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Abstract: The spatial QRS-T angle is an important indicator in stratifying the risk of sudden cardiac 1

death. This indicator is usually calculated from Frank or 12 lead ECG electrode systems, which are 2

quite uncomfortable for the user in ambulatory monitoring applications. Objective: To develop a 3

method for the estimation of the spatial QRS-T angle from a reduced set of ECG leads. Approach: 4

The estimator is based on a deep learning neural network consisting of automatic feature extraction 5

and regression layers. The training efficiency of the algorithm is increased by proposing a composite 6

loss function taking into account the angle itself and its quadrant in a coordinate system. A gradual 7

reduction of ECG leads from a publicly available dataset of clinical ECG recordings in PTB XL 8

(21837) was used for training, validation, and testing. Results: The results suggest that a machine- 9

learning-based estimation of spatial QRS-T angle from a few frontal and at least one precordial leads 10

is possible with the accuracy (???) sufficient for the detection of abnormal QRS-T angles. A good 11

compromise between error and comfortability was achieved by using the following ECG leads: I, 12

II, aVF, V2. Significance: The study demonstrates that the proposed approach could be of value for 13

prolonged ambulatory monitoring of patients using wearable patch electrodes as used with miniature 14

ECG devices. Chronic patients with cardiac and kidney disease could potentially benefit from this 15

technology. 16

Keywords: wearable devices; unobtrusive monitoring; machine learning; regression. 17

1. Introduction 18

Despite recent advances in treating cardiovascular diseases, sudden cardiac death 19

(SCD) remains the leading cause of mortality, accounting for approximately 20% of all 20

deaths in western societies [1,2]. Dangerous arrhythmias precipitated by abnormalities 21

in ventricular repolarization often precede SCD [3–5]. Various markers of abnormal re- 22

polarization in the electrocardiogram (ECG) have been proposed to stratify the risk of 23

SCD, including changes in ST-segment [6] and QT interval lengthening []. However, those 24

that evaluate the similarity between the direction of depolarization and repolarization, 25

such as the QRS-T angle, are deemed the most promising [7–9]. Unfortunately, QRS-T 26

angle estimation is restricted to clinical settings. The conventional approach for QRS-T 27

angle estimation [7,10] is uncomfortable for patients as it requires a standard 12-lead ECG, 28

hindering the possibility of harnessing the diagnostic value of the QRS-T angle for the early 29

detection of dangerous cardiac events in out-of-hospital settings. Methods to estimate the 30

QRS-T angle with a set of reduced-lead ECGs would, therefore, be of clinical importance. 31

Such methods could be deployed in consumer healthcare devices and facilitate ambulatory 32

monitoring of the QRS-T angle in populations at risk of life-threatening cardiac events. 33
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Thus far, the QRS-T angle is estimated exclusively from three orthogonal leads, either 34

the vectorcardiogram (VCG) [7] or orthogonalized 12-lead ECGs [10], that depict the 35

electrical activity of the heart in the xyz plane. In the absence of Frank’s lead system, 36

the VCG is regularly reconstructed from the standard 12-lead ECG by applying one of 37

the various mathematical transformations that convert 12-lead ECGs into a set of three 38

orthogonal leads [11–13]. Registration of a 12-lead ECG, or even Frank’s VCG, requires the 39

patient to use eight or ten electrodes [12], causing considerable discomfort. Configuring 40

eight-to-ten electrodes as specified in Holter monitors is usually an intricate task for the 41

ordinary patient, making it unfeasible even to request patients to set up such devices for 42

intermittent monitoring of the QRS-T angle. Conversely, consumer healthcare devices, 43

designed to ameliorate patient discomfort, are compact, practical, and easy to configure. 44

However, the number of ECG leads registered by consumer healthcare devices is limited 45

to a few frontal with one-to-two precordial leads. These sets of leads are insufficient to 46

reconstruct the VCG, thus precluding the employment of any of the existing methods for 47

QRS-T angle estimation. 48

The QRS-T angle, classified as spatial or frontal [7], shows good prognosis for SCD [8], 49

with increased values linked to various cardiac dysfunctions [14,15] and a higher risk 50

of SCD [8]. The spatial QRS-T angle is defined as the angle between the QRS and T 51

wave vectors in the xyz plane, whereas the frontal is the projection of the spatial angle 52

in the xy (frontal) plane. The frontal angle, albeit less diagnostically powerful than the 53

spatial angle [16], continues to be an attractive marker of repolarization abnormalities [8]. 54

Although theoretically, the frontal angle could be calculated from frontal leads ECGs [17] 55

acquired with consumer healthcare devices, some precordial leads are essential to derive 56

leads XY with acceptable accuracy [12,13], again limiting any prospects of using the frontal 57

QRS-T angle for ambulatory monitoring of dangerous cardiac events. 58

Deep neural networks have demonstrated tremendous capabilities to extract key data 59

insights from sets of reduced-lead ECGs instead of the standard 12-leads. For instance, 60

1D convolutional neural networks (CNNs) have been shown to detect arrhythmias [18,19] 61

and even sleep apnea [20,21] with up to 97.1% accuracy [21] in single-lead ECGs. CNNs 62

have also reconstructed the standard 12-lead ECG from only three measured leads [22,23]. 63

The ostensible potential of deep learning models has motivated us to investigate whether 64

it is possible to estimate the spatial QRS-T angle using a set of reduced-lead ECGs. We 65

hypothesize that, by using 12-lead ECGs, we can derive QRS and T vectors required to 66

compute the spatial QRS-T angle from the VCG and train the model to associate these 67

vectors with a specific subset of ECG leads. 68

This study presents a 1D convolutional neural network (CNN1D) to measure the 69

spatial QRS-T angle from signal-averaged heartbeats of reduced-lead ECGs. Since the 70

spatial location of QRS and T vectors is largely dependent on the cardiac conduction 71

axis, we design the model to return the coordinates of both vectors as output. Our study 72

introduces a personalized composite loss function that uses both the QRS-T angle and the 73

Euclidean distance between the vectors to guide the model throughout the 3D space. The 74

model is developed on the PTB-XL [24] dataset, the largest publicly available database 75

of clinical 12-lead ECG recordings. We investigate the performance of our model in sets 76

of ECG leads that can conveniently be recorded with patch-based consumer healthcare 77

devices. Lastly, we explore the feasibility of measuring the spatial QRS-T angle from solely 78

frontal leads, aiming to understand the future challenges of deep-learning-based QRS-T 79

angle estimation for out-of-hospital settings. To our knowledge, this is the first study to 80

examine the feasibility of estimating the QRS-T angle from reduced-lead ECGs. 81

This article is organized as follows. Section 2 and 3 describe the conventional and the 82

proposed deep-learning-based approaches for QRS-T angle estimation. Section 4 discloses 83

information about the training and validation dataset, including the data preparation and 84

labeling procedures. Section 5 defines the investigative methodology and performance 85

evaluation. Finally, section 6 presents the results, followed by a discussion and conclusions 86

in sections 7 and 8. 87
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2. Conventional Approach for QRS-T Angle Estimation 88

