
Intl. Trans. in Op. Res. 30 (2023) 1092–1119
DOI: 10.1111/itor.12951

INTERNATIONAL
TRANSACTIONS

IN OPERATIONAL
RESEARCH

The school bus routing problem with student choice: a bilevel
approach and a simple and effective metaheuristic

Herminia I. Calvetea,∗ , Carmen Galéb , José A. Iranzoc and Paolo Tothd

aStatistical Methods Department, IUMA, University of Zaragoza, Pedro Cerbuna 12, Zaragoza 50009, Spain
bStatistical Methods Department, IUMA, University of Zaragoza, María de Luna 3, Zaragoza 50018, Spain

cStatistical Methods Department, IUMA, University of Zaragoza, Atarazana 2, Teruel 44003, Spain
dDEI, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy

E-mail: herminia@unizar.es [Calvete]; cgale@unizar.es [Galé]; joseani@unizar.es [Iranzo];
paolo.toth@unibo.it [Toth]

Received 28 February 2020; received in revised form 22 December 2020; accepted 14 February 2021

Abstract

The school bus routing problem (SBRP) involves interrelated decisions such as selecting the bus stops, al-
locating the students to the selected bus stops, and designing the routes for transporting the students to
the school taking into account the bus capacity constraint, with the objective of minimizing the cost of the
routes. This paper addresses the SBRP when the reaction of students to the selection of bus stops is taken
into account, that is, when students are allowed to choose the selected bus stop that best suits them. A bilevel
optimization model with multiple followers is formulated, and its transformation into a single-level mixed in-
teger linear programming (MILP) model is proposed. A simple and effective metaheuristic algorithm is also
developed to solve the problem. This algorithm involves solving four MILP problems at the beginning, which
can be used to obtain tight upper bounds of the optimal solution. Extensive computational experiments on
SBRP benchmark instances from the literature show the effectiveness of the proposed algorithm in terms of
both the quality of the solution found and the required computing time.

Keywords: school bus routing problem; preferences; bilevel optimization; metaheuristic

1. Introduction

The school bus routing problem (SBRP) aims at determining a set of routes for picking up a given
set of students from a set of potential bus stops and transporting them to the school. Generally, the
objective is to minimize the cost of the routes taking into account various constraints, for example,
on the capacity of the buses or on the maximum walking distance of the students, etc. Park and
Kim (2010) and Ellegood et al. (2019) provide comprehensive reviews on the subject. Several papers
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have considered simultaneously the problems of selecting the bus stops to be visited among a set of
potential locations, allocating the students to them, and designing the bus routes. The papers differ
in the order in which they deal with the three subproblems involved—location (L), allocation (A),
and routing (R)—as well as in the method proposed to solve the SBRP. Dulac et al. (1980) pro-
pose an LAR approach, while Chapleau et al. (1985) and Bowerman et al. (1995) develop ARL
approaches. Schittekat et al. (2013) propose an LRA strategy in which, after selecting the bus stops
and computing the routes, the allocation of students is solved by an exact method. Calvete et al.
(2020b) develop an L-partial-AR approach in which the allocation is done gradually with the aim
of keeping the routing cost low. Previous papers use heuristic or metaheuristic algorithms to solve
the SBRP, sometimes combined with exact methods to solve some of the subproblems involved.
Regarding the use of exact methods, Riera-Ledesma and Salazar-González (2012, 2013) propose
several formulations of the problem as well as a branch-and-cut-and-price algorithm, while Kin-
able et al. (2014) develop a branch-and-price algorithm. It is worth mentioning that in none of these
papers can the students choose the selected bus stop where they are picked up.

In this paper, we focus on the SBRP with bus stop selection when each student has an order
of preference for the potential bus stops and is free to choose his/her most preferred selected bus
stop. For this purpose, we consider a two-level decision process in which, at the upper level of the
hierarchy, a decision maker (representing a central authority, the school, or the company picking
up the students) selects from a set of potential stops the bus stops that are visited, and the routes
that ensure the service to all the students aiming to minimize the routing cost. Besides the bus
capacity, the decision maker needs to take into account that, at the lower level of the hierarchy, the
students choose their most convenient selected bus stop. To facilitate the reading of the paper, in
the following, we will use the term “select” when referring to the selection of the bus stops that are
made available to students, whereas we will use the term “choose” when referring to the choice of
a selected bus stop by a student. The routes will visit selected bus stops that are chosen by at least
one student.

Bilevel optimization has been proposed in the literature to model decision processes involving
decisions ranked in accordance with a hierarchical structure. A bilevel model is formulated as an
optimization problem, which involves another optimization problem in the constraint set. An up-
dated review on this subject can be found in Dempe (2018). Concerning the application of bilevel
optimization in SBRP, Parvasi et al. (2017, 2019) formulate a bilevel optimization model that con-
siders the possibility of predicting the student’s response and follows an LAR strategy to solve
it. They focus on the design of the public transportation system in which the upper level decision
maker attempts to locate bus stops and routes buses to these stops while, based on this information,
at the lower level, the students decide whether to use this system or choose other services. Hence,
in these papers, students may be reluctant to choose any of the bus stops that are visited by a route
and decide to use an alternative transportation system.

In a more general routing context, Chen et al. (2020) aim to optimize the existing bus routes
and enhance the accessibility of nearby bus stops for seniors living in age-restricted communities.
Seniors are considered to be the upper level decision makers, and transit agencies are regarded as
the lower level decision makers. Sadati et al. (2020) formulate a bilevel optimization problem for the
determination of the most critical depots in a vehicle routing context. The attacker is the decision
maker in the upper level problem who chooses a number of depots to interdict with certainty. The
defender is the decision maker in the lower level problem who optimizes the vehicle routes in the
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wake of the attack. Also, bilevel optimization has been used to reformulate well-known problems
such as the capacitated vehicle routing problem (CVRP) (Marinakis et al., 2007) or the ring-star
problem (Calvete et al., 2013) with the purpose of developing efficient algorithms. On the other
hand, preferences have been considered in facility location problems. Hanjoul and Peeters (1987)
and Hansen et al. (2004) analyze the discrete facility location problem when customers are free to
choose an open facility. The model assumes that the decision maker knows the preference order-
ings of customers and takes them into account when deciding which facilities should be opened to
minimize the total cost of opening facilities and allocating customers. Calvete et al. (2020a) gen-
eralize this problem to include cardinality constraints on the facilities. They propose two different
approaches to this problem and a matheuristic based on the structure of an evolutionary algorithm.

The first contribution of this paper is to address the reaction of students to the selection of bus
stops. This allows for a more realistic and fair transportation system in which the preferences of
the students are needed. This means that the transportation system must ensure that it selects bus
stops and establishes routes so that all students can take the bus at their preferred selected bus stop.
This problem is modeled as a bilevel mixed integer programming problem with multiple followers,
from now on called the bilevel SBRP with bus stop selection (B-SBRP-SS). Unlike Parvasi et al.
(2017, 2019), we assume that the transportation system must accommodate all the students and
every student must be able to choose a bus stop visited by a route in accordance with his/her
preferences. Note that the preference ordering interacts with the bus capacity constraint since, after
the selection of the bus stops, the students freely choose their preferred bus stop, and then the
routes, visiting these bus stops, must accommodate all the students. Therefore, no bus stop chosen
by a number of students exceeding the capacity of the bus may be selected. Taking into account
the special structure of the lower level problems, the B-SBRP-SS is then reformulated as a single-
level mixed-integer linear programming (MILP) model. The second contribution of the paper is to
develop a simple and effective metaheuristic called bilevel school bus metaheuristic (BSBM), which
shows a very good performance in terms of the quality of the solution found and of the computing
time involved.

The paper is organized as follows. Section 2 presents the problem and formulates the bilevel
mixed integer programming model and its transformation as a single-level MILP model. In Sec-
tion 3, the proposed metaheuristic is described. Section 4 assesses the computational performance
of the algorithm. Moreover, some insight is given into the implications of the bilevel model, and
the behavior of the model with respect to the number of bus stops accessible to students. Finally,
Section 5 concludes the paper with some final remarks.

2. Formulation of the B-SBRP-SS

Let G = (V, A) be a complete directed graph, where V is the node set and A is the arc set. The
node set is defined as V = {0} ∪ W , where node 0 represents the depot and W is the set of potential
bus stops. The set of arcs is defined as A = {(i, j) : i, j ∈ V, i �= j}, where the arcs refer to the links
which are used to construct the routes.

There is a nonnegative routing cost ci j associated with each arc (i, j) ∈ A, representing the cost
of connecting node i with node j. The cost c0i, i ∈ W , includes the routing cost from the depot to
the bus stop i. Similarly, ci0, i ∈ W , includes the routing cost from the bus stop i to the school and

© 2021 The Authors.
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from there to the depot. Each route starts at the depot, visits a subset of bus stops, and finishes
visiting the depot. The routes are node-disjoint, except for the depot, at which there is a fleet of
identical buses, each with a fixed capacity Q (representing the maximum number of students that
can be transported by a bus). Each bus may perform a single route. We assume that there is no limit
on the maximum number of buses used.

