EROIM 20086

Aspect-orientation for revitalising legacy
business software

Kris De Schutter, Bram Adams

{Kris.DeSchutter, Bram. Adams } @ UGent.be
Ghislain Hoffman Software Engineering Lab, INTEC
Ghent University, Belgium

Abstract

This paper relates on a first attempt to see if aspect-oriented programming (AOP) can help
with the revitalisation of {egacy business software. By means of four realistic case studies
COVering reverse engincering, restructuring and integration, we discuss the applicability of
the aspect-oriented paradigm in the context of two major programming languages for such
environments: Cobol and C.

Key words: AOP, LMP, legacy software, evolution.

I Introduction

This paper addresses the question of whether aspect-criented programming (AOP)
techniques [7] can help with the revitalisation of legacy business software. AOP
is an emerging paradigm, leveraging two key principles: quantification and oblivi-
ousness 151, The first allows one to express non-iocalised behaviour in a tocalised
way. The latter makes it possible to apply such behaviour to any existing applica-
tion without any special preparation to it. As legacy applications resist change [1],
this seems a useful property for a re-engineering ol to have. Whether this philo-
sophitcal notion also holds in practice has, however, not been tested against realistic
legacy software yet. This is most likely due to the jack of instantiations of AQP for
these environments,

The authors have developed AQ extensions for the two major programming
ianguages encountered in legacy business software: Cobol and C. These extensions
enable quantification and obliviousness by making use of logic meta-programming
{LMP} 113.4] in their pointcut language. This was found to be an adeguate solution
to overcome a lack of reflection in Cobol and C, which then allows generic defini-

;

tion of behaviour [14,41, This paper will now take these tools and see if they can

be applied to four realistic cases for the revitalisation of legacy software.

Insection 2, we consider advantages and disadvantages of using AOP for reverse

engineering of legacy systemns, while sectio

i 3 looks at AOP's role in a business

oy |

& DADET IE ¢
Nojes in’

De SCHUTTER AND ADAMS

1 static FILE* fp;

; Type around tracing (Type) on (Jp):
call(Jp," " {2!.*printfs$.*scanf$}.*$"}

5 && type{Jp,Type) && lis void(Type}

7 Type 1i:

s fprintf (fp, "before_{_%s_in_%s_j\a",
Jp~>functionlame, Jp->filelName);

i = proceed {}:

fprintf (fp, "after_{_%s_in_%s_j\n",
15 Jp->functionName, Jp->fileName):

v return i

Fig. I. A generic tracing aspect: tracing advice.

rule mining scenario. When discussing re-engineering in section 4, we first Jock
at a basic encapsulation aspect for business logic (section 4.1). Section 4.2 shows
how the embedding of AOP in LMP can solve the problems occurring in the ba-
sic approach. Finally, in section 5 a limitation of AOP becomes apparent while
tackling the Y ZK-problem. We conclude in section 6.

2 Enabling dynamic analyses of legacy software

tn order to help legacy systems evolve, one needs a thorough understanding of the
systems at hand. As in these environments there is most often a lack of (up-to-
date} documentation, one is forced into applying reverse engineering techniques.
Dynamic analyses offer one approach to this, by analvsing the dynamic run-time
behaviour of systems [6,15]. The role for AGP which we will be discussing here is
to enable such techniques by applving some tracing aspect to existing applications.

2.1 A generic iracing aspect

In figure |, we have shown part’ of a generic tracing aspect written in Aspicere |
Aspects are encapsulated in plain compilation units able to hold advice constructs.
Advice itself features a signature (lines 3), a pointeut {lines 4-5)and a body {lines 7~
[7). The advice body s written in C, with some additions for accessing the runtime

i procedures, as these are equivalem © the edvices shows, jess the need for 2

Dy SCHUTTER AND ADAMS

int around cleanup (Name)} on {Jpj:
0 execution(Jp, "main”}
&& logfile(File) && stringify{File,Name)

int i;
fp = fopen (Wame, "a"};
2% i = proceed {};

fclose {(fp};

return i

a0}

Fig. 2. A generic tracing aspect: initialisation and cleanup.

context {Jp variablie on ifines [0 and 5, and the proceed call on line 12}, A
simpie template mechanism is also tw*u}abie to heip overcome C’s relatively weak
subtyping support.

