17 + e26] 〉.

Therefore, these two NLAs are not isomorphic.
The real Lie algebras g

α,β
11 are studied by the authors in [21], where it is proved that 

they are non-isomorphic for different values of α, β satisfying (α, β) = (0, 0), (1, 0) or 
(α�0, 1).

To finish the study for the ascending type (1, 3, 5, 8) one needs to prove that there are 
no isomorphisms between g•i and g•j for i, j ∈ {9, 10, 11}, i �= j. Although the descending 
type of these three families is exactly the same, namely (5, 3, 1, 0), one can make use of the 
number of functionally independent Casimir invariants nI and the second Betti number 
b2. In fact, these two invariants allow us to conclude that there are no isomorphisms 
between any two NLAs belonging to two different families (see Table 6).

One now needs to show that g0
12 and g1

12 are not isomorphic. For this purpose we make 
use of the following result:

Lemma 4.4. Let g = g0
12 and g′ = g1

12. Let {ei}8
i=1 and {e′ i}8

i=1 be respective bases for g∗
and g′ ∗ satisfying the corresponding structure equations in Theorem 1.1. If f : g −→ g′

is an isomorphism of Lie algebras, then the dual map f∗ : g′ ∗ −→ g∗ satisfies
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Table 5
Real Lie algebras and complex structures in Family II.

Ascending type (ε, μ, ν, a, b) Real basis {ek}8
k=1 NLA

(1, 3, 5, 8)

(0, 1, 0, 0, 0)
ω1 = − 1

8 (e1 + i e2),
g
0
9

ω2 = 1
16 (e4 + i e5),

(0, 1, 0, 1, 0)
ω3 = − 1

32 (e6 + i e7),
g
1
9

ω4 = − 1
128 (32 e3 − i e8).

(1, 0, 0, a, 0)
a ∈ {0, 1}

ω1 = 1
2η

(
− e1

√
3 + i e2

)
,

g
0
10

ω2 = 1
2η3

(
e4

3 − i
(

e5
√

3 − 2 γ η2e2
))

,

(1, 0, 0, a, b)
a ∈ {0, 1}, b �= 0

ω3 = 1
12η4 (−

√
3 e6 + i e7),

g
1
10

ω4 = 1
6η5

(
−
√

3 η3 e3 + i
(

e8

2 − bη√
3 e6

))
.

(1, 1, 0, 0, 0)

ω1 = 1
2
(
−e1 + i

√
3 e2) ,

ω2 =
√

3
4

(
e4 − i

√
3 e5) ,

ω3 = 3
8 (−

√
3 e6 + i e7),

ω4 =
√

3
4

(
−e3 + 3i

2 e8) .
g
0,0
11

(1, 1, 0, a, 0)
a �= 0

ω1 = 2a√
3

(
−e1 + i

√
3 e2) ,

ω2 = 4a2
√

3

(
e4 − i

√
3 e5) ,

ω3 = 8a3
√

3 (−
√

3 e6 + i e7),
ω4 = a

(
−e3 + 32 i a3

√
3 e8

)
.

g
1,0
11

(1, 1, 0, a, b)
b �= 0

ω1 = − b
3

(
e1 − i

√
3 τ b
|b| e2

)
,

ω2 = b2

3
√

3

(
τ b
|b| e4 − i

√
3 e5

)
,

ω3 = − b3

9

(√
3 τ b
|b| e6 − i e7

)
,

ω4 = − τ |b|
2
√

3

(
e3 + 4 i b3

9
(
e6 − e8)) .

g

2
√

3|a|
|b|

,1
11

(1, 3, 5, 6, 8)
(1, 0, 1, a, 0)

ω1 = 1
2η

(
− e1

√
3 + i e2

)
,

g
0
12

ω2 = 1
2η3

(
e4

3 − i
(

e5
√

3 − 2 a η2e2
))

,

(1, 0, 1, a, b)
b �= 0

ω3 = 1
12η4 (−

√
3 e6 + i e7),

g
1
12

ω4 = 1
6η5

(
−
√

3 η3 e3 + i
(

e8

2 − bη√
3 e6

))
.