Let U denote the set of students. We assume that each student k ∈ U has a known set Wk ⊆ W
of bus stops that he/she can access. Moreover, the students have ranked their accessible bus stops
from the best to the worst, that is, each student k ∈ U has a set of predefined nonnegative distinct
preferences pki ∈ {1, . . . , |Wk|}, i ∈ Wk, where |Wk| stands for the cardinality of Wk. We assume that
the smaller the value, the greater is the preference. Also, for each bus stop i ∈ W , let Ui denote the
set of students who can access the bus stop i, that is, Ui = {k ∈ U : i ∈ Wk}.

The goal of the B-SBRP-SS is to select a subset of the set of potential bus stops and to build
the routes that connect them in order to minimize the total routing cost, while the bus capacity
constraint and the reaction of the students in terms of their preferences are taken into account.

In order to formulate the B-SBRP-SS as a bilevel mixed integer optimization model, we define
the upper level decision variables:

for i ∈ W, zi =
{

1, if bus stop i is selected

0, otherwise

δi = number of students in the bus after visiting the bus stop i;

for (i, j) ∈ A, xi j =
{

1, if arc (i,j) is in a route

0, otherwise;

and the lower level decision variables:

for k ∈ U, i ∈ Wk, yki =
{

1, if student k chooses bus stop i
0, otherwise.

To simplify the notation, we denote {zi, i ∈ W }, {δi, i ∈ W }, {xi j, (i, j) ∈ A}, and {yki, k ∈ U, i ∈
Wk}, respectively, by z, δ, x, and y. Then, the B-SBRP-SS can be formulated as follows:

min
z,δ,x

∑
(i, j)∈A

ci jxi j (1a)

s.t. ∑
i∈V :(i, j)∈A

xi j = z j, j ∈ W (1b)

∑
j∈V :(i, j)∈A

xi j = zi, i ∈ W (1c)

∑
i∈W

x0i =
∑
i∈W

xi0 (1d)

© 2021 The Authors.
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δi ≤ Qzi, i ∈ W (1e)

∑
k∈Ui

yki ≤ δi, i ∈ W (1f)

δi − δ j +
∑
k∈Uj

yk j ≤ Q(1 − xi j ), (i, j) ∈ A (1g)

zi ∈ {0, 1}, δi ≥ 0 i ∈ W (1h)

xi j ∈ {0, 1}, (i, j) ∈ A, (1i)

where, for each student k ∈ U, the variables yki, i ∈ Wk, solve:

min
yki,i∈Wk

∑
i∈Wk

pkiyki (1j)

s.t. ∑
i∈Wk

yki = 1 (1k)

yki ≤ zi, i ∈ Wk (1l)

yki ∈ {0, 1}, i ∈ Wk. (1m)

The objective function (1a) minimizes the routing cost. Constraints (1b) and (1c) enforce that ex-
actly one arc enters and leaves each bus stop if and only if the bus stop is selected. Constraint (1d)
ensures that as many buses leave the depot as enter the depot. Constraints (1e)–(1g) guarantee con-
nectivity of routes as well as capacity requirements. It is worth pointing out that constraints (1f)
and (1g) are coupling constraints, that is, they involve upper and lower level variables. Bilevel opti-
mization problems are very sensitive to coupling constraints, as has been highlighted in Audet et al.
(2006), Calvete and Galé (2007), and Mersha and Dempe (2006). Constraints (1h) and (1i) ensure
the requirements of the decision variables (z, δ, x). Problem (1) involves |U | optimization problems
in the set of constraints, one for each student. The lower level problem corresponding to the student
k ∈ U is defined by (1j)–(1m). The objective function (1j) minimizes the preference of the bus stop
chosen by the student k. Constraints (1k) and (1l) guarantee that the student k chooses a single bus
stop, which has been selected by the upper level decision maker. Constraints (1m) ensure that the
variables yki, i ∈ Wk are binary. Note that the lower level problems are independent in the sense that
each of them involves only the lower level decision variables of the corresponding student and the
upper level variables. These bilevel problems with multiple followers have been analyzed in Calvete
and Galé (2007), where it was shown that the |U | lower level problems can be transformed into a
single lower level problem whose objective function is the sum of the |U | objective functions and
whose set of constraints involves all the constraints together.

© 2021 The Authors.
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Problem (1) guarantees that every student takes the bus at his/her most preferred selected bus
stop. Note that if a bus stop is selected, that is, it can be visited by a route, due to the lower level
problems every student for which this bus stop is the most preferred among all selected bus stops
is guaranteed to choose it. As a consequence of coupling constraints (1f) and (1g) in which the
capacity of the bus is involved, only those values of the variables (z, δ, x) for which values of the
variables y exist so that (z, δ, x, y) is a feasible solution are permissible. Therefore, those (z, δ, x) for
which the optimal solutions of the lower level problems assign more than Q students to a selected
bus stop are not permissible and should be rejected. Moreover, those (z, δ, x) for which there is not
at least one accessible bus stop for every student must also be rejected. These properties will be
efficiently used by the proposed algorithm.

In order to exactly solve problem (1), we reformulate it as a single-level optimization problem. For
this purpose, we transform the lower level problem (1j)–(1m) corresponding to every student k ∈ U .
For a permissible (z̃, δ̃, x̃) and a student k ∈ U , let Ik = {i ∈ Wk : z̃i = 1}. On the one hand, due to
constraints (1l), ỹki = 0 for all i ∈ Wk \ Ik. On the other hand, the linear programming problem (2)
defined in the following has a unique optimal solution, which is integer, due to constraint (2b) and
the fact that the preferences are distinct numbers.

min
yki,i∈Ik

∑
i∈Ik

pkiyki (2a)

s.t. ∑
i∈Ik

yki = 1 (2b)

yki ≥ 0, i ∈ Ik. (2c)

Therefore, problem (2) provides the optimal solution of the lower level problem (1j)–(1m) corre-
sponding to the student k ∈ U . Taking into account either the duality theory or the special charac-
teristics of problem (2), a feasible solution ỹki, i ∈ Ik to this problem is an optimal solution if and
only if it satisfies:∑

i∈Ik

pkiỹki ≤ pk j, j ∈ Ik. (3)

Therefore, by substituting for each student k ∈ U the lower level problem (1j)–(1m) in problem (1)
with ỹki = 0 for all i ∈ Wk \ Ik and constraints (2b), (2c), and (3) for all i ∈ Ik, the B-SBRP-SS can
be reformulated as the following single-level MILP model:

min
z,δ,x,y

∑
(i, j)∈A

ci jxi j (4a)

s.t.

(1b) − (1i) (4b)

© 2021 The Authors.
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i∈Wk

yki = 1, k ∈ U (4c)

yki ≤ zi, k ∈ U, i ∈ Wk (4d)

∑
i∈Wk

pkiyki ≤ pk jz j + M(1 − z j ), k ∈ U, j ∈ Wk (4e)

yki ∈ {0, 1}, k ∈ U, i ∈ Wk, (4f)

where M is a large enough positive constant to ensure that constraints (4e) are imposed only when
the bus stop j is selected. In this problem, the number of bus stops |W | is a valid value for M. Note
that, together with the feasibility of the lower level problem, which is enforced by constraints (4c),
(4d), and (4f), constraints (4e) allow us to ensure that each student k ∈ U chooses his/her preferred
bus stop, as the lower level problem requires. Indeed, let k ∈ U and j ∈ Wk such that z j = 0. Then,
the bus stop j is not selected, so it has no students assigned. Since

∑
i∈Wk

yki = 1 and yki are binary
variables, it follows that∑

i∈Wk

pkiyki ≤ |Wk| ≤ |W |

and so (4e) is trivially held. Otherwise, if z j = 1, j is a selected bus stop and the constraint∑
i∈Wk

pkiyki ≤ pk j (5)

guarantees that the student k chooses either j or a selected bus stop with a better preference than
that of j. Since constraint (5) needs to be satisfied for any j ∈ Wk such that z j = 1, the student k
chooses his/her preferred bus stop.

3. BSBM: a metaheuristic algorithm for solving the B-SBRP-SS

BSBM constructs in each iteration a feasible solution of the B-SBRP-SS, usually called bilevel fea-
sible solution. This consists of a selection of bus stops, the optimal allocation of students to these
bus stops in accordance with their preferences, that is, the optimal solution of the lower level prob-
lems (1j)–(1m), and the construction of the routes taking into account the bus capacity constraint.
Note that, because of the free choice of their selected bus stop by the students and the capacity
constraint of the buses, not every selection of the bus stops z provides a permissible (z, δ, x). In
fact, every bus stop which, if selected, would be chosen by more than Q students whatever the
other selected stops were, should be removed. These bus stops cannot be selected in any bilevel
feasible solution. After removing them, more bus stops with these characteristics could appear that
would need to be removed. All these bus stops are banned stops. Moreover, if after removing all the
banned stops there is some student k ∈ U for which his/her accessible bus stops are all banned, we

© 2021 The Authors.
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Algorithm 1. Checking the feasibility of the B-SBRP-SS

1: yki = 0, k ∈ U , i ∈ Wk;
2: yk j = 1, k ∈ U , j = argmin{pki : i ∈ Wk};
3: Wb = ∅;
4: W̃b = {i ∈ W :

∑
k∈Ui

yki > Q};
5: while (W̃b �= ∅) do
6: Wb = Wb ∪ W̃b;
7: if (Wk \ Wb = ∅ for some k ∈ U ) then
8: return infeasible;
9: else

10: yki = 0, k ∈ U , i ∈ Wk \ Wb;
11: yk j = 1, k ∈ U , j = argmin{pki : i ∈ Wk \ Wb};
12: W̃b = {i ∈ W \ Wb :

∑
k∈Ui

yki > Q};
13: end if
14: end while
15: return feasible;

can conclude that the B-SBRP-SS is infeasible. This fact is checked by the proposed metaheuristic
in the initialization step described in Section 3.1.