The idea s to trace calls to all procedures except for the printf- and scanf-
families (line 4) and stream output into a file {£p, declared on line 1) before and
after each call (lines © and 14). Opening and closing of the file pointer on line |
is achieved by advising the main-procedure {figure 2). The return type of the
advised procedure call is bound on line 5, which makes it available for use in the
advice’s signature {lines 3) and as 3 type parameter in its body (lines 7). This
way, the tracing advice is not limited to one particular type of procedures. The
well-known thisJoinPoint construct from Aspectl-like languages, can also
be accessed through a join point-specific binding {(Jp on lines 3) and used as such
(lines 14 and 130

2.2 Problem: the build sysiem

As source code is the most portable representation of C programs across several
platforms, Aspicere relies on a source-to-source weaving strategy, and as such acts
as a preprocessor 1o a normal C compiler. More specifically, it transforms aspects
into genuine C compilation units by converting the advices into (multiple) proce-
dures. This enables the normal C visibility ruies in a natural way, i.e. the visibility
of £p on figure | is tied to the module containing the aspect. To accomplish this
modularisation, this single transformed aspect needs to be linked into each advised
application. Because the original makefile hierarchy drives the production of ob-
ject files, libraries and executables, using a myriad of other tools and preprocessors
SQL), and all of these potentially process advised input, it tums

L ¥

{e.g, embedded

out that Aspicere’s weaver crosscuis the makefile svstem. We therefore need 1o find
v stage of the build and unravel accompanying linke

out what is produced at even
dependencies,

DE SCHUTTER AND ADAMS

in case all makefiles are automatically generated using, for instance, automake,
one could try o replace (i.e. alias) the tools in use by wrapper scripts which invoke
the weaving process prior to calling the original tool. The problem here is that this
is an all-or-nothing approach. It may be that in some cases weaving is needed (e.g.
a direct call to gee), and in others not (e.g. when goc is called from withinesgl).
Making the replacement smart enough to know when to do what is not a trivial task.

In [14], we applied the tracing aspect of figure | to a large case study (453
KLOC of ANSIE-C} to enable dynamic analyses. The system consisted of 267
makefiles, not all of which were generated. Without intimate knowledge of the
build system, it was hard to tell whether source files were first compiled before
finking ali applications, or (more likely) whether all applications were compiled
and linked one after the other. As such, our weaving approach was not viable. As
an ad hoc solution, we opted to move the transformed advice into the advised base
modules themseives. This meant that we had to declare £ as a Jocal variable of
the tracing advice, resulting in huge run-time overhead due to repeated opening
and closing of the file.

2.3 Conclusion

Applied to reverse-engineering contexts, the use of ACP and a template mechanism
allows non-invasive and intuitive extraction of knowledge hidden inside legacy sys-
tems, without prior investigation or exploration of the source code [141. One does
not have to first extract afl available types and copy the tracing advice for all of
them, as was experienced in [3].

While dynamic analyses can be enabled in this way without the need to prepare
the source code of legacy applications in any way, one is stifl faced with having to
prepare the build system for these applications (once). As many such applications
rely on custom defined and sometimes complex makefile hierarchies (or similar),
any real use of AGP for revitalising legacy software will depend on a solution to
this problem.

3 Mining business rules in legacy software

When implemented in software, business knowledge, information and rules tend
to be spread out over the entire system. With applications written in Cobol this
is even more the case, as Cobol is a language targeted at business processing”
but without modern day modularity mechanisis. This information tends to get
lost over time, so that when some maintenance is required one is again forced into
reverse engineering. We argue that AOP can provide a flexible tool for such efforts.

We will now revisit a case from [9], in which Isabel Michiels and the first author
discuss the possibility of using dynamic aspects for mining business rules from

legacy applications. The case, put briefly, is this:

Common Husiness Griented Language

I

DE SCHUTTER AND ADAMS

“Our accounting department reports that several of our emplovees were accred-
ited an unexpected and unexplained bonus of 500 euro. Accounting rightfully
requests to know the reason for this unforeseen expense.”