Table 6
Some invariants for the NLAs with ascending type (1, 3, 5, 8).

g real parameter(s) b2(g) nI(g)
g
γ
9 γ ∈ {0, 1} 6 2

g
γ
10

γ = 0 6 4
γ = 1 5

g
α,β
11 (α, β) = (0, 0), (1, 0), or (α�0, 1) 4 2

f∗(e′ i) ∧ e12 = 0, for i = 1, 2,

f∗(e′ 3) ∧ e123 = 0,

f∗(e′ i) ∧ e12345 = 0, for i = 4, 5.

f∗(e′ i) ∧ e1234567 = 0, for i = 6, 7.
(29)

Proof. More generally, let f : g −→ g′ be an isomorphism of two m-dimensional Lie 
algebras. Consider an ideal {0} �= a ⊂ g, and let a′ = f(a) ⊂ g′ be the correspond-
ing ideal in g′. Let {xr+1, . . . , xm} and {x′

r+1, . . . , x
′
m} be any bases for a and a′, 

respectively. We complete them up to respective bases {x1, . . . , xr, xr+1, . . . , xm} and 
{x′

1, . . . , x
′
r, x

′
r+1, . . . , x

′
m} for g and g′. Denote the dual bases of g∗ and g′ ∗, respec-
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tively, by {xi}mi=1 and {x′ i}mi=1. In these conditions, it is proved in [23, Lemma 4.2] that 
the dual map f∗ : g′ ∗ −→ g∗ satisfies

f∗(x′ i) ∧ x1 ∧ . . . ∧ xr = 0, for all i = 1, . . . , r. (30)

We will apply this result to different choices of a. Denote by {ei}8
i=1 the basis for 

g = g0
12 dual to a basis {ei}8

i=1 of g∗ that satisfies the corresponding structure equations 
in Theorem 1.1. Proceed similarly to define {e′i}8

i=1 for g′ = g1
12 and {e′ i}8

i=1 for g′ ∗. 
The ascending central series of g and g′ are

g1 = 〈e8〉 ⊂ g2 = 〈e6, e7, e8〉 ⊂ g3 = 〈e4, e5, e6, e7, e8〉 ⊂ g4 = 〈e3, e4, e5, e6, e7, e8〉,

and

g′1 = 〈e′8〉 ⊂ g′2 = 〈e′6, e′7, e′8〉 ⊂ g′3 = 〈e′4, e′5, e′6, e′7, e′8〉 ⊂ g′4 = 〈e′3, e′4, e′5, e′6, e′7, e′8〉.

Since f(gk) = g′k for any Lie algebra isomorphism f : g −→ g′, by (30) applied to a = gk

for 1 � k � 4 one finds (29). �
This allows us to prove the following proposition, which completes our result.

Proposition 4.5. The Lie algebras g0
12 and g1

12 are not isomorphic.

Proof. Let {ei}8
i=1 and {e′ i}8

i=1 be bases of (g0
12)∗ and (g1

12)∗, respectively, satisfying the 
corresponding structure equations in Theorem 1.1. Consider a Lie algebra isomorphism 
F between g0

12 and g1
12 given by (27). In what follows, and similarly to Notation 3.10, we 

will denote by 
[
d
(
F (e′ k)

)
−F (de′ k)

]
ij

the coefficient for eij in the 2-form d
(
F (e′ k)

)
−

F (de′ k). Observe that the conditions (28) are equivalent to[
d
(
F (e′ k)

)
− F (de′ k)

]
ij

= 0, for every 1 � k � 8 and 1 � i < j � 8.

We first notice that, as a consequence of Lemma 4.4, one has

λi
j = 0, for

{
1 � i � 2 and 3 � j � 8,
3 � i � 5 and 6 � j � 8,

and also λ3
4 = λ3

5 = λ6
8 = λ7

8 = 0.