If the B-SBRP-SS is feasible, each iteration of BSBM consists of two main steps. In the first
step, described in Section 3.2, the algorithm selects a subset of the set of potential bus stops and
allows the students to choose their preferred bus stop among the selected ones. Note that, since
the lower level problems only depend on the values of variables z and y, the students can choose
their preferred accessible bus stop after knowing the selected bus stops. In the second step, de-
scribed in Section 3.3, after knowing the number of students who take the bus at each bus stop,
the routes are computed by solving the corresponding CVRP and applying some local search
procedures.

The algorithm proceeds by computing in each iteration a bilevel feasible solution until the termi-
nation condition is met. Next, we explain the previously mentioned steps.

3.1. Initialization step: checking feasibility of the B-SBRP-SS

The purpose of the initialization step is to identify the set of banned stops Wb in order to re-
move them and to check if the B-SBRP-SS is feasible. The procedure is described in Algo-
rithm 1. Assuming that all bus stops are enabled at the beginning, the algorithm starts by let-
ting the students choose their preferred one and computing the banned bus stops (those cho-
sen by more than Q students). Then, in each iteration, if for some student k ∈ U all his/her
accessible bus stops Wk have been declared banned, the algorithm finishes by concluding that
the B-SBRP is infeasible. Otherwise, the procedure looks for the banned stops among the cur-
rent available stops and updates Wb. At termination, if the B-SBRP-SS is feasible, the set of banned
stops Wb is removed from the original W and, accordingly, the graph G and each derived set is
updated.

© 2021 The Authors.
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Fig. 1. A scheme of the variables in problem (6).

3.2. Selecting the set of active stops and allowing the students to choose their preferred bus stop

From now on, a selected bus stop will be called an active stop, and the set of active stops will
be denoted by Wa. The algorithm involves two ways for selecting the set Wa. The first method,
described in Section 3.2.1, involves computing the set Wa of active stops and assigning the students
in accordance with their preferences by solving an MILP model. The second method, described in
Section 3.2.2, involves the random selection of the bus stops together with a repairing process to
ensure that a bilevel feasible solution can be obtained from them. In order to take advantage of the
knowledge provided by the solutions that are being computed throughout the algorithm, a pool
with the best bilevel feasible solutions found is maintained. This pool is initialized at the beginning
with the empty set, and it is updated each time a better bilevel feasible solution is obtained.

3.2.1. Selecting Wa by solving an MILP
The idea is to solve an MILP problem to identify the set of active stops and the active stop preferred
by each student without explicitly computing the routes. This method is applied in the first four
iterations of BSBM, in which four MILP problems with the same set of constraints and different
objective functions are solved. Each objective function aims to minimize an easily quantifiable cost
related to the routing cost. We have found that the proposed problems lead, in general, to good
bilevel feasible solutions (supported by the computational results reported in Section 4).

In addition to the variables y and z already introduced, we define the following variables (see
Fig. 1):

vl =
{

1 if bus l is used

0 otherwise
l ∈ L

wil =
{

1 if bus stop i is visited by bus l
0 otherwise

i ∈ W, l ∈ L

til = number of students which choose bus stop i and are picked up by bus l, i ∈ W, l ∈ L ,

where L denotes the set of buses. Since as many buses as bus stops could be used, we assume
|L| = |W |. As mentioned above, all the MILP models have the same feasible region thus we explain
it first. This feasible region ensures that the values of z and y will be able to provide a bilevel feasible
solution. Hence, the preferences of students and the bus capacity constraint play an important role
in its definition:∑

i∈Wk

yki = 1, k ∈ U (6a)

© 2021 The Authors.
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∑
k∈Ui

yki ≤ Qzi, i ∈ W (6b)

∑
i∈Wk

pkiyki ≤ pk jz j + M(1 − z j ), k ∈ U, j ∈ Wk (6c)

∑
l∈L

wil = zi, i ∈ W (6d)

zi ≤
∑
k∈Ui

yki, i ∈ W (6e)

til ≤ Qwil , i ∈ W, l ∈ L (6f)∑
k∈Ui

yki =
∑
l∈L

til , i ∈ W (6g)

∑
i∈W

til ≤ Qvl , l ∈ L (6h)

wil ≤ til , i ∈ W, l ∈ L (6i)

yki ∈ {0, 1}, k ∈ U, i ∈ Wk (6j)

wil , zi, vl ∈ {0, 1}, til ≥ 0, i ∈ W, l ∈ L. (6k)

Constraints (6a)–(6c) guarantee that each student chooses his/her best accessible bus stop and
that only active stops are selected. As in Section 2, we take M = |W |. Constraints (6d) guarantee
that each active stop is visited by exactly one bus. Constraints (6e) ensure that those bus stops with
no students are not selected. Constraints (6f) guarantee that bus stops that are not visited by a bus
do not receive students for that bus. Constraints (6g) ensure that the students who choose a bus
stop are picked up by a bus that visits the bus stop. Constraints (6h) ensure that only buses that
follow a route can pick up students, and that the number of students picked up by the bus does
not exceed the bus capacity. Constraints (6i) impose that bus stops at which no students are picked
up by a particular bus are not assigned to that bus. Finally, constraints (6j) and (6k) guarantee the
requirements of the variables.

The objective functions of the four problems are as follows:

Problem 1 min
∑
l∈L

max
i∈W

ĉiwil

Problem 2 min
∑

i∈W
ĉizi

Problem 3 lex min
(∑

l∈L
max
i∈W

ĉiwil ,
∑

i∈W
ĉizi

)

Problem 4 lex min
( ∑

i∈W
ĉizi,

∑
l∈L

max
i∈W

ĉiwil

)
,

(7)
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Algorithm 2. General procedure to select the set of active stops Wa

Input: gi, i ∈ W ;
1: Wa = {i ∈ W : |Wk| = 1 for some k ∈ Ui};
2: while (

⋃
i∈Wa

Ui �= U ) do
3: Randomly select a bus stop i0 ∈ W \ Wa, where the probability of each non-active stop i to be selected is

1 + gi∑
j∈W \Wa

(
1 + gj

)
4: Wa = Wa ∪ {i0};
5: end while
6: yki = 0, k ∈ U , i ∈ Wk;
7: yk j = 1, k ∈ U , j = argmin{pki : i ∈ Wk ∩ Wa};
8: while (

∑
k∈Ui

yki > Q for some i ∈ Wa) do
9: Select a bus stop i1 ∈ Wa such that

∑
k∈Ui1

yki1 > Q;

10: Select a student k1 ∈ Ui1 such that yk1 i1 = 1 and pk1 i1 > 1;
11: Randomly select a bus stop i2 ∈ Wk1 such that pk1 i2 < pk1 i1 ;
12: Wa = Wa ∪ {i2};
13: yki = 0, k ∈ U , i ∈ Wk;
14: yk j = 1, k ∈ U , j = argmin{pki : i ∈ Wk ∩ Wa};
15: end while
16: Wa = Wa \ {i ∈ W :

∑
k∈Ui

yki = 0};
Output: Wa;

where ĉi = c0i + ci0 denotes the cost of going from the depot to the bus stop i and back. Problem 1
considers for each bus the cost corresponding to the farthest bus stop on its route, and minimizes
the sum for all buses of these costs. Note that the expression maxi∈W ĉiwil can be linearized by
introducing the variable rl , l ∈ L, together with the constraints ĉiwil ≤ rl , i ∈ W , l ∈ L, and replac-
ing the expression by rl in the objective function. Hence, Problem 1 minimizes

∑
l∈L rl . Problem 2

minimizes the sum of the costs of all active stops. Problems 3 and 4 are biobjective problems that
lexicographically optimize (Ehrgott, 2005) the above-mentioned objective functions.

Therefore, in the first iteration of BSBM, Problem 1 is solved. Its optimal solution provides the
set Wa of active stops, which are those for which zi = 1, i ∈ W , as well as the active stop chosen
by each student k ∈ U , which is that i ∈ Wk such that yki = 1. With this set of active stops, each
with a demand equal to the number of students who have chosen it, BSBM computes the set of
routes, as explained in Section 3.3, and the corresponding bilevel feasible solution is included in the
pool. The subsequent three iterations do the same with Problems 2–4, respectively. The remaining
iterations of BSBM compute the set Wa of active stops applying a general procedure explained in
Section 3.2.2.