We will now revisit this case, showing the actual advices which may be used to
achieve the ideas set forth in that paper. The code shown here is written in Cobble |
a language defined by the first author and Ralf Lammel {81

We start off by noting that we are not entirely in the dark. The accounting
department can give us a list of the employees which got “lucky” (or unlucky, as
their unexpected bonus did not go by unnoticed). We can encode this knowledge
as tacts:

META-DATA DIVISIONW.
2 FACTS SECTICHN.
LUCKY~-EID VALUE 7777.
4 LUCKY-EID VALUE 3141.
> ato.

Furthermore, we can aiso find the definition of the employee file which was being
processed, in the copy books (roughly similar to header files in C):

1 DATE DIVISION.
FILE SECTION.
3 FD EMPLOYEE-FILE.
01 EMPLOYEE.
5 45 EID PIC 9{4},
> etc.

Lastly, from the output we can figure out the name of the data item holding the total
value. This data item, BNS~-EUR, turns out to be an edited picture. From this we
conclude that it is only used for preity printing the output, and not for performing
actual calculations. At some time during execution the correct value for the bonus
was moved to BNS~-EUR, and subsequently printed. So our first task is to find what
variable that was, We go at this by tracing all moves to BNS-EUR, but only while
processing one of our lucky employees:

FIND-SOURCE~ITEM SECTION.
2 USE BEFODRE ANY STATEMENT
AND NAME OF RECEIVER EQUAL TO "BNS-BEUR"
AND BIRD LCOC B0 LOCATIOHN
AND IF REID EQUAL T0 LUCKY-EID.
s MY-ADVICE.
BISPLAY EID, ": ", LOC.

[}

in short, this advice states that before gl statements {ine 2) which have BNS-EUR
as a receiving data item (iine 3}, and if EID (id for the emplovee being currently
processed; see data definition higher up) equals a lucky id (runtime condition on

4 s .
Wehsite, puzn:/ /o

-
)

DE SCHUTTER AND ADAMS

line 5), we display the focation of that statement as well as the current id. Amongst
several string literals (which we can therefore immediately disregard) we find a
variable named BNS~EOY, whose name suggests it hoids the full value for the end-
of-year bonus.

Our next step is to figure out how the end value was calculated. We set up
another aspect to trace all statements modifying the variable BNS-EOY, but again
only while processing a lucky employee. We do this in three steps. First:

1 TRACE-BNS-EQOY SECTION.
USE BEFORE ANY STATEMENT
3 AND NAME OF RECEIVER EQUAL 70 "BNS-EOY"
AND BIND LOC 70 LOCATION
= BAND IF EID EQUAL TO LUCKY-ETID.
MY-ADVICE,
o DISPLAY EID, ":_ statement_at ", LOC.

Before execution of any statement (line 2) having BNS~EOY as a receiving data
item (line 3), and when processing a lucky employee (line 5, this would output the
iccation of that statement, Next

1 TRACE~-BNS~-EQY-SENDERS SECTION,
USE BEFORE ANY STATEMENT

E AND NAME QF RECEIVER EQUAL TO "BNS-EQY"
AND BIND SENDING TO SENDER

s AND BIND SENDING-NAME TO NAME OF SENDING
AND IF EID EQUAL TO LUCKY-EID.

» MY-ADVICE.
DYISPLAY SENDING~-NAME, " _sends ", SENDING.

This outputs the name and value for all sending data items (lines 4 and 5) before
execution of any of the above statements. This allows us to see the contributing
values. Lastly, we want to know the new value for BNS-EOQY which has been
calculated. '

TRACE-BNS-EOY-VALUES SECTION.
3 UEE AFTER ANY STATEMENT
AND NAME ©OF RECEIVER EQUAL TO "BNS-EQY®
g AND IF EID EQUAL TO LUCKY-EID.
MY-BDVICE.
DISPLAY "BNS-EQY_=_", BHNS-EOQY.

valued 500, and is added to BNS-EOY In every trace. Before moving on we'd
fike to make sure we're on the right track. We want to verify that this addition of
B31241 isonly triggered for our list of jucky emplovees. Again, a dynamic aspect
allows us 1o trace execution of exactly this addition and helps us verify that our
basic assumption holds indeed. We start by recording the location of the “culprit”

siatement 45 a usable fact:

&

DE SCHUTTER AND ADAMS

META-DATR DIVIEION.
2 FACTS BECTION.
CULPRIT-LOCATION VABLUE 666.
4 *> other Facts as before

The test for our assumption may then be encoded as:

TRACE~BNS~-EQY-SENDERS SECTION.
USE BEFORE ANY STATEMENT
AND LOCATION EQUAL TO CULPRIT-LOCATION

4 AND IF EID NOT EQUAL TO LUCKY-EID.
MY-ADVICE.

o DISPLAY EID, ":_back to_the drawing_board.".