The spatial QRS-T angle is estimated from a set of three orthogonal leads, obtained
either by applying orthogonalization methods to 12-lead ECGs [10,25] or, conventionally,
the VCG. The VCG, composed of leads XYZ, reflects the electrical activity of the heart in
the orthogonal planes [26]: frontal (xy), transverse (xz), and sagittal (yz). In essence, the
VCG depicts heartbeats as a trajectory of XYZ leads over time,

#»v (t) =
(
x(t), y(t), z(t)

)
, (1)

in which the depolarization (QRS) and repolarization (T) processes of a heartbeat are
represented as two loops:

#»v QRS(t) =
#»v (t)− #»v 0 , ∀t ∈ {tQRSo , . . . , tQRSe}, (2)

#»v T(t) = #»v (t)− #»v 0 , ∀t ∈ {tTo , . . . , tTe}, (3)

where tQRSo , tTo , tQRSe , and tTe are the respective onset and offset of QRS and T loops.
Following the guidelines in [27], the origin of both loops #»v 0 is estimated as:

#»v 0 = median
(

#»v (t)
)

, ∀t ∈ {tQRSo − τ0 , . . . , tQRSo} and τ0 = 25 ms. (4)

Since inaccuracies in heartbeat delineation can generate significant errors in the estimation 89

of QRS-T angle, the onsets tQRSo , tTo , and offsets tQRSe , tTe are adjusted as instructed in [27]. 90

The spatial QRS-T angle measures the dissimilarity between the orientation of the
QRS and T loops in the xyz space and is calculated as:

α = arctan
(∥∥ #»u QRS × #»u t

∥∥
#»u QRS · #»u T

)
, (5)

where #»u QRS and #»u T are vectors that depict the orientation of QRS and T loops. The loop
orientation is most commonly defined in the time instance t = tm where the maximum
magnitude [7] of #»v QRS(t) and #»v T(t) is verified:

#»u QRS = #»v QRS(tQRSm) = arg max
#»v QRS(t)

(∥∥ #»v QRS(t)
∥∥), (6)

#»u T = #»v T(tTm) = arg max
#»v T(t)

(∥ #»v T(t)∥). (7)

Although intuitive, defining the loop spatial orientation as the maximum magnitude 91

vectors at a single-time instance is an oversimplification, as it assumes that the morphology 92

of the QRS and T loops is unambiguous enough to have a well-defined spatial orientation. 93

In abnormal ECGs, the spatial orientation of the loops, in particular the QRS loop, is too 94

complex to be represented by a vector in a single instance in time. In fact, estimation of the 95

QRS-T angle using #»v QRS(tQRSm) and #»v T(tTm) has been associated with higher errors and 96

poorer reproducibility [28], namely in unhealthy ECGs. 97

A routinely employed strategy to tackle the problem of defining the underlying spatial
orientation of the QRS loop is the total cosine R-to-T (TCRT) [10] method. TCRT defines the
QRS-T angle as the average cosine of all angles between #»v T(tTm) and every vector within
the QRS loop that exceed 70% of the maximum vector magnitude #»v QRS(tQRSm). However,
computation of an averaged angle can become problematic in sets of reduced-lead ECGs
that do not carry the same amount of spatial information as the VCG (see Section 3.2).
Consequently, we adopt a strategy analogous to TCRT, but instead of deriving the average
cosine, we define #»u QRS and #»u T as the average of all vectors exceeding 70% of the maximum
vector magnitude within the corresponding loops:

#»u QRS = mean
t′

(
#»v QRS(t′)

)
, where

∥∥ #»v QRS(t′)
∥∥ ≥ 0.7 #»v QRS(tQRSm), (8)
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Figure 1. Overview of the proposed deep learning model for estimation of QRS-T angle using reduced-
lead ECGs. The model is composed of two parts: feature extraction and regression.The reference
vectors #»u QRS and #»u T and angle α are computed from preprocessed VCGs. A set of reduced-leads
heartbeats are fed as an input for feature extraction.

#»u T = mean
t′

(
#»v T(t′)

)
, where

∥∥ #»v T(t′)
∥∥ ≥ 0.7 #»v T(tTm). (9)

3. Deep-Learning-Based Approach for QRS-T Angle Estimation 98

We propose a deep learning model to estimate the spatial QRS-T angle using a set of 99

reduced-lead ECG. Essentially, the model extracts high-level features from a set of signal- 100

averaged heartbeats parsed as input and maps these features to the three coordinates of 101
#»u QRS and #»u T , i.e., #»u QRS =

(
xQRS, yQRS, zQRS

)
and #»u T =

(
xT , yT , zT

)
, returning the two 102

vectors as the output. 103

Using 12-lead ECGs, we can compute the reference (target) VCG vectors #»u QRS and 104
#»u T using the conventional approach described by equations (8) and (9), and train the 105

model to produce the target #»u QRS and #»u T from specific subsets of ECG leads. The QRS-T 106

angle can then be calculated as the angle between the estimated vectors, #̂»u QRS and #̂»u T , 107

as per equation (5). The model is purposely designed to extract the vectors instead of 108

the angle directly to harness the available spatial information for training the model (see 109

Section 3.2). Figure 1 presents an overview of our deep-learning-based approach. From this 110

point onwards, the circumflex symbol denotes variables estimated by the model: #̂»u QRS, #̂»u T , 111

and the QRS-T angle α̂ between them; whereas #»u QRS and #»u T are the VCG target vectors 112

and α is the angle between them. 113

3.1. Deep Learning Model Architecture 114

A 1D convolutional neural network (CNN1D) with a regression output is the baseline 115

architecture for our proposed model. The model comprises two main networks: fea- 116

ture extraction and regression. Since distinct subsets of ECG leads may entail different 117

configurations, we first describe the baseline architecture of our model, and then detail 118

hyperparameters tuning. 119

3.1.1. Feature Extraction Network 120

The feature extraction network is composed of D blocks of layers connected sequen- 121

tially. Each block consists of two "layer structures", except the first block, which only 122

includes one. Each layer structure is a sequence of a full 1D convolutional layer with k 123
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kernels of size 3 × 1 and a stride of 1, followed by layer normalization, and activation 124

(Figure 2–b). Layer normalization balances the data to have mean close to 0.0 and standard 125

deviation close to 1.0 using scale and shift parameters that are trainable for each feature 126

map. Leaky Rectified Linear Unit (Leaky ReLU) with the negative slope coefficient coeffi- 127

cient of 0.1 is the chosen activation function. In the first block, a depthwise convolutional 128

layer is employed instead of a full convolution (Figure 2–a). A depthwise convolution 129

allows the model to derive lead-specific features separately, as each lead can carry relevant 130

information on the position of each coordinate of #»u QRS and #»u T . Because depthwise convo- 131

lution layers generate feature maps for each individual lead, the initial number of kernels k 132

is distributed across all leads: k
j−1 , where j is the number of input leads. This avoids having 133

a larger feature map in the first layer than in the second.
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Figure 2. Detailed representation of the three types of blocks employed in the feature extraction
network: (a) first block, (b) the last block, and (b) blocks with residual connections.

