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Abstract 13 

The implementation of Precision Livestock Farming (PLF) concepts has been pointed out as an 14 

indirect strategy that could potentially help to optimize farm management and mitigating the 15 

environmental impacts of livestock production systems. However, to date, few studies have 16 

focused on analyzing specifically the relationship among PLF adoption and environmental 17 

performance, so sustainability benefits have not yet been quantified for many technologies. 18 

Moreover, studies evaluating the environmental impact of dairy production have traditionally 19 

focused on cattle, and when exploring sheep or goats, they have often involved extensive, low-20 

productive systems, providing an incomplete picture of the sector. Within this context, in this study 21 

we apply life cycle assessment (LCA) to analyze the environmental impact associated to intensive 22 
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dairy goat production, and to explore the influence of adopting a smart-farming PLF platform on 23 

the environmental performance of a group of dairy goat farms in Spain.  24 

The proposed PLF-platform, relies on systematic on-farm monitoring of individual animal data, 25 

coupled with big data processing and interpretation, which supports farmers to take adequate -26 

and timely- farm management decisions. In order to capture its influence, two different periods 27 

were analyzed in five selected farms: a baseline year just before innovation was implemented 28 

(2014) and four years after (2018), when most of the effect of improved management was 29 

reflected. Results after the PLF-platform implementation showed significant reductions (-11%) in 30 

GHG emissions and similar trends in other impact categories (9-16% reductions). This PLF 31 

platform provided a precise monitoring of the productivity, genetic merit and physiological state of 32 

each animal, allowing adequate criteria for a number of decision-making processes, such as 33 

selecting animals for breeding, replacement or culling. This optimization led to an increase in the 34 

genetic selection progress, ultimately reflected on milk productivity. Moreover, a reduction of 35 

unproductive periods such as first partum age or dry period length was often achieved. As a result 36 

of this general improvement, the efficiency of resource usage in relation to milk (and meat) 37 

production was increased, with positive effect on the environmental performance. Production of 38 

1 kg of fat and protein corrected milk (FPCM) resulted in 1.53-1.71 kg CO2 eq. Results in other 39 

impacts categories were also in a similar range than previously reported values for highly 40 

productive dairy systems, including dairy cattle, which stresses the important role that small 41 

ruminant farming can play on environmentally sustainable livestock production, particularly in the 42 

Mediterranean context.  43 

 44 
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1 Introduction 47 

In Europe, most of the goat populations are concentrated in the Mediterranean countries where 48 

they have traditionally played an important role both, socio-economically and ecologically, 49 

providing a source of high value protein, and contributing to food and financial security of 50 

households in less favored rural areas (Aziz, 2010). The Spanish goat milk sector is the second 51 

largest in the EU region, with about 2 million goats and a milk production of more than 530,000 52 

t/year –approximately 22% of the EU-28 total (FAOSTAT 2021). During the last decades, market 53 

demands for increasing productivity and reducing seasonality, have driven livestock husbandry in 54 

this area to intensify their production. Consequently, many dairy goat farms have evolved, from 55 

traditional low producing grazing systems to more intensive production systems with high-56 

dependence on external feeds, scaling up their size, and implementing a number of innovations 57 

(e.g. automated milking, milk control, artificial insemination, health programs) in order to increase 58 

their productivity (Castel et al., 2011). 59 

Despite its relative importance, studies evaluating the environmental impact of dairy production 60 

have traditionally focused on cattle, providing an incomplete picture of the sector, especially in 61 

those areas where small ruminant farming plays an important role (e.g. Mediterranean basin). To 62 

date, the amount of specific life cycle assessment (LCA) studies of dairy goat -or sheep- systems 63 

is still scarce, and they often involve low-productive systems which are not always representative 64 

of the state-of-the-art in the sector. 65 

In the current context, characterized by livestock systems with a high level of organization and 66 

efficiency, the application of smart-farming through the implementation of Precision Livestock 67 

Farming (PLF) concepts, could represent an opportunity to support farmers in order to optimize 68 

farm management and meet market demands. PLF is based on measuring variables and 69 

analyzing collected data so providing support for animal/herd monitoring and management 70 

(Berckmans, 2017). However, while the application of PLF tools in other livestock sectors (e.g.  71 
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dairy cattle) has been successfully tested and it is of widespread use, the incorporation in small 72 

ruminant dairy systems has been limited so far (Belanche et al., 2021). 73 

Approaches for implementing PLF concepts to small ruminants were recently reviewed by Caja 74 

et al., (2020) and Odintsonv Vaintrub et al., (2021). They are based on wearable (e.g. ear tag, 75 

rumen bolus, collar) and non-wearable devices (e.g. camera, electronic scale) which are used for 76 

collecting data and monitoring the performance, health or behavior of the animals. Some of them 77 

have focused on specific aspects, like the use of automatic devices for goat milking (Alejandro et 78 

al., 2016), or the detection of estrus phases (Odintsonv Vaintrub et al., 2021). Among them, 79 

devices for electronic identification, and particularly ear tags, already in use in many regions (i.e. 80 