[

This tests whether the culprit statement gets triggered during the process of any of
the other employees. If it does, then something about our assumption is wrong, Or
it may be that the accounting department has missed one of the lucky employees.

Given the verification that we are indeed on the right track, the question now
becomes: why was this value added for the lucky employees and not for the others?
Unfortunately, the logic behind this seems spread out over the entire application.
So to ry to figure out this mess we would like to have an execution trace of each
fucky employee, including a report of all tests made and passed, up to and including
the point where B31241 is added. Dynamic aspects allow us to get these specific
traces. First, some preliminary work:

WORKING-STORAGE SECTION.
2 {1 FLAG PIC 9 VALUE 0,
88 FLAG-SET VALUE 1.
4 88 FLAG-NOT-SET VALUE 0.

The FLAG data item will be used to indicate when tracing should be active and
when not. For ease of use we also define two “conditional” data items: FLAG~SET
and FLAG-NOT-SET. These reflect the current state of our flag. Our first advice
is used to trigger the start of the trace:

TRACE-START SECTION.

USE AFIER READ STATEMENT
AND NAME OF FILE EQUAL TO "EMPLOYEE-FILE®
AND BIND LOC T¢ LOCATION
AND IF EID EQUAL Y0 LUCKY-EID.

o MY-ADVICE.
SET FLAG-SET TO TRUB,

s DISPLAY EID, ":_start_at ", LOC.

%L whenever a new employee record has been read (line 2 and 3}, and that record
is one for a lucky employee (line 5), we set the flag to true (line 7). We also do
some inittal logging (line 8). The next advice is needed for stopping the trace when

we have reached the culprit siatement

e SCHUTTER AND ADAMS

TRACE-STOP SECTION.
: USE AFTER ANY STATEMENT
AND LOCATION EQURL TO CULPRIT-LOCATION,
MY-ADVICE.
SET FLAG-NOT-SET TO TRUE.
» DISPLAY EID, ":_stop_at_", LOC.

Then it is up to the actual tracing. We capture the flow of procedures, as well as
execution of all conditional statements:

TRACE~PROCEDURES SECTION.
USE AROUND PROCEDURE
AND BIND PROC TC NAME
AND BIND LOC TO LOCATION
AND IF FLAG-SET.
s MY-ADVICE.
DISPLAY EID, ": before_ ", PROC, "_at_", LOC.
« PROCEED.
DISPLAY EID, ":_after_", PROC, "_at_", LOC.

[

e

TRACE-CONDITIONS SECTION.
USE AROUND ANY STATEMENT
AND CONDITION
AND BIND LOC 70 LOCATICN
BND IF FLAG-SET.
« MY-ADVICE.
DISPLAY EID, ":_before condition_at “, LOC.
" PROCEED,
DISPLAY BID, ":_after _condition_at ", LOC.

[

=

rormn this trace we can then deduce the path that was followed from the start of
processing a lucky employee, to the addition of the unexpected bonus. More im-
portantly, we can see the conditions which were passed, from which we can (hope-
fully) deduce the exact cause.

This 1s where the investigation ends. For those curious, we refer to the original
paper for the solution [9]. Whatever the cause of the problem, AOP+LMP provided
us with a flexible and powerful tool to perform our investigation. Dynamic aspects
allow for easy inspection of the behaviour of applications by enabling smart trac-
ing, verification of assumptions and mining of business logic. LMP adds to this
the capability of recording and exploiting recovered knowledge, However, every

aspect requires reweaving, recompiling. relinking and redeployment of the entire

base system, which so far comes at a higher cost than other debugging tools or
imstrumentation techniques.

DE SCHUTTER AND ADAMS

: DISPATCHING SECTIOHN.
USE BAROUND PROGRAM
3 AND BIND PARA TO PARAGRAPH
AND BIND PARA-NAME TC NAME OF PARA
5 AND IF METHOD~-NAME EQUAL T0O PARA-NAME.
MY-ADVICE.
7 PERFORM PARA.

o ENCAPSULATION SECTIONW.
USE AROUND PROGRARM.
1 MY-ADVICE.
PERFORM ERROR-BANDLING.
3 EXIT PROGRAM,

Fig. 3. Aspect for procedure encapsulation.