3.2.2. General procedure to select Wa
The general procedure to select the set Wa of active stops is described in Algorithm 2 and is applied
in all the iterations other than the first four. It guarantees that there exists at least one active stop
accessible for each student and that each student can choose an active stop in accordance with
his/her preferences.

© 2021 The Authors.
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Note that, if the set of accessible bus stops Wk contains a single element for some k ∈ U , this
is a fixed stop and must be included in Wa, since it must be included in any bilevel feasible solu-
tion. Hence, the iteration starts initializing the set Wa of active stops with the fixed stops (line 1 in
Algorithm 2).

Then, one nonactive stop at a time is included in set Wa until it is guaranteed that
⋃

i∈Wa
Ui = U ,

that is, every student has an active stop accessible (lines 2–5). For selecting the new active stop,
BSBM takes advantage of the pool of the best bilevel feasible solutions found in the previous it-
erations. Then, a probability is assigned to each current nonactive stop, which is proportional to
the number of times it appears in the solutions of the pool plus one, and the new active stop is
randomly selected based on these probabilities (line 3, where gi denotes the number of times that
bus stop i is an active stop in the pool’s solutions).

At this time (line 5), set Wa contains at least one accessible bus stop for each student. However,
it is not guaranteed that a bilevel feasible solution can be built from this set of active stops due
to the free choice of the bus stops by the students and the bus capacity constraint. Therefore, the
algorithm checks if it is possible to compute a bilevel feasible solution, and repairs Wa otherwise.

As previously mentioned, knowing the set Wa of active stops allows us to solve the lower level
problems (1j)–(1m) for every k ∈ U . This means that every student k chooses the most preferred
active stop, that is, the value of yki, i ∈ Wk is determined (lines 6 and 7). If for some i ∈ Wa,∑

k∈Ui
yki > Q, the algorithm “repairs” the set Wa by activating additional bus stops (lines 8–15).

For this purpose, the algorithm looks for a student k1 ∈ U who has chosen a bus stop i1 preferred
by more than Q students and has at least one accessible nonactive stop that he/she would prefer
to the current active stops (lines 9 and 10). Then, one of these bus stops is randomly selected (line
11) and activated, that is, it is added to Wa (line 12). After updating Wa, the students update their
choice of the bus stop (lines 13 and 14). This procedure is repeated until every active stop is chosen
by at most Q students. We can ensure that the procedure finishes with a selection of active stops
able to provide a bilevel feasible solution because the initialization step 3.1 has concluded that prob-
lem (1) is feasible. Finally, BSBM removes from Wa the active stops that have not been chosen by
any student (line 16).

With the set Wa of active stops and the choice made by the students, the algorithm computes the
set of routes, as explained in Section 3.3, and the corresponding bilevel feasible solution is added
to the pool if appropriate.

3.3. Solving the capacitated vehicle routing problem

Whatever the procedure for computing the set Wa of active stops is applied, at this time for every
i ∈ Wa, we have that

∑
k∈Ui

yki ≤ Q. Hence, BSBM proceeds by solving the CVRP corresponding
to the nodes in {0} ∪ Wa, with the demand of a node equal to the number of students who have
chosen the active stop corresponding to the node. After having solved the CVRP, three local search
procedures are applied, which seek to improve the objective function (4a):

• Removing active stops
In random order, it is attempted to select every active stop that is not fixed and to remove it
from its route, linking the two adjacent active stops. If it is possible to reassign its students to the

© 2021 The Authors.
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remaining active stops, taking into account the preferences and bus capacity constraints of the
current routes, and the objective function (4a) decreases (which occurs if the triangle inequality
is satisfied by costs ci j), then the bus stop is actually removed.

• Replacing active stops by nonactive ones
In random order, for every active stop in each route that is not fixed, we search for a nonactive
stop that can replace the incumbent one (i.e., if replaced, every student must have at least one
active stop accessible) and would reduce the objective function (4a). If such a bus stop is found,
after updating Wa, the lower level problems (1j)–(1m), k ∈ U , are solved. If after reassigning the
students, the number of students in each route is less than or equal to Q, the bus stops are actually
interchanged.

• Exchanging active stops in different bus routes
For every pair of active stops in distinct routes, we check if the routing cost is reduced when
exchanging their position in their respective routes. If this is the case and the number of students
in each route remains less than or equal to Q, they are actually exchanged. Note that in this case,
the set of active bus stops does not change and therefore neither does the choice of the students.

After having applied the three local search procedures (in the order in which they have been
described) and removed the active stops with no students, if there has been any change we solve
the CVRP again with the current allocation of students, using the current routes as initial routes. If
this improves the objective function value (4a), the local search procedures are applied again only
once. To finish the iteration, those active stops that finally have not been chosen by any student are
removed from the routes and the objective function (4a) is computed.

4. Computational experiments

The numerical experiments have been performed on a PC Intel Core i7-6700 with 3.4 × 8 GHz,
32.0 GB RAM, and Windows 10 64-bit as the operating system. The metaheuristic has been
coded in C++, TDM-GCC 4.9.2. In the computational experiment we have selected the algo-
rithm VRP_RTR developed by C. Goer, which is an implementation of the Record-To-Record
(RTR) metaheuristic to generate good solutions to a CVRP instance. This algorithm is available at
the VRPH library: https://sites.google.com/site/vrphlibrary/home. Since the B-SBRP-SS has not
been previously studied, no benchmark instances are available. Therefore, we decided to adapt the
set of benchmark instances of the SBRP with bus stop selection and a maximum walking distance
constraint proposed in Schittekat et al. (2013). This set consists of 112 instances, each with a dif-
ferent geographical distribution of bus stops and students, which we have classified in five groups
according to the number of potential bus stops. Table 1 displays the characteristics of each group.
The bus capacity Q is 25 or 50. The school and the depot are located at the same place. Besides
the costs ci j , (i, j) ∈ A, these instances include a distance dki, k ∈ U , i ∈ W and a parameter called
maximum walking distance wd , which takes the values 5, 10, 20, and 40. The complete instance
characteristics can be seen in Table A1.

From this set of instances, we have generated a set of instances of the B-SBRP-SS by defining,
for each student k ∈ U , the set of accessible bus stops as Wk = {i ∈ W : dki ≤ wd}. This set is called
B-wd . We have also generated an additional set of instances, called B-nwd , in which all bus stops are

© 2021 The Authors.
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Table 1
Characteristics of the instances proposed in Schittekat et al. (2013)

Group Instances
No. of
instances |W | |U |

S1 1–24 24 5 25,50,100
S2 25–48 24 10 50,100,200
S3 49–72 24 20 100, 200, 400
S4 73–96 24 40 200, 400, 800
S5 97–112 16 80 400, 800

accessible for every student, that is, Wk = W , ∀k ∈ U , aiming to show how the number of accessible
bus stops can affect the value of the objective function. In both sets, the preferences of the bus stops
are assigned according to their distance from the student location. The closest is the most preferred
(i.e., for each student k ∈ U , according to nondecreasing values of the distances dki, i ∈ W ). In case
of a tie, the bus stop with the lowest index is preferred.

In the following subsections, we present the results of the computational experiments. In order to
analyze the performance of the proposed metaheuristic, in the first part of the study, we compare
the solutions provided by the proposed metaheuristic with the optimal solution (or the best known
bilevel feasible solution) of the B-SBRP-SS obtained by solving model (4) through an MILP solver.
In the second part, we compare the objective function values of each instance in set B-wd and the
same instance in B-nwd . Moreover, we illustrate with some instances the differences in the optimal
solution when the students’ choice is taken into account and when it is not.

4.1. Evaluating the performance of BSBM

To solve exactly the B-SBRP-SS, defined by model (4), we have applied IBM ILOG CPLEX 12.9.0
with the default settings. The termination criterion has been set at 3600 seconds. When the CPLEX
run is interrupted before providing the optimal solution, the best solution at this time is saved.

Bearing in mind the stochastic nature of BSBM, each instance has been solved 10 times. The
size of the pool mentioned in Section 3.2.2 has been set at 20. The stopping criterion of the meta-
heuristic has been established in terms of the number of iterations without objective function (4a)
improvement (20 iterations) or computing time (10 minutes), whichever is earlier. Problems (7) have
also been solved using CPLEX 12.9.0 with the default settings, and the stopping criterion set at a
time limit of 30 seconds for each problem and instance. If the run is interrupted before providing
the optimal solution, the best solution at this time is saved.

The first thing to point out is that, although all instances are feasible when the preferences are
not taken into account (see Schittekat et al., 2013, where the original 112 instances are proposed),
the B-SBRP-SS may not be feasible if it is impossible to select bus stops guaranteeing each student’s
choice. This happens in 18 of the 112 instances in set B-wd and in 17 instances in set B-nwd . The
infeasible instances coincide except for instance 39, which is feasible in the second set. The first
two columns of Table 2 display the group and the number of those instances that are not feasible.
In most of them, the bus capacity is Q = 25 (15 instances in B-wd and 14 instances in B-nwd).