EU), have been pointed out as a very promising option, triggering the possibilities for data 81 

gathering and processing through PLF platforms (Caja et al., 2020). This allows farmers to have 82 

a more precise monitoring of herd data, which provides a base for management decisions 83 

(breeding, culling, selection, dry off, feeding) (Belanche et al., 2019).  84 

In a previous study we demonstrated that the implementation of a PLF platform (Figure 1) based 85 

on a systematic individual animal data collection and interpretation, had positive effects on overall 86 

performance of dairy goat farms (Belanche et al., 2019). As the main advantages, this PLF  87 

platform allows the integration of individual animal data (e.g. milk yield, lactation length, health, 88 

genetic merit) which helps farmers during the decision-making processes at different levels, 89 

mainly: 1) customize the lactation length for each individual animal to optimize the individual 90 

revenue (long lactations for high productive animals and vice-versa), 2) minimize the unproductive 91 

periods such as first partum and dry period length 3) improve the breeding management by 92 

selecting high merit females for artificial insemination; 4) improve genetic selection by identifying  93 

the best newborn animals for replacement, 5) detect animals with health issues or poor productive 94 

and reproductive performance for selective culling, and 6) increased traceability of each individual 95 

animal (including filiation test) to better implement the selection program and accelerate the 96 

genetic progress.  97 
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While PLF tools are not primarily designed for improving the environmental sustainability of 98 

livestock systems, this has often been pointed out as a potential side-effect of increased 99 

productivity by several authors (Berckmans, 2017; Hristov et al., 2013). However, to date, few 100 

studies have focused on analyzing the PLF efficacy in reducing the environmental impact of 101 

livestock products, and the need of further studies to estimate their actual effect as a mitigation 102 

strategy has been stressed in recent reviews (Lovarelli et al 2020, Tullo et al 2019).  103 

For these reasons, the objectives of this study were 1) to estimate through LCA the environmental 104 

impact associated to intensive dairy goat production, in order to contextualize the results with 105 

regards to other dairy systems; and 2) to explore if the utilization of a PLF platform could involve 106 

a reduction in the environmental impact of the dairy goat farms that have incorporated its use. 107 

 108 

2 Material and methods  109 

2.1 Scope of the study 110 

2.1.1 Description of the PLF platform 111 

Cabrandalucía Federation, which comprises the main goat breeding associations in Andalusia 112 

(Spain), has recently implemented a concept of smart farming relying on a PLF platform (Web-113 

App RUMIA),  which incorporates PLF-like principles based on the integration of individual animal 114 

data to optimize decision making through a smart phone-based terminal. 115 

Briefly, this platform relies on three principles (Figure 1): 1) systematic on-farm individual data 116 

recording (e.g. partum data, physiological stage, health status, reproductive data, etc.) together 117 

with remote data acquisition as a result of the milk control, morphologic evaluation and genetic 118 

selection program, ii) data storage, processing and interpretation by a supercomputer placed at 119 

Cabrandalucía headquarters, and 3) interactive feedback of processed data to the farmer in order 120 

to optimize farm management. The main inputs and outputs of this PLF platform, along with the 121 

farm management implications are summarized in Table 1. 122 
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The effectiveness of the platform has been recently evaluated by monitoring the shift in the 123 

performance indicators of a group of dairy goat farms after it was implemented (Belanche et al., 124 

2019). A sub-group of 5 farms involved in that experiment was randomly selected in our study in 125 

order to analyze the evolution in their environmental performance. All the farms implemented the 126 

PLF platform in late 2014 and the only filter criterion was that, during the studied period (2014-127 

2018) they did not introduce substantial changes in terms of existing facilities or feeding 128 

strategies, which could have affected aspects like energy consumption or concentrate 129 

composition. By avoiding modifications on those operational conditions, we aimed at analyzing 130 

specifically how changes in the herd management could influence the environmental performance 131 

of the farm, therefore exploring the optimization potential obtained through the PLF platform. 132 

2.1.2 Data collection and sample description 133 

Five dairy goat farms of Murciano-Granadina breed were selected randomly from a group of farms 134 

belonging to Cabrandalucia association, representing the typical intensive management system 135 

in the region based on absence of grazing and high dependence on off-farm feeds (self-136 

sufficiency 0-3%). The farms were located in Andalusia (Southern Spain), an area with 137 

Mediterranean climate, characterized by mild winters and very warm and dry summers. All farms 138 

had similar management based on intensive reproduction, two milking per day and the same 139 

monthly milk monitoring scheme. Key characteristics of the farms involved in the study are 140 

provided in Table 2. 141 

2.1.3 Functional unit (FU) 142 

Life cycle assessment is an internationally accepted method to assess quantitatively the 143 

environmental impacts related to all the stages of a production cycle, from raw material extraction 144 

to the end products. The present study followed the principles described in the international 145 
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standards ISO 14044 (ISO, 2006) and specifically in FAO (2016) guidelines, which establishes a 146 

harmonized methodological framework to conduct LCAs of small ruminant systems.  147 

In the present study, the functional unit (FU) considered is 1kg of fat and protein corrected milk 148 

(FPCM). According to FAO (2016), milk yield was corrected at 4.0% fat and 3.3% protein to 149 

provide comparison with dairy cow milk. The following equation was applied: 150 

Kg FPCM = kg milk × (0.1226 × Fat% + 0.0722 × Crude Protein% + 0.0621 × Lactose%)    (1) 151 