Moreover, λ3
3λ

8
8 �= 0 in order to ensure Λ = (λi

j)1�i,j�8 ∈ GL(8, R). We next show that:

λ2
2 = ε λ1

1, λ2
1 = ε λ1

2, where ε = ±1. (31)

Let us observe that [d(F (e′ 3)) − F (de′ 3)]12 = 0 together with [d(F (e′ k)) −
F (de′ k)]13 = 0 and [d(F (e′ k)) − F (de′ k)]23 = 0, for k = 4, 5, give the following ex-
pressions:
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λ3
3 = λ1

1λ
2
2 − λ1

2λ
2
1 (�= 0), λ4

4 = λ1
1λ

3
3, λ4

5 = λ1
2λ

3
3, λ5

4 = λ2
1λ

3
3, λ5

5 = λ2
2λ

3
3. (32)

Furthermore, thanks to [d(F (e′ k)) − F (de′ k)]14 = 0 for k = 6, 7 one can solve

λ6
6 = λ1

1λ
4
4 + λ2

1λ
5
4, λ7

6 = λ1
1λ

5
4 + λ2

1λ
4
4. (33)

Considering these values and those in (32), from [d(F (e′ k)) − F (de′ k)]25 = 0, with 
k = 6, 7, one gets the system of equations

(λ1
1)2 − (λ1

2)2 + (λ2
1)2 − (λ2

2)2 = 0, λ1
1λ

2
1 − λ1

2λ
2
2 = 0. (34)

If we suppose λ1
1 = 0, then (31) follows directly as a consequence of λ3

3 = −λ1
2λ

2
1 �= 0. 

Otherwise, one can solve λ2
1 = λ1

2λ
2
2

λ1
1

using the second equation in (34), and then

λ3
3 = λ2

2
λ1

1

(
(λ1

1)2 − (λ1
2)2

)
.

In particular, one observes that λ2
2 �= 0 and |λ1

2| �= |λ1
1|. If we now substitute the value of 

λ2
1 in the first equation of (34), a quartic equation in λ1

1 arises. Its only valid solutions 
are λ1

1 = ε λ2
2, where ε = ±1, thus λ1

2 = ε λ2
1 and we get (31).

As a consequence of the values found for λ2
1 and λ2

2, one should note that (32) and 
(33) become:

λ3
3 = ε

(
(λ1

1)2 − (λ1
2)2

)
, λ4

4 = ε λ5
5 = λ1

1λ
3
3, λ4

5 = ε λ5
4 = λ1

2λ
3
3,

λ6
6 = λ3

3
(
(λ1

1)2 + (λ1
2)2

)
, λ7

6 = 2 ε λ1
1λ

1
2λ

3
3.

Then, one has

0 = [d(F (e′ 8)) − F (de′ 8)]26 = −
(
λ1

2λ
6
6 + λ2

2λ
7
6
)

= −λ1
2 λ

3
3
(
3(λ1

1)2 + (λ1
2)2

)
.

Since λ3
3 �= 0, we are forced to take λ1

2 = λ2
1 = 0. Therefore, from [d(F (e′ 6)) −

F (de′ 6)]13 = 0 and [d(F (e′ 7)) − F (de′ 7)]23 = 0, we solve

λ6
4 = λ1

1λ
4
3, λ7

5 = ε λ1
1λ

4
3,

and then we get

0 = [d(F (e′ 8)) − F (de′ 8)]14 = λ8
6 − λ1

1λ
6
4 = λ8

6 − (λ1
1)2λ4

3,

0 = [d(F (e′ 8)) − F (de′ 8)]25 = λ8
6 − λ2

2 (λ5
5 + λ7

5) = λ8
6 − (λ1

1)2 (λ3
3 + λ4

3).

If we solve λ8
6 from the first equation above and then replace it in the second one, it 

suffices to recall that λ3
3 = ε (λ1

1)2 to conclude λ1
1 = 0. However, this is not possible. �
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5. Abelian J -invariant ideals

As an application of the previous results, in this section we study the existence of 
non-trivial abelian J-invariant ideals.

Let g be a 2n-dimensional nilpotent Lie algebra endowed with a complex structure 
J . It is clear that, if J is quasi-nilpotent, then a1(J) ⊆ Z(g) is a non-trivial abelian J-
invariant ideal in g (see Definition 2.1). Furthermore, it is proved in [20, Proposition 1]
that every (g, J), with J either quasi-nilpotent or SnN, has a non trivial J-invariant 
abelian ideal for n � 3. In the next result, we complete the classification up to eight 
dimensions. It is worthy to remark that, as a consequence, there are infinitely many 
(non-isomorphic) 8-dimensional nilpotent Lie algebras g for which the only abelian J-
invariant ideal is the trivial one. Moreover, in these cases, this happens for every J
defined on g.