134

Residual connections (Figure 2–c) are introduced from the second block d = 2 to the 135

d = Dth−2 block to maintain data flow throughout the network and avoid gradient degra- 136

dation during training. Prior to addition, 1 × 1 convolution is used to equalize the number 137

of feature maps between the layers. The number of filters increases by a factor of 2 in every 138

residual block. Abstraction of the most significant features is performed with max pooling at 139

the end of blocks d = [2:D−1], whereas global average pooling is implemented to finalize the 140

last block d = D of the feature extraction network. 141

To avoid overfitting, dropout with a probability of 0.25 is applied after feature extraction. 142

Layer normalization also aids in preventing overfitting. It introduces noise by mixing the 143

data after every epoch and shuffling the samples given in every minibatch. 144

3.1.2. Regression Network 145

The resultant feature map is connected to the regression network, which learns to 146

associate the abstracted features with six neurons: one for each of the three coordinates of 147
#̂»u QRS =

(
x̂QRS, ŷQRS, ẑQRS

)
and #̂»u T =

(
x̂T , ŷT , ẑT

)
. The regression network consists of 148

two dense hidden layers, each followed by layer normalization and activation with Leaky 149

ReLU, and a dense output layer with six neurons. Since ECGs can exhibit sex- and age- 150

related dissimilarities in morphology [29] that can affect the QRS-T angle [30,31], metadata 151

about sex (0 for males, or 1 for females) and age (scaled from 0.0 to 1.0) are concatenated into 152

the regression model. Providing hints at the model about a possible association between 153

ECGs and metadata may be valuable when the available spatial information in the input 154

leads is reduced. 155
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3.2. Loss Function 156

Since the ultimate goal is to determine the QRS-T angle, the most instinctual approach
would be to train the model to estimate the VCG-derived α directly instead of #»u QRS and
#»u T , optimizing it with the mean absolute error (ϵ) loss between α and estimated α̂:

Lϵ

(
α, α̂

)
=

1
n

n

∑
i=1

(
|αi − α̂i|

)
, where 0° ≤ Lϵ ≤ 180° , (10)

and n is the batch size. Direct estimation of the QRS-T angle, albeit intuitive and straight-
forward, overlooks crucial information about the spatial orientation and position of the
QRS and T loops, trivializing the problem of QRS-T angle estimation as explained in Sec-
tion 2. In sets of reduced-lead ECGs that only carry fragments of all spatial information
contained in the VCG, this approach can produce errors in ECGs with visible differences in
morphology but similar QRS-T angles. Morphologically different ECGs with QRS-T angles
of equivalent range can occur in patients in which the electrical activity of the heart is not
conducted in the same direction, that is, the cardiac conduction axis is nonidentical. In two
distinct cardiac conduction axes, #»u QRS and #»u T are located in different planes (octants) in
the 3D space, but the angle between can still be alike (see Figure X – Missing). To address
these scenarios, we devise the model to locate the coordinates of #»u QRS and #»u T instead of
α directly, allowing the model to harness any spatial information available in the input
leads. The model is guided throughout the 3D space using the Euclidean distance as the
parameter to be minimized in the backpropagation algorithm. The 3D Euclidean distance
(dL2) between the coordinates of #»u and #̂»u is computed as:

LdL2

(
#»u , #̂»u

)
=

1
n

n

∑
i=1

√
(xi − x̂i)2 + (yi − ŷi)2 + (zi − ẑi)2, (11)

where, 0 ≤ LdL2 ≤ 2 if both #»u and #̂»u have a magnitude of 11. In order for α̂ to be 157

equal to α, only the direction, but not the magnitude, of the estimated #̂»u has to match the 158

target #»u . Given that the Euclidean distance of two vectors also accounts for differences 159

in magnitude, which is undesirable in this case, we transform #»u and #̂»u to unit vectors 160

prior to calculating LdL2 . Calculating the Euclidean distance between unit vectors avoids 161

wrongfully calculating a high loss in cases of two vectors with the same direction but 162

discrepant magnitudes, which should be zero in this application. The principle is similar to 163

the cosine similarity. However, the Euclidean distance is preferable for this case scenario as 164

it permits to navigate throughout each axis in xyz plane, whereas the cosine similarity only 165

discerns one axis (in the 2D space, the cosine can distinguish quadrant I from II, or IV from 166

III, but not I from IV nor II from III). 167

Another problem left to address during the training process is cases in which one
of the vectors is less complicated to determine than the other (see Figure X – Missing),
i.e., the model properly locates one vector but not the other (e.g., LdL2

(
#»u T , #̂»u T

)
≊ 0 and

LdL2

(
#»u QRS, #̂»u QRS

)
≊ 1.2). Significant errors in estimating one vector will inherently affect

the accuracy of the QRS-T angle. Since the angle between #̂»u QRS and #̂»u T needs to be
equivalent to α, we mitigate such cases by confining the model’s search grid to preserve the
angle α̂ between #̂»u QRS and #̂»u T as close as possible to α. Thus, we define the overall loss as
a composite function of (10) and (11):

L = w1

(
LdL2

(
#»u QRS, #̂»u QRS

)
+ LdL2

(
#»u T , #̂»u T

))
+ w2 Lϵ

(
α, α̂

)
, (12)

1 Two vectors #»a and
#»

b of magnitude 1, i.e., unit vectors, with opposite directions (circumscribed by angle of
180°) have an Euclidean distance that is the sum of their magnitudes: ∥ #»a ∥+ ∥ #»

b ∥ = 1 + 1 = 2.
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where w1 and w2 are hyperparameters that weigh the penalization factor of LdL2 and Lϵ. 168