2.1.4 System boundaries 152 

The time boundary selected was a period of 12 months, covering all life stages of the animal, and 153 

representing the average environmental impacts for goat milk production during 1 year. As all the 154 

analyzed farms had an intensive production system, small influence of seasonality or inter-annual 155 

variability was expected. In order to capture the effect of the PLF platform implementation, two 156 

different 12-month periods were analyzed for each farm: a baseline year just before the platform 157 

was incorporated (2014) and four years after (2018), when most of the influence of improved 158 

management was reflected.  159 

A “cradle to farm-gate” perspective was considered for defining the boundaries of the goat milk 160 

production system, involving all processes until the milk leaves the farm, and excluding milk 161 

transport and processing afterwards (see Figure 2). This involves the aspects related to on-farm 162 

activity, such as fuel and electricity consumption, animal housing, ruminant digestion and manure 163 

management, but also off-farm activities like crop production, feed processing and transport to 164 

the farm. Capital goods (e.g. equipment, machinery, buildings) and inputs for ancillary activities 165 

(e.g. medicines) were excluded of the final analysis as they were considered not relevant for this 166 

case study. 167 
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2.1.5 Allocation of co-products 168 

Dairy goat farms are multifunctional systems which produce more than one product. The main 169 

purpose is milk production, although meat from kids (and culled goats) is also obtained as a co-170 

product. In order to estimate the environmental impacts of the single product analyzed in the study 171 

(i.e. milk), the overall impacts have to be partitioned among the various outputs of the system. To 172 

do so, we followed FAO (2016) guidelines for LCA studies on small ruminant systems, 173 

recommending to prioritize allocation based on biophysical causality over other allocation criteria.  174 

Accordingly, a biophysical allocation based on the partitioning of the animal energy requirements 175 

was applied. Energy requirements for the different metabolic functions of the animals in the farm 176 

were estimated following IPCC (2019) Tier-2 methodology. The allocation ratio for milk, was 177 

calculated from the ratio of the energy requirements for milk production to the energy 178 

requirements for the production of milk and meat (growth): 179 

R = energy req. milk production / (energy req. milk production + energy req. growth)  (2) 180 

Applying more than one allocation method is recommended for dairy LCAs though, in order to 181 

show the potential effect of allocation method through a sensitivity analysis. To do so, two 182 

additional procedures for allocation were explored: one based on economic value and other based 183 

on protein content. Details are provided in Supplementary Material. 184 

2.2 Life cycle inventory (LCI) 185 

2.2.1 Farm inputs and outputs 186 

To obtain a detailed inventory, the farms were analyzed by field investigation and through a survey 187 

which provided details about farm structure, management applied, and main input and output 188 

flows. Structured farmer surveys were conducted to quantify farm inputs such as feeds, water, 189 

electricity or fuel consumption, as well as to identify some management practices, like manure 190 
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treatment. Farm outputs such us milk, goat kids sold and culled goats were obtained from the 191 

information gathered by the PLF platform. Additionally, feed suppliers were consulted to collect 192 

concentrate composition. An overview of the collected data is shown in Table 3. Specific details 193 

about feed ingredients and concentrate composition can be found in Table S1. 194 

Based on the collected details, a farm model was built describing the farm structure, according to 195 

technical parameters and animal management practices reported. All the animal classes present 196 

in the farm along the year were accounted together with their respective excreta and emissions 197 

(Figure 3) estimated through IPCC (2019) guidelines. 198 

2.2.2 Estimation of emissions 199 

Methane (CH4) emissions from enteric fermentation were estimated according to Tier 2 of the 200 

most recent IPCC (2019) guidelines. Gross energy was calculated from estimations of energy 201 

requirements and diet digestibility, and CH4 emissions from enteric fermentation were calculated 202 

by applying a Ym of 5.5% for dairy goats. Emissions from manure management were also 203 

estimated based on IPCC (2019) guidelines. Specific values for high productivity goats were 204 

applied when considering maximum methane producing capacity (Bo) (0.18m3CH4/kgVS). 205 

Manure management types under the studied farms were solid storage and passive composting 206 

with infrequent turning. Accordingly, methane conversion factors (MCFs) of 4% and 2% were 207 

considered for solid storage and composting respectively, both under warm temperate dry 208 

climate.  209 

Similarly, nitrous oxide (N2O) emissions were estimated based on excretion rate of nitrogen (N) 210 

estimated following IPCC (2019) and applying emission factors for direct N2O of 1% for solid 211 

storage and 0.5% for composting in passive windrow. For estimating indirect N2O emissions and 212 

ammonia (NH3) and nitrate (NO3
-) losses, the Tier1 from IPCC (2019) was applied. The estimation 213 

of off-farm emissions from purchased feeds (i.e. concentrates, grains and forages) and bedding 214 
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materials, involving the stages from agricultural production, processing and transport to the farm, 215 

was conducted based on Agri-footprint v4.1 database (Blonk Agri-footprint BV, 2019). Emissions 216 

related to fuels (diesel and biomass (olive husks)) consumed on-farm, and electricity from Spanish 217 

national grid, were estimated from Ecoinvent 3.3 database (Ecoinvent, 2016). 218 

2.3 Impact categories and characterisation 219 

Different methods were chosen to conduct the life cycle impact assessment (LCIA) stage. The 220 