© 2021 The Authors.
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Table 2
Infeasible benchmark instances and CPU time in seconds required for detecting infeasibility

Set B-wd Set B-nwd

Group Instance CPLEX BSBM Group Instance CPLEX BSBM

S1 21 0.01 0.00 S1 21 0.01 0.00
23 0.01 0.00 23 0.01 0.00

S2 39 0.03 0.00 S2

45 0.02 0.00 45 0.07 0.00
47 0.04 0.00 47 0.06 0.00

S3 63 0.03 0.00 S3 63 0.80 0.00
67 0.02 0.00 67 2.84 0.00
69 0.03 0.00 69 4.23 0.00
71 0.04 0.00 71 2.35 0.00
72 1.01 0.00 72 2.94 0.00

S4 87 14.11 0.00 S4 87 15.77 0.00
91 0.14 0.00 91 54.32 0.00
93 0.18 0.00 93 55.37 0.00
95 0.30 0.00 95 55.30 0.00
96 0.31 0.00 96 57.02 0.00

S5 103 26.28 0.00 S5 103 105.92 0.00
111 188.08 0.00 111 287.09 0.00
112 376.95 0.00 112 3402.14 0.00

As could be expected, Q is an influential parameter on the B-SBRP-SS feasibility. The remain-
ing columns in this table provide the CPU time in seconds required for both algorithms to detect
infeasibility. It is worth pointing out that BSBM requires in all instances a negligible amount of
time, while CPLEX requires less than 1.01 seconds in 14 of 18 instances of set B-wd , but requires
more than three minutes and more than six minutes for detecting infeasibility in the two largest
instances. This trend is especially evident in set B-nwd in which the largest instance requires al-
most one hour to detect infeasibility. Finally, Algorithm 1 finishes with a number of banned stops
which is lower than |W | only in four infeasible instances of set B-wd . These are the instances 39
(|Wb| = 2), 45 (|Wb| = 9), 67 (|Wb| = 3), and 91 (|Wb| = 21). In the remaining instances of both sets,
Wb = W .

Next, we pay attention to the feasible instances. In this case, instance 39 (|Wb| = 2) for set B-nwd
and instances 88 (|Wb| = 2) and 79, 104, and 109 (|Wb| = 3)) for both sets have banned stops. To
assess the quality of BSBM, we compare the results provided by this algorithm with the optimal
solution (or the best known feasible solution) values provided by CPLEX. To make the paper easier
to be read, in this section, we summarize the results aiming to have a quick and precise insight into
the performance of the algorithm. The detailed results of the experiments are presented in the
Appendix (see Tables A2 and A3).

Table 3 outlines the results on the performance of BSBM. The first and second columns display
the name of the set and the group. The third and fourth columns show the number of feasible
instances and the number of them that are solved to optimality. The fifth to seventh columns dis-
play the number of instances in each group for which each procedure provides the best solution.

© 2021 The Authors.
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Table 3
The number of feasible instances solved to optimality and procedure that provides the best solution by group of instances

Best solution

Set Group Feasible instances Solved to optimality Both CPLEX BSBM GapCPLEX GapBSBM

B-wd S1 22 22 22 – – – –
S2 21 21 20 1 – – 0.01
S3 19 16 11 8 – – 0.01
S4 19 1 4 5 10 0.04 0.01
S5 13 – – – 13 0.08 –

B-nwd S1 22 22 22 – – – –
S2 22 22 21 1 – – 0.02
S3 19 19 18 1 – – 0.01
S4 19 1 3 4 12 0.13 0.01
S5 13 – – – 13 0.29 –

The eighth column shows, for the instances for which BSBM is better than CPLEX, the average gap
between the solution value provided by CPLEX and the best solution value provided by BSBM, de-
fined as ( f e − f a

min)/ f a
min, where f e refers to the best objective function value provided by CPLEX,

and f a
min is the minimum of the objective function values obtained in the 10 runs executed for the

considered instance. The ninth column is similar, but exchanging the role of CPLEX and BSBM,
that is, in this column the gap is defined as ( f a

min − f e)/ f e. With respect to set B-wd , CPLEX pro-
vides the optimal solution within the prescribed computing time (3600 seconds) in 60 of 94 feasible
instances. Moreover, in 57 instances both procedures provide the same solution, in 14 instances
CPLEX provides a better solution and in 23 instances the best solution is provided by BSBM. With
respect to set B-nwd , these results are somewhat better. CPLEX provides the optimal solution in 64
of 95 feasible instances. Moreover, in 64 instances both procedures provide the same solution, in 6
instances CPLEX provides a better solution. and in 25 instances the best solution is provided by
BSBM. For both sets, BSBM provides better results than those found by CPLEX when the instance
size increases. Moreover, according to GapCPLEX and GapBSBM, when a procedure does not provide
the best solution, the gap is notably narrower for BSBM.

It is also worth pointing out that, in 69 of the 94 feasible instances (73%) of set B-wd , BSBM pro-
vides the same objective function value in all the 10 runs. For the remaining instances, the percent-
age gap defined as 100 × ( f a

max − f a
min)/ f a

min, where f a
max is the maximum of the objective function

values obtained in the 10 runs, is less than 6.29. For set B-nwd , the values are 75 of 95 (79%), and
the percentage gap is less than 14.69. These results show the accuracy of the proposed algorithm.

Table 4 summarizes the information in Tables A2 and A3 concerning the CPU times (in seconds)
by computing the average by group. The first column displays the name of the group. The second
and the third columns show the average of the time required by CPLEX and the average of the time
at which CPLEX finds the reported solution for set B-wd . The fourth and the fifth columns display
the average of the computing time in the 10 runs of BSBM and the average of the standard deviation
for set B-wd . For set B-nwd , the corresponding values are reported in the last four columns. We can
see the excellent performance of BSBM in terms of computing time. On average, BSBM requires
less than two minutes to solve the B-SBRP-SS. The time required by BSBM is slightly longer for
the instances of the set B-nwd than for those of the set B-wd .
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Table 4
Average computing times in seconds by group of instances

Set B-wd Set B-nwd

CPLEX BSBM CPLEX BSBM

Group te te
0 ta

mean Stdeva te te
0 ta

mean Stdeva

S1 0.03 0.02 0.11 0.00 0.06 0.04 0.26 0.02
S2 0.15 0.10 0.56 0.03 0.44 0.34 1.22 0.04
S3 1011.02 53.71 18.47 0.14 244.05 84.93 26.76 0.12
S4 3414.04 2399.24 76.75 1.12 3414.85 2242.54 100.86 0.35
S5 3602.99 3271.07 124.65 6.25 3600.51 2919.69 126.01 5.27

Table 5
The number of runs in each instance for which the best solution corresponding to Problems 1–4 coincides with the best
solution provided by BSBM

Set B-wd Set B-nwd

Runs Runs

Group
No. of
instances All None

No. of
instances All None

S1 22 22 – 22 22 –
S2 21 20 – 22 21 –
S3 19 12 4 19 18 –
S4 19 7 6 19 13 –
S5 13 3 7 13 – 13

Finally, we justify a previous assertion. In Section 3.2.1, it was pointed out that the solution of
Problems 1–4 leads, in general, to good bilevel feasible solutions of problem (4). To support this
assertion, we now ask ourselves how good the bilevel feasible solutions obtained from the solutions
of Problems 1–4 are, compared with the best solution provided by BSBM. For this purpose, we
count in how many of the 10 runs the best solution obtained after applying just the way of selecting
the set of active stops described in Section 3.2.1 already yields the best solution provided by BSBM.
Table 5 highlights the outstanding performance of this way of selecting the set of active stops. The
first column displays the name of the group. The second to fourth columns refer to set B-wd . The
second column displays the number of feasible instances in each group. The third column shows
the number of instances for which in all the runs the best solution corresponding to Problems 1–4
coincides with the best solution provided by BSBM. The fourth column displays the number of in-
stances in which in none of the runs both solutions coincide. Obviously, for the remaining instances
they coincide from 1 to 9 runs. The fifth to seventh columns provide the corresponding information
concerning set B-nwd . For set B-wd , in 64 of the 94 feasible instances (68.09%) the objective func-
tion value provided by BSBM coincides with the best value at the end of these four iterations in
the 10 runs. Only for 17 instances did none of the runs deliver the best objective function provided
by BSBM. For set B-nwd , the corresponding numbers are 74 of the 95 feasible instances (77.89%)
and 13 instances. Consequently, especially for the smaller instances, we can think of this step as a
good method to obtain tight upper bounds of the optimal solution.

© 2021 The Authors.
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(a) Instance 50: |W | = 20 , |U | = 100 , wd = 5 , Q = 50 . Routing costs are 408.36 (left) and 406.65 (right)

(b) Instance 53: |W | = 20 , |U | = 100 , wd = 20 , Q = 25 . Routing costs are 267.01 (left) and 245.17 (right)

Fig. 2. Geographical distribution of two feasible instances. On the left is the optimal solution of problem B-SBRP-SS.
On the right is the optimal solution when the students’ choice is not taken into account. The white square represents the
depot. The remaining squares represent the bus stops (the selected ones in blue). The balls correspond to students. Red

balls represent students whose preference is not satisfied.