4 Encapsalating procedures

In {11}, Harry and Stephan Sneed discuss creating web services from: legacy host
programs. They argue that while tools exist for wrapping presentation access and
database access for use in distributed environments,

“accessing {...] the business logic of these programs, has not really been solved.”

In an earlier paper, [18], Harry Sneed discusses a custom tool which allowed the
encapsulation of Cobol procedures, to be able to treat them as “methods”, a first
step towards wrapping business logic. Part of that tool has the responsibility of cre-
ating a switch statement at the start of the program, which performs the requesied
procedure, depending on the method name.

4.0 A basic wrapping aspect

Figure 3 shows how encapsulation of procedures (or “business logic”) can be achie-
ved, in a generic way, using AOP and LMP The aspect shown here, written in
Cobbie, consists of two advices.

The first advice, DISPATCHING (lines 1-7), takes care of the dispatching, It
acts around the execution of the entire program (line 2), and once for every para-
graph in this program (line 3}. The latter effect is caused by the ambiguousness of
the PARAGRAPH selector. This can be any of a number of values. Rather than
just picking one, what Cobble does is pick them all: the advice gets activated
for every possible solution to its pointcut, one after the other. Furthermore, the
DISPATCHING advice will only get triggered when METEOD~-NAME matches the
name of the selected paragraph (extraction of this name is seen on line 4). Thiz is

encoded in a runtime condition on line 5. Finally. the advice body, when activated,

The second advice,

9

Dz SCHUTTER AND ADAMS

ail. It captures execution of the entire program (line 10), but replaces this with a
cail to an error handling paragraph {iine 12) and an exit of the program (line 13).
The net effect is that whenever the value in METHOD-NAME does not match any
paragraph name in the program, the error will be flagged and execution will end.
This, together with the first advice, gives us the desired effect.

We are left with the question of where METHOD-NAME is defined, and how
it enters our program. The answer to the first question is simply this: any argu-
ments which get passed into a Cobol program from the outside must be defined in
a linkage section. Le.:

: LINKACGE SECTIOHN.
01 METHOD-NAME PIC X(30) VALUE SPACES.

Furthermore, the program division needs to declare that it expects this data item as
an input from outside:

PROGRAM DIVISION USING METHOD-NAME.

This begs the guestion as to how this input parameter METHOD~NAME was inserted
in an AOP-like way. Simply: it was nor. We tacitly assumed our aspect, and
the accompanying input parameters, to be defined /nside the target program (a so-
caifed “intra-aspect™). Of course, for a truly generic “inter-aspect” we need to
remedy this. Definition of the METHOD-NAME data item would be no big problem.
We could simply define it within an aspect module, which, upon weaving, would
augment the target program (modulo some alpha-renaming to prevent unintended
name capture):

1 IDENTIFICATION DIVISIOH.
AESPECT-ID. PROCEDURE-WRAPPING.

DATHR DIVISION.
;s LINKAGE SECTION.
01 METHOD-NAME PIC X{30) VALUE SPACES.

From this, it becomes pretty obvious that METHOD-NAME should be used as an

input parameter of the base program. The concept of a linkage section makes no

sense for an external aspect module, as an aspect will never be called in such a way.

The hard part of the inter-aspect approach lies with the semantics of declaring extra

input data items on another program. What do we expect to happen?

¢ Does the introduction of an input data item by the aspect replace existing input
items in the advised program, oris it seen as an addition to.them?

+ If' it is added to them, then where does it go into the existing list of inputs? At
the front? At the back?

+ What happens when multiple aspects define such input items? In what order do
they appear?

» How do we hundle updating the sites where the woven program geis called? The

1

DE SCHUTTER AND ADAMS

{ IDENTIFICATION DIVISIOHN.
ABPECT~-ID. PROCEDURE-WRAPPING.

ta

DATE DIVISION.
LINKRGE SECTION.