IPCC 2013 (Mhyre et al. 2013) method was selected to assess the climate change (CC) impact, 221 

considering the global warming potential factors of IPCC with a timeframe of 100 years. Beyond 222 

CC, other five impact categories were selected among the so-called “baseline impact categories” 223 

in the ReCiPe 2016 midpoint method: stratospheric ozone depletion (OD), terrestrial acidification 224 

(TA), freshwater eutrophication (FE), land use (LU), and water consumption (WC). Additionally, 225 

cumulative energy demand (CED) was included as an indicator of the energy use throughout the 226 

life cycle of the product. SimaPro 9.1 LCA software (PRé Sustainability, 2020) was used to 227 

conduct the calculations. 228 

2.4 Statistical analysis 229 

To determine the effect of the PLF platform on the environmental performance, each farm was 230 

considered as an experimental unit and data were analyzed by ANOVA using the R software 231 

(version 3.6.2 R Core Team 2020) as follows: 232 

Yijk = µ + Ti + Fj + eijk 233 

Where Yijk is the dependent, continuous variable, µ is the overall mean, Ti is the fixed effect of the 234 

PLF platform based on the differences between times (I = 2014 vs 2018), Fj is the random effect 235 

of the farm considered as a block (j = 1 to 5) and eijk is the residual error. Pearson's simple 236 

correlation analysis was carried out between estimated environmental impact, annual milk 237 

production and the physiological parameters obtained from the farms monitored. 238 
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 239 

3 Results 240 

3.1 Environmental impact of goat milk 241 

Impact assessment results for all the impact categories involved in the study are detailed in Table 242 

4 and Figure 4, showing results referred per FU (1 kg of FPCM) and relative to highest 243 

contribution, respectively. Results from the sensitivity analysis using different allocation rules 244 

(biophysical, economic and protein content) are shown in Table S2. Allocation based on protein 245 

content resulted on the highest impact estimations (4-9% higher than biophysical), while 246 

economic allocation tended to attribute less environmental load to the goat’s milk (2-4% lower). 247 

Independently of allocation method, some differences can be observed between the farms when 248 

compared on the same year basis, with milk from Farm 5 consistently showing the lowest 249 

environmental impact for most of the categories, except for water consumption (Figure 4). 250 

Focusing on the carbon footprint (CF) of goat milk, GHG emissions per kg of FPCM for the five 251 

dairy goat farms analyzed are shown in Figure 5, together with the contribution from different 252 

GHG sources. The larger proportion of total GHG emissions was associated with feed production, 253 

which comes from cropland areas outside the farm. This involves emissions from crop cultivation 254 

and feed transport stages, with grains and concentrates contributing on average 48.5%, and 255 

forages 9.4%. Approximately, a third of these emissions are linked to CO2 released through direct 256 

land use change (LUC) processes, while the remaining are mainly associated to N2O emissions 257 

from fertilization and CO2 emissions from agricultural and feed processing activities, involving 258 

fossil fuel consumption. 259 

Enteric CH4 emissions were identified as the second largest GHG source accounting for 28.0% 260 

of the total goat milk CF on average, followed by manure management (6.3%) and cereal straw 261 

usage for bedding purposes (3.3%). Finally, other GHG sources were also identified, most of them 262 
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related to the energy use on-farm, although their contribution to the CF was on a lesser extent, 263 

mainly in the form of electricity (2.5%), diesel (1.7%) and biomass combustion (0.3%). 264 

 265 

3.2 Effect of the PLF platform 266 

Effect of PLF on the farm productive performance 267 

The implementation of the PLF platform promoted an intensification of the production system at 268 

different levels (Table 2). The number of reproductive goats per farm tended to increase from 269 

2014 to 2018 (P=0.060) and the reproductive intensification led to an increase in the prolificacy 270 

(P=0.031) and number of kids sold per goat (P=0.056). The FPCM yield per lactation tended to 271 

increase (P=0.098) being this increment more obvious when expressed as FPCM per year per 272 

goat (P=0.006). This platform also tended to decrease the unproductive periods such as the dry 273 

period length (P=0.051) or first partum age (-2.8%) and the replacement rate (P=0.048). 274 