4.2. Remarks on the modeling approach of the B-SBRP-SS

In this subsection, we illustrate some issues involved in the B-SBRP-SS using instances of B-wd and
B-nwd . First, we present Fig. 2 to visualize the consequences of including the choices of the students

© 2021 The Authors.
International Transactions in Operational Research © 2021 International Federation of Operational Research Societies
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in the formulation of the problem, that is, to show the differences between the B-SBRP-SS, in which
the students choose their preferred bus stop, and the traditional SBRP with bus stop selection in
which the students are allocated to a bus stop within their prespecified walking distance (Schittekat
et al., 2013; Kinable et al., 2014; Calvete et al., 2020b). Figure 2 displays the optimal solutions of
two feasible instances, 50 and 53, when the student’s choice is considered (instance in set B-wd on
the left-hand side) and not considered (classical instance on the right-hand side). The white square
represents the depot. The remaining squares represent the bus stops (the selected ones in blue). The
balls correspond to students. Red balls represent students whose preference is not satisfied.

According to these solutions, for instance 50 only one student is not allocated to his/her pre-
ferred bus stop when the reaction of students is not considered, the selected bus stops are same in
both cases and the routes change only slightly. To take into account, students’ choice increases the
routing cost from 406.65 to 408.36. However, for instance 53, if the students’ choice is not con-
sidered the optimal solution allocates 14 students to a bus stop that is not their preferred stop.
Comparing this solution to the solution of the B-SBRPP-SS, the selected stops are quite different
and one more route is needed to satisfy students’ choice. For this instance, the objective function
value increases from 245.17 to 267.01.

Next, we assess how the number of available bus stops, that is, the cardinality of Wk, k ∈ U , could
influence the objective function value of problem (4) by comparing the results obtained for sets B-
wd and B-nwd . We can consider set B-nwd as representing a borderline situation where it does not
matter how far students have to walk. For this comparison to be fair, only those instances for which
the optimal solution in both sets has been reached are analyzed. The ratio between the objective
function values of the same instance in B-wd and B-nwd is observed to vary between 1 and 10.40,
with a mean of 2.69 and a standard deviation of 2.11. Obviously, the reduction in the objective
function value of the instances in set B-nwd is obtained at the price of not restricting in any way the
distance walked by students. As an illustration, Fig. 3 displays the optimal solutions of instances
50 and 53 of set B-nwd . As above, the white square represents the depot. The remaining squares
represent the bus stops (the selected ones in blue). The balls correspond to students. This figure
should be compared to the left part in Fig. 2. Note that for instance 50, the optimal solution still
requires two routes, but the bus stops are selected to considerably reduce the cost (which decreases
from 408.36 to 98.67) and so students are forced to walk long distances (these increase from less
than 5 to less than 60). Something similar happens for instance 53. In this case, the optimal solution
requires one more route, the routing cost decreases from 267.01 to 147.36, and the walking distance
increases from less than 20 to less than 51.

5. Conclusions

The present paper addresses for the first time an SBRP with bus stop selection in which the stu-
dents are allowed to choose their most preferred bus stop among those selected by the company
responsible for picking up the students and taking them to school. In this problem, the selection
of the bus stops among the set of potential bus stops and the construction of the bus routes take
into account both bus capacity and student preferences. In such a hierarchical decision process,
bilevel programming provides a suitable theoretical framework to formulate the problem. Thus, a
bilevel mixed integer problem with multiple followers is proposed. According to this model, every

© 2021 The Authors.
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(a) Instance 50: |W | = 20 , |U | = 100 , Q = 50 . Routing
cost is 98.67

(b) Instance 53: |W | = 20 , |U | = 100 , Q = 25 . Routing
cost is 147.36

Fig. 3. For the set B-nwd , on the left is the optimal solution of instance 50 and on the right is the optimal solution of
instance 53. The white square represents the depot. The remaining squares represent the bus stops (the selected ones in

blue). The balls correspond to students.

student must be able to take the bus at his/her most preferred available bus stop. That is to say, if a
bus stop is available every student for whom this is the most preferred among all the available bus
stops should be able to access the bus at this bus stop. It is worth pointing out that this assumption
can seriously conflict with the bus capacity constraint, even making the problem infeasible. There-
fore, as future lines of research, other ways of handling the reaction of students could be proposed.
Moreover, the possibility of relaxing the constraint imposing that each bus stop is visited only once
could also be analyzed to provide the possibility of those bus stops highly preferred to be visited
several times by different buses. Finally, additional constraints could also be included to establish a
maximum traveled time constraint in order to guarantee that students do not spend too long time
in the bus.

The bilevel model is transformed into a single-level MILP model by taking advantage of the
characteristics of the lower level problems. The free choice of the students narrows the feasibility
region especially when the bus capacity is small, and thus allows this problem to be efficiently
solved through an MILP solver such as CPLEX in small computing times when the size is small.
For solving larger instances, a metaheuristic is also proposed, whose efficiency has been shown in
terms of the quality of the solution found and of the CPU time required.

To assess the performance of the metaheuristic, a well-known set of benchmark instances of
the SBRP with bus stop selection and a maximum walking distance constraint has been adapted.
We have defined two sets of instances depending on the number of bus stops that each student can
access. The first set considers that all the bus stops are accessible for every student. In the second

© 2021 The Authors.
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set, each student can access only those bus stops located at a distance smaller than the maximum
walking distance. For the small- to medium-sized instances, which have 5, 10, and 20 potential
bus stops and less than 400 students, the exact solution of the MILP model requires reasonable
computational times, while for the larger instances, the computational times exceed in most cases
the prescribed total time. In contrast, the metaheuristic requires very small computational times in
all cases, and it is particularly competitive when all the bus stops are accessible.
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Appendix

Table A1 displays the characteristics of the instances.

Table A1
Characteristics of the instances proposed in Schittekat et al. (2013)

Group Instance |W | |U | wd Q Group Instance |W | |U | wd Q Group Instance |W | |U | wd Q

S1 1 5 25 5 25 S3 49 20 100 5 25 S5 97 80 400 5 25
2 50 50 50 98 50
3 10 25 51 10 25 99 10 25
4 50 52 50 100 50
5 20 25 53 20 25 101 20 25
6 50 54 50 102 50
7 40 25 55 40 25 103 40 25
8 50 56 50 104 50
9 5 50 5 25 57 20 200 5 25 105 80 800 5 25

10 50 58 50 106 50
11 10 25 59 10 25 107 10 25
12 50 60 50 108 50
13 20 25 61 20 25 109 20 25
14 50 62 50 110 50
15 40 25 63 40 25 111 40 25
16 50 64 50 112 50
17 5 100 5 25 65 20 400 5 25
18 50 66 50
19 10 25 67 10 25
20 50 68 50
21 20 25 69 20 25
22 50 70 50

Continued
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Table A1
(Continued)

Group Instance |W | |U | wd Q Group Instance |W | |U | wd Q Group Instance |W | |U | wd Q

23 40 25 71 40 25
24 50 72 50

S2 25 10 50 5 25 S4 73 40 200 5 25
26 50 74 50
27 10 25 75 10 25
28 50 76 50
29 20 25 77 20 25
30 50 78 50
31 40 25 79 40 25
32 50 80 50
33 10 100 5 25 81 40 400 5 25
34 50 82 50
35 10 25 83 10 25
36 50 84 50
37 20 25 85 20 25
38 50 86 50
39 40 25 87 40 25
40 50 88 50
41 10 200 5 25 89 40 800 5 25
42 50 90 50
43 10 25 91 10 25
44 50 92 50
45 20 25 93 20 25
46 50 94 50
47 40 25 95 40 25
48 50 96 50

Tables A2 and A3 display the results corresponding to the feasible instances of sets B-wd and B-
nwd , respectively. The first and second columns display the number of the group and the instance.
The third column displays the “status” of the solution provided by CPLEX. If CPLEX finishes with
the optimal solution an “O” is written; otherwise, if the run is interrupted, an “F” is written. The
fourth and fifth columns show, for each instance, the information regarding the objective function
provided by CPLEX: “ f e” is the optimal objective function value (best objective function value if
the run is interrupted), and “Gape” is the relative gap provided by CPLEX (this value is not shown
if CPLEX reaches the optimal solution). The sixth and seventh columns display the information
provided by BSBM: “ f a

min” and “ f a
max” are, respectively, the minimum and the maximum of the

objective function values obtained in the 10 runs executed for the considered instance. If f a
min equals

f a
max, a symbol “=” is written in the column of f a

max. The eighth column compares the objective
function values f e and f a

min. A symbol “=” indicates that both are equal, “Exact” refers to the case
f e < f a

min, while “BSBM” means that f e > f a
min. The 9th–12th columns display the information

relative to CPU times: “te” is the CPU time required by CPLEX, “te
0” is the time at which CPLEX

finds the reported solution, “ta
mean” is the average computing time in seconds in the 10 runs of

BSBM, and “Stdeva” is the standard deviation.