The proposed composite loss function safeguards the overall accuracy of the model by 169

avoiding that LdL2 of one vector is substantially higher than LdL2 of the other, with the 170

tradeoff of allowing minor errors in the location of both vectors (i.e., LdL2 ≊ 0.1 instead of 171

LdL2 ≊ 0), as long as the angle α̂ between them is close to α. To equalize the scales of LdL2 172

and Lϵ, Lϵ

(
α, α̂

)
is estimated in radians rather than degrees. 173

3.3. Tuning of Hyperparameters 174

Several experiments are conducted to find the most optimal architecture for each of 175

the tested subsets of leads according to the hyperparameters w1 and w2, depth D, and the 176

initial number of kernels k. The hyperparameters are chosen among the following options: 177

D = {2, 3, 4, 5}, k = {8, 16}, w1 = {0.5, 0.8, 1.0, 1.2, 1.5} ∧ w2 = |1−w1|, and w2 = {0.8, 1.0, 1.2, 1.5} 178

∧ w1 = |1 − w2|. The hyperparameters D and k are constrained to the above values due to 179

the following. First, complex CNNs employed for image-based applications are likely an 180

overengineered solution for our problem. Second, smaller CNN architectures enhanced 181

with residual connections and case-specific loss functions have recently matched the perfor- 182

mance of deeper and more computationally expensive architectures [32]. Third, lightweight 183

and low-complexity models are preferable for deployment in devices with hardware and 184

computational constraints, such as consumer healthcare devices. Training is performed 185

with a batch size of n = 8 at an initial learning rate of 0.001 for 100 epochs. After every 20 186

epochs, the learning rate is reduced by half. 187

4. Data 188

The deep learning model is developed and validated on the Physionet [33] PTB-XL 189

dataset [24], the current largest publicly available dataset of 12-lead ECG recordings. The 190

PTB-XL comprises 21 837 clinical recordings of 10 s long ECGs, upsampled to 500 Hz, from 191

18 885 patients (48% females) with ages ranging from 0 to 95 years. Information on the 192

diagnosis, form, rhythm, and signal quality is provided for all recordings. As to diagnosis, 193

the ECGs are categorized into five different superclasses: Normal (NORM), Myocardial 194

Infarction (MI), Conduction Disturbance (CD), ST/T change (STTC), and Hypertrophy (HYP). 195

The superclasses are branched into several subclasses, apart from NORM. 196

4.1. Data Preparation and Labeling 197

Leads XYZ are derived from raw ECGs by applying the Kors regression matrix [11], 198

the mathematical transformation that more accurately reconstructs Frank’s VCG from an 199

ECG [12], to leads I, II, and V1–V6. The generated 15-lead signals undergo preprocessing 200

comprised of filtering, signal quality assessment and beat averaging. The target vectors 201
#»u QRS and #»u T are finally computed from the generated signal-averaged leads XYZ (VCG) 202

to label the data. Figure 3 illustrates the data preparation process. 203

4.1.1. Signal Preprocessing 204

Filtering. High-frequency noise and baseline wandering are filtered with zero-phase 205

low- and high-pass Butterworth filters with cut-off frequencies of 45 Hz and 0.5 Hz. 206

Signal quality assessment. The signal quality index (SQI) criteria proposed in [34] is 207

applied to each lead individually to eliminate beats of dissimilar morphology, such as 208

ectopic beats or those corrupted by noise. Recordings with at least one lead that contains 209

more than 50% poor-quality beats within the 10 s ECG are considered unanalyzable and 210

hence discarded. ECGs with discernible rhythm disturbances, such as atrial or ventricular 211

flutter or fibrillation, are also excluded from the analysis given their greater predisposition 212

to PQRST delineation errors that can affect the reliability of #»u QRS and #»u T [27]. In case 213

of rhythm disturbances like bradycardia, tachycardia or sinus arrhythmia, PQRST delin- 214

eation can be less problematic when signals are of high-quality; thus, such ECGs are still 215

considered for analysis if 70% of all beats satisfy the SQI criteria. 216
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Figure 3. Preprocessing of ECG signals. A signal-average heartbeat representative of each chosen
lead is fed to the the proposed deep-learning model for estimating the QRS-T angle. I need to change
this.

Beat averaging. High-quality beats are aligned using the R-peak as a reference point 217

and averaged, resulting in one signal-averaged heartbeat representative of each chosen 218

input lead. For the purpose of our investigation, we obtain 15 averaged heartbeats. 219

4.1.2. Data Labeling 220

Our training labels, i.e., the target VCG vectors #»u QRS and #»u T computed from the three 221

averaged beats of leads XYZ using the conventional approach described in Section 2 with 222

equations (8), (9). The QRS-T angle is calculated as in (5). The loops onset and offset, tQRSo , 223

tTo , tQRSe , and tTe are identified with the multilead PQRST delineation algorithm2 available 224

in the ECGDeli [35] toolbox, and adjusted as instructed in [27]. Lastly, the averaged beats are 225

downsampled to 250 Hz and zero-padded to 550 samples to equalize their length. Patient 226

metadata is further added to training labels: information about sex is specified as 0 for males 227

and 1 for females, and age is scaled from 0.0 to 1.0. 228

Of 21 837 clinical recordings, 18 618 are eligible for labeling and analysis. In addition 229

to poor-quality ECGs or with complicated rhythm disturbances, we exclude recordings 230

in which the assigned subclass is underrepresented in the dataset, having less than 100 231

recordings that meet the described SQI criteria. ECGs of rare subclasses have such unusual 232

morphologies that errors can be introduced into the model due to the scarcity of recordings. 233

4.2. Exploratory Data Analysis 234

Exploratory data analysis is performed on the labeled recordings before splitting the 235

data between the training and validation sets. The goal is to eliminate any statistical bias 236

by ensuring that both sets preserve the same distribution of sex, morphological classes, and 237

the spatial QRS-T angle in the ranges of α = [0:5:180]◦, as in the original dataset. We center 238

our exploratory data analysis and subsequent splitting around these three attributes due to 239

the following: 240

• Sex-related morphological differences in the ECG may influence the decision of the 241

regression network (see section 3.1.2); thus, the training set must be proportioned in 242

terms of sex. 243

• Each of the morphological classes is characterized by distinctive morphological traits. 244

Since contrastive ECG morphologies can still exhibit QRS-T angles of comparable 245

range, the training set must include a diversity of morphologies to prevent the model 246

2 Note that robust PQRST delineation algorithms are critical to compute reliable training labels for developing
the model, but are not necessary in future applications in which only averaged heartbeats and metadata are
required as input.
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from associating a specific range of QRS-T angles with just one subset of particular 247

morphological traits. 248

• Randomly splitting the data without considering the uneven distribution of α within 249

specific ranges could result in a disproportionate depiction of specific ranges in the 250

training set, leading to higher errors in other ranges. 251

Figure 4. Distribution of spatial QRS-T angles α of across the ranges of α = [0:5:180]◦ according to sex
for all eligible recordings in the dataset (left) and for each morphological class (right). α is the angle
between the the VCG vectors #»u QRS and #»u T .