The observed increase in the number of reproductive animals and milk yield per goat observed 275 

from 2014 to 2018 tended to increase the consumption of concentrate (P=0.076), water (P=0.072) 276 

and electricity (P=0.087) (Table 3), whereas other relevant inputs such as forage, bedding, diesel 277 

or biomass fuel consumption were not significantly affected by the PLF implementation. The 278 

intensification observed from 2014 to 2018 promoted a substantial increase in the farm outputs 279 

such as the sales of FPCM (P=0.028) and the goat kids (P=0.017). On the contrary, the PLF 280 

implementation decreased the number of culled goats sold as meat (P=0.042) due to the lower 281 

replacement rate as a result of a higher functional longevity (Table 3). 282 

 283 

Effect of PLF on the farm environmental performance 284 
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Across all the farms, the implementation of this PLF platform had a substantial and multi-factorial 285 

effect on the environmental impact per FU (1kg of FPCM) which ranged from -9% to -16% 286 

depending on the impact category considered (Table 4). As a result, from 2014 to 2018, all the 287 

impact categories were significantly reduced (P<0.05). Moreover, the environmental impact of 288 

milk production was significantly correlated (p<0.05) with several physiological and productivity 289 

variables, as affected by the PLF platform implementation (Table S3). Specifically, for the CF, a 290 

negative correlation was found with annual milk yield (r2=0.47), lactation milk yield (r2=0.55) and 291 

prolificacy (r2=0.47), while a positive correlation was found with first partum age (r2=0.58) and dry 292 

period length (r2=0.56 – excluding farm 5) (Figure 6). 293 

4 Discussion 294 

4.1 Environmental impact of goat milk 295 

Methodological choices applied in LCA studies of dairy products (e.g. FU, allocation method) have 296 

a strong influence on the results, making difficult to establish comparisons among studies, and 297 

therefore, among different production systems (Baldini et al, 2017). LCA studies on small ruminant 298 

dairy systems have often corrected milk according to the equation of Pulina et al (2005) for sheep 299 

milk, based on a fat and protein content of 6.5% and 5.8%, respectively. This approach makes 300 

difficult the comparison among dairy systems, and it seems especially inadequate for goat milk, 301 

which rarely reach those values. In view of this, the recommendation by FAO guidelines (FAO, 302 

2016) seems a sensible approach, providing a common basis for comparison among dairy 303 

systems. In an attempt to harmonize results, the reported values from previous LCA works on 304 

small ruminants have been converted into a common FU (1 kg FPCM) following the equation 305 

indicated by FAO guidelines (FAO, 2016). Still, a number of methodological aspects like allocation 306 

method, or including LUC emissions and carbon sequestration in the estimation, will add strong 307 
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variability in the reported values, but at least it allows to extract, with caution, some general trends 308 

that may help to contextualize the results from this study.  309 

Traditionally, LCA approaches have attributed to goat -and sheep- milk a higher environmental 310 

impact compared to predominant milk production systems from dairy cattle (Gerber et al 2013). 311 

For example, Weiss et al (2012) estimated GHG fluxes of cow milk at 1.3–1.7 kg CO2eq/FPCM 312 

on EU-27 average, while sheep and goat milk at 2.6–4.1 kg CO2/kg FPCM. However, from the 313 

results of this study, and after reviewing data of previous literature on small ruminant LCAs, it 314 

does not seem that such differences exist when dairy production systems are compared under 315 

an equivalent FU (i.e. similar content of %fat and %protein) or when produced in a similar 316 

intensive manner. The importance of the FU on dairy goat systems, and in particular of the FPCM 317 

basis applied, was previously noted by Gutiérrez-Peña et al (2019). They reported an estimation 318 

41% lower of the CF when milk correction was based on cow’s milk vs sheep’s milk. A similar 319 

trend can be observed in this study for other reviewed studies (Table 5).  320 

When harmonized into the same FU (Table 5), the results of the CF in this work (1.53-1.71 kg 321 

CO2 eq/kg FPCM) seem to be within the range observed for other high-productivity dairy goats in 322 

the same area (1.41-2.17 kg CO2 eq/kg FPCM; Pardo et al 2016; Gutiérrez-Peña et al 2020) and 323 

values generally reported for dairy sheep systems (1.18-2.72 kg CO2 eq/kg FPCM; Batalla et al 324 

2015, Escribano et al 2020, Vagnoni et al 2015, 2017). In contrast to low productive small 325 

ruminant systems, where enteric CH4 has been identified as the main source of GHG emissions, 326 

the CF of intensive dairy systems is often dominated by feed production activities. This is due to 327 

the use of supplementary feeds with greater quality and digestibility which enhance milk 328 

productivity per animal, and also results on lower enteric CH4 emissions per kg DM ingested. As 329 

a trade-off, increased use of grains and concentrates usually involves a higher intensity of CO2 330 

and N2O emissions per kg of feed, mainly linked to the use of fertilizers and fossil fuels during the 331 

cultivation stage. Moreover, some of these feed sources (e.g. soy, palm) are associated to direct 332 
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LUC processes (i.e. deforestation) which can lead to crucial changes in the CF of dairy systems 333 

when accounted. For example, when Battini et al (2014) included LUC emissions from soybean 334 

meal in the CF of cow’s milk, they estimated a remarkable increase by 0.53 kg CO2 eq/kg FPCM. 335 

In our study, for the farms analyzed during 2018, forage and concentrate production contributed 336 

up to 57.9% of GHG emissions, of which 14.5% were attributed to direct LUC, mainly due to 337 

soybean expansion in South America. As previously stated, feed production is often the dominant 338 

GHG source of high-productive small ruminant systems, even though they often result in the lower 339 

emission intensity per kg of FPCM (Table 5). For that reason, it becomes especially important to 340 

look for potential mitigation strategies related to feed consumption in these systems.  341 