© 2021 The Authors.
International Transactions in Operational Research © 2021 International Federation of Operational Research Societies

 14753995, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.12951 by U

niversidad D
e Z

aragoza, W
iley O

nline L
ibrary on [17/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



H.I. Calvete et al. / Intl. Trans. in Op. Res. 30 (2023) 1092–1119 1115

Table A2
Results of the feasible benchmark instances of set B-wd (CPU times in seconds)

Objective function value CPU times

CPLEX BSBM CPLEX BSBM

Group Instance Status f e Gape f a
min f a

max Best te te
0 ta

mean Stdeva

S1 1 O 141.01 141.01 = = 0.02 0.00 0.05 0.00
2 O 161.62 161.62 = = 0.03 0.02 0.05 0.00
3 O 182.14 182.14 = = 0.02 0.02 0.08 0.00
4 O 195.80 195.80 = = 0.02 0.02 0.05 0.00
5 O 111.65 111.65 = = 0.02 0.02 0.08 0.00
6 O 103.18 103.18 = = 0.03 0.03 0.07 0.00
7 O 7.63 7.63 = = 0.04 0.03 0.21 0.01
8 O 25.64 25.64 = = 0.03 0.02 0.14 0.01
9 O 286.68 286.68 = = 0.02 0.02 0.05 0.00

10 O 197.20 197.20 = = 0.03 0.03 0.12 0.00
11 O 193.55 193.55 = = 0.05 0.00 0.11 0.00
12 O 215.86 215.86 = = 0.02 0.02 0.15 0.00
13 O 130.53 130.53 = = 0.02 0.02 0.10 0.01
14 O 96.26 96.26 = = 0.03 0.02 0.12 0.00
15 O 19.60 19.60 = = 0.05 0.03 0.22 0.00
16 O 30.24 30.24 = = 0.02 0.02 0.12 0.00
17 O 360.35 360.35 = = 0.00 0.00 0.05 0.01
18 O 304.23 304.23 = = 0.02 0.02 0.05 0.00
19 O 294.21 294.21 = = 0.01 0.01 0.12 0.00
20 O 229.41 229.41 = = 0.02 0.00 0.13 0.00
22 O 144.41 144.41 = = 0.04 0.00 0.16 0.00
24 O 52.70 52.70 = = 0.08 0.02 0.22 0.01

S2 25 O 242.85 242.85 = = 0.06 0.06 0.15 0.00
26 O 282.12 282.12 = = 0.03 0.02 0.67 0.02
27 O 244.54 244.54 = = 0.06 0.03 0.21 0.01
28 O 288.33 288.33 = = 0.06 0.03 0.13 0.01
29 O 108.98 108.98 = = 0.10 0.09 0.74 0.07
30 O 157.48 157.48 = = 0.05 0.05 0.35 0.02
31 O 35.89 35.89 = = 0.26 0.25 0.95 0.05
32 O 36.66 36.66 = = 0.13 0.13 0.60 0.05
33 O 403.18 403.18 = = 0.15 0.08 0.24 0.01
34 O 296.53 296.53 = = 0.44 0.06 0.22 0.00
35 O 404.10 404.10 = = 0.12 0.02 0.48 0.01
36 O 294.80 294.80 = = 0.13 0.05 0.21 0.00
37 O 217.64 217.64 = = 0.31 0.30 1.29 0.13
38 O 184.67 184.67 = = 0.24 0.09 0.82 0.10
40 O 38.05 38.05 = = 0.24 0.23 0.95 0.05
41 O 735.27 735.27 = = 0.01 0.01 0.05 0.00
42 O 506.06 506.06 = = 0.17 0.16 0.08 0.00
43 O 541.03 541.03 = = 0.02 0.02 0.86 0.00
44 O 490.29 493.83 = Exact 0.17 0.03 0.49 0.00
46 O 254.94 254.94 270.19 = 0.16 0.09 0.97 0.07
48 O 81.37 81.37 = = 0.29 0.28 1.37 0.11

Continued
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Table A2
(Continued)

Objective function value CPU times

CPLEX BSBM CPLEX BSBM

Group Instance Status f e Gape f a
min f a

max Best te te
0 ta

mean Stdeva

S3 49 O 507.81 507.81 = = 3369.98 0.38 0.76 0.01
50 O 408.36 408.36 = = 59.56 0.56 0.57 0.01
51 F 425.84 0.16 425.84 445.50 = 3604.98 42.72 2.76 0.18
52 O 366.40 366.53 = Exact 20.08 15.97 0.55 0.02
53 O 267.01 267.01 = = 1317.74 292.63 7.79 0.33
54 O 185.22 185.22 194.25 = 100.65 78.08 2.18 0.32
55 O 74.37 74.37 76.19 = 244.26 84.63 5.62 0.15
56 O 20.98 20.98 = = 3.66 0.86 2.81 0.11
57 O 928.55 928.55 = = 38.48 22.42 12.54 0.00
58 O 476.05 479.19 = Exact 2008.17 23.42 0.86 0.01
59 O 681.19 681.25 = Exact 70.34 0.14 24.60 0.01
60 F 464.58 0.08 476.68 = Exact 3603.28 4.94 1.46 0.01
61 O 478.58 484.44 488.32 Exact 305.86 31.95 80.94 0.71
62 F 276.24 0.18 276.24 = = 3600.07 73.13 34.35 0.32
64 O 66.02 66.02 = = 238.70 238.67 36.06 0.06
65 O 1355.48 1355.48 = = 0.02 0.02 19.32 0.00
66 O 768.51 770.48 = Exact 57.97 2.95 16.65 0.01
68 O 645.80 647.39 = Exact 36.42 16.88 35.89 0.01
70 O 398.75 403.03 412.69 Exact 529.16 90.06 65.29 0.47

S4 73 F 808.70 0.42 808.70 809.83 = 3608.63 3417.61 87.17 0.60
74 F 573.81 0.23 559.57 563.84 BSBM 3602.35 3289.94 11.30 0.39
75 F 773.09 0.45 760.97 765.98 BSBM 3610.49 2207.11 102.92 3.17
76 F 508.64 0.34 485.87 = BSBM 3603.38 235.56 24.89 0.32
77 F 460.34 0.67 441.26 441.66 BSBM 3602.80 3561.64 98.76 0.53
78 F 311.68 0.47 309.19 309.45 BSBM 3603.16 2465.73 67.71 0.74
79 F 136.91 0.49 137.76 = Exact 3606.31 218.28 72.91 0.12
80 F 90.18 0.64 83.74 86.80 BSBM 3605.20 3593.16 58.85 1.64
81 F 1440.06 0.32 1440.06 = = 3602.37 1925.53 92.46 0.21
82 F 872.61 0.39 834.81 = BSBM 3602.96 3271.55 61.43 0.01
83 F 1054.61 0.19 1054.85 1060.60 Exact 3602.03 3466.30 75.85 3.91
84 F 802.64 0.46 799.38 801.97 BSBM 3602.30 3582.33 103.84 3.27
85 F 845.42 0.38 847.39 860.42 Exact 3601.44 3523.25 100.45 0.75
86 F 501.09 0.65 466.33 = BSBM 3600.06 3585.38 76.10 0.40
88 F 140.82 0.49 146.99 = Exact 3605.71 312.89 91.84 0.47
89 O 3085.11 3085.11 = = 0.17 0.17 60.74 0.01
90 F 1452.52 0.27 1452.52 = = 3602.60 65.03 91.82 0.01
92 F 1135.36 0.30 1143.25 1181.72 Exact 3601.35 3360.75 84.86 3.37
94 F 906.37 0.46 876.72 901.42 BSBM 3603.46 3503.34 94.42 1.41

S5 97 F 1561.78 0.58 1478.89 1482.46 BSBM 3605.73 456.16 99.08 4.10
98 F 1077.07 0.41 1002.53 1015.87 BSBM 3602.72 3583.36 95.07 6.78
99 F 1419.13 0.72 1323.40 1349.13 BSBM 3604.34 3527.91 129.69 10.21

100 F 837.92 0.56 782.82 792.40 BSBM 3605.95 3587.14 124.58 8.43
101 F 909.20 0.86 823.13 = BSBM 3600.11 3600.03 137.30 1.92
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Table A2
(Continued)

Objective function value CPU times

CPLEX BSBM CPLEX BSBM

Group Instance Status f e Gape f a
min f a

max Best te te
0 ta

mean Stdeva

102 F 529.41 0.75 482.83 513.19 BSBM 3600.30 3537.48 132.21 9.96
104 F 181.46 0.96 148.31 = BSBM 3600.13 3569.61 126.79 0.26
105 F 2725.28 0.70 2709.34 = BSBM 3605.11 3555.06 104.73 1.52
106 F 1602.50 0.61 1483.59 1486.11 BSBM 3606.23 3465.75 97.35 3.60
107 F 2234.48 0.74 2209.79 2237.32 BSBM 3603.92 3402.05 138.61 8.83
108 F 1322.73 0.69 1294.64 1312.86 BSBM 3600.50 3587.19 148.59 21.60
109 F 1832.02 0.62 1761.02 = BSBM 3603.67 3538.09 145.53 1.92
110 F 1037.91 0.91 882.08 = BSBM 3600.17 3114.06 140.99 2.13