Theorem 5.1. Let g be an NLA of dimension � 8 endowed with a complex structure J . 
Then, g has a non-trivial abelian J-invariant ideal if and only if g is not isomorphic to 
the Lie algebras g0

9, g1
9, or g

α,β
11 .

Proof. It suffices to prove the result for the case of an 8-dimensional NLA g endowed 
with an SnN complex structure J . In this case, note that J belongs to either Family I 
or Family II. Hence, up to equivalence, we are reduced to the complex structures equa-
tions obtained in Theorem 3.3. Let us denote {Zj , Z̄j}4

j=1 the complex basis dual to 

{ωj , ωj̄}4
j=1, and consider the real basis {Xj, Yj}4

j=1 for g given by Xj = Zj + Z̄j and 
Yj = JXj = i (Zj − Z̄j).

From the structure equations (5) in Family I we easily get that f = 〈X3, X4, Y3, Y4〉
is a non-trivial J-invariant ideal in g which is abelian. Similarly, the structure equations 
(6) in Family II for μ = 0 imply that f = 〈X2, X3, X4, Y2, Y3, Y4〉 is a non-trivial abelian 
J-invariant ideal in g.

Hence, from now on, we suppose that the complex structure J belongs to Family II 
with μ = 1. Again, according to Theorem 3.3, we have to study the complex structures 
in the following three particular cases: (1, 1, 0, a, b), (0, 1, 0, 0, 0) and (0, 1, 0, 1, 0). Next 
we prove that the only abelian J-invariant ideal in g is the trivial one.

From the structure equations (6) for μ = 1, a direct calculation gives the following 
(non-zero) brackets for the basis {Xj , Yj}4

j=1:

[X1, X2] = −3εX3 − 2b Y4,

[X1, X3] = −2Y4,

[X1, X4] = −2X2,

[X1, Y1] = 2a Y3,

[X1, Y2] = −ε Y3,

[X2, X4] = −2Y3,

[X2, Y1] = ε Y3,

[X2, Y2] = −2Y4,

[X4, Y1] = 2Y2,

[X4, Y2] = −2X3,

[Y1, Y2] = −εX3 − 2b Y4,

[Y1, Y3] = −2Y4.

(35)

Let f be an abelian J-invariant ideal in the Lie algebra g. Hence, any U ∈ f satisfies in 
particular that JU ∈ f and [U, JU ] = 0. Let us write U in terms of the real basis above:
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U =
4∑

k=1

(
ck Xk + dk Yk

)
, where ck, dk ∈ R.

By a direct calculation using (35), we get

[U, JU ] = −2(c4d1 − c1d4)X2 − 2 ((c2c4 + d2d4) − 2ε(c1d2 − c2d1))X3

+2(c1c4 + d1d4)Y2 + 2
(
a(c21 + d2

1) + (c2d4 − c4d2)
)
Y3

−2
(
2 (c3d1 − c1d3) − 2b(c1d2 − c2d1) + (c22 + d2

2)
)
Y4.

Hence, the condition [U, JU ] = 0 implies that the coefficients of X2 and Y2 in the 
expression above are zero, so in particular we get c4(c21 + d2

1) = 0 = d4(c21 + d2
1).

If we suppose c1 = d1 = 0, then the vanishing of the coefficient of Y4 in [U, JU ]
implies c2 = d2 = 0, so f ⊂ 〈X3, X4, Y3, Y4〉. From (35) and the fact that f is an ideal, 
we have [U, X1] = 2c4X2 + 2c3Y4 ∈ f, which implies c4 = 0. Similarly, [JU, X1] =
−2d4X2 − 2d3Y4 ∈ f implies d4 = 0. Thus, f ⊂ 〈X3, Y3〉 and the same argument gives 
c3 = d3 = 0, so U = 0 and the ideal f is zero.

If we now let c21 + d2
1 �= 0, then c4 = d4 = 0 and f ⊂ 〈X1, X2, X3, Y1, Y2, Y3〉. From 

(35) and the fact that f is an ideal, we have [U, X3] = −2c1Y4 and [U, Y3] = −2d1Y4 ∈ f, 
which implies c1 = d1 = 0. However, this contradicts the hypothesis c21 + d2

1 �= 0. �
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