From the data revised in this work, the lowest CF estimated for goat milk is reported by Robertson 342 

et al (2015) in indoor farms in New Zealand (NZ). A number of factors can explain that result, from 343 

the high milk productivity level observed, to the use of a specific method for estimating enteric 344 

CH4 emissions. But interestingly, despite a large amount of supplementary feed was consumed 345 

in the indoor NZ dairy goat farms, they had a very low GHG associated, because many of them 346 

were food by-products (e.g. brewers grain). The benefits of exploiting available agri-food residues 347 

in the Mediterranean basin was also highlighted by Pardo et al (2016), with estimated GHG 348 

reductions among 12-19% in the CF of goat milk, and it has been stressed as a key adaptation 349 

opportunity for the small ruminant systems against expected CC effects in the region (Pardo et al 350 

2020). 351 

Although enteric CH4 emissions is not the largest hot-spot in the CF, in our study its relative 352 

contribution is still quite relevant (28%). This observation agrees with estimates from previous 353 

studies on intensive dairy goat systems. However, it contrasts with estimations from global LCA 354 

approaches that often attribute a dominant role for enteric CH4 emissions on sheep and goat milk 355 

(Gerber et al 2013; Leip et al, 2010), which could be due to the use of unrefined methodologies 356 

unspecific for small ruminants. The implementation of enteric methane mitigation strategies (e.g. 357 



16 

 

use of feed additives) is helping to decrease these emissions, despite they are not still considered 358 

neither in this study nor in most national inventories. Activities related to management practices 359 

contribute to a lesser extent to the CF, such as manure treatment (6.3%) and bedding material 360 

utilization (3.3%). Manure in goat farms is predominantly handled in solid form, often through 361 

composting treatment. This tends to produce significantly less CH4 emissions in comparison to 362 

manure systems in liquid form (i.e. slurry), which are typical in intensive dairy cattle farms. Energy 363 

demand in goat farms is mainly linked to electricity consumption and fuel use for heating 364 

purposes. Although it is just a small part of the CF (4.6%), some actions can be taken in this 365 

aspect. Interestingly, two of the studied farms produced their heating from biomass by-products 366 

(i.e. olive husk), which contributed to reduce slightly their GHG emissions.  367 

Comparing results of all impact categories with other studies is particularly difficult, due to 368 

heterogeneity of methodologies and impact assessment methods applied. Despite this, in general 369 

the results seem in the same range of previous LCAs (Zucali et al 2020, Battini et al 2014) with 370 

impacts on FE close to values reported by Zucali et al (2020) for dairy goats, while WC is slightly 371 

lower in our case. 372 

In contrast to the CF, emissions produced on-farm tend to have a high relevance for some impact 373 

categories. For example, TA and FE were caused mainly by emissions of NH3 (and leaching or 374 

run-off of NO3
- and PO4

-), which resulted directly from manure management, and additionally, 375 

from fertilizer application during off-farm feed production stages. In the case of OD, N2O is the 376 

main substance involved, mainly associated to crop cultivation activities, but with a relevant role 377 

of N losses from manure management too (about 20%). 378 

When comparing farms on the same year basis, milk from Farm 5 consistently showed the lowest 379 

environmental impact for most of the categories (Figure 4). Main reason behind this is the feed 380 

efficiency ratio, which is the highest (1.17 kg DM/kg FPCM) among all the analyzed farms, but 381 

also the feed resources utilized. Farm 5 shows the lowest forage proportion in the diet, but it 382 
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includes an important share of grains’ mix, which replaces the consumption of concentrates that 383 

tend to have a higher environmental impact.   384 

Interestingly, the use of some specific ingredients in the animal feed seems to have a crucial 385 

influence in the WC category. In particular, maize and oats production contributed the most to this 386 

category. They are both crops with high water demands in comparison to other cereals, and its 387 

cultivation under Mediterranean climate conditions often involves important irrigation needs. Their 388 

use explains why Farm 5 did not performed especially well in this category, despite showing the 389 

highest feed efficiency. 390 

4.2 Effect of the PLF platform 391 

From the main findings of this work, it can be underlined that the incorporation of this PLF platform 392 

promoted a significant improvement in the environmental sustainability of dairy goat farms, mainly 393 

as a result of a substantial increase in the milk yield (Tables 2 and 3). Previous studies have 394 

highlighted individual milk production as a key parameter influencing the environmental impact of 395 

goat milk (e.g. Zucali et al 2020). This trend was also observed in the present study, with a 396 

consistent negative correlation observed among environmental impact and annual milk yield 397 

(Figure 6a, Figure S1, Table S3). 398 

Depending on the impact category, reductions among 9 to 16% on the environmental impact were 399 

estimated after three years from the implementation of the PLF platform. These figures are 400 

relevant taking into account that they come exclusively from changes in aspects directly related 401 

to the farm management during a limited time period. Intensive livestock farming involves 402 

managing large numbers of animals, which makes difficult a detailed control of all of them by 403 

simple human observation. In this context, PLF platforms for data collection and management 404 

can be particularly helpful, allowing the integration of individual animal data. As a result of this 405 

individual monitoring, a number of farm management decisions can be affected (as described in 406 