Recordings are divided into six morphological classes: the same five diagnostic super- 252

classes stipulated in the PTB-XL dataset, NORM, MI, CD, STTC, HYP, and low magnitude T 253

waves (LOWM). A recording is deemed LOWM if the ratio between ∥ #»u T∥ and
∥∥ #»u QRS

∥∥< 0.1. 254

Although signals with low magnitude T waves seem to have a higher propensity to QRS-T 255

angle errors [27] and are often discarded [27,36], we consider to be reasonable to incorporate 256

such signals into this study, given that low magnitude T waves are found routinely in 257

clinical practice. 258

Figure 4 shows the distribution of α across the ranges of α = [0:5:180]◦, according to sex 259

and morphological class. The dataset has a median of 52.9° (interquartile range of 63.3°). 260

The distribution of α, albeit balanced between males and females, varies considerably for 261

each morphological class. Although spatial QRS-T angles 15°≤ α ≤90° comprise the vast 262

majority of the eligible recordings, all other ranges of α are represented by at least 120 263

recordings, which may be sufficient for deep-learning-based estimation of QRS-T angle 264

with an acceptable error. 265

4.3. Training and Validation Sets 266

The data is split separately for females and males in each morphological class to 267

ensure an appropriate data allocation between the training and validation sets. The split is 268

performed as follows. For any given morphological class, 80% female ECGs and 80% of 269

male ECGs with α = [i:i + 5[, for every i = [0:5:175]◦, are randomly assigned to the training 270

set. Given the propensity of LOWM signals to display larger errors of α, the 50:50 partition 271

ratio is used for this class instead of 80:20. A smaller partition of the LOWM class still enables 272

the class to be adequately represented in the training set without excessively misleading 273

the deep learning model. Figure 5 shows that both the training and validation sets preserve 274

the original distribution of α. 275

5. Experiments and Performance Evaluation 276

The model is written in Python (v3.8.10) using the Keras abstraction layer on Tensor- 277

flow 2.8.0 backend. Model training and testing are performed on a desktop with Windows 278

10 environment with the following parameters: Intel® Core™ i7-8700k 3.70 GHz CPU with 279

six cores (12-threads), 32 GB of RAM, and NVIDIA® GeForce® GTX 1080Ti. 280
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Figure 5. Distribution of spatial QRS-T angle α across the ranges of α = [0:5:180]◦ according to sex for
all recordings suitable for analysis (left) and for each morphological class (right) in the (a) training
and (b) validation sets.

5.1. Selection of Subsets of ECG Leads 281

We investigate the performance of our model to estimate the spatial QRS-T angle from 282

various subsets of ECGs leads. The goal is to identify how many leads suffice to estimate 283

the QRS-T angle with acceptable accuracy without sacrificing patient comfortability. We 284

start by configuring the baseline architecture of our model using the leads that contain all 285

the 3D spatial information,XYZ, from which the target #»u QRS and #»u T are derived. Next, 286

we progressively trim the number of precordial leads that carry insights about the spatial 287

position of #»u QRS and #»u T in each of the X, Y, and Z axes. The baseline model architecture is 288

optimized for sets of reduced-lead ECGs that incorporate a minimum of one lead shown to 289

reflect each orthogonal axis: X⊆ {I, V5, V6}; Y⊆ {II, III, aVF}; and Z⊆ {V1, V2, V3} [13]. 290

Since this research ultimately aims to develop a method to facilitate QRS-T angle 291

monitoring in free-living conditions, we only test sets of reduced-lead ECGs that can be 292

acquired from commercialized consumer healthcare devices. Registration of frontal leads 293

is straightforward: all six frontal leads (I, II, III, aVL, aVR, aVF) can be derived from any 294

device with two-frontal channels. However, most consumer healthcare devices equipped 295

for frontal and precordial lead registration offer no more than two precordial leads: V2 and 296

V6. Thus, we limit our experiments to subsets of leads {I, II, III, aVL, aVR, aVF, V2, V6}. 297

While a decline in performance is anticipated as the number of precordial leads 298

decreases, we also explore as a proof-of-concept the ability of our model to estimate the 299

spatial QRS-T angle from subsets of exclusively frontal leads. In this article, we only present 300

the results of the best subset of leads: first XYZ, then few-frontal-and-two-precordial leads, 301

few-frontal-and-one-precordial leads, and lastly, exclusively frontal leads. 302

5.2. Performance Metrics 303

I need to write this with proper equations. 304
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Figure 6. Performance comparison of the best deep learning model configuration trained with various
combinations of hyperparameters w1 and w2 to predict the spatial QRS-T angle from leads XYZ. (a)
Boxplot of absolute error ϵ obtained in the validation dataset (outliers not shown) using a model
trained at different values of w1 and w2. w1 increases in the left side, wheres w2 in the right. The
other hyperparameter value is obtained as |1 − w| on each side. (b) Mean absolute error ϵ across
the ranges of α=[0:5:180]◦ for increasing w1 (top row) and w2 (bottom row). The upper and lower
boundaries represent the 95% confidence interval of ϵ. The last column displays the total number of
recordings in the training dataset for each range of α.

To make the results more intuitive to interpret, we evaluate the model’s performance 305

as: 306

• Residuals between the predicted α̂ and α: α̂ − α. Bland-Altman plots are used for this 307

effect. The following statistics are computed: bias, limits of agreement, coefficient of 308

variation (CV), and reproducibility coefficient (RPC) calculated using nonparametric 309

methods. 310

• The root square error ϵ: ϵ =
√
(α̂i − αi)2. Scatter plots, boxplots and line plots showing 311

the ϵ and the mean confidence intervals (CI) at 95%. The values of mean, median, 312

standard deviation, and CI are calculated using bootstrap as the data does not follow 313

a normal distribution. 314

6. Results 315

6.1. Influence of Different Hyperparameters on the Performance of the Model 316

Figure 6 displays the performance of the proposed deep learning model to estimate 317

the spatial QRS-T angle α from leads XYZ when trained with various combinations of 318

hyperparameters w1 and w2. Only the depth at which the lowest median error ϵ̃ was 319

obtained is shown for each combination. An initial number of kernels k = 8 was found to be 320

sufficient to train the model for leads XYZ as the input leads. As hypothesized, prioritizing 321

the Euclidean distance E
(

#»u , #̂»u
)

over the angle S
(
α, α̂

)
as the predominant penalization 322

factor, that is, w1> w2, results in smaller errors. However, the differences are not substantial 323

in the ranges of α represented by at least 250 recordings in the training dataset (α< 90°). 324