Table A3
Results of the feasible benchmark instances of set B-nwd (CPU times in seconds)

Objective function value CPU times

CPLEX BSBM CPLEX BSBM

Group Inst. Status f e Gape f a
min f a

max Best te te
0 ta

mean Stdeva

S1 1 O 34.17 34.17 = = 0.10 0.03 0.21 0.01
2 O 48.89 48.89 = = 0.04 0.03 0.18 0.01
3 O 41.72 41.72 = = 0.04 0.03 0.17 0.01
4 O 51.45 51.45 = = 0.04 0.03 0.17 0.01
5 O 45.80 45.80 = = 0.03 0.03 0.16 0.00
6 O 36.88 36.88 = = 0.05 0.05 0.18 0.01
7 O 7.63 7.63 = = 0.04 0.03 0.18 0.01
8 O 10.24 10.24 = = 0.03 0.03 0.20 0.01
9 O 214.21 214.21 = = 0.04 0.03 0.64 0.03

10 O 18.97 18.97 = = 0.05 0.05 0.19 0.01
11 O 118.12 118.12 = = 0.03 0.03 0.28 0.03
12 O 65.97 65.97 = = 0.07 0.06 0.20 0.01
13 O 78.87 78.87 = = 0.10 0.03 0.42 0.07
14 O 23.98 23.98 = = 0.08 0.06 0.21 0.01
15 O 17.13 17.13 = = 0.09 0.08 0.33 0.04
16 O 6.34 6.34 = = 0.07 0.03 0.20 0.01
17 O 360.35 360.35 = = 0.03 0.02 0.20 0.00
18 O 225.98 225.98 = = 0.07 0.03 0.33 0.02
19 O 294.21 294.21 = = 0.02 0.02 0.20 0.00
20 O 147.66 147.66 = = 0.08 0.08 0.36 0.03
22 O 89.33 89.33 = = 0.05 0.05 0.37 0.02
24 O 31.70 31.70 = = 0.10 0.08 0.41 0.02

S2 25 O 83.21 83.21 = = 0.28 0.27 1.21 0.04
26 O 39.58 39.58 = = 0.20 0.14 0.36 0.01
27 O 61.27 61.27 = = 0.23 0.14 0.72 0.04
28 O 42.62 42.62 = = 0.25 0.23 0.40 0.02
29 O 34.43 34.43 = = 0.28 0.27 0.80 0.04
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Table A3
(Continued)

Objective function value CPU times

CPLEX BSBM CPLEX BSBM

Group Inst. Status f e Gape f a
min f a

max Best te te
0 ta

mean Stdeva

30 O 15.73 15.73 = = 0.15 0.14 0.42 0.02
31 O 19.33 19.33 = = 0.25 0.25 0.90 0.04
32 O 8.33 8.33 = = 0.20 0.14 0.47 0.02
33 O 318.76 318.76 = = 0.33 0.31 1.34 0.08
34 O 123.60 123.60 = = 1.23 0.70 1.25 0.04
35 O 253.12 253.12 = = 0.29 0.28 1.35 0.05
36 O 158.54 161.52 = Exact 1.20 0.84 1.32 0.02
37 O 169.83 169.83 = = 0.27 0.16 1.22 0.05
38 O 74.16 74.16 = = 0.61 0.48 1.33 0.03
39 O 78.33 78.33 = = 0.10 0.09 0.82 0.04
40 O 18.60 18.60 = = 0.48 0.36 1.58 0.07
41 O 735.27 735.27 = = 0.32 0.13 1.27 0.00
42 O 318.73 318.73 = = 0.48 0.47 2.41 0.05
43 O 541.03 541.03 = = 0.32 0.09 1.32 0.01
44 O 357.22 357.22 = = 0.52 0.34 2.01 0.04
46 O 215.85 215.85 = = 1.10 1.09 2.03 0.06
48 O 72.65 72.65 = = 0.60 0.47 2.25 0.06

S3 49 O 192.01 192.01 = = 50.24 17.42 20.68 0.03
50 O 98.67 98.67 = = 60.19 5.20 4.59 0.04
51 O 261.27 261.27 = = 2155.10 81.56 27.03 0.03
52 O 50.51 50.51 = = 4.78 4.63 2.66 0.15
53 O 147.36 147.36 = = 176.66 3.91 20.29 0.04
54 O 28.02 28.02 = = 3.34 3.33 1.91 0.05
55 O 42.12 42.12 = = 40.55 34.86 13.16 0.04
56 O 12.79 12.79 = = 4.08 2.75 2.85 0.03
57 O 648.49 648.49 = = 10.82 10.73 35.81 0.36
58 O 159.40 159.40 = = 255.49 205.89 36.38 0.04
59 O 428.51 428.51 = = 25.70 12.58 37.41 0.05
60 O 182.31 182.31 = = 527.28 526.14 36.64 0.23
61 O 362.51 362.51 = = 154.28 2.16 36.23 0.06
62 O 120.05 120.05 = = 126.43 27.63 35.56 0.32
64 O 59.88 59.88 = = 435.63 351.77 43.19 0.05
65 O 1355.48 1355.48 = = 3.00 1.28 20.92 0.00
66 O 561.90 568.99 = Exact 16.03 15.73 38.19 0.08
68 O 457.26 457.26 = = 104.12 84.80 42.48 0.10
70 O 324.11 324.11 324.20 = 483.14 221.22 52.49 0.56

S4 73 F 465.18 0.71 469.54 476.44 Exact 3600.05 3516.08 113.99 0.55
74 F 168.79 0.55 130.52 = BSBM 3600.08 3302.61 56.97 0.04
75 F 413.83 0.74 404.36 = BSBM 3604.91 3209.38 122.48 0.06
76 F 177.03 0.69 130.30 = BSBM 3600.07 3583.05 55.31 0.03
77 F 337.42 0.75 342.39 353.15 Exact 3600.13 1158.33 123.41 1.00
78 F 132.87 0.68 103.49 = BSBM 3600.09 2486.02 59.37 0.04
79 F 136.91 0.49 137.76 = Exact 3601.94 803.19 79.42 0.06
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Table A3
(Continued)

Objective function value CPU times

CPLEX BSBM CPLEX BSBM

Group Inst. Status f e Gape f a
min f a

max Best te te
0 ta

mean Stdeva

80 F 35.58 0.57 35.47 = BSBM 3600.07 3461.41 73.73 0.03
81 F 1111.65 0.07 1130.62 = Exact 3601.76 499.02 86.39 0.15
82 F 528.99 0.78 455.26 456.51 BSBM 3600.07 3572.94 123.00 0.53
83 F 812.41 0.19 800.47 = BSBM 3602.80 892.66 88.41 0.11
84 F 506.71 0.76 458.67 479.28 BSBM 3600.80 3397.83 123.53 0.62
85 F 801.40 0.50 748.23 = BSBM 3604.77 3432.89 107.47 0.14
86 F 383.59 0.81 325.59 341.30 BSBM 3600.07 106.72 123.89 1.14
88 F 109.54 0.44 109.54 = = 3603.08 1796.99 104.20 0.10
89 O 3085.11 3085.11 = = 56.91 10.17 103.90 0.01
90 F 1132.46 0.14 1132.46 = = 3602.35 1915.97 115.52 0.13
92 F 1029.19 0.34 1021.11 1029.19 BSBM 3601.54 1869.17 128.33 1.73
94 F 822.76 0.53 809.02 = BSBM 3600.66 3593.84 126.98 0.11

S5 97 F 1201.49 0.90 1041.40 1106.14 BSBM 3600.20 3426.53 138.91 6.56
98 F 731.53 0.95 452.47 505.06 BSBM 3600.33 3349.05 128.01 1.72
99 F 1254.84 0.93 1013.39 1092.92 BSBM 3600.20 1178.76 138.68 4.96

100 F 642.72 0.95 400.37 459.17 BSBM 3600.33 1703.11 127.44 1.59
101 F 849.57 0.92 738.70 766.68 BSBM 3600.21 2295.34 132.52 3.45
102 F 473.71 0.95 267.97 301.10 BSBM 3600.41 3586.16 128.00 1.85
104 F 210.00 0.98 159.82 172.45 BSBM 3600.26 2453.91 68.46 3.77
105 F 2691.78 0.92 2501.10 2548.80 BSBM 3600.60 2767.30 130.72 7.44
106 F 1281.91 0.94 1057.66 1137.45 BSBM 3600.51 3559.33 141.22 5.93
107 F 2281.74 0.91 2066.71 2134.33 BSBM 3600.93 3398.50 130.72 10.66
108 F 1229.02 0.94 972.89 1037.52 BSBM 3601.03 3486.97 140.51 6.23
109 F 1801.68 0.67 1731.48 1772.81 BSBM 3600.54 3585.25 91.66 6.33
110 F 1017.44 0.95 799.34 835.39 BSBM 3601.09 3165.80 141.24 7.99
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