Table 1), which leads to increase farm productivity through 3 main mechanisms that involve i) an 407 
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accelerated genetic progress relying on more knowledgeable selection of high merit goats, ii) an 408 

improved breeding and culling management based on the records of productive, reproductive and 409 

health parameters from each animal, and iii) a decrease of unproductive periods through the 410 

optimization of first conception date, and lactation and dry periods lengths according to animal’s 411 

physiological state and milk yield prospects. 412 

In our study, the optimization of breeding and culling selection, together with the accelerated 413 

genetic progress, led in the mid-term to a general improvement of the animal´s performance. This 414 

PLF platform facilitated these strategies by enabling a better data integration which allowed, for 415 

example, to identify top (and bottom) productive animals, whose offspring to be selected for 416 

replacement; or to detect individuals prone to suffer physiological or reproductive insufficiencies 417 

for culling. The improvement in both strategies obtained through the PLF platform implementation 418 

was reflected on the positive impact on various productive and reproductive parameters across 419 

the studied period, like the increments observed of milk produced per lactation (+7.9%) and 420 

prolificacy (+9.4%) (Table 2). Both parameters were positively correlated with the annual milk 421 

productivity (lactation milk yield: r2 =0.80, prolificacy: r2=0.36) (Figure S2) and inversely correlated 422 

with the environmental impact at the farm level (lactation milk yield: r2 =0.55, prolificacy: r2=0.47) 423 

(Figure 6b,c).  424 

Moreover, the optimization of breeding and culling selection was also associated to the observed 425 

decrease in the replacement rate (-20%) during the studied period. The shift towards more 426 

resilient animals, together with a more accurate monitoring of health programs, allowed to 427 

decrease the culled goats and to increase the number of kids sold (+33%) as a result of lower 428 

replacement needs. These aspects affect positively both, milk and meat production, with 429 

implications for the allocation between co-products, leading to more effective reductions of the 430 

environmental impact on the milk side.  431 



19 

 

A decrease of first partum age (-15 days) and dry period length (-9 days) was also noted in our 432 

study after farms implemented the PLF platform. This is associated to a more precise monitoring 433 

of each animal, which allows i) an optimization of first conception date according to its particular 434 

physiological stage and individual records, and ii) a customization of lactation and dry period 435 

lengths based on specific milk yield prospects. Both parameters were found positively correlated 436 

with annual milk productivity (Figure S2, Table S3) and negatively correlated with CF (first birth 437 

age: r2 =0.58, dry period length: r2=0.56) (Figure 6d,e). 438 

Interestingly, total feed intake (kg DM/goat/year) was not correlated with CF or annual milk yield 439 

although, a negative relationship was observed between forage/concentrate ratio with CF 440 

(r2=0.39) (Figure 6f) and other parameters like milk yield per lactation (r2=0.35). This could imply 441 

that the transition towards more intensive systems may involve an increase in the use of 442 

concentrates. This could be a result of shortened unproductive periods, when higher proportion 443 

of forage is used in the diet, but also a consequence of the shift towards more productive animals, 444 

in order to satisfice the energy requirement of high yielding goats, as noted in this study (+9.1%). 445 

This trend has been adverted by previous works, as it could lead to relevant changes in the self-446 

sufficiency of dairy systems (Gutiérrez-Peña et al 2019; Zucali et al 2020) and also in their GHG 447 

emissions profile (del Prado et al 2021). Increased feed efficiency has been often linked with the 448 

ingestion of feed more suitable for human consumption, but this involves negative impacts in 449 

relation to land competition, biodiversity and global food system sustainability (del Prado et al., 450 

2013). Moreover, increased use of concentrates often leads to less enteric CH4 emissions 451 

(through improved nutrient utilization) but sometimes at the expense of increasing CO2 and N2O 452 

contribution from crop cultivation activities. This kind of dynamics are typical of intensification 453 

processes, but their implications in terms of global warming must be carefully analyzed due to the 454 

different behavior of long-lived pollutants (i.e. CO2, N2O) versus short-lived (i.e. CH4) (Del Prado 455 

et al 2021, Ridoutt, 2021). 456 
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In our study, a generalized reduction was observed in all GHG sources, due to a combination of 457 

PLF-led improvements that affect efficiency at  animal and farm level. In relative terms, the greater 458 

reductions were observed on activities related to fixed resource utilization for farm operations, 459 

such as fuels (-34%), electricity (-16%) and use of bedding materials (-25%). However, when 460 

analyzing results in absolute terms, the major contribution to the CF reduction was associated to 461 

concentrates consumption (-51%) (Table S4). Although some improvements achieved from the 462 

PLF platform implementation (i.e. animal milk productivity) may involve an increase in the 463 

proportion of concentrate used, ultimately there is an overall decrease (-17%) on the consumption 464 

of concentrates per kg of FPCM produced. This optimization in the concentrates use was also the 465 

major factor behind the mitigation observed in other environmental impacts, dominating especially 466 

the reduction achieved in impact categories such as WC (67%), LU (51%), FE (48%) and OD 467 

(44%) (Table S4). 468 

Despite the known benefits of PLF tools to optimize farm management (Lovarelli et al 2020, Tullo 469 

et al 2019), their implementation is not a widespread practice in small ruminant dairy systems. 470 