Combining the Euclidean distance (w1) and the angle (w2) in the loss function yields better 325

results than using each metric alone ([w1= 1.0, w2= 0.0] and vice versa). Although the 326

lowest ϵ̃ was reached with [w1= 1.2, w2= 0.2] at D= 3 (ϵ̃ = 3.1°), the model trained with 327

[w1= 0.8, w2= 0.2] at D= 4 (ϵ̃ = 3.3°) achieved the narrowest interquartile range (4.6° vs. 5.1°) 328

and the best overall results throughout all ranges of α. In particular, this configuration 329

outperformed the others for α ≥ 90°, showing lower absolute mean errors ϵ despite the 330

smaller number of recordings in the training dataset for such ranges. 331

For all investigated sets of reduced-lead ECGs given as input leads, we verified that 332

the model trained with the same hyperparameters [w1= 0.8, w2= 0.2], but with D= 3 and 333

k = 16 achieved the lowest errors in estimating the spatial QRS-T angle. Contrastively to 334
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Figure 7. Analysis of the estimated spatial QRS-T angle α̂ from leads XYZ using a model trained with
[w1= 0.8, w2= 0.2] and k= 8 at D= 4. Scatter plot diagrams for (a) all signals and (b) each of the six
classes in the validation dataset. Different colors group the absolute error ϵ of each α̂ according to the
absolute median (ϵ̃), mean (ϵ), and standard deviation (σϵ) error. (c) Bland-Altman plot (top row) and
variation of ϵ (bottom row) across the ranges of α=[0:5:180]◦ for signals with normal (NORM) and
diseased cardiac function. The upper and lower boundaries show the 95% confidence interval of ϵ.
The right axis indicates the number of recordings used in training for each respective range of α3.

leads XYZ, combinations of hyperparamaters in which w2> w1 produced substantially 335

higher errors than in those with w1> w2, indicating that the adoption of metrics that guide 336

the deep learning model in the 3D space is a favored choice. Concatenation of patient 337

metadata (sex and age) into the feature map slightly improves the estimation of the QRS-T 338

angle in sets of reduced-lead ECGs. However, its impact is negligible if leads XYZ are 339

given as input leads. Table X discloses more details about the training hyperparameters, 340

including batch size and learning rate, and results on the training dataset. 341

6.2. Estimation of spatial QRS-T Angle 342

Figures 7–10 show in detail the performance of the best configuration model to estimate 343

the spatial QRS-T angle using XYZ leads (Figure 7) and various sets of reduced-lead ECGs: 344

I-aVF-V2-V6 (Figure 8), I-II-aVF-V2 (Figure 9), and frontal leads I-II-aVL-aVF (Figure 10). 345

Table 1 discloses the obtained root-mean-square-error (RMSE), mean (ϵ) and median (ϵ̃) 346

absolute error for each set of leads in the validation dataset. TODO: Add table footnotes 347

explaining the ranges of Alpha and the metrics The lowest errors are naturally seen in

Table 1. Performance of the proposed deep learning model to estimate the spatial QRS-T angle in the
validation dataset.

Class Range of α
Performance metric

RMSE (◦) ϵ (◦) ϵ̃ (◦)

XYZ I-aVF-V2-V6 I-II-aVF-V2 I-II-aVL-aVF XYZ I-aVF-V2-V6 I-II-aVF-V2 I-II-aVL-aVF XYZ I-aVF-V2-V6 I-II-aVF-V2 I-II-aVL-aVF

All val. data 0° ≤ α ≤ 180° 12.2 17.2 18.4 25.4 5.8 10.3 11.4 17.9 3.3 6.4 7.3 12.7

NORM 15° ≤ α ≤ 180° 6.3 13.8 14.4 20.7 3.5 8.6 9.3 14.4 2.6 5.8 6.4 10.2

5° ≤ α ≤ 70° 4.6 11.0 11.1 15.2 3.0 7.2 7.6 11.7 2.4 5.1 5.7 9.8

Cardiac disease 15° ≤ α ≤ 180° 16.4 19.9 21.3 28.5 8.6 12.1 13.6 20.3 4.9 7.4 8.8 13.9

348

leads XYZ since they are the ones from which the reference #»u QRS, #»u T , and α are derived. 349

With the downsizing of precordial leads given as input, the available spatial information is 350

reduced, challenging the model’s ability to estimate the spatial QRS-T angle. In the whole 351

validation dataset, the correlation between α̂ and α, albeit strong, decreases from ρ= 0.96 for 352

3 Since the number of NORM subjects with α >120° is almost negligible, ϵ is not shown for these ranges of α.
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Figure 8. Analysis of the estimated spatial QRS-T angle α̂ from leads I-aVF-V2-V6 using a model
trained with [w1= 0.8, w2= 0.2] and k= 16 at D= 3. Scatter plot diagrams for (a) all signals and (b)
each of the six classes in the validation dataset. Different colors group the absolute error ϵ of each α̂

according to the absolute median (ϵ̃), mean (ϵ), and standard deviation (σϵ) error. (c) Bland-Altman
plot (top row) and variation of ϵ (bottom row) across the ranges of α=[0:5:180]◦ for signals with
normal (NORM) and diseased cardiac function. The upper and lower boundaries show the 95%
confidence interval of ϵ. The right axis indicates the number of recordings used in training for each
respective range of α3.

XYZ leads to ρ= 0.91 for leads I-aVF-V2-V6 (two precordial), ρ= 0.90 for I-II-aVF-V2 (one 353

precordial), and ρ= 0.77 for I-II-aVL-aVF (solely frontal).

Figure 9. Analysis of the estimated spatial QRS-T angle α̂ from leads I-II-aVF-V2 using a model
trained with [w1= 0.8, w2= 0.2] and k= 16 at D= 3. Scatter plot diagrams for (a) all signals and (b)
each of the six classes in the validation dataset. Different colors group the absolute error ϵ of each α̂

according to the absolute median (ϵ̃), mean (ϵ), and standard deviation (σϵ) error. (c) Bland-Altman
plot (top row) and variation of ϵ (bottom row) across the ranges of α=[0:5:180]◦ for signals with
normal (NORM) and diseased cardiac function. The upper and lower boundaries show the 95%
confidence interval of ϵ. The right axis indicates the number of recordings used in training for each
respective range of α3.