01 METHOD-NAME PIC X (30} VALUE SPACES.

b fiﬁdall{
[Mame, Para, Wssi,
o { paragraph({Name, Para),
slice{Para, Slice},
2 wss{Slice, Wss)
Vs
14 Al1lInCOut

} s

max_size{AllInOut, VirtualiStorageSize),

i3

13

24 { <8R> }
1)
%)).

{ 01 VSPACE PIC X{<VirtualStcrageSize>}.

w all{member{[Name, Para, Wss], AllInOut),

{ ©1 SLICED-<Name> REDEFINES VSPACE. },

all{ {(record{R, Wss), name{R, RName}},
clone and shift{R, "<RName>-<Name>",

}o

T
(

{
SR},

dures

Fg 4. Fall procedure encapsulation (part one).

addition of an extra input item will have broken these.

Consider the € or Java equivalent of this:

what does it mean to introduce new

parameters on procedures or methods? More to the point, should we allow this?

4.2 An extended wrapping aspect

The complexity of the problem increases when we consider another important fea-

ture of Sneed’s ool (ignored until now):

SFor-each fencapsulated] method a dara structure is created which includes all

vaﬁaﬁ&w;ﬁbfeﬁfdgm ugﬁdsew%ﬁvwﬁxﬁ& This area is then redefined upon a
virtual linkage areq. The input variables become the arguments and the ourput

variabies the resplre” 110]

Put another way, we must find all data items on which the encapsulated proce-

Lpbnd These are then gathered in & new record {one per procedure), which

edefines a “virtual linkage area” {in C terms: 2 union over all newly generated

i

DE SCHUTTER AND ADAMS

w { PROGRAM DIVISION USING METHOD-NAME, VSPACE.
DECLARATIVES. 3,

WRAPPING-FOR-<Name> SECTION.
USE ARCUND PROGRAM

ail{member!{ {Name, Para, Wss]l, AllInOut}, ¢
{

2 AND I¥F METHOD-NAME EQUAL T06 "<Name>".
WRAPPING-BODY.

36 }r

all({(top record{R, Wss}, name(R, RName}).
33 { MOVE <RName>-<Name> T{¢ <RName>.}

¥
i { PERFORM <Name>.}

all{ (top_record{R, Wss}, name{R, RName))},
a2 { MOVE <RName> T0 <RName>-<Name>.}

)
L B

s { ENCAPSULATION SECTIOH.
USE ARCUND PROGREM.
a% MY-ADVICE.
PERFORM ERROR-HANDLING.
Y EXIT PROGRAM.
END DECLARATIVES. }

Fig. 5. Full procedure encapsulation.

typedefs). This linkage area must then also be introduced as an input data item of
the whole program. Such a requirement seems far out of the scope of AOP. While
it has a crosscutting concern in it {cfr. “for each method™), this concern can not be
readily defined using existing AGP constructs.

Instead, the code in figures 4 and 5 shows a different approach to the prob-
lem. It is encoded neither in Cobble or Aspicere, opting for a different view on the
AOP+LMP equation. Whereas the previous examples were based on LMP embed-
ded in AOP, this code is based on a generative programming approach, similar io
that in {2]. The code can be read as follows. Whatever you find enclosed in curly
brackets ({... }) is (aspect-jcode which is to be generated. This can be further pa-
rameterized by placing variables in “fishgrates” (<. .. >), which will get expanded
during processing. Everything else is Prolog, used here to drive the code genera-
tion.

Let us apply this to the code in figures 4 and 5. Lines | and 2 declare the
header of our aspect, while lines 46 define the linkage section as discussed be-
fore. Lines 8—15 calculate all shices [12]{slice/2 online [1) for all paragraphs
{paragraph/2 on line 10). From each of these we extract the worki
section {wss/Z on line 12}, which gives us the reg

12

De SCHUTTER AND ADAMS

collected in A1L1TIn0Out (line 14). From this we extract the size of the largest one
(max_size/2 online 17) which is used next in the definition of the virtual storage
space (line [8). Next, for each paragraph (i.e. for each member of AL11InOut),
we generate a redefinition of the virtual space to include all data items on which
that paragraph depends (lines 20-26). The redefinition can be seen on line 21,
where it is given a unique name (i.e. SLICED-paragraph-name). s structure 18
defined by going over all records in the working-storage section for that paragraph
(line 22), cloning each record under a new, unique name while updating the level
number {line 23), and then outputting this new record (line 24). This concludes the
data definition. Next, the procedure division is put down, declaring the necessary
parameters {line 28). We then generate advice similar to that in figure 3, but now
they need to perform some extra work. First, they must transfer the data from the
virtual storage space as redefined for the paragraph, to the original records defined
for the program (lines 37-39). The original paragraph may then be called without
worry (line 40). Afterwards, the calculated values are retrieved by moving them
back to the virtual storage space, again as redefined for the paragraph (lines 41~
43y, All that is left is the generic catch-all (lines 46-50), and the closing of the
aspect {Iine 51).