Cost for investment often represents an obstacle in small farms, but a number of specific reasons 471 

may have also constraint the incorporation of PLF concepts in these systems, such as low net 472 

margin per animal, the additional labor required for data collection, structural insufficiencies (e.g. 473 

aged milking parlor and infrastructures) or difficulties on the adoption of new technology 474 

(Belanche et al., 2019; Caja et al., 2020). In the face of challenges like CC, the incorporation of 475 

PLF tools in small ruminant systems should be promoted, as they provide opportunities, not only 476 

for mitigation purposes but for CC adaptation too. Small ruminant systems are particularly relevant 477 

in Mediterranean areas, where severe impacts of CC are expected in the next years (Pardo et al., 478 

2020). In this context, a precise monitoring of animal’s physiological state and productive 479 

parameters, together with weather variables (e.g. temperature-humidity data loggers), could give 480 

farmers the possibility to cope better with heat stress risks, by timely taking appropriate adaptation 481 
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measures, like adjusting ambient conditions or feeding. Moreover, the use of platforms for data 482 

gathering and interpretation open up the possibilities for incorporating other PLF tools into the 483 

farm management. In this context, the proposed PLF platform is in constant development and 484 

over the last two years has incorporated open and scalable computing resources in order allow a 485 

greater versatility on the integration of new elements. This evolution appears as a repose to the 486 

growing demand from the users to better monitor individual animals and farm parameters, as well 487 

as to improve the product traceability and information to satisfice the consumer demand for 488 

healthy, nutritious and environmentally friendly products. The new elements focus on a better 489 

monitoring of the animals´ health and wellbeing, farm expenses (e.g. feeds, medicines, animals, 490 

labor, etc.) and farm outputs (e.g. milk, meat, culled animals, manure, etc.) in order to generate 491 

reliable technical-economic indicators. Future research is needed in the years to come in order to 492 

evaluate the effects of these new elements on the farm environmental performance and overall 493 

farm sustainability. 494 

5 Conclusions 495 

From our analysis it seems clear that small ruminant dairy production does not necessarily imply 496 

a higher environmental impact in comparison to cow milk. Moreover, our study showed that when 497 

smart-farming concepts are applied through the implementation of a PLF platform, significant 498 

increases in the productivity are achieved together with reductions in the environmental impact of 499 

goat milk. These findings stress the importance of harmonizing methodological choices in dairy 500 

LCAs, but also that PLF platforms for data management could play an important role for the 501 

sustainability of small ruminant dairy production. However, technology should not aim at 502 

substituting farmers in decision-making but to support them through an effective data processing 503 

and interpretation system. In this sense, the farmers´ capacity building based on the adoption of 504 

new technologies and increasing the technical and business management training has been 505 
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identified as top priority for the sustainability of the small ruminant systems in Europe (Belanche 506 

et al., 2021).  507 

Future actions in the sector should promote the adoption of PLF concepts, but a successful 508 

implementation will probably require support in terms of financial instruments, knowledge transfer 509 

activities and research of technological innovations like tools and sensors that can adapt to the 510 

existent diversity of small ruminant production systems. This acquires particular relevance in the 511 

Mediterranean region, where sheep and goats farming plays a key role, from both socio-economic 512 

and environmental perspectives, providing not only protein-rich products from harsh 513 

environments, but also a number of eco-services (e.g. fire prevention, landscape and biodiversity 514 

preservation) that should also be preserved or enhanced through PLF tools implementation.  515 

 516 
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Table captions 647 

Table 1 - Summary of the input and output information in the implemented PLF platform. 648 

Table 2 – Main characteristics of the dairy goat farms analyzed in the study 649 

Table 3 –Main outputs and inputs flows of the farms during the analyzed period (2014-2018). 650 

Table 4 – Environmental impact of goat milk of the analyzed farms (1 kg FPCM).  651 

Table 5 – Comparison of studies analyzing the carbon footprint (CF) of small ruminant dairy systems. 652 

Original CF estimates have been converted into FPCM according to FAO, 2016. 653 
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 655 

Figure 1. Image of the PLF platform terminal (left), data flows and a screenshot describing the 656 

population map of the goats in the farm according to their physiological stage, morphology and 657 

productivity (right) (from Belanche et al., 2019). 658 
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 660 

Figure 2 – System boundaries for dairy goat production system and main sources of emissions.  661 
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 663 

Figure 3 – Scheme of the herd model built to simulate the herd structure, technical parameters and 664 

animal management in every case. 665 
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 667 

 668 

Figure 4 – Relative changes to different environmental impact categories after PLF platform 669 

implementation 670 
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 672 

Figure 5 – Carbon footprint of 1kg of Fat and Protein Corrected milk (FPCM) for different dairy goat 673 

farms in the analysed period. Last two columns show average of all farms in the selected year. Bars 674 

show standard deviation.  675 
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Figure 6 – Scatter plot for carbon footprint of goat milk against a selection of physiological and 677 

productivity variables: a) annual milk yield, b) milk yield per lactation, c) prolificacy, d) first birth 678 

age, e) dry period length, f) forage/concentrate 679 
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