354

In signals with cardiac disease (classes CD, MI, HYP, STTC, and LOWM), the correla- 355

tion between α̂ and α in sets of ECGs with at least one precordial lead is rather similar to 356

that of XYZ leads, with ρ being slightly below 0.9 in MI and LOWM in I-II-aVF-V2, and 357

ρ ≥ 0.90 in other classes. In the set of solely frontal leads (I-II-aVL-aVF), ρ= 0.75 for LOWM 358
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Figure 10. Analysis of the estimated spatial QRS-T angle α̂ from frontal leads I-II-aVL-aVF using
a model trained with [w1= 0.8, w2= 0.2] and k= 16 at D= 3. Scatter plot diagrams for (a) all signals
and (b) each of the six classes in the validation dataset. Different colors group the absolute error
ϵ of each α̂ according to the absolute median (ϵ̃), mean (ϵ), and standard deviation (σϵ) error. (c)
Bland-Altman plot (top row) and variation of ϵ (bottom row) across the ranges of α=[0:5:180]◦ for
signals with normal (NORM) and diseased cardiac function. The upper and lower boundaries show
the 95% confidence interval of ϵ. The right axis indicates the number of recordings used in training
for each respective range of α3.

and ρ ≥ 0.80 for the other four classes. With the reduction of spatial information, RMSE, ϵ 359

and ϵ̃ increase nonetheless (see Table 1. In leads XYZ, the model exhibited markedly higher 360

ϵ in ranges of α that are represented by less than 150 recordings with cardiac disease in 361

the training dataset (α< 15° and α≥ 115°). Interestingly, the model did not show the same 362

sensitivity to the number of recordings in sets of reduced-lead ECGs. Although ϵ is higher 363

in reduced-lead ECGs than in XYZ leads, ϵ increases only by a small margin for α ≥ 115° in 364

comparison to 15° ≤ α< 115°. 365

Estimating the spatial QRS-T angle appeared to be unexpectedly more complicated 366

in normal (NORM) recordings than in those with cardiac diseases for any set of reduced- 367

lead ECGs, but not for leads XYZ. While the performance metrics of NORM signals are 368

lower than those of cardiac disease in ranges of α that are vastly more represented in the 369

training dataset (5° ≤ α< 70° for NORM signals), the agreement between α̂ and α is smaller 370

than in any other class: ρ= 0.86 for I-aVF-V2-V6, ρ= 0.85 for I-II-aVF-V2, and even smaller 371

for I-II-aVL-aVF with ρ= 0.55, whereas ρ= 0.98 for leads XYZ. Just as in ECGs with cardiac 372

diseases, RMSE, ϵ and ϵ̃ increase as the amount of spatial information in the input leads 373

diminishes for NORM recordings. Even so, for range of 5° ≤ α< 70°, ϵ=3.0° for XYZ, ϵ=7.2° 374

for I-II-V2-V6, ϵ=7.6° for I-II-aVL-V2, and ϵ=11.7° for I-II-aVL-aVF. 375

Bland-Altman plots in Figures 7c–10c corroborate the abovementioned results. The 376

limits of agreement between α̂ − α and α are narrower in leads XYZ and start to broaden 377

as the number of precordial leads decreases, with recordings of class NORM having less 378

variability from the median bias than those with cardiac disease. In leads I-II-aVL-aVF, 379

however, the model appears to be moderately biased, but still homoscedastic, i.e., the 380

variance across different ranges of α is similar. Such a pattern is characteristic when a latent 381

variable has not been fully enclosed in the model; in this case, the sagittal and transverse 382

components supplied by the z coordinate. 383

Figure 7 displays the distribution of the Euclidean distance E
(

#»u , #̂»u
)

between #»u QRS 384

and #̂»u QRS, and #»u T and #̂»u T in each of the three planes: xy (frontal), xz (transverse), and yz 385

(sagittal). The distance is calculated as the projection of #»u and #̂»u in each respective plane. 386

E
(

#»u , #̂»u
)

gradually lengthens in every plane from leads XYZ to I-aVF-V2-V6 and I-II-aVF-V2 387

but becomes discernibly higher in the xz and yz planes in frontal leads I-II-aVL-aVF, which 388
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Figure 11. Distribution of the Euclidean distance E
(

#»u , #̂»u
)

between #»u QRS and #̂»u QRS, and #»u T and #̂»u T

in each of the three planes: xy (frontal), xz (transverse), and yz (sagittal).

only carry information in the xy plane. Larger E
(

#»u , #̂»u
)

suggests the model encountered 389

extra obstacles to estimate the vector’s coordinates within the specified plane. 390

7. Discussion 391

[1. Significance of our work] 392

Monitoring the spatial QRS-T angle, evidenced as one of the most propitious markers 393

for risk assessment of SCD [7,8], was presumed to be impracticable in out-of-hospital 394

settings thus far. Our research introduces a deep-learning-based method to measure the 395

spatial QRS-T angle using a set of reduced-lead ECGs that can conveniently be recorded 396

with consumer healthcare devices. Our proposed model, albeit prototypal, sparks scientific 397

interest in engineering methods for out-of-hospital monitoring of the QRS-T angle, which 398

can lead to substantial contributions toward harnessing the diagnostic value of the QRS-T 399

angle for cardiovascular health assessment in free-living conditions. To the best of our 400

knowledge, this is the first study to examine whether it is conceivable to estimate the QRS-T 401

angle using reduced-lead ECGs. 402

[2. Possible Application in ambulatory monitoring] 403

One attractive attribute of the proposed deep learning model is its simplicity. When 404

looking at the computational demands of the whole algorithm, the QRS-T angle can be 405

estimated in almost real-time, with the preprocessing stage exercising more computational 406

time and resources than the deep learning model itself. In recordings scenarios that assure 407

that 10-to-15 s long ECGs are registered with sufficient quality to warrant low-complexity 408

filtering in the preprocessing stage, the spatial QRS-T angle can be calculated in a few 409

seconds with the advantage of not needing PQRST delineation. In ambulatory recordings, 410

PQRST delineation is often problematic due to noise. Even if the conventional methods for 411

QRS-T angle estimation could be applied to reduced-lead ECGs, such methods demand 412

unequivocally precise PQRST delineation algorithms. Since even minor inaccuracies in 413

PQRST delineation can result in sizeable QRS-T angle errors [27], the conventional methods 414

would be unpropitious for ambulatory applications. 415

Our model measured the spatial QRS-T angle with reasonable accuracy from a set 416

of three frontal-and-one precordial leads, I, II, aVF, V2, that can be registered with three 417

electrodes instead of the eight required to derive the QRS-T angle using the conventional 418

approach. Requiring one precordial lead evidently restricts the type of consumer healthcare 419

devices suitable for deploying our deep learning model, precluding the use of devices that 420

maximize comfort, such as wrist-worn wearables [37], which only register frontal-lead 421