Despite the inherent complexity of the problem, AOP+LMP allowed us to write
down our crosscutting concern with certain ease. LMP was leveraged to define
our aspect by reasoning over the program. AOP was leveraged to tackle the ac-
tual weaving semantics, unburdening us from writing program transformations.
Granted, we guite happily made use of a slicing predicate to do most of the hard
work (line 11). Still, the use of libraries which hide such algorithms is another
bonus we can get from LMP,

5§ Year 2000 syndrome

The Y2K-bug is probably the best-known example of unexpected change in legacy
systems. It is imporfant to understand that at the heart of this was not a fack of
technology or maturity thereof, but rather the understandable failure to recognize
that code written as early as the sixties would still be around some forty years later.
So might AOP+LMP have helped solving the problem? The problem statement
certainly presents a crosscutting concern: whenever a date [s accessed in some
way, make sure the year is extended.

This presents our first problem: how do we recognize data items for dates in
Cobol? While Cobol has structured records, and stringent rules for how data is
transferred between them, they carry no semantic information whatsoever, Know-
ing which items are dates and which are not, requires human expertise. The nice
thing about LMP is that we could have used it to encode this. In C, where a dis-
aster is expected in 20387 (hence Y2K38), the recognition problem is less serious

R

because of C's more advanced typing mechanisms. A date in (ANSIC could be

DE SCHUTTER AND ADAMS

built around the standard time provisions (in “time.h”), or otherwise some (hope-
fully sensibly named) custom typedef. In the former case, recompiling the source
code on a system using more than 32 bits to represent integers solves everything
immediately. In the latter case, C allows variables to be declared as instances of
user-defined types (in Cobol, variables have to be declared in terms of the same,
low-level Cobol primitives). These user-defined types are most likely sufficiently
modularized, allowing for a localized (non-AOP) solution.

Second problem for Cobol: given the knowledge of which data items carry
date information, how do we know which part encodes the year? It may be that
some item holds only the current year, or that it holds everything up to the day.
A data item may be in Gregorian form (i.e. “yyddd™) rather than standard form
(Cyymmdd™). Of course, that “standard” may vary from focale to Jocale (the au-
thors would write it as “ddmmyy™). But again, we could use LMP to encode this
knowledge.

Let us assume we can check for data items which hold dates, and that these have
& uniform structure {in casu “yymmdd”™). Then we might write something like:

AN-YYMMDD-FIX SECTION RETURNING MY-DATE.
USE BROUND SENDING-DATA-ITEM
AND SENDING-DATA-ITEM IS DATE.
. MY~ADVICE.
MOVE PROCEED TO MY-DATE(3:8).
s IF MY-DATE(3:4) GREATER THAN 50 THEN
MOVE 19 TO MY-DATE(1:2)
s ELSE
MOVE 20 TO MY-DATE({1:2).

1

This advice has two problems. One is the definition of MY-DATE (referred to as
a return value on line 1, and assumed to have a “yyyymmdd” format). In Cobol,
ail data definitions are giobal. Hence, MY-DATE is a unique data item which gets
shared between all advices. While this is probably safe most of the time, it could
lead to subtle bugs whenever we have nested execution of such advice. ¥ The same
is true for all advices in Cobble. It is just that the need for a specific return value
rakes it surface more easily. Of course, in this case, the fix would be to require du-
plication of this data item for all advice instantiations. The greater problem lies in
the weaving. When committed to a source-to-source approach, as we are with Cob-
bie, weaving anything below the statement level becomes impossible. As Cobol
tacks the idea of functions , we can not replace access to a data item with a call ©
a procedure {whether advice or the original kind} as we couid doin C. The remedy
for this would be (o swiich to machine-code weaving, but we are reluctant to do so,
as we would lose platform independence. Common virtuzal machine solutions (e.g,
as with ACUCobol} are not widespread either,

jaia item after the PROCEED st

s, however, rule

D SCHUTTER AND ADAMS

Problem OK? How/Why?

Reverse-engineering OK (LMPin) AGP
Business rule mining OK LMP in ACP
Encapsulation of logic (basic) OK LMP in AOP

Encapsulation of logic (extended) | OK AOP in LMP

Y2K38 (ANSE-C) N/A | modular already
Y 2K (Cobol) NO | too weakly typed
Table |

Summary of our findings.
6 Conclusion and Future Work

Table | summarizes our findings. Briefly put, we discussed restructuring and inte-
gration problems using four issues related to (classic) legacy software, and showed
how three of these might be aided through a mixture of AGP and LMP. Reverse en-
gineering based on tracing in C and business rufe mining in Cobol went smoothly,
employing LMP as a pointcut mechanism in AOP. Encapsulation of procedures in
Cobol, a typical legacy integration scenario, required a more generative approach
embedding AOP in LMP.

As for the Y2K restructuring problem, the semantics of Cobol, especiaily its
fack of typing, present too much of a limitation. In C, the Y2K38 problem can stili
be managed reasonably, precisely because it does feature such typing. Other legacy
languages will Hikely exhibit the same behavior.

Al in all, AOP+LMP proves a useful, flexible and strong tool to tackle the ills
of legacy software, limited only by the base language’s typing support. So far, only
the dynamic analysis approach using aspects has been tried in practice. More elab-
orate case studies are needed to provide more feedback about other restructuring
and integration problems, and the general need for generative AOP programming
solutions.

References

L X Bennett, Legacy sysiems: Coning with.success, JEEE Soffware, 12(1),1955,

i21J. Brichau, K. Mens, and K. De Volder. Building composable aspect-specific

languages with logic metaprogramming. In GFCE, 2002,

31 8. Bruntink, A, van Deursen, and T. Tourwe., An initial experiment in reverse
engineering aspects. In WORE [EEE, 2004,

41 K. De Schutter. Aspect-gerichie vevitalisatic van legucy sofrware aan de hand

LFE

i
i

DE SCHUTTER AND ADAMS

van logisch meta-programmeren — Aspect oriented revitalisation of legacy software
through logic meta-programming. PhD thesis, Ghent University, 2006.

[51 R. E. Filman and D, P. Friedman. Aspect-oriented programming is quantification and
obliviousness. [Aspect-Oriented Software Development. Addison-Wesley, 2005,

16] A. Hamou-Lhadj, E. Braun, D. Amyot, and T. Lethbridge. Recovering behavioral
design models from execution traces. In CSMR. TEEE, 2005,

[7] G. Kiczales. Aspect-oriented programming. In Proceedings of the Eighth Workshop
on Instittionalizing Software Reuse, 1997,

i8] R. Lammel and K. De Schutier. What does Aspect Oriented Programming mean 1o
Cobol? In AOSE 05, New York, NY, USA | 2005, ACM Press.

(91 1. Michiels, T. ’Honds, K. De Schutter, and G. Hoffman. Using dynamic aspects 10
distill business rules from legacy code. In Dynamic Aspects Workshop, 2004

110] H. M. Sneed. Encapsulating legacy software for use in client/server systems. In
WCRE, 1996,

[L11H. M. Speed and S. H. Sneed. Creating web services from legacy host programs. In
WSE, 2003.

(12] M. Weiser. Program slicing. In ICSE '81: Proceedings of the 5th international
conference on Software engineering, pages 439-449, Piscataway, NJ. USA, 1981
IEEE Press.

[13}] R. Wuyts. Declarative reasoning about the structure of object-oriented systems. In
TOOLS U/SA '98. IEEE, 1998,

[14] A. Zaidman, B. Adams, K. De Schutter, S. Demeyer, G. Hoffman, and B, De Ruyck.
Regaining lost knowledge through dynamic analysis and Aspect Orientation - an
industrial experience report. In CSMR, 2006,

[15] A. Zaidman, T. Calders, S. Demeyer, and J. Paredaens. Applying webmining
techniques (o execution traces to support the program comprehension process. In
CEMR.IEEE, 20058,