ECGs. Nevertheless, the market already offers a handful of practical devices that acquire 422

frontal-and-one precordial lead ECGs with an acceptable degree of comfortableness [38], 423

namely those patch-based (e.g., Bittium OmegaSnap™ [39]) or contact-based textile (e.g., 424

Viscero ECG vest [40]) ECG electrodes. A downsize of eight to three electrodes is still a 425

substantive improvement. Even if the comfort level of three electrodes is lower than that 426

of other wearables, the existing patch- or textile-based ECG devices are durable, easy to 427
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configure, and may be adequate for intermittent monitoring of the QRS-T angle in out-of- 428

hospital settings. Recent advancements in the reconstruction of the standard 12-lead ECG 429

from sets of reduced-lead ECGs have, however, demonstrated to be possible to derive lead 430

V2 from lead II [41] in healthy subjects. The encouraging preliminary results indicate a 431

prospective solution for estimating the QRS-T angle with comfortable wearable devices in 432

the future. 433

[3. Considerations about the baseline architecture of the model] 434

The baseline architecture of our model is engineered to be accurate yet simple enough 435

to be lightweight and have the low computational power to be integrated into consumer 436

healthcare devices. Compared to other CNN1Ds for ECG analysis, often comprised of 8-to- 437

34 [18,21,42,43] blocks of layers, our baseline architecture of three-to-four blocks (D = {3, 4}) 438

and k = 16 suffices to get satisfactory results. While popular due to their high accuracy, 439

deeper neural networks also entail larger training datasets and computational resources 440

that can hamper the deployment of the network in devices such as wearables. Adopting 441

deeper neural networks does not necessarily translate into significant improvements in 442

accuracy to justify the tradeoffs in resources if the goal application is for out-of-hospital 443

monitoring of QRS-T angle. 444

Smaller networks like ours, or as in the one applied for automatic diagnosis of 12-lead 445

ECGs [42], have been reported to match the performance of their deeper counterparts when 446

enhanced with custom blocks such as residual connections, squeeze-and-excitation, atrous 447

spatial pooling, or case-specific loss functions [32]. Our strategy involved residual blocks 448

with a predominant focus on a personalized loss function. Our proposed loss function 449

combines two metrics, each with their penalization weight, to optimize the model in the 450

backpropagation algorithm: the Euclidean distance (w1) and the QRS-T angle (w2). Priori- 451

tizing the Euclidean distance over the QRS-T angle (i.e., w1 > w2) as the main penalization 452

factor in the loss function results in smaller errors, namely in sets of reduced-leads ECGs. 453

Optimization with the Euclidean distance combined with the QRS-T angle instead of the 454

QRS-T angle alone allows the model to recognize that ECGs with visible differences in 455

morphology can still have similar QRS-T angles, minimizing the chances of the model 456

associating a distinct morphology to a particular range of QRS-T angles. Morphologically 457

different ECGs with similar QRS-T angles are often the case in patients with distinctive 458

cardiac conduction axes in which the direction of the overall electrical activity of the heart 459

is not the same. In a 3D space, this means that the vectors #»u QRS and #»u T are located in 460

different planes (octants), but the angle between them does not necessarily differ. Searching 461

for the coordinates of both target vectors helps the model leverage any available informa- 462

tion to boost accuracy. Thus, adopting metrics that guide the model in the 3D space is a 463

favorable choice. 464

[4. Training errors] 465

List of points to mention: 466

• Errors increase as the spatial information decreases; 467

• The largest errors are seen in ranges of α that have less recordings; 468

• Why the class Norm shows more errors 469

• What is the acceptable error in a clinical point of view? 470

[5. Frontal lead estimation] List of points to mention: 471

• Proof of concept: where it works and where it fails; 472

• Hierarchical classification and then regression might be suitable 473

[6. Limitations] 474

7.1. Rationale Behind Dataset Selection 475

Although datasets that include XYZ lead signals registered synchronously with 12- 476

lead ECGs would be ideal for estimating #»u QRS and #»u T , we consider the two existing 477

datasets, PTB [44] and CSE [45], inadequate for designing a deep learning model on the 478

following grounds. First, the CSE dataset has restricted access. Second, even with data 479
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augmentation, the total number of recordings combined from these two datasets would 480

still be considerably smaller than that of the PTB-XL. Third, the PTB and CSE datasets are 481

unbalanced in terms of sex, age, and lack diversity in both cardiac diseases and healthy 482

controls. In contrast, the PTB-XL dataset provides a realistic representation of the human 483

population, covering a wide spectrum of diseases, comorbidities, and healthy controls. 484

Thus, due to its size, availability, and diversity, the PTB-XL dataset is preferable for the 485

development and evaluation of deep learning models. 486

8. Conclusions 487

A deep learning neural network- based estimator of the spatial QRS-T angle from a 488

reduced number of ECG leads is proposed and investigated. Training of the algorithm 489

is supported with the innovative loss function adapted to the application. A gradual 490

reduction of ECG leads from a publicly available dataset of clinical ECG recordings was 491

used for training, validation, and testing. The results suggest that machine learning-based 492

estimation of spatial QRS-T angle from a few frontal and at least one precordial leads is 493

possible with the accuracy sufficient for detection of abnormal QRS-T angles. A good 494

compromise between the error and a comfortability was achieved by using the following 495

ECG leads: I, II, aVF, V2. The study demonstrates that the proposed approach could be of 496

value for a prolonged ambulatory monitoring of patients using wearable patch electrodes 497

with miniature ECG devices. Chronic patients with cardiac and kidney disease could 498

potentially benefit from this technology. 499

Even though the estimation errors naturally increase with the reduction of spatial information 500

available in the input leads, the results indicate that reduced-lead estimation of the QRS-T angle is 501

indeed achievable. 502

Methods that facilitate out-of-hospital monitoring of spatial QRS-T angle, such as our 503

proposed model, spark scientific interest and novelty. Further engineering and refinement 504

of such methods can lead to substantial contributions toward harnessing the diagnostic 505

value of the QRS-T angle for cardiovascular health assessment in free-living conditions. 506
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CNN Convolutional neural network
CNN1D 1D convolutional neural network
SCD Sudden Cardiac Death
ECG Electrocardiogram
VCG Vectocardiogram
TCRT Total cosine R to T
PTB-XL A large publicly available electrocardiography dataset
NORM Normal
CD Conduction Disturbance
MI Myocardial Infarction
HYP Hypertrophy
STTC Change in ST-T segment
LOWM Low magnitude (i.e. flat) T waves
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